
The Incremental Fourier Classifier: Leveraging the Discrete Fourier Transform for
Classifying High Speed Data Streams

Chamari I. Kithulgodaa,∗, Russel Pearsa, M. Asif Naeema

aSchool of Engineering, Computer and Mathematical Sciences
Auckland University of Technology, Auckland, New Zealand

Abstract

Two major performance bottlenecks with decision tree based classifiers in a data stream environment are the depth of
the tree and the update overhead of maintaining leaf node statistics on an instance-wise basis to ensure that classification
is consistent with the current state of the data stream. Previous research has shown that classifiers based on Fourier
spectra derived from decision trees produce compact array structures that can be searched and maintained much more
efficiently than deep tree based structures. However, the key issue of incrementally adapting the spectrum to changes
has not been addressed. In this research we present a strategy for incremental maintenance of the Fourier spectrum to
changes in concept that take place in data stream environments. Along with the incremental approach we also propose
schemes for feature selection and synopsis generation that enable the coefficient array to be refreshed efficiently on a
periodic basis. Our empirical evaluation on a number of widely used stream classifiers reveals that the Fourier classifier
outperforms them, both in terms of classification accuracy as well as speed of classification.

Keywords: Data Stream, Ensemble Classifier, Discrete Fourier Transform, Concept Drift, Fourier Spectrum, Feature
Selection

1. Introduction

The need for scaling up the process of mining high
speed data streams is now paramount than ever before.
However, greater throughput should not come at the price
of prediction accuracy. Incremental learning techniques
have been used extensively to address the data stream
classification problem and to maintain a good balance be-
tween accuracy and efficiency Mena-Torres & Aguilar-Ruiz
(2014). In this research we adopt an incremental strategy
based on the use of the Discrete Fourier Transform (DFT).

We propose a novel approach for leveraging the DFT
to scale up throughput while maintaining or improving
classification accuracy over current state-of-the-art data
stream classifiers.

The Discrete Fourier Transform has long been a key
tool in signal processing and has also been applied to data
mining Park (2001), Kargupta & Park (2004), Kargupta
et al. (2006). It has several attractive properties for cap-
turing patterns that sets it apart from conventional mech-
anisms such as decision trees and other types of classifiers.
Firstly, it has been shown rigorously that spectra gen-
erated from hierarchical classifiers such as decision trees
can be represented in compact form thus speeding up the

∗Corresponding author
Email addresses: ckithulg@aut.ac.nz (Chamari I.

Kithulgoda), rpears@aut.ac.nz (Russel Pears), mnaeem@aut.ac.nz
(M. Asif Naeem)

classification process Sripirakas & Pears (2014). Secondly,
Fourier spectra have the ability to embed several different
patterns (concepts) into one entity unlike conventional en-
semble classifier systems which maintain multiple models.
This is due to the fact that Spectra can be represented in
array form and hence spectra generated at several different
points in time can be aggregated into one unifying spec-
trum that embeds the properties of its constituent spectra.
Thirdly, classification can be performed in Fourier space
and Fourier spectra, once generated from conventional
classifiers, can be used independently of them. Fourthly,
the distributive nature of the inverse Fourier transform
operation offers the possibility of exploiting parallelism in
the classification process.

Such properties have been exploited Sakthithasan et al.
(2015), Kithulgoda & Pears (2016) in mining data streams
but their use comes at a price. The application of the
DFT on multivariate data to produce a spectrum is a
non-trivial operation and has time complexity O(|X|2),
where |X| is the size of the feature space Kargupta & Park
(2004). The size of the feature space |X| grows exponen-
tially with the dimensionality of the data. In a highly
dynamic data stream environment the time spent on re-
peated application of the DFT at each concept detection
point can quickly become prohibitive as our experimenta-
tion in Section 6.9 shows.

A much more effective strategy would be to incremen-
tally maintain a spectrum in a fashion analogous to the
incremental maintenance of a conventional classifier such

Preprint submitted to Expert Systems with Applications December 10, 2017

Manuscript
Click here to download Manuscript: Revised Article_11Dec2017_Expert Systems_KithulgodaPearsNaeem.pdfClick here to view linked References

http://ees.elsevier.com/eswa/download.aspx?id=703858&guid=ae26c96d-3557-4d08-809f-c7e6e1ffd257&scheme=1
http://ees.elsevier.com/eswa/viewRCResults.aspx?pdf=1&docID=50296&rev=2&fileID=703858&msid={7945F834-67BC-4135-95A7-ACB2B166271A}

as a decision tree. We draw on the Staged Online Learning
(SOL) approach proposed by Kithulgoda & Pears (2016)
that uses a two staged approach to data stream classifi-
cation. The SOL approach divides data streams into two
types of segments based on the level of volatility in the
stream, which is measured by the rate of appearance of
new concepts in the stream. Stage 1 represents a high
volatility phase while Stage 2 operates in a low volatility
phase. We deploy the IFC in the low volatility phase for
two reasons. Firstly, refining an already established spec-
trum by making small incremental changes to it is far more
attractive than having to generate a new spectrum from a
decision tree. Our experimental results in Section 6.9 sup-
ports this premise very strongly. Secondly, the underlying
philosophy of the staged approach is that Stage 1 provides
a basis for Stage 2 by capturing new patterns as they ar-
rive in a high volatility stage. These patterns, stored as
spectra can then be refined in an incremental manner in
the low volatility Stage 2 phase without compromising on
accuracy.

This research presents an approach that monitors and
performs updates at variable-sized windows determined by
the rate of change of concepts in the stream. The contri-
butions we make are:

1. an incremental approach for maintaining a spectrum
that eliminates the need for regeneration of spectra
at update intervals

2. a self indexing hashing scheme that provides fast ac-
cess to a reservoir that contains a synopsis of changes
that occur in a given time window

3. the development of a novel schema pruning scheme
which directly targets noisy features in the raw data

The paper is organized as follows. In Section 2 we
present background on the properties of Fourier spectra
and their derivation from Decision Trees. In Section 3 we
give a brief overview of the application of the DFT to mul-
tivariate data and give some important insights into the
use of the Fourier spectrum as a classifier. In Section 4 we
present an incremental approach to maintaining a Fourier
spectrum. Section 5 presents an efficient scheme for cap-
turing a synopsis of the data that is critical to the update
of the Fourier coefficient array. Section 6 presents our em-
pirical study and in Section 7 we discuss an application of
DFT in data engineering context. We conclude the paper
in Section 8 with some directions for future work in mining
high speed data streams.

2. Background and Related Work

The use of the DFT in data mining has been of recent
origin and has been focused on deriving a Fourier spectrum
from Decision trees. We first present a basic overview
of the derivation of the multivariate DFT from a deci-
sion tree and then go on to describe the setting in which

Table 1: Mapping of Fourier concepts to their intuitive meanings

Symbol Meaning
x A schema consists of a vector of feature val-

ues drawn from features that comprise the
dataset. A schema is a compact way of defin-
ing a set of data instances, all of which share
the same set of feature values.

X The schema set which contains the set of all
possible schema for a given dataset.

j This is a partition of the feature space. Es-
sentially, it is also a vector of feature values,
just as with a schema. The only (conceptual)
difference is that a schema refers to the data
whereas a partition indexes a Fourier spec-
trum.

J The partition set that defines the number of
coefficients in the spectrum and its size.

w~j A coefficient in the Fourier spectrum

ψ
~λ
j (~x) This is the Fourier basis function that takes as

input a feature vector and a partition vector
and produces an integer for a dataset with bi-
nary valued features or a complex number for
a dataset with non-binary feature values.

our incremental scheme is applied. Before we present the
mathematical foundations of the DFT we map fundamen-
tal Fourier concepts to their meanings in Table 1 in order
to communicate their roles in an intuitive fashion.

A Fourier spectrum is derived from a Fourier basis set
which consists of a set of orthogonal functions that are
used to represent a discrete function. Consider the set of
all d-dimensional feature vectors where the lth feature can
take λl different discrete values, {0, 1, . . . , λl − 1}. The

Fourier basis set that spans this space consists of
d∏
l=1

λl

basis functions. Each Fourier basis function is defined as:

ψ
~λ
j (~x) =

1

d

√
d∏
l=1

λl

d∏
l=1

exp

(
2πixljl
λl

)
(1)

where ~j and ~x are vectors of length d; x(m), j(m) are the
mth attribute values in ~x and ~j, respectively. The vector ~j
is called a partition and its order is the number of nonzero
feature values it contains.

A function f: Xd → R that maps a d-dimensional
discrete domain to a real-valued range can be represented
using the Fourier basis functions:

f(~x) =
∑
j∈X

ψj
~λ
(~x)w~j (2)

2

Figure 1: A Decision tree and its equivalent Fourier spectrum. The data required for classification is given by the table in the middle panel.
The IFC classifier only stores and maintains the data given by the table in the right side panel

, where w~j is the Fourier Coefficient (FC) corresponding

to the partition ~j and ψj
~λ
(~x) is the complex conjugate of

ψ
~λ
j (~x). Henceforth we shall drop the superscript λ from

the ψj function formulation to simplify the presentation.
The Fourier coefficient w~j can be viewed as the relative

contribution of the partition ~j to the function value of
f(x) and is computed from:

w~j =

l∏
i=1

1

λi

∑
x∈X

ψ~j(~x)f(~x) (3)

In a data mining context, f(~x) represents the classification
outcome of a given data instance ~x ∈ X. Each data ~x
must conform to a schema and many data instances in
the stream may map to the same schema. For example,
in Fig. 1, many data instances for schema (0, 0, 1) may
occur at different points in the stream. Henceforth in the
paper we shall refer to schema instances rather than data
instances as our Fourier classifier operates at the schema,
rather than at the data instance level. Thus we shall adopt
the notation ~x to denote a schema instance, rather than a
data instance. The set X is the set of all possible schema,
and for the simple example in Fig. 1 it is of size 8.

The absolute value of w~j can be used as the signifi-

cance of the corresponding partition ~j. If the magnitude
of some w~j is very small compared to other coefficients, we

consider the jth partition to be insignificant and neglect
its contribution. The order of a Fourier coefficient is sim-
ply the order of its corresponding partition. We will use
terms like high order or low order coefficients to refer to a
set of Fourier coefficients whose orders are relatively large
or small, respectively.

