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Abstract

Classifiers operating in a dynamic, real world environment, are vulnerable to adversarial activity, which causes
the data distribution to change over time. These changes are traditionally referred to as concept drift, and several
approaches have been developed in literature to deal with the problem of drift handling and detection. However, most
concept drift handling techniques, approach it as a domain independent task, to make them applicable to a wide gamut
of reactive systems. These techniques were developed from an adversarial agnostic perspective, where they are naive
and assume that drift is a benign change, which can be fixed by updating the model. However, this is not the case
when an active adversary is trying to evade the deployed classification system. In such an environment, the properties
of concept drift are unique, as the drift is intended to degrade the system and at the same time designed to avoid
detection by traditional concept drift detection techniques. This special category of drift is termed as adversarial drift,
and this paper analyzes its characteristics and impact, in a streaming environment. A novel framework for dealing
with adversarial concept drift is proposed, called the Predict-Detect streaming framework. This framework uses
adversarial forethought, and incorporates the context of classification into the drift detection task, to provide leverage
in dynamic-adversarial domains. Experimental evaluation of the framework, on generated adversarial drifting data
streams, demonstrates that this framework is able to provide reliable unsupervised indication of drift, and is able
to recover from drifts swiftly. While traditional partially labeled concept drift detection methodologies fail to detect
adversarial drifts, the proposed framework is able to detect such drifts and operates with <6% labeled data, on average.
Also, the framework provides benefits for active learning over imbalanced data streams, by innately providing for
feature space honeypots, where minority class adversarial samples may be captured. The framework provides for an
application independent, distribution independent, incremental, and semi supervised system for continuously dealing
with adversarial activity at test time, and provides a generic way for implementing reactive security to classification
based systems.

Keywords: Adversarial machine learning, Concept drift, Streaming data, Limited labeling, Active learning,
Classification

1. Introduction characteristics of one class of samples (i.e., the Mali-
cious class). The adversary starts by learning the be-
havior of the defender’s classifier model, using crafted
probes, and then exploits this information to generate
attack samples, to evade classification (Barreno et al.|
20105 |Sethi et al., 2017; |Sethi and Kantardzic, 2017a;
Biggio et al., 2013). These attacks leads to a change in
the distribution of the data, at test time, and also leads
to a drop in the prediction capabilities of the defender’s
model. From the perspective of streaming data mining,
we refer to such changes in the data distribution at test
time, as Adversarial Drifts (Kantchelian et al., [2013)).

Data in dynamic real world environments are char-
acterized by non-stationarity. The changes in the data
distribution, called concept drift, can cause the learned
model to drop in predictive performance, over time
(Gama et al., [2004; Zliobaité, 2010). It is therefore es-
sential to detect and handle drifts swiftly, to continue us-
ing the predictive capabilities of the model. Adversarial
drift is a special kind of concept drift, where the changes
in the data distribution are targeted towards affecting the
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For a classifier operating in an adversarial environment,
it is essential to be able to deal with such data dynamics,
and to adapt the model, so as to be of any practical long
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term use.

Adversarial drift is a special type of concept drift.
The main characteristics of adversarial drift which dis-
tinguishes it from traditional concept drift are: a) The
drift is a result of changes to the malicious class sam-
ples only, b) The drift is a function of the deployed clas-
sifier model, as the adversary learns and gains informa-
tion about it, before trying to evade it (Barreno et al.|
20006), and c) The drift is always targeted towards sub-
verting the deployed classifier (i.e., it is relevant only
if it leads to a drop in the performance of the deployed
model) (Sethi et al.,2017). The dependent nature of ad-
versarial drift is shown in Figure[I] where the deployed
classifier C dictates the possibility of adversarial drifts
in the data space. The figures b) and c) demonstrate ad-
versarial drifts, which are caused by an attacker trying
to subvert C. The two scenarios are a result of the dif-
ferent defender models, which the adversary is trying to
learn and circumvent. The nature of the drift is depen-
dent on the choice for C, and as such the model designer
has a certain degree of control over the possible space
of drifts, at test time.

The detection of drifts is often carried out by su-
pervised approaches, which continuously monitor the
predictive performance of the stream of data, flowing
into the system (Goncalves et al.| 2014). However,
this is not a practical solution in a streaming environ-
ment, as human expertise in the form of labeled data,
is often expensive and time taking to obtain (Masud
et al.l 2012; |Sethi and Kantardzic, |2017b). There have
been proposed unsupervised drift detection methodolo-
gies (Spinosa et al.l [2007; [Masud et al., [2011}; |Lee and!
Magoules, 2012; Ryu et al., 2012; [Lindstrom et al.}
2013; [Sethi et al., 2016b), which directly monitor the
feature distribution of the data, to indicate drifts. These
approaches suffer from excessive pessimism, as they
cannot differentiate between drifts which affect the clas-
sifier’s performance and those which do not. This prob-
lem of reliability of the drift detection, was addressed
in the recent works of (Sethi and Kantardzic, 2017b),
where the Margin Density Drift Detection (MD3) ap-
proach was developed. By including the context of
classification, to the drift detection task, the MD3 ap-
proach was shown to provide domain independent and
reliable indication of drift, from unlabeled data. Like
most approaches in the area of concept drift detection
(Goncalves et al., 2014), the domain agnostic nature of
the MD3 approach was shown to be an advantage in
(Sethi and Kantardzicl 2017b). However, in an adver-
sarial environment, disregarding of domain characteris-
tics, leads to missed opportunity and can make the de-
tection process vulnerable to adversarial evasion. The

drift is characterized by an attacker continuously trying
to hide its trail, by learning about the behavior of the
detection system first. As such, the drift detection can
itself be vulnerable to adversarial manipulation at test
time. Most drift detection methodologies are designed
as adversarial agnostic approaches, where they consider
drift to be independent of the deployed classifier. In
an adversarial domain, the relation between the type of
drift and the choice of the classifier C, is strongly cou-
pled (Barreno et al.,|2000). It is necessary to understand
and incorporate the specific characteristics of adversar-
ial drift, to make unsupervised drift detection applicable
in such a domain.

An adversarial-aware, unsupervised drift detection
approach, will take preemptive steps at the design of the
classifier model, to ensure that future detection and re-
training is made easier. In this paper, the Predict-Detect
framework is proposed, as an adversarial-aware unsu-
pervised drift detection methodology, capable of sig-
naling adversarial activity, with high reliability. The
framework incorporates the ideas of reliability, which
makes the MD?3 (Sethi and Kantardzicl |2017b) method-
ology effective, and presents a novel streaming data sys-
tem, capable of providing life-long learning in adver-
sarial environments. The developed methodology in-
corporates attack foresight into a preemptive design, to
provide long term benefits for reactive security. The
framework is developed as an ensemble based, applica-
tion and classifier type independent approach, capable
of working on streaming data with limited labeling. To
the best of our knowledge, this is the first work which
directly addresses the problem of adversarial concept
drift in streaming data. The main contributions of the
proposed work are as follows:

e Analyzing the characteristics of adversarial con-
cept drift, and the impact of the deployed classifier
on the drifts generated at test time.

e Developing the Predict-Detect classifier frame-
work, as a novel approach to dealing with adver-
sarial concept drift, in streaming data with limited
labeling.

e Extending the Predict-Detect framework, to work
with imbalanced data streams, by using active
learning for labeling adversarial samples.

e An novel simulation framework, for introducing
systematic adversarial concept drift into real world
datasets. This simulation framework allows for
reusable testing, for better experimentation and
analysis of the drift detection methodologies.
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Figure 1: Illustration of adversarial drift, as a function of the defender’s classifier model C.

e Empirical evaluation of popular cybersecurity
datasets, which provides avenues for further exten-
sion of the proposed methodology, to meet domain
specific needs.

The rest of the paper is organized as follows: Sec-
tion [2] presents background work in the area of unsuper-
vised concept drift detection and adversarial machine
learning. In Section[3] the proposed Predict-Detect clas-
sifier framework is described. Experimental evaluation
and results are presented in Section ] Extension of the
Predict-Detect framework, to work with imbalanced ad-
versarial drifting streams, is presented in Section[5} Ad-
ditional discussion and ideas for extension are provided
in Section [6] followed by conclusions in Section[7}

2. Background and related work

In this section, the related research in the domain of
concept drift and adversarial machine learning, is pre-
sented. Existing work on unsupervised concept drift de-
tection, is presented in Section The specific nature
of adversarial activity, making it a special type of con-
cept drift, is highlighted by recent works in the area of
attacks on classifier systems, and is discussed in Sec-
tion[2.2] Recent works incorporating adversarial aware-
ness, in the design of dynamic systems, is presented in
Section 2.3

2.1. Concept drift detection from unlabeled streaming
data

Detection of concept drift is essential to dynamic
classification systems, to provide high predictive perfor-
mance throughout the progression of the data stream.
Supervised classification techniques (Goncalves et al.,
2014)), are widely used in literature. These techniques
rely on the continuous availability of labeled data, to

compute performance (accuracy or f-measure), to mon-
itor deviations from expected behavior. The over-
dependence on labeled data, makes these techniques
impractical for usage in a streaming data milieu, as
labeling is an expensive and time consuming activity
(Masud et al., [2012; Lindstrom et al.| [2010; Kim and.
Parkl [2016). To account for these limitations of super-
vised drift detection techniques, several unsupervised
and semi-supervised drift detection methodologies have
been proposed (Kim and Parkl [2016} Sethi et al., 2016bj
Masud et al., 2011} [Lee and Magoules, |2012; Ditzler
and Polikar, 2011} [Ryu et al., 2012; Lindstrom et al.|
2013} |Qahtan et al., [2015). These techniques rely on
monitoring the distribution characteristics of the unla-
beled data, to detect drifts. These are essentially change
detection methodologies, which track deviations in the
feature space distribution of the data, using statistical or
clustering based techniques. As such, they are sensi-
tive to any change in the data distribution, irrespective
of its impact on the classification task. Not all changes
in data result in a drop in the predictive performance of
the classifier at test time, and as such the unsupervised
techniques are prone to excessive paranoia which leads
to false alarms. False alarms leads to wasted labeling
effort, for validating drifts(Sethi and Kantardzicl 2015),
and also leads to loss of trust in the drift detection sys-
tem.

To make unsupervised drift detection more reliable,
the margin density drift detection algorithm (MD?3) was
proposed in (Sethi and Kantardzic, 2017b). The de-
veloped algorithm tracks the expected number of sam-
ples falling in the uncertain regions of a robust classi-
fier (i.e. its margin), to detect changes which can affect
the classifier’s performance. For classifiers with explicit
notion of margins, such as support vector machines
(SVM), the margin is naturally defined and it’s den-
sity can be tracked in a streaming environment (Sethi
and Kantardzicl 2015). For classifiers with no ex-
plicit notion of margin, such as C4.5 decision trees,



/ Generalizatior
Blind Spots
(Margin)

%0 02 04 06 08 10 % (%) C X3 o8 1o

Figure 2: In MD3, the density of margin is tracked, to detect drifts
from unlabeled data. /eft- the margin region for SVM based classifier.
right- pseudo margin for classifier with no real notion of margin, de-
fined as the disagreement region for a feature bagged ensemble.(Sethi
and Kantardzic| |2017b)

the concept of a pseudo margin was introduced. By
using a feature bagged ensemble, the margin was de-
fined as the blindspot region, given by the region of
high disagreement between the ensemble models (Fig-
ure [2) (Sethi et al., 2016a). Both the margin and the
blindspot representation, were shown to provide simi-
lar benefits to unsupervised drift detection, making the
MD3 methodology an effective classifier independent
algorithm. Experimental evaluation demonstrated that
the MD3 methodology is able to provide similar perfor-
mance as a fully labeled approach (the Expert Weighted
Moving Average approach EWMA (Ross et al., 2012)),
and at the same time leads to lesser false alarm com-
pared to unsupervised drift detectors (compared with
the Hellinger Distance Drift Detection methodology
(Ditzler and Polikar, 2011)), making it more reliable
and label efficient, for usage in a streaming data envi-
ronment.

The efficacy of the MD3 methodology, is a result of
its ability to add the context of classification, to the task
of drift detection. This is done by the inclusion of the
margin characteristics, to discern if changes are relevant
from the perspective of classifier performance. How-
ever, while the MD3 methodology includes the con-
text of the learning task, it does not include any con-
text about the nature of drifts that can occur at test time.
This was seen as a strength of the methodology in (Sethi
and Kantardzic, [2017b)), making it more domain inde-
pendent. However, in an adversarial domain, the drifts
are more sophisticated, and can lead to evasion or mis-
leading of the drift detection mechanism. Also, by not
including the context of adversarial activity, the MD3
methodology misses out on preemptive design of clas-
sifiers, which can provide benefits post deployment.

2.2. Adversarial manipulation of test time data

The security of machine learning has garnered re-
cent interest from the research community, with several

works demonstrating the vulnerabilities of classifiers
to probing based attacks (Biggio et al., 2014a; [Tramer
et al., 2016; |Biggio et al., [2013} [Papernot et al., 2016a;
Biggio et al.| |2014b; |Sethi et al., [2017). These attacks
are themselves data driven, and are caused by adver-
saries crafting samples at test time, which evade the de-
ployed classifier of the defender, causing it to drop in
predictive performance (accuracy). These attacks begin
by the adversaries performing reconnaissance (explo-
ration) on the classifier, to understand its behavior, and
as such are referred to as exploratory attacks (Barreno
et al.| [2006). The information accumulated is then used
to craft attack samples, leading to a drift at test time.
These attacks are commonplace and pervasive, as they
do not require any domain specific information or de-
tails about the internal workings of the defender’s clas-
sifier model. The adversary, like any other client user
of the system, accesses the system as black box system,
to which it can submit samples and observe the response
(Sethi et al.,2017). Such a setting was inspired from the
design of cloud based machine learning services (such
as Amazon AWS Machine Learning’|and Google Cloud
Platfomﬂ), which provide APIs for accessing predictive
analytics as a service. These services were also seen to
be vulnerable to exploratory attacks, where the adver-
sary uses the client API to evade the black box model
(Tramer et al ., [2016; [Sethi and Kantardzic, 2017a).

The Anchor Points (AP) attacks of (Sethi et al.,[2017;
Sethi and Kantardzic, [2017al), is one such algorithm for
simulating exploratory attacks on black box classifiers.
The AP attacks uses an exploration-exploitation frame-
work, to perform evasion on classifiers, as shown in Fig-
ure[3] The adversary starts with a seed sample, and then
performs exploration by using a radius based incremen-
tal search approach. Each generated sample is submit-
ted to the black box classifier of the defender, and its
response is observed. Samples which are classified as
Legitimate, by the defender, are considered as ground
truth values for the subsequent exploitation phase, and
are referred to as the Anchor Points. In the exploita-
tion phase, the anchor points obtained in the exploration
phase are used to generate additional attack points. The
generation is based on a convex combination of the ex-
ploration points, and a perturbation operation, to add di-
versity to the final attack set of samples. The final set of
attack points (red), as seen in Figure 3| are submitted to
the defender. These samples will cause the performance
of the defender to drop, leading to a concept drift.

The Anchor Points (AP) attacks, was developed as

'https://aws.amazon.com/machine-learning/
Zcloud. google.com/machine-learning
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Figure 3: Illustration of AP attacks.(Left - Right): The defender’s
model from its training data. The Exploration phase depicting the
seed (blue) and the anchor points samples (purple). The Exploitation
attack phase samples (red) generated based on the anchor points.(Sethi
and Kantardzic}, 2017a)

a methodology to analyze the vulnerability of machine
learning systems, in (Sethi and Kantardzicl 2017a)). It
was presented from a static perspective, as batches of
samples were submitted for exploration and exploita-
tion. However, its analysis as a concept drift genera-
tion framework, has hitherto been ignored. Not only
does the AP attack framework provide a way to gener-
ate adversarial concept drift, it also highlights an impor-
tant characteristic of such drifts - the dependence of the
generated drift on the initial trained classifier, which is
explored and being evaded by the adversary. The ex-
tension of exploratory attacks to the domain of concept
drift, has not been proposed elsewhere, to the best of our
knowledge.

2.3. Dealing with adversarial activity at test time

Adversarial activity causes the performance of the
deployed classifier to degrade over time. Most works
in adversarial machine learning, concentrate on mak-
ing classifiers harder to evade. They do so by re-
sorting to Complex learning strategies (Papernot et al.,
2016b; Rndic and Laskov, 2014; |Wang, [2015}; Biggio
et al., [2010alb; 'Wozniak et al.l 2014} |Stevens and Lowd,
2013)), which advocates integrating maximum informa-
tive features into the classifier models, or by integrating
Randomness into the prediction process (Biggio et al.,
2014a; Xu et al., 2014} |Colbaugh and Glass} 2012;
Vorobeychik and Li, [2014; [Papernot et al.,|2016b). The
emphasis of these two strategies, is to make attacks
harder/expensive to carry out. However, these method-
ologies approach the problem of security from a static
perspective. They focus on the ability to ward of at-
tacks, but fail to provide insights or directions regarding
measures to be taken after an attack commences. This is
illustrated in Figure[d] where the predictive performance
of a classifier faced with an attack, and subsequent re-
covery, is shown. Static measures of Complex learning
and Randomness, concentrate only on the portion of the
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Figure 4: Ilustration of model performance over time, indicating on-
set of attack and recovery from it. Static measures of security focus on
delaying onset of attacks. Dynamic measure focus on detection and
recover only.

attack-defense cycle before the attack starts. Any practi-
cal and usable system, also needs reactive dynamic mea-
sures, which can deal with attacks after it has affected
the system’s performance. Dynamic approaches are de-
veloped in the domain of concept drift research, where
the aim is to detect and adapt to changes in the data dis-
tribution over time. One such methodology for reliable
drift handling was developed in (Sethi and Kantardzic|
2017b), as the Margin Density Drift Detection frame-
work (MD3). However, this approach, like the other
works on concept drift detection (Zliobaité, 2010;|Gama
et al.,2014; Ditzler et al., 2015} |Goncalves et al.,[2014),
considers an adversarial agnostic view of the system.
Concept drift detection considers any change in data
equally, without regard into the domain specific nature
of the change. This makes it ineffective in an adversarial
setting, where drifts are a result of attacks, which are in
turn a function of the model deployed by the defender.

Ideas and motivation regarding the dynamics of the
machine learning security, were proposed in (Kantche-
lian et al, 2013). It was proposed that for a system to
be of any practical use, it should evolve over time, and
engage with human experts beyond feature engineering
and labeling. A new taxonomy of exploratory attacks
was presented in (Kantchelian et al.l [2013)), based on
their effects on a dynamic data mining process. The idea
of Data Nullification attacks, was introduced. These
attacks are a result of an adversary gaining excessive
information about the training data samples, which it
then uses to mimic benign samples perfectly. This
causes attacks to overlap with the legitimate training
data samples, leading to inseparability, and the inabil-
ity of classifiers to distinguish between the two classes
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Figure 5: Illustration of Data Nullification attacks. These attacks
leads to corruption of the training data, and the inability to function
in a streaming environment. blue- legitimate training data, red- mali-
cious training data, and test time attack samples.

of samples (Figure [5). In such a case, the classifier
cannot be retrained using the existing set of features,
and new analysis and data collection is needed to re-
design the system, which requires tedious examination
of samples, to detect attacks and generate new set of
features. From a dynamic machine learning perspec-
tive, the task of the defender should be to ensure that
such type of attacks are avoided, even though evasion
might be made slightly easier. This ensures that drifts
will be detect-able and recover-able from. Works in the
detection of adversarial activity were proposed in (Chi-
navle et al., [2009; [Kuncheva, 2008; Smutz and Stavrou,
2016)), which demonstrate that malicious activity can be
detected by tracking disagreement scores from ensem-
ble of models. However, these methods were not ana-
lyzed in a streaming environment, and also did not ac-
count for adversarial evasion capabilities at test time.

The idea of data leakage and data nullification at-
tacks, present a new dimension in the evaluation of
machine learning security, beyond the traditional estab-
lished metrics of hardness of evasion (Lowd and Meek|
2005). These ideas are a result of a more widespread
and practical understanding of the vulnerabilities of
classifiers, resulting from black box and indiscriminate
attacks at test time. Existing work on concept drift ap-
proaches this problem as a cyclic one, where data dis-
tribution changes are detected and handled over time
(Zliobaité, 2010). However, concept drift research has
hitherto taken a domain agnostic approach to dealing
with distribution shifts. Adversarial characteristics of
the drift, and preemptive strategies to mitigate and man-
age drift, have not been analyzed or discussed before, to

the best of our knowledge. The only mention we found
was in (Barreno et al., |2006; Kantchelian et al., [2013)),
where adversarial drift was understood to be a special
type of drift, being a function of the deployed classifier
itself. Since the attacks are targeted towards evading the
deployed classifier, the choice of the deployed classifier
directs the gamut of possible attack on the system, to a
large extent. We analyze this specific aspect of the at-
tacks, and design a preemptive strategy which benefits
the dynamic handling of the attacks at test time.