The Fourier spectrum of a Decision Tree can be com-
puted using the class outcomes predicted by its leaf nodes.
As an example consider the decision tree in Fig. 1 defined
on a binary valued domain consisting of 3 features. Its
truth table derived from the predictions made by the tree
and the corresponding Fourier spectrum that results ap-
pears in Fig. 1.

As discussed in the Introduction the Fourier spectrum
derived from a decision tree is compact. This is due to the
two following properties:

1. The number of non-zero coefficients is polynomial in
the number of features represented in the tree Kar-
gupta & Park (2004).

2. The magnitude of the coefficients w~j decreases expo-

nentially with the order of the partition ~j Kargupta
& Park (2004), Kargupta et al. (2006).

These two properties collectively make a spectrum de-
rived from a tree very attractive. Firstly the tree provides
a natural filtering mechanism as typically only a fraction
of the features have sufficient information gain to be repre-
sented in the tree. Once the tree is in place, only the set of
low order coefficients defined from partitions appearing in
the tree make significant contributions to the classification
outcomes.

Kargupta and Park in Kargupta & Park (2004),Kar-
gupta et al. (2006) made use of spectral energy to derive
a cut-off point for coefficient order. Given a spectrum s,
its energy E is defined by: E =

∑
~j∈s
|w2
~j
|. For a given

energy threshold T, the subset of s (in ascending spectral
order) whereby E ≥ T is retained; all other coefficients are
deemed to be zero and removed from the array. Thus for
example in the spectrum defined in Fig. 1 the first order
coefficients contain 9+0+1+1

9+0+1+1+0+0+1+0 = 91.7% of the to-
tal energy and so with a threshold of 90%, only coefficients
w000, w001, w010, w100 should be retained, thus halving the
size of the spectrum that needs to be maintained.

Moreover, as discussed in Kargupta & Park (2004) and
implemented in Sakthithasan et al. (2015), spectra can be
aggregated with each other. In Sakthithasan et al. (2015)
aggregation of spectra was implemented via a pair-wise
algebraic summation of the spectra involved as given in
Eq. 4:

sc(x) =
∑
i

Ai
∑
i

si(x)

=
∑
i

Ai
∑
j∈Pi

ωj
(i)ψj(x) (4)

where sc(x) denotes the ensemble spectrum produced from
the individual spectra si(x) produced at different points
i in the stream; Ai is the classification accuracy of its

3

corresponding spectrum and Pi is the set of partitions for
non zero coefficients in spectrum si.

Aggregation of spectra brings with it two major ben-
efits. Firstly, a reduction in space as coefficients common
to spectra being aggregated need to be stored only once.
Secondly, as demonstrated in our empirical study, aggre-
gation performs a similar role to an ensemble of models
and leads to better generalizability to new data arriving
in the stream.

Once a Fourier spectrum is derived from a decision
tree it can fully replace the latter as classification of a
newly arriving instance ~x can be computed by applying
the inverse transform given in Eq. 2 over the set J that
contains the reduced set of coefficients that survive the
energy thresholding process.

3. Advantages of the Fourier classifier over the de-
cision tree classifier

We have chosen to contrast our proposed classifier with
the decision tree classifier. The decision tree classifier has
been shown in a number of empirical studies to be one
popular choice for a data stream environment Gama et al.
(2003), Kargupta & Park (2004) and Bifet et al. (2009).
This is due to two important reasons. Firstly, decision tree
induction is efficient, and when used in conjunction with
the Hoeffding bound can adapt to new patterns in a data
stream with a single pass through the data. Secondly,
they capture dependencies between features without the
need for time consuming graph traversal, such as in neural
networks or Bayesian networks.

3.1. Decision tree overhead

Although decision trees are efficient when compared
with other types of conventional classifiers they still have
shortcomings that negatively impact on performance. The
depth of the tree directly impacts classification perfor-
mance as the label for a data instance can only be de-
termined by a traversal from the root node to the node
that matches with the schema of the given data instance.
The deeper the tree, the greater is the number of inter-
mediate nodes that need to be traversed to extract the
required class label.

Furthermore, once the true label for a data instance is
known, the sufficient statistics, nfvc Domingos & Hulten
(2000) which record the number of data instances for each
feature f taking value v that belong to class outcome c,
need to be updated. These statistics are required to de-
termine whether a leaf node should split into two or more
decision nodes. The average time complexity of this up-
date is:

O(dvc) (5)

where d is the dimensionality (number of features in the
data), v is the average cardinality taken over all features
and c is the number of classes. This update needs to be
performed on a per instance basis even though splits may

only occur in a small percentage of cases, thus exposing
a fundamental performance weakness of the decision tree
method when operating in a data stream environment. In
many implementations of decision tree classifiers for a data
stream environment a forest of trees is used and this will
further increase overheads by a factor proportional to the
size of the forest. Thus overall, the appearance of each
data instance involves an overhead of O(dvc) in the case
of a decision tree.

3.2. Fourier classification overhead

The Fourier classifier does not rely on a deep hierar-
chical tree structure but instead uses a self indexing hash-
ing scheme to store its schema values. Access to schemas
are provided via a shallow two level extendible hashing
scheme. The biggest advantage of such a two level struc-
ture is that classification is very efficient when the schema
for the data instance to be classified is cached in the repos-
itory. However, when the spectrum is updated on a peri-
odic basis, classification needs to be performed once again
for data arriving after the update point. In this case clas-
sification is performed via the IFT operation.

If s is the size of the coefficient array (number of co-
efficients) then the time complexity of IFT from Eq. 2 is:

O(sd2) (6)

as d2 multiplication are needed for the computation of the
vector product between ~x and ~j for each of the s coefficient
in the array.

Although a direct comparison between the decision tree
and the Fourier classifier is not possible in terms of time
complexity we observe that there is no control over any of
the factors governing Eq. 5, whereas in Eq. 6 the time
complexity can be controlled by limiting the size s of the
array as well as the dimensionality of the data. Pruning of
the coefficient array can be accomplished effectively by en-
ergy thresholding as proposed by Kargupta & Park (2004)
and applied in Sakthithasan et al. (2015). In addition to
energy thresholding, in Section 4 of this paper we propose
a schema pruning scheme that complements on the energy
thresholding scheme proposed by Kargupta & Park (2004).

In this research we make use of two types of pruning.
Firstly, by reducing the size (s) of its coefficient array it
reduces the time complexity of the IFT, leading to smaller
classification times after a spectral update is performed.

The second type of benefit is that it reduces overhead
by excluding some of the d features from the computation
of the vector product between ~x and ~j. This is done by
eliminating features that do not contribute to the classifi-
cation process. The details are described in Section 5.1.

3.3. Fourier coefficient array update overhead

Just as with the decision tree the Fourier classifier
needs to update its model by refreshing the coefficient ar-
ray. Each coefficient of the array plays a role similar to
the leaf node of a decision tree classifier but there is no

4

need to store sufficient statistics for each coefficient apart
from its numeric value. Thus the cost of accessing a large
3 dimensional array is avoided during the model update
operation.

From Eq. 3 we observe that the time complexity for
the update operation is O(nd2|X|) where n is the number
of coefficients affected by the update and X is the schema
set. Each coefficient to be updated requires d2×|X| multi-
plications to compute the new value of the coefficient that
is being updated.

Our strategy for reducing the update overhead is two-
fold. Firstly, as noted in Section 3.2 above, feature selec-
tion enables us to eliminate some of the d features from
the vector product operation. The reduction factor R1

obtained through feature selection is:

R1 =
|X|
|F |

(7)

where |X| =
∏
i∈X

λi and |F | =
∏
i∈F

λi where F denotes the

subset of features (drawn from feature set X) that survive
the feature selection process.

Secondly, Theorem 1 in Section 4.1 enables us to prune
the schema set X. It does this by identifying a subset C
of X consisting of those schema that change their class la-
bels from the last observed interval. The Theorem ensures
that the coefficient array can be updated efficiently with-
out compromising on classification accuracy. Theorem 2
further constrains the size of C when certain conditions
are met.

If C is the subset of X identified by Theorem 1 (which
we present in Section 4) over which the update operation
must be performed, then the reduction factor obtained
through schema pruning is:

R2 =
|X|
|C|

(8)

In stream segments that exhibit a low level of change
we expect that only a small fraction of schema will change
their class labels - i.e |C| � |X| and so |R2| � 1. The re-
duction factors R1 and R2 are independent of each other
as the class label change rate for a given schema (from one
interval to another) is an inherent property of the data and
is not influenced by the information content of individual
features. Thus the cost of the update operation reduces by
a factor R1 × R2 with the help of the two optimisations.
Our experimentation in Section 6 will quantify the per-
formance gains from feature selection and the incremental
coefficient update strategy.

Despite the optimizations introduced by feature selec-
tion in Section 5.1 and the incremental approach in Section
4 to Fourier spectrum maintenance, certain types of envi-
ronments may lead to high resource overhead. These in-
clude high dimensionality data on which feature selection
is ineffective and returns a large fraction of the original
set of features. Also, in highly dynamic streams, the rate
of change of class labels to schema would be high, thus

triggering more frequent updates to spectra and reducing
the effectiveness of the incremental approach.

4. Incremental Approach to Fourier Spectrum
Maintenance

As mentioned in Sections 1 and 3.3 we propose to
deploy the Fourier classifier in low volatility segments of
a data stream. Before we describe the conditions under
which the deployment occurs we first define what we
mean by drift rate, volatility and the concept of a highly
dynamic data stream.

Definition (Drift Rate) : drift rate is defined as the
average number of concept changes that takes place in a
given time interval.

Definition (Volatility) : Volatility is defined as the
average number of new concepts that appear in the stream
in a given time interval.

Thus drift rate and volatility both measure the concept
shift activity in the stream, the difference being that
volatility discriminates between new concepts and those
that have already appeared in the stream.

Definition (Highly Dynamic Data Stream) : A
highly dynamic data stream is one where a combination
of sample arrival rate and concept drift rate is sufficient
enough to cause system CPU utilization to rise above a
maximum tolerable user defined threshold.

In this situation the system is transiting to a state
where normal stream processing would be disrupted un-
less some extra processing resources can be used.

With the above definitions in place we are now in a
position to describe the Staged Online Learning (SOL)
approach proposed by Kithulgoda & Pears (2016). The
SOL approach is summarized in Fig. 2.