3. Proposed methodology

In this section, the Predict-Detect classifier frame-
work is proposed. Section [3.1] presents motivation and
intuition for the development of the framework. Devel-
opment of the framework, as suitable for a streaming
data environment, is presented in Section

3.1. Motivation - Misrepresenting feature importance

In the security of machine learning, robustness of
classifiers is given by the effort needed by an adver-
sary, to evade the model (Barreno et al., 2010; Lowd
and Meek, 2005). This has motivated the develop-
ment and adoption of Complex Learning methodolo-
gies, which incorporate maximum feature information
from the training data, as a standard approach to se-
curing classifier against probing based exploratory at-
tacks. The intuition behind this strategy is as such:
the inclusion of several informative features into the
trained model makes the classifier more restrictive, as
an adversary now has to simultaneously reverse engi-
neer and mimic a majority of the benign data charac-
teristics. While this intuition holds good from a static
perspective, where we are trying to measure security in
terms of the delay in the onset of attacks, it does not
hold in a dynamic environment. In a dynamic envi-
ronment, it is paramount for adversarial activity to be
detect-able and recover-able from, so that a model is us-
able over time. Using the advocated Complex Learning
strategies, excessive information is presented to the ad-
versary, who over time can probe and learn the specific
characteristics of the training data features. Such an ad-
versary can accumulate the reconnaissance information,
and then generate high confidence attacks, which avoid
the uncertainty regions of the defender’s model (Sethi
and Kantardzic|, 2017b)). Such drifts are harder to de-
tect and retrain from, as they overlap with the training
- benign class data, and as such lead to a total compro-
mise of the machine learning based system (Figure [5).
Figure [6] illustrates one such adversary, which evades
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Figure 6: Drifts in adversarial environments will avoid low confidence
regions, to avoid detection.

the MD3 approach of (Sethi and Kantardzicl [2017b). In
MD3, it was proposed that margin density tracking over
time can be used as a reliable indicator of concept drift
from unlabeled data. This was shown to perform well
over several concept drift detection tasks from different
domains. However, the MD3 approach disregards the
adversarial nature of drifts and as such could be fooled
by an adversary, who avoids the uncertain regions of the
deployed classifiers.

The use of excessive information in the trained
model, leads to leakage of information to the adversary,
who uses carefully crafted probes to understand the be-
havior of the classifier model. For concept drift detec-
tion methodologies to function in adversarial domains,
it is necessary for the test time adversarial samples to
be separable from the benign training data samples. To
ensure that the separability is maintained, it is neces-
sary to limit the information available to be probed by
an adversary. As an example of this requirement, con-
sider the following toy example: a 2-dimensional binary
dataset, where the sample L(X1=1, X2=1) represents the
Legitimate class training sample and M(XI1=0, X2=0)
represents the Malicious class sample. We evaluate two
strategies for designing the defender’s classifier C: a) A
Complex Learning approach, which incorporates the in-
formation of both features X/ and X2, into C, and b) A
simpler model, which uses only the minimal amount of
information necessary (i.e., one which uses either X7 or
X2, only). In case of the Complex Learning approach,
the defender could either use a restrictive or a general-
ized strategy: C : X1 U X2 or C : X1 VvV X2. In either
case, an adversary is able to understand the impact of
the two features on C, and can generate an attack sam-
ple (1,1), to simultaneously evade both informative fea-
tures. This attack sample is indistinguishable from the
training data sample L, causing unlabeled attack detec-
tion and handling, to fail. In the case of a simple model
(here, C : X1), the attacker is able to evade the sys-

Prediction Model | Predicted Labels
(Black Box) |
lack Box
I
} Launch Update if
attack detected

Incoming samples |
—
\

> Detection Model
(Hidden)

Figure 7: The Predict-Detect classifier design. The Prediction Model
is deployed as the de-facto classifier of the system, and is prone to
adversarial activity. The Detection Model is used to track adversarial
activity and detects when the system is compromised.

tem by successfully mimicking X1 = 1. However, it is
not completely certain about L, as no amount of prob-
ing will provide information about the specific impact
of X2 (both (1,0) and (1,1) are accepted by C as Legiti-
mate). This example illustrates the advantages of a sim-
pler model in adversarial domains, as a counter intuitive
but effective strategy to ensure dynamic functioning of
classifiers.

3.1.1. The Predict-Detect classifier design

The nature of adversarial drifts makes it dependent
on the characteristics of the deployed classifier model,
which it is trying to evade (Barreno et al., |2006). As
such, preemptive measures taken during the training of
a classifier model, can benefit dynamic test time detec-
tion and handling of such drifts. The Predict-Detect
design uses this intuition, to develop classifier models
which are able to detect adversarial activity at test time;
reliably and with limited labeled data. By intentionally
misrepresenting the un-informativeness of a subset of
data features, this design is able to track adversarial ac-
tivity.

The Predict-Detect design uses two orthogonal clas-
sifier, each trained on a disjoint subset of features of the
training data, as shown in Figure[7} The first subset of
features is used to form the defender’s black box model,
to perform prediction on the input samples. This clas-
sifier is called the Prediction or the Defender model,
as its primary purpose is to perform prediction on the
input samples, submitted by either the benign users or
the adversary. Since this forms the black box model,
it is vulnerable to probing based attacks by an adver-
sary. The Prediction model is expected to get attacked
at some point, after deployment, due to the nature of the
adversarial environment. The second subset of features
is used to train a classifier, called the Detection or the
Hidden model. This classifier is not used for any of the
prediction task, and as such is shielded from external
adversarial probes. This model represents information
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Figure 8: Illustration of the Predict-Detect classifier on 2D synthetic
data. Significant portion of adversarial samples are captured by the
Detection Region.

known by the defender, based on the original training
data, but not accessible via probing to an adversary. The
purpose of the Detection model is to indicate adversar-
ial activity, based on disagreement with the Prediction
model. Since an adversary launches an attack based
on information learned from the black box, an attack
is characterized by evasion of the Prediction model, but
only partial evasion of the Detection model. This is il-
lustrated in Figure[8] where a 2D synthetic training data
is shown. Attacks on the black box Defender’s model
are detected by an increase in the number of sample
falling with the region of disagreement, called the De-
tection Region. The two orthogonal models form a self
monitoring scheme for detecting suspicious deviations
in the data distribution, at test time.

It should be noted that this division of features in
Figure [/| is opaque to the adversary, who still submits
probes on the entire feature set. The division of features
is done internally by the framework. Thus no additional
information is leaked to an adversary. Also, this frame-
work does not advocate feature hiding, in accordance
with the Kerchkoff’s principles of information security
(Kerckhofts, [1883; Mrdovic and Perunicic, 2008)), but
instead relies on misrepresentation of the importance of
the features, to the classification task. In case of Fig-
ure [8] an adversary will know that the system consists
of features X/ and X2, but will not be able to ascertain
the informativeness of feature X/, no matter how long it
probes the system.

There proposed Predict-Detect classifier design, aims
to provide the following benefits: a) The misrepresen-
tation of feature importance, will prevent drifts which
overlap with the training data, preventing data nullifi-
cation (Figure[3), b) The uncertainty on the adversary’s
part will lead to samples falling in the Detection Region
at test time, enabling reliable unsupervised detection of
adversarial drifts, ¢) In case of imbalanced data streams,
where the attacks is a minority class, the Detection Re-
gion provides a natural reserve for sampling the adver-
sarial class data, enabling effective active learning over
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Figure 9: Overview of the Predict-Detect stream classification frame-
work.

imbalanced data.

3.2. The Predict-Detect streaming classification frame-
work for dynamic-adversarial environments

The proposed Predict-Detect framework is developed
as a streaming incremental framework for detecting and
handling adversarial drifts. The overview of the frame-
work is presented in Section [3.2.1] Detailed design of
the framework and its major components is presented in

Sections[3.2.2][3.2.3|and [3.2.4]

3.2.1. The Predict-Detect streaming classification
framework

The overview of the Predict-Detect streaming frame-
work is presented in Figure 0] The input stream of un-
labeled data samples X is processed, leading to the out-
put predicted label stream Y. In this setup, the frame-
work has an unsupervised drift indication component,
which processes X to detect if there is any significant
drifts, which could cause the predictive performance to
drop. Upon signaling a drift, the framework requests ad-
ditional labels (Ny4pei5), from an external oracle, often at
a price (cost and time resources). These labeled samples
are used for confirmation of the earlier signaled drift
(by the unsupervised component). If a significant drop
in the predictive performance (accuracy/f-measure) is
seen over the labeled samples, the framework confirms
the occurrence of an adversarial drift. In the event of a
confirmed drift, the labeled samples are used to retrain
the predictive model, to ensure the continued efficacy
of predictive performance of the system. Since the la-
beled samples are requested only when a drift is first



suspected, using unlabeled data, this framework pre-
vents wastage of labeling effort, which results from con-
tinuous monitoring of the stream (Sethi and Kantardzicl
2015)). In the event of infrequent drifts and long periods
of stationarity, the framework will not indicate drifts,
and thereby no labeling will be wasted.

The core design aspect of the framework, which
makes it effective in an adversarial environment, is the
development of the Predict-Detect classifier model, as
seen in Figure @] as the Cp_p model. The framework
leverages the benefits of the Predict-Detect design of
Section|3.1.1} as a novel mechanism to hide feature im-
portance information from the adversary, and extends
it to be applicable in a streaming data domain. The
classifier relies on a coupled model strategy, where two
orthogonal models are trained from the training data
D7.4in. The first model is called the Prediction model
(Cp), and it is trained on one disjoint subset of features
of the original training dataset. The other subset of fea-
tures, not used in (Cp), is used to train the Detection
model (Cp). The Prediction model is the defacto model
of the framework, used for classifying the input unla-
beled stream X, to produce output labels Y. Since this is
the prediction model facing the input stream of data, this
model is susceptible to adversarial activity, at test time.
This forward facing model is expected to be attacked, by
an adversary using probing based exploratory attacks,
and observing the feedback provided by the framework.
As such, the model’s performance is expected to drop
over time. The Detection model is shielded from the
probes of the adversary, as it is kept hidden and away
from the prediction process. As seen in Figure [0] the
feedback of the model Cp is not presented to the out-
side world. This model is used for the detection of ad-
versarial activity. An adversary, using probes to under-
stand the behavior of the black box model Cp, will fail
to successfully reverse engineer Cp, which is trained on
an orthogonal subset of features. As such, the adver-
sary will not be able to exactly mimic the training data
characteristics. This will enable the tracking of adver-
sarial activity, indicated as an increase in the disagree-
ment between the predictions of the two models. Input
data stream X is split between the two models, verti-
cally based on the features used to train the respective
model, and the prediction by Cp, is presented as the out-
put of the framework. No amount of probing will enable
the adversary to understand the significance of features
held by Cp, as they are not a part of the prediction pro-
cess of the framework. The misrepresentation of these
feature importance, in an adversarial domain, is the core
of what makes this framework effective.

Algorithm 1: Generating multiple models from
training data, by splitting features.

Input : Training data (Dr,.;,) with features
F(1..k), Number of splits N (For the Cp_p
classifier, N=2.)

Output: Trained models M7, 4ineq

FSp[irs = ([l

MTrained = []

Fsort_importance = RankByFeaturelmportance(F)

for i=171.. Ndo

FSplits [i%N]'add(Fsort,importance[i])

> Round robin split of ranked features

A U1 AW N -

for i=1.. Ndo

8 DTrain,split = D7rain

9 for feature in F do

10 if feature not in F ,;5[i] then

11 Blank out D7 4in_spiir» by replacing with
default value

12 > ‘blanking-out’ non associated features

=

13 L MTruined[i] « Train model on DTruin,splir

[
'S

return Mt qined

3.2.2. Generating the Prediction and the Detection
models from the training data

The training dataset, containing F features, is di-
vided into two subsets (vertically based on features),
to train the Prediction and the Detection models. Such
splits of training data are possible on most cybersecurity
datasets, due to the presence of multi-modal and orthog-
onal informative features, in high dimensional datasets.
We intend to define a division of the feature space, such
that each of the trained models has high predictive per-
formance. Such divisions are naturally defined when
the training dataset is aggregated from multiple sources,
with clearly defined boundaries. An example of such a
system is a multi-modal biometric system (Joshi et al.|
2009)), which uses both face recognition and fingerprint
scanners to provide the final authentication. In such a
system, it is easy to split the features into two disjoint
subsets, one for the face recognition, and the other for
fingerprint data.

In the absence of domain specific knowledge of the
features, random partitioning is usually resorted to.
However, this is not optimal, as a majority of the infor-
mative features can end up clumped together in the same
partition. We propose a feature ranking based approach,
which considers dividing the features uniformly based
on their importance to the classification task. We use



feature ranking to rank the initial set of F' features, based
on the training data. We then distribute the features in
a round robin fashion, to form the two subsets: Fp,
used to train the Prediction model, and Fp, for train-
ing the Detection model. While several feature rank-
ing approaches are available, the F-value from ANOVA
is considered here for experimentation purposes, as the
methodology for measuring feature importanceﬂ with-
out loss of generality.

The splitting of features and generation of orthogo-
nal trained models, is done according to Algorithm [T}
The set of F features (1..k), is divided to form multi-
ple disjoint subsets, based on their informativeness to
the prediction task, obtained from the training data. For
the Predict-Detect classifier, two subsets are needed: Fp
for the Prediction model (Cp), and Fp for the Detection
model (Cp) (F = Fp U Fp). As such each model has
an associated subset of features, which it deems impor-
tant. The original training data is modified, such that
only the associated features are used in training a model.
This is done by the ‘blank-out’ process, given in Line
11. This process takes the original training dataset, and
replaces all non model associated features with a pre-
defined default value. An example of this process is
depicted in Figure [I0] The original set of 5 features is
divided into 2 disjoint subsets. The Prediction model is
associated with Features 1,3 and 5 (Fp = {1,3,5}). As
such, these features are retained in the training data, and
the remaining are filled with default values, for all data
samples. This process nullifies the discriminatory in-
formation of the Features 2 and 4, thereby barring them
from being included in the Prediction model. Similarly,
for the Detection model, Features 2 and 4 are included
in the model (Fp = {2,4}), while Features 1,3 and 5 are
blanked out. Once the two models are trained on the
modified training data, they can each receive unlabeled
stream samples of |F| features. The ability to disre-
gard features is built into the training of the two models.
The advantage of this ‘blank-out’ process, as opposed to
splitting each incoming sample into two subsets based
on features, is that now each of these models operate on
the entire feature space F and can receive the same in-
put sample X. The training of the models has equipped
it with the ability to assign importance to their required
feature set only. The Algorithm |1|is general in its pre-
sentation, as it allows the training of N disjoint models.
For the Predict-Detect classifier, we take N=2, and use
one of the trained models for prediction, while the other

and et al, [2011)
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Figure 10: Illustration of feature splitting between the Prediction and
the Detection model. The blanked out features of each model are
highlighted.

for detection.

In the absence of domain specific knowledge and
correlation information, we can ensure that important
features are evenly distributed among the two sets of
models, using Algorithm In real world systems,
where correlation between features can cause attributes
to change in tandem, more sophisticated feature split-
ting techniques can be employed. The feature subset en-
semble techniques of (Kons et al.|[2014) combined with
the cluster based feature splitting of (Aly and Atiyal
2006)), could be used to form multiple classifiers with
uncorrelated features within them. For the effective us-
age of the Predict-Detect framework, we only need to
ensure that the generated splits of features are disjoint
and result in good predictive performance for each of
the models.

3.2.3. Detecting adversarial drift reliably from unla-
beled data

The proposed framework relies on detection of drifts
from the unlabeled data stream, to save expenditure of
labeling budget on validation of the prediction model.
This is made possible by the coupled setup of the Pre-
diction and the Detection models. An increased dis-
agreement between the predictions of the two models,
on new incoming samples, is suspicious and indicates a
possible drift. The tracking of this disagreement, over
time, in a streaming environment is used for unsuper-
vised adversarial drift detection. This is presented in
Algorithm |2} which is motivated in setup by the mar-
gin density drift detection algorithm (MD3) of (Sethi
and Kantardzic, |2017b)). The MD3 algorithm tracks the
number of samples falling in a robust classifier’s mar-
gin, in a streaming environment, to indicate the possi-
bility of a drift. The Predict-Detect framework provides
an adversarial aware drift detection mechanism over un-



supervised streams, by causing attacks to be detected
based on disagreement with the hiddenDetection classi-
fier model.

The unsupervised drift detection mechanism is pre-
sented in Algorithm[2] The Prediction and the Detection
models (Cp and Cp), generated from the initial training
data, are used for the detection of drifts from the unla-
beled data stream X. Also, the training data is used to
learn the expected disagreement and acceptable devia-
tion (PDg.s and og.r), along with the expected predic-
tion performance (measured in accuracy for balanced
streams), given by Accg.r and 0 g¢. This information is
learned via 10-fold cross validation, and is used to char-
acterize the normal behavior of the stream. This is done
by dividing the training data into 10 bands, and gener-
ating the Cp and Cp models on 9 bands at a time, and
then computing the disagreement on the 10th band. This
value is obtained 10 times, and the reference distribution
is learned from it. This serves as a basis for establishing
normal expected behavior, from which drift can be de-
tected based on deviation. Sensitivity is controlled using
the parameter 6, which provides a user friendly way to
specify acceptable deviation of the stream, in terms of
reference characteristics learned from the initial training
data. As such, the framework allows specifying data in-
dependent parameters, making it more intuitive to the
end user.

For each incoming samples x, the disagreement in
predictions between the Cp and the Cp, is computed as
the signal Dis. This disagreement is aggregated over
time, to form the PD,; metric, as computed in Line
5. The computation uses a time decaying incremental
tracking of the metric PD, dictated by the chunk size
N. A sudden increase in the disagreement metric PD,
is indicative of an adversarial drift. This indication is
controlled by the sensitivity parameter 6, specified by
the user based on its tolerance for deviation. The initial
indication of drift given by Line 6, is the unsupervised
drift indicator component of the framework. It goads the
system administrator to examine the data for potential
attacks. Attacks are confirmed by collecting Nyjiapeled
samples and labeling them to form the labeled dataset
(Drabetea)- This Dpgpereq set of labeled samples is used
to confirm drifts, and to retrain the models of the frame-
work in case a drift is confirmed. A drift is confirmed if
the predictive performance (measured as accuracy here)
on the labeled samples is seen to fall significantly. This
fall is measured in terms of deviation from the reference
accuracy (Accger), which was obtained from the train-
ing data.

Once a drift is confirmed, by testing the predictive
performance on the obtained labeled data, the models
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(i.e., the Prediction and theDetection models) need to
be retrained, to represent the new distribution of the
stream. Relearning is performed using the obtained la-
beled samples Dy pereq, by querying the Oracle. Query-
ing the Oracle is expensive as it requires time/effort to
obtain expert feedback on the unlabeled samples. Since
the proposed algorithm request labels only for drift con-
firmation and relearning, it provides a cost effective and
practical methodology for application in streaming data
domains, as it does not waste any labeling for constantly
checking for drifts in every time period. In the Algo-
rithm 2] the labeling of samples follows a naive strat-
egy, where the N subsequent samples after a drift in-
dication are requested to be labeled by the Oracle, to
form the labeled set Dy ypereq- The modular design of the
framework leaves it open to extension with other active
learning techniques, which can further dictate how the
samples are labeled after a drift is indicated.

The entire drift handling process is kept internal to the
black box system, and the end user/adversary is agnos-
tic to the adaptive mechanism of the framework. The
end user/adversary is provided prediction on the input
samples x, using the prediction model Cp(x). Since ad-
ditional labels are only requested when an attack is sus-
pected, the framework works in an unsupervised man-
ner for the majority of the stream, without the need for
constant labeled validation. Only when drifts are sus-
pected and retraining may be needed, are labeled sam-
ples requested. This makes the framework attractive
for usage in dynamic adversarial drifting environments,
where labeling is expensive and time taking.

3.2.4. Retraining the Predict-Detect models - Drift Re-
covery
In order to recover from the effects of an adversarial
drift, the classifier models of the framework need to be
retrained, using the obtained labeled data. The follow-
ing strategies and their impact on the dynamic learning
process are discussed, as potential retraining options.

e Using the existing feature split (PD-NoShuffle):
In this strategy, the existing feature splits of the
Prediction and the Detection models, are retained.
The models are trained on the new labeled data,
based on the same set of features already assigned
to them. This strategy has the advantage to keep
features in the Detection model hidden from an ad-
versary, throughout the progression of the stream.
However, this strategy does not account for the
changes in the feature ranking and can lead to
poorly trained classifier models, which are a result



Algorithm 2: Unsupervised drift detection in the Predict-Detect framework.

Input : Unlabeled stream X, Predict - Detect models Cp, Cp, Reference distribution (PDg.s, Oref, ACCref,
O Acc)- Parameters: Sensitivity 6, Stream progression A = (N — 1)/N (where N is the chunk size), Nyqin

o e N & wn
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(= N by default), Nyuiapeica (= N by default)
Output: Predicted label stream Y
PDg = PDg,y¢

currently_ drifting = False
for 1=1,2,3,...: do
19
Compute disagreement score - Dis(x = X;) = 0

Update PD; = A * PD,_; + (1 — ) * Dis(X,)
currently_drifting = True

Collected_unlabeled _samples=0
Dyniabetea =0
| Dyapetea =0

D Unlabeled U Xt

| Collected_unlabeled_samples ++
else if currently_drifting then

Dyabelea

if (Accep-Accp, ., )>0 * 0 acc then
L Retrain Cp, Cp with D;upeied

| currently_ drifting = False

return Cp(x)

if Cp(0)!=Cp(x)

otherwise

if [PD; — PDg.f|>0 * o ger and not currently_drifting then

> Drift Suspected

if currently_ drifting and Collected_unlabeled _samples < Nypjaperea then

> Collect samples to be labeled

> Enough samples to make decision

« Label samples from Dy,iapeied, Using Oracle, upto Nyain

> Active learning can be used in case |Dyapeieal > Nirain

> Drift Confirmed

Update Reference distribution (MDg,y, Ogef, ACCRefs ORef)

of changes in the importance of features over time,
following drifts in data.

e Re-splitting features (PD-Shuffle): Here, the
framework uses the labeled data to regenerate fea-
ture splits based on Algorithm [I] The newly split
models are then used for deploying the Predic-
tion and the Detection models. This strategy as-
sumes every drift recovery to be an independent
start of a new attack-defense cycle. This is espe-
cially true when a system is faced with multiple
independent adversaries, over time. This strategy
is assumed to provide better trained models than
the PD-NoShuffle, as it has the opportunity to re-
calibrate feature ranking and generate new splits
of the features, after every attack cycle.
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While both strategies have their shortcomings and ad-
vantages, a defender can also resort to a combined ap-
proach while applying this framework. First the de-
fender can check to see if it is able to use the exist-
ing feature splits to retrain the model and receive suffi-
cient predictive performance, using cross validation on
the training dataset. If the features are rendered unus-
able due to a sophisticated attack, the features can be
re-split. Delaying the shuffling of features is advanta-
geous, as shuffling transfers information about the hid-
den features onto the prediction forefront. An adversary
could use this information over time to generate a po-
tent temporal attack, by aggregating information from
multiple cycles of attacks. While we have not found
any documentation for such a category of attacks, it is
a possibility, and as such we should avoid shuffling of



features whenever possible.