The SOL approach tracks stream volatility and makes
use of a rigorous statistical test to determine when the
stream transits to a low volatility state. In the low volatil-
ity state the overwhelming percentage of concepts appear-
ing in the stream consists of recurrences of previously seen
concepts in their original form, or with small incremental
changes to their previous occurrence. In such an environ-
ment the most efficient approach would be to refresh the
array on a periodic basis. Before presenting our strategy
for incremental maintenance we will first discuss the re-
search setting in which our strategy is to be deployed. We
envisage that in many real-world settings a data stream
will experience volatility shifts on a periodic basis. We
adopt the definition of volatility within a stream context
given by Kithulgoda & Pears (2016).

In any given stream segment of length l if p new con-
cepts appear then the volatility is defined as the ratio p

l .

5

Figure 2: Staged Transition Learning Framework adapted from
Kithulgoda & Pears (2016)

The definition is based on the appearance of new concepts
and not on the rate of concept drift. The rate of concept
drift reflects the frequency of switching between concepts.
If q switches in concepts take place in a stream segment
of size l, then in general only a fraction p(< q) of them
will be new and hence the volatility rate defined above as
p
l will be less than the rate of concept drift, q

l .
In common with Kithulgoda & Pears (2016) we be-

lieve that a given stream will cycle between periods of
high volatility and low volatility, referred to as Stage 1 and
Stage 2 respectively for the rest of this paper. In Stage 1 a
conventional classifier such as a decision tree forest can be
used to learn concepts as they appear in the stream. Cou-
pling such a learner with a drift detector enable concept
boundaries to be determined and when drift is signalled
the tree can be transformed into a Fourier spectrum as
outlined in Section 2 and then stored in an online reposi-
tory.

Once the repository is populated with spectra they can
be used for classification by applying the inverse Fourier
transform as described in Section 2. A significant shift
away from relying on decision trees for classification and
shifting to Fourier spectra in the repository is signalled by
trigger T1, as shown in Fig. 2. Trigger T1 tracks the ratio
of the number of visits to the ensemble of decision tree to
the number of visits to the repository. When classification
is dominated by the spectra in the repository the conclu-
sion is that the stream has entered Stage 2 with trigger T1
firing. It is in such a state that the Fourier Classifier will
be deployed.

The trigger T2 in Fig. 2 is used to detect deviation of
spectra in the repository from their initial versions. If the
degree of deviation exceeds a certain threshold then this
indicates that the stream has re-entered a high volatility
state which is signalled by trigger T2 firing. In the event
that Stage 1 is re-activated, a forest of decision trees is
grown.

In Stage 2 we envisage that concept drift still takes
place but changes in concept occurs for the most part on

concepts that have appeared before and not on entirely
new concepts. In Kithulgoda & Pears (2016) classifica-
tion was performed by identifying the spectrum S with
the highest classification accuracy for the current concept
and then transforming S into a decision tree that learns
the changes occurring in a conventional manner. The dif-
ference in the learning strategy employed in Stage 2 is that
a single tree is used instead of a forest of trees thus sav-
ing time in both the learning and classification processes.
The experimental results presented in Kithulgoda & Pears
(2016) showed a significant reduction in runtime and mem-
ory consumption for such an approach.

Even though the staged learning approach yielded good
savings in time and memory, several inefficiencies remain.
Firstly, in the low volatility state the spectrum (S) that
most closely fits is used to induce a decision tree (T). This
induction process can involve high computational over-
head, depending on the actual size of the spectrum.

Secondly, when concept drift takes place from an ex-
isting concept C to a new concept C’, the tree T that has
evolved to learn changes in the former concept C will need
to be converted to spectral form so that it can be stored
in the repository for future use if C recurs. At the same
time a conversion from S’ to tree T’ is needed in order to
learn future changes in the new concept C’. Such conver-
sions from spectrum to tree and tree to spectrum can be
avoided by learning changes in the raw data and trans-
lating such changes to the spectrum without the need for
transformations to/from the tree domain.

There has been very little research done on optimizing
the learning process within the Fourier domain Kargupta
& Park (2004). As Park (2001) says learning directly in the
Fourier domain is challenging in a high dimensional data
environment and optimization strategies such as gradient
descent were used to update the coefficient array. In this
research we show that there is no need for using such high
computational complexity methods.

4.1. Incremental Maintenance of Spectra

Spectra in the repository can be maintained in one of
two ways. The first approach taken by Sripirakas & Pears
(2014), Sakthithasan et al. (2015), Kithulgoda & Pears
(2016) is to select the best performing tree from a deci-
sion tree forest at each concept drift point and apply the
DFT to produce a spectrum. This spectrum is then ag-
gregated with the most similar spectrum already resident
in the repository through the use of a Euclidean distance
measure. There are two major issues with this approach.
The first is the high overhead in applying the DFT. Sec-
ondly, the maintenance operation is not incremental as an
existing spectrum is updated in its entirety with a newly
generated spectrum from the best performing tree.

The second approach to maintenance exploits the fact
that in any given stream segment only a subset of schema
instances will experience a change in their class values over
the previous segment. Thus, instead of treating the spec-
trum that covers the data in the newly arriving data seg-

6

ment as being a new spectrum in its own right, we treat it
as an extension of the spectrum that was generated from
the previous segment.

The Fig. 3 illustrates the incremental update process
that is carried out periodically in intervals. Schema in-
stances x that have changed their class labels f current(x)
in the current interval are used in conjunction with
fprevious(x) from the previous interval, together with the
current version of the spectrum array wcurrent~j

to compute

the new version wnew~j
that will be used in the next interval.

Theorem 1 qauntifies the update computation and pro-
vides a proof of its correctness.

Figure 3: Periodic update of spectra

Theorem 1: Let C be the change set containing all
schema instances that have had their class labels changed
since the previous update point. The new version of the
coefficient array wnew~j

can be derived from its current ver-

sion wcurrent~j
as follows:

wnew~j
= wcurrent~j

+
1

|X|
∑
x∈C

ψ~j(x)(f current(x)− fprevious(x))

(9)
where f current(x) , fprevious(x) are the class labels in

the current and previous intervals respectively for a given
schema x.

Proof

wnew~j
=

1

|X|
∑
x∈X

ψ~j(x)f current(x)

=
1

|X|
∑
x∈X

ψ~j(x)(f current(x)− fprevious(x))

+
1

|X|
∑
x∈X

ψ~j(x)fprevious(x)

=
1

|X|
∑
x∈C

ψ~j(x)(f current(x)− fprevious(x))

+
1

|X|
∑

x∈X\C

ψ~j(x)(f current(x)− fprevious(x))

+ wcurrent~j
, as wcurrent~j

=
1

|X|
∑
x∈X

ψ~j(x)fprevious(x)

= wcurrent~j
+
∑
x∈C

ψ~j(x)(f current(x)− fprevious(x))

as f current(x) = fprevious(x)∀x ∈ X \ C

In certain cases it is possible to optimize further
by restricting the refresh operation to only a subset of
coefficients in the coefficient array. Theorem 2 establishes
when this optimization applies and how this subset can
be identified.

Definition 2 (Pivot) A feature p is said to be a pivot
on the schema set X if ∀x ∈ C ∃y ∈ C such that

1. x and y differ only in index position p

2. f(x) = f(y)

3.
⋃

x(p)∈C
= {0, 1, . . . , λp − 1} where x(p) is the pth

position of a schema instance x

Suppose a pivot feature p exists with change set C.
Theorem 2 below identifies the spectrum coefficient subset
that is unaffected by the class label changes amongst
schema recorded in the change set C.

Theorem 2: If a feature p is a pivot in the previ-
ous interval and remains as a pivot in the current interval
then the set of coefficients U that is unchanged is given
by w~j with j(i) = ∗ ∀i 6= p and j(i) ∈ {1, 2, . . . , λp − 1}
when i = p.

Proof
Consider an arbitrary ~j ∈ U

ψ~j(x) =
∑
~x∈C

d−1∏
l=0

cos
(2πj(l)x(l)

λl

)

+ i
∑
~x∈C

d−1∏
l=0

sin
(2πj(l)x(l)

λl

)
Define F = {0, 1, . . . , d− 1}

Let t1 =
∑
~x∈C

∏
l∈F

cos
(2πj(l)x(l)

λl

)
(10)

and t2 =
∑
~x∈C

∏
l∈F

sin
(2πj(l)x(l)

λl

)
Let m =

∏
l∈F\{p}

cos
(2πj(l)x(l)

λl

)
Then t1 =

∑
x(p)|~x∈C

m cos
(2πj(p)x(p)

λp

)
We are interested in coefficients j ∈ U such that
j(p) 6= 0 Now with k = j(p)x(p) and N = λp,
Eq. 10 can be written in the form: From Knapp (2009)
we have:

7

t1 = m

N−1∑
k=0

cos

(
2πk

N

)
= 0 for all integers k and N.

Likewise, t2 = m
(

sin
(2πj(p)× 0

λp

)
+ sin

(2πj(p)× 1

λp

)
+ . . .+ sin

(2π(j(p)× (λp − 1))

λp

)
= m× 0 as

N−1∑
k=0

sin

(
2πk

N

)
= 0

for all integers k and N, also from Knapp (2009).

Thus ψ~j(x) = 0 ∀x ∈ C

From Theorem 1 above we have ∀j ∈ U,

wnew~j
= wcurrent~j

+
∑
x∈C

ψ~j(x)(f current(x)− fprevious(x))

= wcurrent~j
as ψ~j(x) = 0 ∀x ∈ C and j ∈ U

The utility of Theorem 2 is illustrated in the following
example which uses binary data to maintain simplicity.

Suppose we have a 3 dimensional dataset with X2

as a pivot in the previous interval. The Theorem then
deals with scenarios such as given below:

Class labels in previous interval: f(∗ ∗ 1) = 0, f(∗ ∗ 0) = 1.
In this case, feature X2 is a pivot in the previous interval
as f(∗0∗) = f(∗1∗) .

Now suppose that the class labels in the current in-
terval are: f(∗ ∗ 0) = 1, f(0 ∗ 1) = 0, f(1 ∗ 1) = 1.

Hence change set CPreviousToCurrent = {101, 111}.

We observe that feature X2 remains as a pivot in
the current interval.

Now from Theorem 2 we can conclude that coefficients
given by w~(∗1∗) do not need to be updated.