In either case, the adversary is devoid of complete in-
formation, which makes it unable to launch a data nul-
lification attack (Kantchelian et al.,[2013)). This ensures
that adversarial activity will be detected and that retrain-
ing will be possible, for continued operation in stream-
ing domains. By constantly gaming the adversary and
responding quickly to attacks, the attacks are rendered
expensive and futile, making this reactive system an at-
tractive defense strategy for securing against adversarial
data drifts.

4. Experimental evaluation

Experimental evaluation and comparison of the pro-
posed framework, is presented in this section. Sec-
tion[d.T| presents a framework for simulating adversarial
concept drift in real world datasets. Setup and meth-
ods used for comparative analysis, is presented in Sec-
tion[4.2] Results on data streams with single adversarial
drift is presented in Section[4.3] and those with multiple
adversarial drifts is presented in Section [d.4]

4.1. Generating adversarial concept drifts on real
world datasets

Adpversarial concept drift is a special type of concept
drift, as the data distribution changes are introduced by
an adversary aiming to subvert the performance of the
deployed classifier. As such, these distribution changes
are dependent on the classifier trained and deployed
by the defender. An adversary begins the attack cycle
by probing the deployed black box model of the de-
fender, and then uses this information to generate sam-
ples which evade detection. This characteristic of adver-
sarial drift makes it a special category of concept drifts,
which needs to be analyzed and dealt with differently,
than regular concept drift. It is not possible to evalu-
ate these drifts on existing datasets (which are popularly
used for concept drift research), as adversarial drifts are
dependent on the deployed classifier model, which they
are trying to evade. As such, we present here, a strategy
for simulating adversarial drifts on real world datasets.
We do this by extending the Anchor Points (AP) attack
framework of (Sethi et al.| [2017). The AP framework
was developed for simulating data driven exploratory
attacks, on black box classifier models. The framework
was developed for static evaluation, as the attack sam-
ples were only evaluated for the purposes of demonstrat-
ing the possibility of classifier evasion, by an adversary.
We extend the AP framework, to be used in a stream-
ing environment, under the AP-Stream framework, pre-
sented here.
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There are two considerations in the extension of the
Anchor Points attacks framework for the simulation of
adversarial concept drift: a) Accounting for sophisti-
cated adversarial activity, aiming to evade drift detec-
tion by uncertainty tracking unsupervised approaches,
and b) Converting the static attack framework to a
streaming data representation. For the former, we take
into account adversaries who first perform exploration
of the black box classifier, and then filters out low con-
fidence attack samples. The confidence is determined
on the adversary’s side, by training a random subspace
ensemble on the exploration samples, and then filtering
out samples of high disagreement between the compo-
nent models of the ensemble. This is demonstrated in
Figure [[1] The adversary first uses the Anchor Points
(AP) attack framework to generate the exploration sam-
ples of Figure [T1] b). It then proceeds to train a fea-
ture bagged (random subspace) ensemble model on the
samples in b), and then eliminates samples of high dis-
agreement. The resulting high confidence exploration
samples are shown in Figure [[T]d). These exploration
samples represent the most confident and best reverse
engineered samples by the adversary, and it uses these
samples to exploit and generate the attack campaign.

To extend the Anchor Points (AP) attacks to a stream-
ing environment, the AP-Stream framework is devel-
oped as a wrapper over the already developed AP frame-
work. The AP-Stream framework receives samples from
the attack simulation on the defender’s black box, and
it converts these samples into a stream of data, for ad-
versarial analysis, as shown in Figure [[2] The initial
training data, from the real world dataset, is split into
two parts: the Legitimate class samples and the Mali-
cious class samples. These splits are used to form the
initial distribution of the stream, before the drift starts.
The training dataset is also used to train the defender’s
model (f(x)). The defender’s model is then attacked
using the AP framework, and the resulting exploration
and exploitation samples are stored in the correspond-
ing buffers (BUFg and BUF 4, respectively), as shown
in Figure

Data stream samples are generated by random sam-
pling from the 4 different data buffers of Figure [12]
At any given time, the legitimate class samples are ob-
tained from sampling the buffer BUF;, and the adver-
sary’s samples are sampled from one of BUFy;, BUF
or BUF,. The parameter Ajupaiance, 1S used to control
the amount of imbalance between the legitimate and ad-
versarial class samples, in the stream. Since, we as-
sume that the legitimate class does not drift over the
course of the stream, we draw the regular class samples
by always sampling from the initial pool of legitimate
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Figure 12: The AP-Stream framework for simulating adversarial con-
cept drift.

class data (BUF) obtained from the training dataset.
However, for the adversarial class samples, the sam-
ples are drawn from the three different buffers, over the
course of the stream. Initially, till time #gxpiore, Sam-
ples are drawn from the original pool of the malicious
class training samples (BUF);). This is the time pe-
riod where an adversary has not yet started the attack
process. After tgypiore, We draw samples from both the
Malicious class training samples (BU F;) and the pool
of exploration samples (BU Fg). The rate at which the
samples are drawn from each of these buffers is con-
trolled by the parameter g4, called the blending rate.
By blending exploration samples with the original set of
malicious samples, an adversary avoids detection in the
exploration phase. After the adversary obtains enough
information about the black box model (upto the explo-
ration budget Bg.ior), it starts the exploitation phase,
which is the attack payload for this adversarial cycle.
This is done after time fgypi;, by sampling from the
pool of exploitation samples (BUF ). The time values
Exploir a0d Expl0re, €nable the user to set up and control
the profile of the stream, that they want to simulate.

The simulation of adversarial drift on the phish-
ing dataset (Lichman| 2013), is shown in Figure 3]
The stream demonstrates an exploration phase till
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texpiore=10,000 samples, and the attack phase starts at
tExploir=30,000 samples. The data is taken to be bal-
anced (Ampatance = 0.5) and the blend rate is taken to be
Aglena = 0.05 (i.e., 5% of the sample in the exploration
phase are drawn from the exploration buffer). From the
figure, the effects of adversarial drift can be seen start-
ing at t=30,000, as the accuracy starts to rapidly drop.
This is a result of the adversarial manipulation of sam-
ples, to evade the deployed black box model. In order
for a model to be usable, it is necessary to detect and
fix the effects of such adversarial drifts. The drop in ac-
curacy at the exploration phase is minimal, and can go
undetected, as is intended by an adversary. In case of
an overly sensitive detection system, the adversary over
time can learn to use a lower blend ratio, to cover its
tracks.

Using the proposed AP-Stream framework, we can
simulate the AP framework to work in a temporal en-
vironment, and can adjust the characteristics of the
stream, to analyze particular aspects of different secu-
rity measures.

4.2. Experimental methods and setup

This section presents the experimental methods and
parameters, used for the analysis of the proposed frame-
work. Methodologies used for comparative analysis are
presented in Section [d.2.1} Description of datasets and
experimental setup, are presented in Section[4.2.2]

4.2.1. Methodologies used for comparative analysis

The effects of adversarial drifts, on the classification
performance over time, is demonstrated by experimen-
tally comparing the following drift handling methodolo-
gies.
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Figure 13: Simulation of adversarial concept drift on the phishing
dataset (Lichman, 2013).

e Static baseline model (NoChange): This method-
ology is overly optimistic, as it assumes that the
data will never drift ,and that the initial trained
model is sufficient to retain performance over time.
This is an unrealistic assumption, but this serves as
a lower baseline for evaluating other drift handling
strategies. Any proposed methodology should be
atleast as good as this strategy, to be of any real
use.

e Fully labeled accuracy tracking (AccTr): This
serves as an upper baseline for our evaluations, as
it represents an optimal case, where all the data
is labeled, and the labels are immediately avail-
able after the prediction is made on an input sam-
ple. This model tracks the classifier’s predictive
performance (e.g., Accuracy), to signal drift. An
unsupervised technique is considered effective, if
it provides performance close to the AccTr ap-
proach, while reducing labeling requirements. For
this methodology, the accuracy is tracked incre-
mentally by using the EWMA (Ross et al., 2012)
formulation of change tracking.

e Margin density drift detection (MD3-RS): The
MD3 methodology was proposed in (Sethi and
Kantardzicl, 2017b)), as an alternate to traditional
unsupervised drift detectors. MD3 was shown to
be more reliable than traditional distribution track-
ing methodologies, as it tacitly involves the classi-
fier’s notion of uncertainty into the drift detection
process. The MD3-RS methodology uses a ran-
dom subspace ensemble for the detection purposes.
A sudden increase in the number of samples in the
ensemble’s margin (i.e., region of disagreement),
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is considered to be indicative of a drift. Comparing
with MD3 provides us with insights into the need
for adversarial awareness in drift detection. In our
experiments, we consider a random subspace en-
semble of 50 linear SVMs, with 50% of the fea-
tures in each base model. The threshold for the
certainty margin is taken to be as 0.5.

e The Predict-Detect framework without feature
shuffling for retraining (PD-NoShuffle): This is
the proposed Predict-Detect classifier framework,
with 50% of the features belonging to the Predic-
tion model, and the other 50% belonging to the hid-
den Detection model. The drift is detected based on
tracking the disagreement between the two mod-
els. Upon drift confirmation, the individual mod-
els are retrained without regenerating the feature
splits. This methodology evaluates the ability and
effects of continuing to use the same set of initially
split features, so as to ensure feature importance
hiding, for a longer period of time.

o The Predict-Detect framework with feature shuf-
fling for retraining (PD-Shuffle): This is the pro-
posed framework similar to PD-NoShuffle, except
for the fact that retraining involves reshuffling all
features, and then regenerating the two separate
prediction and detection models. This model eval-
vates the impact of ignoring temporal informa-
tion gained by an adversary, and focuses on im-
pact against multiple independent adversaries over
time.

The Prediction and the Detection model in the pro-
posed methodology, are comprised of a random sub-
space ensemble of 50 linear SVMs (L1 penalty, reg-
ularization constant c=1), each with 50% of the fea-
tures randomly allocated to them. We use the same en-
semble framework for the MD?3 classification model, as
well as for the prediction model for the AccTr and the
NoChange model, to ensure consistency in evaluating
the methods.

4.2.2. Description of datasets and experimental setup

The datasets of Table|l] are used for the generation
of the adversarial drifts. All data was normalized to
the range of [0,1], and the data was converted to nu-
meric/binary features type only. The synthetic datasets
is a 10 dimensional dataset, with two classes. The Le-
gitimate class is normally distributed with a u-0.75 and
0=0.05, and the Malicious class is centered at u-0.25
and 0=0.05, across all 10 dimensions. The CAPTCHA



Table 1: Description of datasets used for adversarial drift evaluation.

Dataset #Instances | #Attributes
Synthetic 500 10
CAPTCHA 1886 26
Phishing 11055 46
Digits08 1499 16

dataset is taken from (DSouza, 2014), and it repre-
sents an application concerned with the classification
of mouse movement data for humans and bots, for the
task of behavioral authentication. The phishing dataset
is taken from (Lichman), [2013)), and it represents classi-
fication between malicious and benign web pages. The
digits dataset (Lichman, 2013), was taken to represent a
standard classification task. Only classes 0 and 8 were
considered, so as to convert it to a binary classification
task. In all datasets, the class O was considered to be the
Legitimate class. After the dataset is prepared, it is used
in the AP-Stream framework, to generate the adversar-
ial stream. The data stream is considered balanced with
a Apmpatance=0.5 and the blending ratio Apy,, is taken as
0.05, to avoid triggering drifts in the exploration phase.
Detection uses a threshold of =3 (based on analysis in
(Sethi and Kantardzic| [2017b)). The parameters of la-
beling and retraining N,,4;,, and the profile of the stream
are discussed at the beginning of each of the following
subsections.

The generation of adversarial drift is based on real
world datasets, which are used in the AP-Stream frame-
work to simulate a streaming environment. The AP
attacks are filtered as described in Figure [IT] to re-
move the low confidence samples. This filtering is done
by using a random subspace model (50 Linear SVM,
50% of features in each model), with a high regulariza-
tion constant c=10, to ensure robustness against stray
probes. Samples with confidence less than the con-
fidence threshold of Gagyersary_confidence=0.8 are elimi-
nated, before exploitation starts. In all experiments
in this section, averages are reported over 10 runs of
the experiments. The experiments are performed us-
ing python and the scikit-learn machine learning library
(Pedregosa and et all 2011).

4.3. Analysis on data streams with a single simulated
adversarial drift

In this section, we evaluate the performance of the
different drift handling methodologies, on a data stream
with a single adversarial drift. Drift is simulated us-
ing the AP-Stream framework, with a stream length of
20,000 samples, a tgypiore=1000, and a tg,;0;=10000.
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Table 2: Accuracy, Drift detected and Labeling% of the NoChange,
AccTr, MD3, PD-NoShuffle and PD-Shuffle methodologies, over
streams with a single adversarial drift.

Dataset Methodology | Accuracy | Labeling% | Drift Detected
NoChange 74.2 0 No
AccTr 95.7 100 Yes
synthetic | MD3 74.2 0 No
PD-NoShuffle 85.4 5 Yes
PD-Shuftle 93.7 2.5 Yes
NoChange 74.3 0 No
AccTr 97.7 100 Yes
CAPTCHA | MD3 73.9 0 No
PD-NoShuffle 97.4 2.5 Yes
PD-Shuftle 96.5 2.5 Yes
NoChange 68.9 0 No
AccTr 93.8 100 Yes
phishing MD3 68.5 0 No
PD-NoShuftle 90.1 4.18 Yes
PD-Shuftle 91.3 2.5 Yes
NoChange 71.9 0 No
AccTr 95.6 100 Yes
digits08 MD3 71.7 0 No
PD-NoShuffle 91.8 2.5 Yes
PD-Shuftle 92.9 2.5 Yes

The chunk size is taken to be N=500, and retrain-
ing/confirmation is performed by considering Ny, 4, = N
additional labeled samples, after drift indication.

The results of the Anchor Points (AP) attacks are
shown in Figure [I4] It can be seen that the AP at-
tacks, when used in the AP-Stream simulator, leads to
a concept drift which causes the performance to drop
after tgyp10;=10,000. This is visible from the sudden
drop in accuracy in the performance of the NoChange
methodology, which assumes that the data will be static
throughout. The drop in accuracy during the exploration
phase (t=1,000-10,000) is minimal, in accordance with
out simulation goals, as an adversary tries to hide its
tracks while performing reconnaissance of the system.
The need for drift detection and retraining is highlighted
by the decreasing performance of the NoChange model,
which rapidly becomes unusable after the drift. The
fully labeled AccTr approach is able to effectively and
quickly detect changes in the stream, allowing it to fix
itself and maintain high accuracy, in all cases. This
however comes at an unrealistic assumption of all labels
being available immediately. Nevertheless, these two
methodologies provide the upper and the lower baseline
for our comparative analysis.

The results of Figure[T4]and Table[2] demonstrate that
the MD3 approach fails to detect adversarial drifts, as
the accuracy of the MD3 approach is seen to be no bet-
ter than the NoChange approach. Both approaches fail
to detect drift. The filtered AP attack samples, evade
several of the features simultaneously, causing the mar-
gin density based detection, to be circumvented. Margin
density relies on having a few informative features drift-
ing, while the other remain static (Sethi and Kantardzicl
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Figure 14: Accuracy over time for streams with single adversarial drift.
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Figure 15: Metrics being tracked by the different drift handling techniques. AccTr tracks error rate based on fully labeled data. MD3 tracks margin
density from unlabeled data. The PD-Shuffle and the PD-NoShuffle track the disagreement between the prediction model and the hidden detection

model.

2017b). This condition is intentionally violated by an
adversary seeking to go undetected for a long time (Fig-
ure[6). As such, the generated drift samples fall outside
the regions of uncertainty (margins), of the defender,
leading to failed unsupervised attack detection. The PD
approach was developed to address this issue, by us-
ing an adversarial aware design. It does so by hiding
feature importance, thereby shielding them from prob-
ing based attacks. This ensures that the adversary will
have a misguided notion of confidence, as it will not be
able to obtain information about the exact influence of
a subset of feature, no matter how high its exploration
probing budget gets. By tracking the successful reverse
engineering and evasion of a subset of exposed features,
with an increased uncertainty over the other set of hid-
den features, the PD methodology aims to better detect
adversarial activity.

The Predict-Detect framework is able to detect and
recover from the adversarial drifts, shown by high per-
formance after attacks, in Figure [[4 The drift de-
tection is prompt and close to the AccTr approaches
(A = 3.3%, on average). The difference in performance,
between the two PD approaches, is seen in case of the fi-
nal accuracy, due to the different retraining approaches
used. The PD-Shuffle outperforms PD-NoShuffle, due
to the reassessment and re-splitting of feature impor-
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tance, possible in the retraining phase. However, the
PD-NoShuffle approach provides security against pos-
sible temporal attacks, in which an adversary might be
able to collect information about different features over
time, to cause a more potent data nullification attack.
It does so with a compromise in the accuracy (<2.5%,
on average), compared to the PD-Shuffle methodology,
which is a reasonable trade off. In either case, the PD
methodologies are able to detect drifts with <5% label-
ing, and are able to maintain classifier performance over
time, as seen in Table 2] The higher labeling budget for
the PD-NoShuffle case is due to the increase in false
alarms, which leads to requesting of additional labeled
data that are eventually discarded as they indicate no
significant drop in the accuracy.

The progression of the metrics tracked by the differ-
ent drift detectors is shown in Figure[T5] AccTr tracks
the error rate (or accuracy), MD3 tracks the margin den-
sity, and the PD track the disagreement between the Pre-
diction and the Detection models. It can be seen that the
metrics of accuracy and the PD disagreement depict a
significant jump at the attack exploitation phase, and re-
main relatively stable before and after the drift. This
indicates a high signal-to-noise ratio for these informa-
tion metrics, and their effectiveness in detecting drifts,
which are caused by adversarial attacks. It is also seen



Table 3: Effects of varying the percentage of important hidden fea-
tures, on the accuracy over the adversarial data stream.

Dataset / PD-NoShuffle PD-Shuffle
% of hidden features —» | 10% | 25% | 50% | 10% | 25% | 50%
synthetic 0.96 | 091 | 0.88 | 0.96 | 0.95 | 0.95
CAPTCHA 0.98 | 0.97 | 0.97 | 098 | 0.97 | 0.97
phishing 0.92 | 092 | 091 | 093 | 0.92 | 091
digits08 0.96 | 0.95 | 0.94 | 0.96 | 0.95 | 0.94

that the margin density metric is unable to detect any
changes in the face of an attack, leading to its ineffi-
cacy. The adversarial aware PD approaches, are able
to detect attacks similar to the AccTr approach. This
demonstrates the importance of accounting for an adver-
sarial aware design, in the training phase of a classifier,
and the effectiveness of simple solutions implemented
in the design of a classifier, leading to long term secu-
rity benefits. The preemptive strategy of hiding feature
importance, leads to benefits in terms of better attack
detection, lower dependence on labeled data, and effec-
tive responsiveness to attacks, for higher availability and
security, of the machine learning based system.

4.3.1. Effects of varying the number of hidden features

In the experiments so far, the available set of fea-
tures are considered to be split equally split between
the Prediction and the Detection model, based on the
feature importance based splitting methodology of Sec-
tion This was motivated by the intuition to con-
sider prediction on incoming samples and detection of
adversarial drifts, as equally important tasks, over the
course of the stream. The main reason for the effective-
ness of the Predict-Detect design, is its ability to hide
the feature importance of some of the features, from
being probed and reverse engineered by an adversary.
As such, it should be sufficient to hide fewer important
features, in case they are sufficient to represent a high
accuracy orthogonal representation of the training data.
Generally, it is expected to have more features in the
Prediction model, as this will enable better predictive
performance for normal functioning of the ML based
service, and at the same time delay the onset of attacks.
Here, we evaluate the effects of reducing the number of
features included in the hidden detection classifier, and
its impact on the detection and prediction capabilities of
the framework.

Table [3| and Table [d] present the effects of reducing
the number of hidden features from 50% to 10% and
25%. Reducing features in the hidden model is done by
blanking out additional features, in accordance to the
methodology of Section[3.2.2] The features are still dis-
tributed round robin, based on their informativeness to
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Table 4: Effects of varying the percentage of important hidden fea-
tures, on the number of drifts signaled.