5. Hashing and Reservoir Management

5.1. Schema Hashing through Feature Selection

Our feature selection strategy is based on identifying
the subset of features that play a critical role in the classifi-
cation process. In the context of classification via a Fourier
spectrum, feature selection means the selection of features
which contribute to the Inverse Fourier Transform (IFT)
operation, as given in Eq. 2. Kargupta and Park in Kar-
gupta et al. (2006) proved that when a feature Xk does not

appear in a decision tree then all coefficients w~j=0, when-

ever j(k) take a non zero value, irrespective of the values
taken by other elements of ~j. With respect to coefficients
with j(k) 6= 0 their contribution to the IFT is hence zero.

Further to this, consider the remaining set of Fourier
coefficients where j(k) = 0 at feature Xi’s position. Even
though the Fourier coefficients wj take non zero values
we show below that the Fourier basis function has no
contribution from such coefficients. On this basis, we
conclude that features that do not appear in decision
trees in Stage 2 play no part in the classification process
and we exploit this property when obtaining the hash
function as described below.

From Eq. 1 which we apply on the subset of coeffi-
cients where j(k) = 0. If k 6= 1, ~j can be reordered to
make k=1 then without loss of generality.

ψ
~λ
j (~x) =

1

d

√
d∏
l=1

λl

d∏
l=1

exp

(
2πix(l)j(l)

λl

)

Let r(l) =
2πi

λl

Now ψ
~λ
j (~x) = exp (r(1)x(1)× 0)

1

d

√
d∏
l=2

λl

exp (r(l)x(l)j(l))

= 1× 1

d

√
d∏
l=2

λl

(exp (r(l)x(l)j(l)))

Thus the Fourier basis function’s contribution to coeffi-
cients where j(i) = 0 has not been affected by the Xth

i

feature.

We perform feature selection in Stage 1 prior to
transformation of a decision tree to its corresponding
spectrum. All features that appear in a tree are stored
along with its corresponding spectrum. When a new
spectrum Snew is generated from a winner decision tree
at a drift point in Stage 1, a decision is taken whether
to store it on its own in the repository or to aggregate it
with an existing S already in the repository.

Once feature selection has been performed, a hash
scheme for efficiently storing schema instances can be de-
vised. Given a schema instance, a hash function for the ith

spectrum Si is the string
⋃n
j=1 Y (j), where Y (j) = X(j)

if feature j survives the feature selection process, other-
wise Y (j) = 0. The rationale for this is that all schema
instances will take the same class value regardless of the
non contributing feature values. Hence only one instance
indexed by a position of 0 for such feature will suffice.
For instance, if we consider the binary tree given in Fig.
1, X1 and X3 are influential features but not X2 as it
does not appear in the tree and hence does not play a

8

Figure 4: Hashing and Reservoir Structure

part in the classification process. Thus it follows that the
hash function for the spectrum is H(X1(x)X2(x)X3(x)) =
(X1(x)0X3(x)).

5.2. Reservoir Organization

A critical element of incrementally adapting the
Fourier spectrum to changes in the data stream is a dy-
namic data structure that captures changes in the schema
over a period of time. The Fig. 4 shows a dynamic reser-
voir structure that keeps track of evolution of schema over
time based on an extendible hash implementation. Each
and every spectrum in the repository has its own reservoir
built using the hashing scheme described earlier.

The reservoir is compact for two reasons. First of all,
it only stores schema and not data instances, in a manner
analogous to a decision tree that only stores decision paths
and not actual data instances. Secondly, feature selection
ensures that the worst case space complexity of the reser-
voir is O(|X|). Thus for the example shown in Fig. 4,
the appeared schema reduces in size from 6 to 3 as feature
2 plays no part in classification and hence both 0 and 1
occurrences of this feature maps to the same class, thus
requiring only one representation for this feature, which
we choose to be 0.

Although the reservoir is compact it can also be sparse
as only a subset of schema instances may actually manifest
in the stream. For our example schema set, although there
are a total of 8 possible schema instances, only 6 may
actually appear in the stream, as illustrated in Fig. 4.
This calls for a dynamic data structure that only utilizes
space as and when needed and hence our use of a hashing
scheme. The extendible hashing scheme also ensures that
an entry in the reservoir can be extracted with no more 2
memory fetches.

Each spectrum in the repository will be stored its own
reservoir according to the structure defined in Fig. 4. At
any given point in time, only the winner spectrum un-
dergoes change; all other spectra in the repository remain
static until one of them emerges as the winner. Each entry

in a reservoir is indexed by its hash value, the class value
of the schema at its first appearance, its frequency of ap-
pearance, the true class label within the current interval
if it appeared, and finally the true class label within its
previous appearance, if any.

The reservoir serves two main purposes. Firstly, it
helps to determine when spectra should be refined, and
secondly, it provides a cache for extracting the class label
whenever several data instances recur within the same in-
terval with the same schema, or when schema only differ
in one or more index positions involving non contributing
features. In this respect the higher the number of collisions
in the hash table, the better the efficiency. For any given
schema the class value returned by the IFT will remain
the same and will represent the predicted class value as
long as the spectrum remains unchanged.

5.3. Algorithm

The pseudocode given in algorithm 1 presents the reser-
voir management and classification process.

As given in steps 4-9, if the hash value returned by
the corresponding spectrum’s hash function already exists
in that spectrum’s reservoir, instead of reclassifying it we
simply extract the class value from its first appearance.
If no entry exists, then it is necessary to classify and in-
sert a new record. If the winner is not in a drift state
and a threshold I (set to 100, by default) on the number
of instances arrived (steps 10-12) then the Refine Winner
procedure is activated.

In algorithm 2, the requirements for refinement are first
tested in step 6. In case the cumulative change rate is
higher than the tolerable change rate T (set to 0.05 by
default) the coefficients of the winner spectrum will be
modified by utilizing an incremental factor, as shown in
step 15 of Algorithm 2. At this point in time the reservoir
is reset by clearing its contents (step 15 of Algorithm 1).

If it fails to meet the conditions for refinement, subse-
quent tests for refinement will be done using the accumu-
lated change rate in intervals of size I.

9

Algorithm 1: Incremental Fourier Classifier

Data: Interval Size=100, Spectrum Repository,InstanceCount =0 , EffectiveChangeRate=0
1 while InStage2 do
2 Read Instance ;
3 Increment Instance Count by 1;
4 foreach Spectrum Si in Repository do
5 Apply S′is Hash Function on Instance;
6 if Hash Value found in S′is Reservoir then
7 Extract predicted class value, update frequency and True class columns ;
8 else
9 Classify by IFT and insert into Reservoir;

10 if Winner is not in drift then
11 if Instance Count MOD Interval Size = 0 then
12 EffectiveChangeRate= RefineWinner (EffectiveChangeRate);
13 if WinnerRefined then
14 Reset Instance Count =0;
15 Clear Winner’s Reservoir ;

16 else
17 foreach Winner Reservoir Record do
18 Previous True Class = Current True Class;
19 Current True Class =null , Frequency =0 ;

20 else
21 Define spectrum with highest accuracy as New Winner;
22 Aggregate Previous Winner with most similar Spectrum if such exist;
23 Reset InstanceCount =0 ,Reset EffectiveChangeRate=0;
24 Clear New Winner Spectrum’s Reservoir;

6. Empirical Study

The empirical study examines the accuracy and
throughput of IFC against a selection of 11 other algo-
rithms that have been proposed for concept drifting data
streams. These algorithms were chosen carefully: 9 of
them are state of the art meta learning algorithms fea-
tured in MOA and the other two (SOL and RC) use the
staged approach as IFC does but with differences in the
learning approach employed.

We start by describing the datasets and algorithms
used in the study and then go on to conduct a compar-
ative analysis on both accuracy and throughput.

6.1. Datasets Used for the Empirical Study

All experiments were carried out with the use of two
synthetic datasets generated by MOA’s stream genera-
tors1 and five real world datasets.

Synthetic Data Recurring with Noise:
For synthetic datasets we generated several distinct con-
cepts, each of length 10000 instances. With the belief that
concepts do not repeat in exactly the same form in reality,

1from http://moa.cms.waikato.ac.nz/

we introduced a 5% noise level for each concept recur-
rence by flipping the class label of randomly selected data
instances.

1. Rotating Hyperplane dataset (RH): This dataset has
a total of 10 attributes and we adjusted the magni-
tude of change in the range [0.03, 0.04, 0.05, 0.07,
0.08, 0.09] to generate 5 distinct concepts. The first
three concepts were repeated 20 times, with each
concept being distorted by a noise level of 5% at each
cycle over is base representation (i.e its first gener-
ated state). Three previously unseen concepts were
injected at the end of datasets with the intention of
examining whether the staged learners would opt for
adapting to the new concepts in Stage 2 or for trig-
gering T2 to transit back to Stage 1. The size of the
dataset was 660,000 data instances.

2. RBF dataset (RBF): This 10 dimensional dataset
generated concepts by changing the number of
centroids. The size of this dataset is 1,300,000
data instances with 5 different concepts which
were repeated 25 more times with noise as per the
description for RH.

10

Algorithm 2: Refine Winner

Data: Tolerable Change Rate=0.05, Winner Refined = False, Number of Changes =0;
1 foreach Winner Reservoir Hash Value appeared in Current Interval do
2 if Current True Class is not equal to Previous True Class then
3 Increment NumberOfChanges by Frequency;

4 ChangeRate = NumberOfChanges/IntervalSize ;
5 CumChangeRate = EffectiveChangeRate+ ChangeRate ;
6 if CumChangeRate > Tolerable Change Rate then
7 foreach Coefficient Index j that belongs to Winner Spectrum do
8 IncrementalFactor = 0 ;
9 foreach Reservoir Hash Value x where Classes are changed do

10 Calculate ClassDifference = (f current(x) − fprevious(x));

11 Compute F = ψj(x)× ClassDifference where ψj(x) is from Eq. 1
12 // Update Incremental Factor in Eq. 9 as

∑
x∈C

ψ~j(x)(f current(x)− fprevious(x))

13 IncrementalFactor = IncrementalFactor+ F;

14 Compute AverageIncrementalFactor as 1
|X|IncrementalFactor; //where |X| is the current reservoir size

15 wnewj = wcurrentj + AverageIncrementalFactor // as in in Eq. 9

16 Set WinnerRefined = True , Reset CumChangeRate = 0;

17 else
18 Set WinnerRefined = False;

19 return CumChangeRate;

Real World Data: The real word datasets that we
experimented with have been widely used as benchmarks
in a number of studies on data stream mining. The ac-
curacy profiles of the most accurate classifiers show that
these datasets have widely different levels of concept drift
and concept recurrence. The Flight dataset was gener-
ated by NASA’s FLTz flight simulator and was obtained
from the Nasa website 2. This has total of 30 features and
25,030 data instances. We experimented with two bin dis-
cretized form of the NSW Electricity(Elec) dataset3.The
Covertype(Cover) original dataset is available at Lichman
(2013). We extracted instances from the two most frequent
classes and used a two bin discretized form for the fea-
tures. The dataset and description of Occupancy(Occ) is
found from Lichman (2013) and previously experimented
by Candanedo & Feldheim (2016). The Sensor stream
(Sensor) dataset extracted from Zhu (2010) contains a to-
tal of 130,073 instances.

6.2. Algorithms used in study

Nine of the twelve algorithms that we experimented
with were sourced from MOA4 under its meta learning cat-
egory and were explicitly designed for time changing data
streams. We also used an approach proposed in Kithul-
goda & Pears (2016) that used the staged approach but

2from https://c3.nasa.gov/dashlink/resources/
3https://moa.cms.waikato.ac.nz/datasets/
4from http://moa.cms.waikato.ac.nz/

used decision trees as its learning mechanism instead of
Fourier spectra. This algorithm is termed Staged Online
Learning (SOL) as it uses a staged approach. In Stage 2 it
reconstructs trees from a pool of Fourier spectra and uses
the trees for learning and classification. This algorithm
was selected as it would provide an interesting contrast
between Fourier learning and classification against the use
of a conventional decision tree classifier.

We also experimented with another implementation of
the Staged approach which simply uses Fourier spectra
generated in Stage 1 to classify data arriving in Stage 2
without any form of learning. This classifier thus assumes
recurrence of concepts in Stage 2 and is thus termed Re-
current Classifier or RC. This version provides a useful
contrast with the Incremental Fourier Classifier (IFC) pro-
posed in this research as it enables us to assess the benefits
of adapting spectra in Stage 2.

The nine meta learning algorithms derived from MOA
are: Adaptive Random Forest (ARF)Gomes et al. (2017),
OzaBagASHT (AS), OzaBagADWIN (OB)Bifet et al.
(2009), LeveragingBag (LB) Bifet et al. (2010b), Li-
mAttClassifier (LA) Bifet et al. (2010a), AccuracyWeight-
edEnsemble (AWE) Wang et al. (2003), AccuracyUpdat-
edEnsemble (AUE) Brzeziński & Stefanowski (2011), An-
ticipative Dynamic Adaptation to Concept Change (AD)
Jaber et al. (2013a) and Dynamic Adaptation to Concept
Changes(DA) Jaber et al. (2013b).

11

Table 2: Classification Accuracy with ranking

RBF RH Flight Elec Cover Occ Sensor Algorithm
Rank

ARF 81.8(2) 73.9(4) 80.8(2) 68.5(1) 84.5(3) 95.9(1) 65.2(6) 2
OB 75.3(10) 73.7(5) 73.0(6) 65.4(4) 83.2(5) 82.3(9) 66.5(3) 5
AS 80.3(4) 74.2(3) 73.1(5) 64.4(5) 75.6(9) 84.0(8) 62.2(9) 6
LA 74.8(11) 75.3(2) 71.4(9) 61.3(11) 84.5(3) 89.1(5) 62.9(8) 7
LB 82.4(1) 76.3(1) 77.2(3) 66.0(3) 86.1(1) 86.4(6) 66.2(4) 2
AWE 72.1(12) 69.3(9) 49.3(10) 63.7(9) 78.5(8) 73.4(12) 65.8(5) 10
AUE 76.4(7) 71.1(7) 72.5(7) 64.2(7) 82.8(7) 81.8(10) 65.1(7) 8
AD 76.2(8) 68.9(10) 76.9(6) 64.3(6) 84.3(4) 95.3(3) 65.8(5) 5
DA 75.9(9) 68.9(10) 77.2(3) 64.0(8) 84.5(3) 95.8(2) 65.8(5) 4
IFC 80.7(3) 74.2(3) 81.8(1) 68.5(1) 84.6(2) 93.0(4) 70.3(1) 1
RC 79.0(5) 70.6(8) 71.6(10) 62.4(10) 73.8(10) 75.6(11) 54.4(10) 9
SOL 78.7(6) 72.7(6) 80.8(2) 67.2(2) 82.9(6) 85.4(7) 69.5(2) 3

6.3. Parameter Values

The default parameter values used in the experimen-
tation are as follows:
Maximum number of nodes in decision tree forest:5000,
concept drift significance confidence (δ)=0.01, Maximum
number of Fourier spectra in repository:20, Repository hit
ratio threshold α for T1 is 0.5. In IFC, the tolerable change
rate (T) for refinement is 0.05 . Refinement interval length
(I) is 100.

6.4. Accuracy Evaluation

In order to maintain fairness all classifiers were run
with the Hoeffding tree as the base learner. The split con-
fidence and tie confidence parameters were both set at 0.01
for all classifier ensembles. Each meta learner was run with
default settings for its internal parameters. Accuracies for
each classifier was obtained in intervals of size 1000 and
an overall accuracy was then computed by averaging over
all intervals for a given dataset. Accuracies were stable
across multiple runs for all classifiers across all datasets
with a standard deviation less than 0.05 and hence were
not included. The outright and joint winners (with accu-
racies rounded to 1 significant place) were bolded for easy
identification of winner. Ranks for each algorithm were
included in parentheses in order to facilitate the analysis
of the trade-off between accuracy and throughput which
we conduct in Section 6.6.

Table 2 shows that the algorithms can be divided into
3 groups with respect to accuracy. The first group of the
most accurate classifiers consisted of ARF, LB, IFC and
SOL. Interestingly, the accuracy ranks (shown in parenthe-
ses) of three out of four of these classifiers indicate that
they collectively accounted for winners across the entire
range of datasets. The accuracy profiles of LB and ARF
reinforce results from previous studies where they excelled
in performance Bifet et al. (2010b),Gomes et al. (2017).
The strong performance of ARF is to be expected as the
basic Random Forest algorithm has proved its superior
performance in numerous studies and ARF builds on this

success by adapting the forest to concept drift in a data
stream environment.

The middle group comprised of AD, DA and OB while
the rest formed the bottom group. We further analyze the
performance of the algorithms using RC as a benchmark.
Since RC does not adapt its model upon entering its low
volatile state (Stage 2 of its execution), it is an ideal algo-
rithm to assess the impact of the scale of concept change
on the performance of the algorithms. Using this bench-
mark, we observe that the Sensor, Occ, Cover and Flight
datasets gave rise to the highest accuracy improvements
with respect to RC.

The IFC execution log with the Sensor dataset revealed
moderate rates of drift and refinement when compared to
the other datasets. IFC gracefully copes with moderate
intra-concept variation by incremental refinements on its
initially captured spectra while inter-concept switches trig-
ger concept drift and re-use of previously captured spec-
tra. In contrast, LB had to re-learn concepts from scratch
rather than making slight adjustments or reuse of previous
concepts. The effects of this on LB’s accuracy profile is ap-
parent from Fig. 5 as there is a noticeable time lag between
its peaks and those of IFC over much of the stream. IFC
is able to capitalize on concept recurrence by self adap-
tation or by replacing its currently used spectrum with
another in its pool that more closely matches the concept
that has recurred. Also the 29% of accuracy advancement
with respect to RC highlights the importance of being self
adaptive through periodic refinements of initially learned
patterns.

Similarly, the Occupancy dataset also revealed signif-
icant improvement (23%) of accuracy over RC and 8%
improvement over LB. The execution log of IFC revealed
that Occupancy has a high rate of inter-concept variation,
resulting in switches among a few distinct concepts which
were captured by only 5 different spectra in the repository.
At the same time it demanded a high rate of adjustments
on recurring concepts thus strengthening the need for re-
finements to be made on models stored from the past.

12

Figure 5: Sensor Accuracy Chart

Figure 6: Flight Accuracy Chart

On the other hand LB excelled on the Cover dataset.
The accuracy profiles of these classifiers over time show
no regular pattern in the peaks and troughs, suggesting
a lack of significant recurrence of concepts over time for
this particular dataset. The LB adapts by adjusting the
trees in its ensemble to new concepts as they occur. The
IFC classifier experienced its highest rate of refinement
amongst all datasets, resulting in significantly different
spectra through the refinement process in Stage 2. This
scenario exemplifies high inter-concept variation between
concepts which are interspersed with abrupt intra-concept
changes within a given concept. Even though the per-
formance of IFC is somewhat lower compared to LB, we
note that IFC is second best with a 15% of improvement
over RC. This shows IFC’s ability to provide good accu-
racy even in non-recurring situations by generating models
that are derivatives of previously stored ones.

IFC with the Flight dataset experienced its highest
inter-concept drift rate. The number of concepts in its
repository is lesser when compared to Cover but higher
when compared to Occupancy. IFC obtains best accuracy
for this dataset by taking advantage of reuse of concepts
but also by subjecting them to continuous refinement. The
accuracy advancements are 14% and 6% over RC and LB
respectively. As shown in Fig. 6 IFC remains the clear
winner in Stage 2 of its execution cycle as a result of reuse
and refine of concepts, whereas with LB concepts were re-
learned.

In terms of RBF, LB was the winner with marginally
better accuracy than IFC. LB adapted its model well to
concept drift in this dataset. A close analysis of the mod-
els produced showed that LB produced the deepest trees
in its ensemble, with comparatively higher concept lengths
when compared to other datasets (with the exception of

13

Figure 7: Statistical comparison of top 7 ranked algorithms by accuracy. Subsets of classifiers that are not significantly different (at the 95%
confidence level) are connected with dashed lines.

RH). Such deep trees when grown over a significant time
duration do better than IFC and other algorithms, espe-
cially when drift rate is low. With IFC the comparison
was harder in terms of tree depth as it relies exclusively
on Fourier spectra in Stage 2 but its average tree height
in Stage 1 was much shorter than that of LB.

Finally, we note that the triad of algorithms, ARF, IFC
and LB performed well across the full range of datasets,
in general. The SOL classifier which is at the thrid place
in overall performance also remains competitive with IFC
on Flight, Elec, and Sensor datasets. The two classifiers
share the use of the DFT although IFC in Stage 2 re-
lies entirely on Fourier spectra whereas SOL uses Hoeffd-
ing trees induced from spectra as the learning mechanism.
The essential difference between the two is that a Hoeffd-
ing tree induced from a spectrum is constrained by its
initial structure. The tree is free to grow by splitting its
leaf nodes and forming new decision nodes but changes in
higher level nodes are not possible. In contrast, Fourier
spectra are refined when changes occur in the stream and
such changes could reflect more fundamental changes in
its decision model. Conceptually, such changes could cor-
respond to better adaptability to changes that take place
over time in the stream. In other words spectra have better
flexibility and are able to prune away redundant decision
paths and replace them with new ones that are a better
match with currently arriving trends in the stream.