Dataset / PD-NoShuffle PD-Shuffle
% of hidden features — | 10% | 25% | 50% | 10% | 25% | 50%
synthetic 1 1 1 1 1 1
CAPTCHA 1 1 1 1 1 1
phishing 2 1 1 2 1 1
digits08 3 1 1 3 1 1

the classification task. From Table[3] it can be seen that
the accuracy of the stream is not significantly affected
by reduction in the number of the hidden features, for
both the PD-Shuffle and the PD-NoShuffle scenarios.
The number of drifts detected are also seen to be simi-
lar, as seen in Table 4l Additional false alarms are seen
in case of 10% hidden features. However, the effects of
these false alarms are minimal, compared to the savings
in the labeling obtained by using this unsupervised drift
detector. As a guideline, 25%-50% is suggested for the
number of important features in the hidden model.

An important consideration for the applicability of
the Predict-Detect framework, is the presence of mul-
tiple orthogonal features in the training dataset, which
can result in disjoint classifiers each with high accuracy
of prediction. In such a scenario, the prediction and the
detection models form a self monitoring scheme, for de-
tecting adversarial activity. So long as the two models
can be made disjoint (feature wise) and have high pre-
diction performance; the number of hidden features, the
type of the individual models, and the training mech-
anism used, does not have a significant impact on the
effectiveness of the framework.

4.4. Analysis on data streams with a multiple subse-
quent adversarial drifts

In this section, we evaluate the performance of the
different drift handling techniques in a streaming en-
vironment with multiple subsequent adversarial drifts.
This stream represents a scenario where the system gets
attacked, the defender adapts, and then the adversary
relaunches an attack on the newly deployed system.
This represents a real world scenario, where protecting
against the onset of attacks is not sufficient, and secu-
rity is a cyclic process. Instead, the ability to detect
attacks, fix them, and continue to provide services, is
paramount. This emphasizes a reactive approach to se-
curity, with an understanding of the adversarial nature
of the problem, leading to long term benefits.

Multiple adversarial drifts are simulated using the
AP-Stream framework. We generate 5 subsequent ad-
versarial drifts, to simulate 5 attack-defense cycles, each
of 20,000 samples. Exploration occurs from (1000 +



Table 5: Results of drift handling, on data streams with multiple ad-
versarial drifts.

Dataset Methodology | Accuracy | Labeling% | Drifts Detected
NoChange 55.10 0 0
AccTr 94.80 100 5
synthetic | MD3 54.90 0 0
PD-NoShufle 87.68 5 5
PD-Shuffle 90.54 5 5
NoChange 54.78 0 0
AccTr 97.57 100 4
CAPTCHA | MD3 54.88 0 0
PD-NoShuflle 96.48 6 6
PD-Shuffle 96.77 5 5
NoChange 50.70 0 0
AccTr 95.66 100 5
phishing | MD3 62.41 2 2
PD-NoShuflle 93.08 6 6
PD-Shuffle 94.65 5 5
NoChange 52.89 0 0
AccTr 95.03 100 5
digits08 MD3 72.99 2 2
PD-NoShuffle 91.49 7 7
PD-Shuffle 93.53 5 5

20000 = i) to (10000 + 20000 * i) samples, where i =
0, 1,,4 represents the cycle number. In each cycle, the
adversary learns about the defender, using probes, and
then launches a evasion attack on the defender’s classi-
fier. The defender is responsible for detecting the onset
of the attacks, and retraining in the event of a confirmed
attack. After 10,000 samples (of the previous attack ex-
ploitation step), the adversary is perceptive of the ineffi-
cacy of its attacks, due to the updated defender’s model,
and as such it relaunches its attack on the defender. This
launch starts the new adversarial cycle, by probing the
updated defender model, and launching evasion attacks
against it. We do not emphasize details about how an
adversary detects that the defender has retrained itself.
Instead, it is assumed that an adversary gets perceptive
of this change, as it receives Accept/Reject feedback on
its submitted probe samples. The focus of experimenta-
tion is on the defender’s ability to detect and retrain in
the face of multiple subsequent adversarial drifts.

The results over 5 cycles of the attack-defense cy-
cle are presented in Table [5] and the accuracy over the
stream is depicted in Figure We consider a chunk
size of N=1000, for all streams here, due to the in-
creased size of the stream and the need for smoother
analysis of the drift detection behavior. The progres-
sion of the streams in Figure [I6] indicates that the drift
detection behavior of the methodologies is consistent
with our observation for the single drift case. The MD3
approach fails to effectively detect and adapt to drifts,
this is seen by the reduced accuracy of this approach
when compared to the fully labeled drift detector Ac-
cTr (34.5% lower accuracy on average). This is a result
of the inefficacy of the MD3 approach to track drifts
caused by adversarial activity. This results in the MD3
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approach being similar in performance to the NoChange
methodology (A=7.9%).

The PD methods provide performance similar to the
fully labeled AccTr approach (A=1.9 for PD-Shuffle
and A=3.6 for PD-NoShuffle), as it is able to effec-
tively detect and recover from attacks in all cases. This
is achieved at a low labeling rate of 6% for the PD-
NoShuffle and 5% for the PD-Shuffle. This is be-
cause the Predict-Detect framework provides a natural,
adversarial-aware, unsupervised mechanism for detect-
ing drifts. This minimum required labeling is needed,
for drift confirmation and retraining. The drift detec-
tion metrics are depicted in Figure It is seen that
the disagreement score for the PD serves as an effective
surrogate to the fully labeled AccTr approach, as both
the signals changes concurrently and with minimal lag,
in the event of an attack. The high peak at the exploita-
tion stage of attacks indicates the high signal-to-noise
ratio of the disagreement tracking signal, and its effec-
tiveness in detecting attacks. This makes the detectors
resilient to stray changes, reserving labeling budget and
model retraining only for cases where the adversarial at-
tack can lead to serious degradation in the performance.
The margin density signal is seen to be ineffective for
detecting attacks, as it misses a majority of the drift sce-
narios in these experiments. This further highlights the
need for an adversarial aware design when implement-
ing streaming data algorithms for security applications.

The PD-Shuffle performs marginally better than the
PD-NoShuffle methodology, with an average improve-
ment of 2% in the accuracy of the stream. However,
the PD-NoShuffle provides better protection by hiding
features importance from an adversary, over time. The
drift detection and retraining lag is similar for the PD
and the AccTr cases, indicating the effectiveness of the
detection capabilities of the proposed framework. This
makes the Predict-Detect framework effective for usage
in an unsupervised, adversarial-aware, and streaming
environment. The preemptive design of the framework
makes it better prepared for dealing with adversarial ac-
tivity, by enabling reliable unsupervised detection, and
ensuring that recovering from drifts is a possibility.

5. Disagreement based active learning on imbal-
anced adversarial data streams

The analysis thus far, has focused on the ability of
the Predict-Detect framework to detect drifts from un-
labeled data, and subsequently recover from them. Af-
ter a drift is indicated by the framework, labeling ad-
ditional samples for drift confirmation and for retrain-
ing of models, is considered to follow naive strategies.
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Figure 16: Accuracy over time for streams with multiple subsequent adversarial drifts.
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Figure 17: Metrics being tracked by the different drift handling techniques, for the data streams with multiple subsequent adversarial drifts. AccTr
tracks error rate based on fully labeled data. MD3 tracks margin density from unlabeled data. The PD-Shuffle and the PD-NoShuffle track the

disagreement between the prediction model and the hidden detection model.

More specifically, 100% of samples from a chunk of
Nuniabeled SUbsequent samples are requested to be la-
beled, and these samples are then used to confirm drifts
and retrain the model. Although this approach is effec-
tive for a balanced stream, i.e., with near equal prob-
ability of occurrence of the Legitimate and the Mali-
cious class samples, it is not an efficient strategy for
imbalanced data streams. This is especially pertinent
in adversarial environments, as the adversarial attacks
are expected to be a smaller minority class, in compar-
ison to the majority of benign traffic entering the sys-
tem. To improve the labeling process, we analyze the
effect of selecting Ny, samples (Nyain < Nuniabeled)
to label, for drift confirmation and retraining, after the
framework indicates a drift from the unlabeled data. In
our proposed active learning strategy, we use the moti-
vation that samples falling in the disagreement region of
the two classifiers have higher probability of belonging
to the adversarial class. Section [5.1] presents the pro-
posed active learning methodology, based on the dis-
agreement information between the Prediction and the
Detection models. Experimental analysis is presented
in Section
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5.1. Active learning using disagreement information -
Disagreement Sampling

Adpversarial drifts are detected by the Predict-Detect
framework, by tracking the disagreement between the
two component models, over time. The efficacy of the
detection mechanism relies on the inability of an ad-
versary to successfully reverse engineer all of the fea-
ture information, due to the hidden inaccessible detec-
tion model. This causes adversarial samples to fall in
the disagreement regions of the two classifier models.
Here, the disagreement region serves as a honeypot, to
capture adversarial samples. We extend this motivation
to the domain of active learning, for selecting samples
for labeling, after a drift is indicated.

The active learning based on disagreement is per-
formed on the collected Nypapeica sSamples, after the
drift is indicated by the PD model. The proposed active
learning process is shown in Figure [I8] The initial set
of collected Nyyiapelea Unlabeled samples, after drift in-
dication, are processed, and Ny, samples are selected
(Nirain <= Nuniabelea) to be labeled by the Oracle. The
active learning methodology aims to embody maximum
informativeness into the selected N,,,;, samples, about
the newly drifted stream distribution. A large number
of adversarial class samples are aimed to be selected,
as this is the drifting class and is often the minority in
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most real world applications. A good number of adver-
sarial class samples selected, will lead to more balanced
datasets, for better drift confirmation and retraining of
models.

The active learning methodology is presented in Fig-
ure @ The set of unlabeled data samples Nypapereds
collected after drift is indicated, is split into two pools:
Dagree and Dpijgagree, based on the predicted class la-
bels of the Prediction model (Cp) and the Detection
model (Cp). Samples to be labeled are first obtained
by random sampling on the pool of disagreeing samples
Dpisagree, until the samples in this pool are exhausted, or
we reach 50% of our labeling budget (NV,4i,). This en-
sures that we allocate more priority to the disagreement
region, where we have a higher chance of obtaining the
samples of the adversary class. The remaining samples
are obtained by random selection on the samples which
fall outside the disagreement region (i.e., by sampling
from Dygye). Since the data is predominantly assumed
to be of the Legitimate class, this sampling will allow us
to receive balanced samples for better retraining on the
attack samples, while providing secondary validation on
the static nature of the legitimate class samples. The fi-
nal set of N, samples is sent to the Oracle for label-
ing. By integrating the disagreement information into
the labeling process, this methodology aims to achieve
a more representative set of samples, for better detection
and retraining over imbalanced adversarial streams.

5.2. Experimental analysis on imbalanced data streams
with limited labeling
Identifying and labeling samples of the adversarial
class, in a streaming environment, is an important con-
cern especially when the data stream is imbalanced.
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Figure 19: : Effect of Random Sampling and Disagreement Sampling,
at an imbalance rate of A7upaiance=0.1 and a labeling rate of 10% (i.e.,
Nirain=0.1 * Nuniaveled)-

This is because, in a streaming data with drift in the mi-
nority class, the changes are harder to track and detect

in the data space (Arabmakki et al.,[2014)). In an adver-

sarial environment, the attack class is often the minority
class (Sculley et al.}[201T)), as opposed to the vast major-
ity of legitimate samples being submitted to the system.
As such, the adversarial class’s impact could be shad-
owed by the legitimate class, causing the attacks to go
unnoticed. We present experiments in this section, to
provide an initial motivation into the usage of the dis-
agreement samples, for better labeling and retraining of
the models.

To demonstrate the effects of the proposed disagree-
ment based active learning methodology, we first per-
form experiments on the synthetic dataset, using the
same parameters and stream profile as in Section 3]
(20,000 samples, exploration starts at 1000 and ex-
ploitation starts at 10,000), and by using the AP-Stream
framework. The detection model is taken to be the
PD model with shuffling of features for retraining (PD-
Shuffle). The focus of this analysis is on the efficacy of
the active learning approach based on the disagreement
information, on the model retrain-ability, and the over-
all quality following the drift detection. Since the data




Table 6: Effects of Random Sampling, on the classifier performance and the balance of the obtained re-training set, on the synthetic dataset.
Italicized values indicate critical regions of evaluation imbalanced stream with low labeling ratio.

Labeling— 100% 10% 5%
/ Imbalance| | f-measure | Malicious% | f-measure | Malicious% | f-measure | Malicious%
0.5 0.93 51.20% 0.92 52% 0.89 36%
0.1 0.91 11.40% 0.72 10% 0.65 8%
0.05 0.89 6.20% 0.78 4% 0.66 4%

Table 7: Effects of Disagreement Sampling, on the classifier performance and the balance of the obtained re-training set, on the synthetic dataset.
Italicized values indicate critical regions of evaluation imbalanced stream with low labeling ratio.

Labeling— 100% 10% 5%
/Imbalance| | f-measure | Malicious% | f-measure | Malicious% | f-measure | Malicious%
0.5 0.92 51.60% 0.89 56% 0.91 61%
0.1 0.90 9.00% 0.86 43% 0.86 48%
0.05 0.94 5.20% 0.88 33% 0.84 48%

stream is considered to be imbalanced, we update the
Algorithm |2} to use f-measure for the confirmation of
the drift, instead of accuracy. The size of the Nyjapered
samples after drift detection is taken to be 500, and the
detection threshold is kept at 8 =1.5, to account for im-
balance in the data stream. The simulation of adversar-
ial drifts in imbalanced streams is possible in the AP-
Stream framework, by usage of the Ajupaiance parame-
ter. The effect of varying the stream imbalance rate
Ampalance and the labeling rate, is analyzed. Labeling
rate is the fraction of samples in the set of Nyppeiea
samples (buffered after drift indication), which will be
labeled to form the set of Ny, samples, which are ulti-
mately used for drift confirmation and retraining.

The effect of varying the labeling rate and the im-
balance in the data stream is shown in Table The
f-measure of the final stream, and the percentage of ma-
licious samples in the labeled N, samples, is shown
in the table. High values on both metrics are desir-
able. As a baseline, the result of using random sam-
pling (without replacement) is also presented in Table[6]
From Table [6] and Table [7} we can observe that for im-
balanced stream with limited labeling, the disagreement
based active learning leads to a more balanced dataset
for retraining. This results in a better f-measure for the
stream, as more malicious samples are detected and re-
trained on. This is more pertinent in the case of reduced
labeling (shown by emphasized values in both tables).
Even for a 95% imbalanced stream, and a budget of only
5% of the Nypniapaiea Samples (=25 samples in this case),
a f-measure of 0.84 is seen across the stream for the
Disagreement Sampling. This is beneficial, as the in-
ability to detect the adversarial samples and train from
them effectively, leads the random sampling approach
to fall drastically in performance after attacks (with f-
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measure= 0.66). The proposed PD model can detect
drifts from imbalanced stream, and innately provides an
active learning mechanism to further improve on label-
ing and retraining. This makes it attractive for usage in
imbalanced streaming environments, where labeling is
time consuming and expensive.

The results of the proposed active learning methodol-
ogy, on imbalanced streams with A;,paiance Of 0.1, and at
a labeling budget of 10% on the set of unlabeled training
data, is shown in Figure@} Across the 4 datasets, it can
be seen that the active learning method outperforms the
random labeling strategy by providing better f-measure
and a more balanced labeled training dataset. While
several active learning algorithms have been proposed
in literature for streaming data (Zliobaite et al., 2014)),
the focus here is on the innate availability of informa-
tion, due to the disagreement between the two model
of the defender. This information is leveraged for drift
detection from unlabeled data, and also for the task of
active learning. The hidden classifier serves as a hon-
eypot to capture adversarial samples, for our task of ac-
tive learning and retraining. This design embodies the
principle of dynamic adversarial learning, where fore-
thought and adversarial awareness, leads to advantages
in the detection and the subsequent retraining process.

6. Discussion and extension of proposed framework

The developed Predict-Detect framework, is used to
demonstrate the benefits of feature importance hiding,
in a streaming adversarial environment. The informa-
tion leverage on the defender’s part, allows for advan-
tages in reactive security, mainly for better attack detect-
ability and recovery. In the design of the framework, it
was assumed that the provided training dataset can be



split into two orthogonal subsets, with each set provid-
ing sufficient predictive capabilities. In this section, we
empirically evaluate this assumption on popular cyber-
security datasets, and also provide initial ideas for ex-
tensibility and customize-ability of the framework.

Effects of splitting popular cybersecurity datasets is
shown in Table Experiments are performed on
5 datasets from the cybersecurity domain, namely:
CAPTCHA (DSouza, 2014), phishing (Lichmanl [2013)),
spam, spamassassin (Katakis et al., 2010, 2009)) and nsl-
kdd(Tavallaee et al., 2009) dataset. The datasets were
split vertically (i.e., based on features, with each feature
containing all instances of the dataset), based on the fea-
ture ranking criterion of Algorithm[I} Each model in the
table is a Linear SVM. Accuracy was computed using
10-fold cross validation over the entire dataset.

In Table [§] effects of splitting a dataset, based on
features, into K orthogonal subsets, is demonstrated.
For K=1, there is no split in the feature space and the
learned model is trained on the entire original dataset.
For K > 1, the minimum accuracy of the K trained
models is reported. Additionally, the number of splits-
K possible at a 5% and 10% loss in the minimum accu-
racy, is also reported. From the results, it can be seen
that it is reasonable to divide the dataset’s features into
K > 3 sets of independent disjoint subsets, such that the
minimum accuracy over any feature subset is within an
acceptable range (<10%), when compared to a mono-
lithic classifier trained on the entire set of features. For
the high dimensional datasets of spam and spamassas-
sin, it is seen that 10 partitions are possible within 10%
accuracy of the monolithic classifier. We use minimum
accuracy of the models for evaluation, as we are inter-
ested in feature set partitions, such that all splits have
high information content. The results of Table 8] high-
light the ability to split the high dimensional cybersecu-
rity datasets into multiple orthogonal subsets of infor-
mative features. This evaluation also demonstrates that
the split of the datasets in the Predict-Detect framework,
into only two subsets, is conservative, as the datasets
can be effectively split into a larger number of subsets.

The presence of orthogonal information, and the abil-
ity to train models on disjoint feature subsets, allows
for extensibility of the Predict-Detect framework. The
framework can be extended to be a modular multiple
classifier system (MCS) (Wozniak et al. 2014; |[Farid
et al.,[2013;/Gomes et al.|[2017)), which effectively lever-
ages the orthogonal trained models. Instead of using
two classifiers - one for the Prediction model and the
other for the Detection model, the framework can use
two sets of ensembles - the Prediction Ensemble and
the Detection Ensemble, each comprised of individual
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orthogonal models (Table [§). This allows system de-
signers to leverage the benefits of feature importance
hiding, while still providing flexibility of using their
existing model designs and system architectures. The
Prediction Ensemble provides for the ability to apply
existing robust learning methodologies of (Wang), 2015
Biggio et al, |2010a; |Colbaugh and Glass), 2012} |Alab-
dulmohsin et al.} 2014). While the Detection Ensemble
provides for the ability to maintain strategic advantages
in a reactive environment. Presence of multiple models
can provide better retraining and replacement policies,
which are well designed for ensemble systems (Gomes
et al.l[2017).

The proposed framework can be made automated,
where the feature splitting, retraining, and replacing
models, can be done dynamically by the system, and
the system is capable of requesting human intervention
when it deems necessary. This would make it an intel-
ligent dynamic system, which is capable of reacting to
adversarial activity. The domain agnostic design of the
framework, assumes a black box view of the defender,
further allowing for application specific customization,
by system designers.

7. Conclusion and future work

In this paper, the characteristic of adversarial drift,
as a special category of concept drift, is presented
and analyzed. Adversarial concept drift leads to non-
stationarity in the data mining process, and causes de-
ployed machine learning models to degrade over time.
It is necessary to deal with these concept drift, in the
presence of limited labeling, for practical and continued
usage of machine learning, in adversarial domains. As
such, we introduce the Predict-Detect streaming classi-
fication framework, which is capable of preemptively
accounting for adversarial activity, thereby providing
benefits at test time. By including considerations for
unsupervised drift indication, selective labeling of sam-
ples, and misleading of attackers; the proposed frame-
work provides for a generalized way for developers and
data scientist, to design for long term security, in adver-
sarial environments.

The developed Predict-Detect framework, was shown
to outperform traditional unsupervised drift detection
techniques (particularly MD3); in terms of drift detec-
tion, and recover-ability from the effects of an adver-
sarial drift. Experimental evaluation was performed
on data streams exhibiting adversarial concept drift,
which were generated using a novel proposed simula-
tion framework for adversarial drift. The adversarial
agnostic design of MD3, was found to be vulnerable to



Table 8: Results of splitting datasets, vertically, into orthogonal feature subsets. Number of splits is given as K. Splits possible within 5% and 10%

accuracy loss, are italicized.

Dataset CAPTCHA | Phishing | Spam | Spamassassin | Nsl-Kdd
#Instances 1885 11055 6213 9324 37041
#Attributes 26 46 499 499 122
Monolithic Model
Accuracy% (K=1) 99.9 96.3 96.2 97.5 98.1
Min Accuracy% at K = 2 99.8 92.1 95.9 96.7 97.1
Min Accuracy% at K = 3 99.6 88.2 95.4 96.2 92.1
Max Partitions within
5% accuracy drop (K@5%) d 2 6 7 2
Model performance at K@5% (0.99, (0.92, (0.94, (0.94, 0.97,
(Mean Accuracy, Min Accuracy) 0.99) 0.92) 0.92) 0.93) 0.97)
Max Partitions within
10% accuracy drop (K@10%) o 3 10 10 4
Model performance at,K@10% (0.99, (0.9, (0.90, (0.92, (0.94,
(Mean Accuracy, Min Accuracy) 0.95) 0.88) 0.89) 0.91) 0.93)
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