The above analysis of the behaviour and performance
of classifiers was based on the groupings formed by con-
sidering average accuracy rank on the datasets as shown
in Table 2. This grouping was confirmed through a non-
parametric Friedman test that established statistically sig-
nificant differences between certain sets of classifiers. For
this exercise we subjected the top 7 algorithms by aver-
age accuracy rank to the Friedman test. As discussed in
Demšar (2006) the Friedman test is recognised as one of
the best tests to use when multiple classifiers are to be
compared simultaneously on multiple different datasets.
The null hypothesis H0 that we used was that the average
accuracy ranks across the 7 classifiers was the same.

Fig. 7 shows that the null hypothesis H0 was rejected
at the 95% confidence level, thus indicating that statis-
tically significant differences exist between the classifiers.
We then subjected the classifiers to the post hoc Nemenyi
test to identify exactly where those differences lay. The
Nemenyi test yielded a critical difference(CD) value of 3.4

at the 95% confidence level. Fig. 7 graphically illustrates
that the top group consisted of IFC, LB, ARF and SOL as
none of the members in this group had significant differ-
ences with any of the other members within the group. All
members of the other group (i.e. OB, DA and DA) are also
not significant from other members of their group. How-
ever, we can also note from Fig. 7 that the IFC classifier
stands out as it is the only classifier that was significantly
different from all other members of the other group. This
was not the case with ARF, LB and SOL. For instance,
LB, ARF and SOL are not different from OB, AD and DA.

6.5. Throughput Evaluation

We now turn our attention to the processing speed
of the algorithms, and in particular we examine how
IFC fares in relation to the other 11 algorithms we use.
We measure processing speed over the same interval size
(1000) just as we did with accuracy. Processing speed
is measured by throughout which is the number of data
instances processed in an interval for any given dataset.
An average throughput measure was then computed over
the entire dataset. We conducted multiple runs for each
dataset and observed negligible variance in timing between
runs. The performance study was conducted on a machine
having 16GB of RAM, featuring two dual core processors
rated at 3.2 GhZ running under Windows 10.

For the purpose of simulating real world data streams
we increased the size of the smaller datasets, namely Elec,
Flight, Cover and Occupancy by concatenating each of
them with multiple copies of themselves. This also served
to produce more reliable estimates of execution time and
throughput. The other 3 datasets were large enough to be
used in their original form.

Although IFC performed well in terms of accuracy it
was designed specifically to scale up to high speed data
streams and the performance aspect is crucial in its eval-
uation. Table 3 shows that IFC excels on throughput,
obtaining the highest average rank when taken over all
datasets and emerging the outright winner in 3 out of the
7 datasets.

To gain insights into why IFC was the overall winner
we compare its throughput to that of the RC, SOL and
the MOA group of algorithms. We first compare IFC with
SOL and RC as they all use the staged approach. We

14

Table 3: Throughput with ranking

RBF RH Flight Elec Cover Occ Sensor Algorithm
Rank

ARF 25811(8) 26481(7) 18866(3) 33038(7) 11837(4) 45729(9) 50342(7) 6
OB 30729(4) 30634(5) 4975(7) 37313(6) 4398(6) 51692(8) 50263(8) 5
AS 30056(5) 39910(4) 6353(6) 53882(5) 3371(8) 71425(3) 86447(2) 4
LA 3195(12) 2827(12) 1686(11) 25869(10) 117(12) 64000(4) 64000(3) 8
LB 9810(9) 10838(11) 1082(12) 21667(12) 1413(11) 33641(12) 36525(11) 11
AW 59468(1) 47099(3) 19722(2) 54428(4) 14122(3) 60618(6) 62345(4) 2
AU 50577(2) 59704(2) 10777(4) 55755(3) 6811(5) 63289(5) 62080(5) 3
AD 26446(7) 24933(8) 3517(9) 23110(11) 2788(10) 39282(11) 43313(10) 10
DA 29028(6) 24138(9) 3720(8) 30501(9) 2883(9) 45630(10) 53818(6) 7
IFC 35599(3) 73335(1) 70990(1) 89338(2) 35466(2) 155560(2) 137466(1) 1
RC 9468(10) 26553(6) 7975(5) 415660(1) 83856(1) 464493(1) 48889(9) 4
SOL 5140(11) 17076(10) 3044(10) 31106(8) 4102(7) 53031(7) 30869(12) 9

Figure 8: Covertype Throughput Chart

observe that IFC significantly outperforms RC on RBF,
RH, Flight and Sensor datasets. Despite the fact that RC
does not update its spectra during Stage 2, IFC is much
faster due to the lesser number of distinct schema when
compared to RC. RC does not use feature selection and
the number of influential features in dot product calcula-
tions are much higher than that of IFC. Since it uses the
inverse Fourier transform in Stage 2 which has complexity
O(|X|2), its Stage 2 processing time is much longer than
that of IFC.

In contrast, SOL uses trees induced from spectra dur-
ing Stage 2. Even though it maintains a single tree at a
time instead of an ensemble it still has higher classification
overhead than IFC. The IFC classifier simply fetches the
class label of an instance to be classified from its reservoir
if present, otherwise it performs the inverse Fourier trans-
form but unlike RC its schema set is much smaller and
hence the overall classification time is much smaller.

In comparison to IFC, all of MOA’s classifiers use an

ensemble of trees during Stage 2, and depending on aver-
age tree size their performance is impacted. In particular
we see that LB that was ranked alongside ARF and IFC on
accuracy suffers the most when compared to IFC as it had
the highest tree size out of all of MOA’s group of classi-
fiers. Overall, the ARF classifier had a higher throughput
than LB even without the use of a large multi core ma-
chine for which it was designed. It was reported in Gomes
et al. (2017) that its speed increased by a factor of around
3 with the use of a machine that supported a high degree
of parallelism with 40 cores.

Figures 8 and 9 show the contrast between the IFC
and LB classifiers. In Fig. 9 the granularity of the
horizontal axis in the range 1000 to 10000 was scaled up
in order to highlight the presence of the relatively short
lived Stage 1. These charts clearly show that IFC’s speed
advantage was gained in Stage 2 of its processing when
classification was performed exclusively with the use of
Fourier spectra.

15

Figure 9: Flight Throughput Chart

Figure 10: Statistical comparison of the throughput performance of the top 7 ranked algorithms that were ranked on accuracy. Subsets of
classifiers that are not significantly different (at the 95% confidence level) are connected with dashed lines.

In order to gain an understanding of how the most ac-
curate classifiers perform with respect to throughput we
subjected the same set of 7 classifiers that we selected for
accuracy analysis to the Friedman test. Fig. 10 shows that
there are three distinct groups. The first group comprises
of IFC on its own as it has statistically significant differ-
ences with all other 6 classifiers that form the other two
groups. The second group consists of ARF, OB, DA and
AD while LB makes up the another group together with
AD, SOL and DA . This statistical analysis thus yields ad-
ditional insights into the relative throughput performance
of the classifiers over those given in Table 3.

6.6. Accuracy versus Throughput trade-off

We now visualize the trade-off between accuracy and
speed. Fig. 11 clearly shows that IFC and LB are at oppo-
site sides of the speed spectrum. Classifiers that tend to be
more accurate (e.g. LB, SOL) tend to be more time con-
suming and vice versa; the exception being IFC although
it was not always the most accurate, nor was it always
the fastest. However, it is clear that IFC has achieved
its design goals as it is by far the fastest amongst the
set of the most accurate algorithms that we experimented
with. The closest neighbours to IFC are ARF and OB as
they achieved the next best balance between accuracy and
speed.

Figure 11: Accuracy vs. Throughput tradeoff

6.7. Load Shedding

Finally, we subjected the IFC and LB classifiers to a
load shedding exercise that assessed their sensitivity to
accuracy by simulating a high speed data stream environ-
ment.

Firstly, we used the speed achieved by IFC as the
benchmark and then manipulated parameters for LB until
it matched IFC’s throughput. The matching was achieved
by decreasing the number of classifiers in LB’s ensemble

16

and/or setting the split confidence parameter value for the
Hoeffding tree base classifier to low settings (e.g. 10−7).
The load shedding simulation was performed for the RBF,
Flight and Cover datasets. These datasets were chosen on
the basis of their accuracy performance with the LB and
IFC classifiers and the fact that they represented the great-
est diversity in dimensionality across the datasets that we
experimented with.

Table 4 when read in conjunction with Table 2 shows
clearly that IFC now achieves the highest accuracy over
each of these datasets. This result show that an algo-
rithm’s accuracy needs to be judged by its load handling
capability - while it may be more accurate than another
algorithm on a stream with a certain speed its accuracy
advantage may disappear when it runs on a higher speed
stream and is forced to perform load shedding to cope with
the speed of the stream.

We also tracked IFC’s ability to scale up to data
streams in excess of its capacity reported in Table 3. We
simulated load shedding with IFC by increasing its interval
size I by a factor of 5. Table 5 shows that IFC’s throughput
gain ranged from a modest 13.3% for the Flight dataset
to 55.6% for the Cover dataset. Interestingly, we see that
the accuracy for the RBF dataset increased marginally by
0.5%. This is consistent with the moderate drift rate de-
tected in IFC’s execution log for this dataset. The decrease
was 3.8% for Cover and 5.6%. The Flight dataset recorded
the highest decrease as it exhibited the highest drift rate
and highest rate of refinements amongst all datasets.

Table 4: Load Shedded LB Accuracy

Dataset Ensemble
Size

Split Con-
fidence

Accuracy

RBF 7 1E(-4) 80.0
Flight 3 1E(-7) 73.6
Cover 3 1E(-7) 82.4

Table 5: Load Shedded Throughput and Accuracy for IFC

Dataset Scaled
Throughput

Throughput
Gain (%)

Accuracy

RBF 45156 26.8 81.1
Flight 80408 13.3 77.2
Cover 55155 55.6 81.4

6.8. Overheads of Decision Tree learning vs Incremental
Fourier Classification

In this section we contrast the overheads of classifica-
tion with a decision tree to an incremental learning ap-
proach using Fourier spectra. The Staged Online Learner
(SOL) that we featured in our experimental study uses the

staged learning approach just as IFC does, except that it
classifies using a decision tree instead of a Fourier spec-
trum in the low volatility segments of the stream. The
SOL classifier takes advantage of low volatility to dispense
with a forest of trees and uses a single tree instead. This
provides a good platform for comparison as IFC which uses
an ensemble of models (in the form of spectra) would need
to compete with a single model.

Fig. 12 depicts the time spent by IFC and SOL in ran-
domly selected stream blocks. The blocks were selected
from the execution logs of both classifiers to exclude blocks
where either SOL and/or IFC experienced concept drifts.
This was done to ensure that the time reported reflected
the time spent in classification. The overheads of process-
ing concept drift are presented in our study in Section 6.9.

Fig. 12 shows clearly that classification using Fourier
spectra is much faster than with a Decision Tree. This is
due to the replacement of a tree traversal operation with a
simple look up operation on the hash based reservoir struc-
ture that extracts class labels in the event of a cache hit.
In the event of a cache miss the inverse Fourier transform
would be used to retrieve the class label of the instance.

6.9. Incremental versus Non Incremental Approach to
Fourier Classification

In this section we study the effects of incrementally
maintaining a Fourier spectrum and contrast it with a
naive version which generates a new spectrum from a de-
cision tree whenever a concept drift is signalled in the
stream.

We conducted two new experiments. The first was on
the Flight dataset and shows the difference in timing be-
tween the two versions at concept drift points. It is clear
from Fig. 13 that the incremental version is far more ef-
ficient and is able to avoid spikes in processing time that
are experienced by a conventional DFT application.

The second experiment was a controlled experiment
run on a RBF dataset whereby we varied the dimension-
ality from 10 to 60 in intervals of 10. The intention was to
examine the CPU utilization as a function of dimensional-
ity (D), drift rate (R) and stream speed (S). For each value
of dimensionality we recorded the average processing time
spent on classifying data instances (C) as well as the time
spent (F) on the application of the DFT. Likewise, with
the incremental we recorded the average time spent in clas-
sification as well as in reorganizing the spectrum with our
incremental DFT version. With these average values in
place we modelled CPU utilization (U) using Eq. 11.

U = (1−R)× S × C +R× S × F (11)

We first model a stream with a sample arrival rate of
1000 instances per second. The top panel of Figure 14
shows clearly that CPU utilization is an increasing func-
tion of both drift rate and dimensionality for both the
incremental and non incremental versions. For the non in-
cremental version in the top left panel of Figure 14 we note

17

Figure 12: Throughput advantage of Incremental spectral learning over Decision tree learning

Figure 13: Time spent when learning in Non-Incremental and Incremental modes of operation

that the utilization varies from a low bound in the range
0-20 to an upper bound of 120-140 when both dimension-
ality and drift rate are their maximum levels. At the high
end of the CPU range (120-140), 2 resources with own pro-
cessor and local memory would be needed to ensure that
the system functions without any form of disruption.

In sharp contrast we note from the top right panel of
Figure 14 that the upper bound for CPU utilization is very
much smaller at 2.5%, thus managing comfortably with a
single resource.

We next model a high speed data stream with a speed
setting of 100,000 instances per second. The bottom left
and right panels of Figure 14 shows the same trends as
with a stream speed of 1000 but at a much higher scale.
With the non incremental version, the left panel of Figure
14 shows that the CPU utilization reaches a maximum
value of 12000-14000, thus requiring up to 140 resources to

maintain operation without disruption. If lesser than 140
resources are available then the cost of the non incremental
version becomes prohibitive. In contrast, the peak CPU
utilization for the incremental version was just 300-350;
thus requiring far fewer resources (up to 4) to maintain
normal operation.

These experiments show clearly the resource utiliza-
tion advantage of the incremental approach and explains
the massive gains in throughput of IFC over the non in-
cremental SOL classifier that we tabulated in Table 3.

7. Application of the Fourier Transform to other
domains

In all of the above discussions we have presented the
use of the Fourier Transform in a supervised learning con-
text. In fact, the DFT can also be used in a data engi-

18

Figure 14: Resource Utilization of Incremental and Non-Incremental DFT approaches

neering context. An important spatiotemporal problem is
to keep track of the movements of people in both space
and time simultaneously. An efficient approach for solving
this problem was reported in Moreira-Matias et al. (2016)
where an OD matrix was used to capture the origin and
destination points of travellers within a specified spatial
boundary.

The OD matrix can be expressed through a spatial
index such as a k-d tree Bentley (1975).

The k value denotes the number of keys used to index
paths in the tree. With a k value of 2 the spatial index
can be represented as a binary tree. The root node of
the tree represents the entirety of the area being mapped.
Each subsequent node represents a decision node or a leaf
node. Decision nodes represent geographical regions which
are subdivided into two smaller regions until further sub-
division would violate some user-defined constraint on the
density of people in a subdivision or on geographical size.
A discriminator variable is associated with each level of
the tree and indicates whether the first or second keys are
used for splitting a decision node into its child nodes. The
discriminator variable alternates in value between levels,
starting from a value of 0 at the root level of the tree.

A concrete application of such a tree would be to track
the movements of people across different destinations given

a point of origin. In this case the root node would repre-
sent the point of origin and leaf nodes would represent
destinations. The decision nodes represent geographical
regions on the course of a journey that ultimately lead to
destination points.

Fig. 15 illustrates an example spatial grid with 4 splits
that define 5 points that would be potential destinations
(D1, D2, D3, D4, D5) for travellers. Leaf nodes hold in-
formation on the relative popularity of destinations. Thus
for example, the leaf node D1 represents the ratio of the
number of travellers who have journeyed from X1 to D1 to
the total number of travellers proceeding from origin X1,
thus yielding a ratio value between 0 and 1. With a user
defined number of bins (n), the popularity variable can be
discretized into a set of categorical values lying between 0
and n-1. Using this representation and the notation pre-
sented in Section 2, each tree path can be encoded as a
schema instance together with its popularity value.

The schema set would consist of 16 schema instances
in total. We observe that multiple schema instances refer
to the same path. Thus for example the path from X1 to
destination D1 is represented by 0000 and 0010 as feature
X3 is not a discriminatory feature on this path. With the
use of a wildcard character ∗ which takes values of either 0
or 1 the number of schema instances to be stored is deter-

19

Figure 15: An example spatial grid and its k-d tree representation for an O-D matrix application

Table 6: Schema for Fourier encoding of k-d tree

Destination
Key

X1 X2 X3 X4 Popularity

D1 0 0 * 0 4
D2 0 0 * 1 2
D3 0 1 * * 3
D4 1 * 0 * 0
D5 1 * 1 * 1

mined by the number of destinations. This representation
is illustrated in Table 6 and reduces the number of schema
instances to be stored substantially, which in our example
entails a reduction from 16 to 5. The compact schema rep-
resentation in Table 6 can be used to generate the Fourier
spectrum.

Once the spectrum is generated, a query such as
Q(X1 → D4) can be answered by matching the destina-
tion string in the consequent portion of the query to the
destination value in the schema table and then extracting
the corresponding row with its schema instance. The ex-
tracted schema, which happens to be 1∗0∗ is then subject
to the inverse Fourier transform to compute its popularity
value. In general, a schema instance ~x extracted from the
schema table would be subject to equation 2 to yield the
popularity value f(~x).

As we have seen from the experimentation presented
in Section 6, the advantage of encoding search trees by
Fourier spectra is that expensive tree searches and main-
tenance can be replaced by efficient algebraic operations.
This example illustrates that the utility of the Fourier ap-
plication to trees is not restricted to supervised learning.

8. Conclusions and Future Work

In this research we presented a novel approach to classi-
fication that exploits the Discrete Fourier transform. The

Fourier Classifier although designed primarily for speed,
outperformed a collection of widely used data stream clas-
sifiers on both the accuracy and speed dimensions. Our
empirical study revealed that IFC was able to adapt its
behaviour successfully to different types of situations that
manifest in data streams.

In stream segments exhibiting recurrence of previous
concepts it re-used previously stored spectra that most
closely matched with the recurring concept. On the other
hand when the current stream segment did not closely
resemble any of its stored concepts from the past it re-
fined the spectrum that it currently operated on to adapt
to concept change in the stream. We expect most data
steams to be hybrid in nature, exhibiting both recurrence
and concept change characteristics and hence IFC’s learn-
ing mechanism will be ideally placed to take advantage of
these type of environments.

In terms of speed, IFC proved to be superior on ac-
count of its compact data structure used for classification.
The coefficient pruning strategy implemented via energy
thresholding ensured that the coefficient array was as com-
pact as possible, thus reducing classification overhead. In
addition, the schema pruning strategy, when used in con-
junction with the incremental Fourier coefficient update
strategy ensured that update overheads were minimized.

In terms of future work there are two main directions
for further optimization of throughput. Firstly, there is
scope for performing a more aggressive feature selection
strategy than the one we proposed in Section 5.1. Cur-
rently, features are considered to be redundant if they do
not appear in a decision tree. However, it is possible to
exclude features that do appear but still make a minimal
contribution to classification accuracy. This will be espe-
cially useful in high dimensional data streams.

Another direction that future work can proceed is in
exploiting parallelism. Unlike the classical decision tree,
IFC is well placed to exploit parallelism in the classification
process. Classification via a decision tree is inherently a
sequential process. Classification of a newly arriving data

20

instance would require traversing the tree from its root to
its target leaf node which is essentially a sequential search
process. On the other hand, classification with IFC can
be done by partitioning the Fourier array into a number
of segments and performing the Inverse Fourier transform
across the different segments in parallel. We plan to in-
vestigate both issues in future research.

References

Bentley, J. L. (1975). Multidimensional binary search trees
used for associative searching. Commun. ACM , 18 , 509–
517. URL: http://doi.acm.org/10.1145/361002.361007. doi:10.
1145/361002.361007.

Bifet, A., Frank, E., Holmes, G., & Pfahringer, B. (2010a). Accu-
rate ensembles for data streams: Combining restricted hoeffding
trees using stacking. In M. Sugiyama, & Q. Yang (Eds.), Proceed-
ings of 2nd Asian Conference on Machine Learning (pp. 225–
240). Tokyo, Japan: PMLR volume 13 of Proceedings of Machine
Learning Research. URL: http://proceedings.mlr.press/v13/
bifet10a.html.

Bifet, A., Holmes, G., & Pfahringer, B. (2010b). Leverag-
ing bagging for evolving data streams. In J. L. Balcázar,
F. Bonchi, A. Gionis, & M. Sebag (Eds.), Machine Learn-
ing and Knowledge Discovery in Databases: European Confer-
ence, ECML PKDD 2010, Barcelona, Spain, September 20-24,
2010, Proceedings, Part I (pp. 135–150). Berlin, Heidelberg:
Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/
978-3-642-15880-3-15. doi:10.1007/978-3-642-15880-3-15.

Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavaldà, R.
(2009). New ensemble methods for evolving data streams. In
Proceedings of the 15th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining KDD ’09 (pp. 139–
148). New York, NY, USA: ACM. URL: http://doi.acm.org/
10.1145/1557019.1557041. doi:10.1145/1557019.1557041.

Brzeziński, D., & Stefanowski, J. (2011). Accuracy updated ensemble
for data streams with concept drift. In E. Corchado, M. Kurzyński,
& M. Woźniak (Eds.), Hybrid Artificial Intelligent Systems: 6th
International Conference, HAIS 2011, Wroclaw, Poland, May 23-
25, 2011, Proceedings, Part II (pp. 155–163). Berlin, Heidelberg:
Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/
978-3-642-21222-2-19. doi:10.1007/978-3-642-21222-2-19.

Candanedo, L. M., & Feldheim, V. (2016). Accurate occupancy
detection of an office room from light, temperature, humidity
and {CO2} measurements using statistical learning mod-
els. Energy and Buildings, 112 , 28 – 39. URL: http://www.

sciencedirect.com/science/article/pii/S0378778815304357.
doi:https://doi.org/10.1016/j.enbuild.2015.11.071.

Demšar, J. (2006). Statistical comparisons of classifiers over
multiple data sets. Journal of Machine Learning Research,
7 , 1–30. URL: http://dl.acm.org/citation.cfm?id=1248547.

1248548. doi:2007-03550-001.
Domingos, P., & Hulten, G. (2000). Mining high-speed data streams.

In Proceedings of the Sixth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining KDD ’00 (pp.
71–80). New York, NY, USA: ACM. URL: http://doi.acm.org/
10.1145/347090.347107. doi:10.1145/347090.347107.

Gama, J. a., Rocha, R., & Medas, P. (2003). Accurate decision trees
for mining high-speed data streams. In Proceedings of the Ninth
ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining KDD ’03 (pp. 523–528). New York, NY,
USA: ACM. URL: http://doi.acm.org/10.1145/956750.956813.
doi:10.1145/956750.956813.

Gomes, H. M., Bifet, A., Read, J., Barddal, J. P., Enembreck, F.,
Pfharinger, B., Holmes, G., & Abdessalem, T. (2017). Adap-
tive random forests for evolving data stream classification. Ma-
chine Learning, 106 , 1469–1495. URL: https://doi.org/10.

1007/s10994-017-5642-8. doi:10.1007/s10994-017-5642-8.

Jaber, G., Cornuéjols, A., & Tarroux, P. (2013a). A new
on-line learning method for coping with recurring concepts:
The adacc system. In M. Lee, A. Hirose, Z.-G. Hou, &
R. M. Kil (Eds.), Neural Information Processing: 20th Interna-
tional Conference, ICONIP 2013, Daegu, Korea, November 3-7,
2013. Proceedings, Part II (pp. 595–604). Berlin, Heidelberg:
Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/
978-3-642-42042-9-74. doi:10.1007/978-3-642-42042-9-74.

Jaber, G., Cornuéjols, A., & Tarroux, P. (2013b). Online learn-
ing: Searching for the best forgetting strategy under con-
cept drift. In M. Lee, A. Hirose, Z.-G. Hou, & R. M.
Kil (Eds.), Neural Information Processing: 20th International
Conference, ICONIP 2013, Daegu, Korea, November 3-7,
2013. Proceedings, Part II (pp. 400–408). Berlin, Heidelberg:
Springer Berlin Heidelberg. URL: http://dx.doi.org/10.1007/
978-3-642-42042-9-50. doi:10.1007/978-3-642-42042-9-50.

Kargupta, H., & Park, B. H. (2004). A fourier spectrum-based ap-
proach to represent decision trees for mining data streams in mo-
bile environments. IEEE Transactions on Knowledge and Data
Engineering, 16 , 216–229. doi:10.1109/TKDE.2004.1269599.

Kargupta, H., Park, B. H., & Dutta, H. (2006). Orthogonal deci-
sion trees. Knowledge and Data Engineering, IEEE Transactions
on, 18 , 1028–1042. doi:doi.ieeecomputersociety.org/10.1109/
TKDE.2006.127.

Kithulgoda, C. I., & Pears, R. (2016). Staged online learning: A new
approach to classification in high speed data streams. In 2016 In-
ternational Joint Conference on Neural Networks (IJCNN) (pp.
1–8). doi:10.1109/IJCNN.2016.7727173.

Knapp, M. P. (2009). Sines and cosines of angles in arithmetic
progression. In Mathematics Magazine (pp. 371–372). Math-
ematical Association of America volume 82 of 5 . doi:https:
//doi.org/10.4169/002557009X478436.

Lichman, M. (2013). UCI machine learning repository. URL: http:
//archive.ics.uci.edu/ml.

Mena-Torres, D., & Aguilar-Ruiz, J. S. (2014). A similarity-
based approach for data stream classification. Expert Sys-
tems with Applications, 41 , 4224 – 4234. URL: http://www.

sciencedirect.com/science/article/pii/S0957417413010300.
doi:http://dx.doi.org/10.1016/j.eswa.2013.12.041.

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira,
J., & Damas, L. (2016). Time-evolving o-d matrix esti-
mation using high-speed gps data streams. Expert Sys-
tems with Applications, 44 , 275 – 288. URL: http://www.

sciencedirect.com/science/article/pii/S0957417415006053.
doi:https://doi.org/10.1016/j.eswa.2015.08.048.

Park, B. H. (2001). Knowledge Discovery from Heterogeneous Data
Streams Using Fourier Spectrum of Decision Trees. Ph.D. thesis
Washington State University Pullman, WA, USA.

Sakthithasan, S., Pears, R., Bifet, A., & Pfahringer, B. (2015). Use
of ensembles of fourier spectra in capturing recurrent concepts in
data streams. In 2015 International Joint Conference on Neural
Networks (IJCNN) (pp. 1–8). doi:10.1109/IJCNN.2015.7280583.

Sripirakas, S., & Pears, R. (2014). Mining recurrent concepts in data
streams using the discrete fourier transform. In L. Bellatreche, &
M. K. Mohania (Eds.), Data Warehousing and Knowledge Discov-
ery: 16th International Conference, DaWaK 2014, Munich, Ger-
many, September 2-4, 2014. Proceedings (pp. 439–451). Springer
International Publishing. URL: http://dx.doi.org/10.1007/

978-3-319-10160-6-39. doi:10.1007/978-3-319-10160-6-39.
Wang, H., Fan, W., Yu, P. S., & Han, J. (2003). Mining concept-

drifting data streams using ensemble classifiers. In Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining KDD ’03 (pp. 226–235). New York,
NY, USA: ACM. URL: http://doi.acm.org/10.1145/956750.

956778. doi:10.1145/956750.956778.
Zhu, X. (2010). Stream data mining repository. URL: http://www.

cse.fau.edu/~xqzhu/stream.html.

21

http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://dx.doi.org/10.1145/361002.361007
http://proceedings.mlr.press/v13/bifet10a.html
http://proceedings.mlr.press/v13/bifet10a.html
http://dx.doi.org/10.1007/978-3-642-15880-3-15
http://dx.doi.org/10.1007/978-3-642-15880-3-15
http://dx.doi.org/10.1007/978-3-642-15880-3-15
http://doi.acm.org/10.1145/1557019.1557041
http://doi.acm.org/10.1145/1557019.1557041
http://dx.doi.org/10.1145/1557019.1557041
http://dx.doi.org/10.1007/978-3-642-21222-2-19
http://dx.doi.org/10.1007/978-3-642-21222-2-19
http://dx.doi.org/10.1007/978-3-642-21222-2-19
http://www.sciencedirect.com/science/article/pii /S0378778815304357
http://www.sciencedirect.com/science/article/pii /S0378778815304357
http://dx.doi.org/https://doi.org/10.1016/j.enbuild.2015.11.071
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://dl.acm.org/citation.cfm?id=1248547.1248548
http://dx.doi.org/2007-03550-001
http://doi.acm.org/10.1145/347090.347107
http://doi.acm.org/10.1145/347090.347107
http://dx.doi.org/10.1145/347090.347107
http://doi.acm.org/10.1145/956750.956813
http://dx.doi.org/10.1145/956750.956813
https://doi.org/10.1007/s10994-017-5642-8
https://doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.1007/978-3-642-42042-9-74
http://dx.doi.org/10.1007/978-3-642-42042-9-74
http://dx.doi.org/10.1007/978-3-642-42042-9-74
http://dx.doi.org/10.1007/978-3-642-42042-9-50
http://dx.doi.org/10.1007/978-3-642-42042-9-50
http://dx.doi.org/10.1007/978-3-642-42042-9-50
http://dx.doi.org/10.1109/TKDE.2004.1269599
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TKDE.2006.127
http://dx.doi.org/doi.ieeecomputersociety.org/10.1109/TKDE.2006.127
http://dx.doi.org/10.1109/IJCNN.2016.7727173
http://dx.doi.org/https://doi.org/10.4169/002557009X478436
http://dx.doi.org/https://doi.org/10.4169/002557009X478436
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.sciencedirect.com/science/article/pii/S0957417413010300
http://www.sciencedirect.com/science/article/pii/S0957417413010300
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2013.12.041
http://www.sciencedirect.com/science/article/pii/S0957417415006053
http://www.sciencedirect.com/science/article/pii/S0957417415006053
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2015.08.048
http://dx.doi.org/10.1109/IJCNN.2015.7280583
http://dx.doi.org/10.1007/978-3-319-10160-6-39
http://dx.doi.org/10.1007/978-3-319-10160-6-39
http://dx.doi.org/10.1007/978-3-319-10160-6-39
http://doi.acm.org/10.1145/956750.956778
http://doi.acm.org/10.1145/956750.956778
http://dx.doi.org/10.1145/956750.956778
http://www.cse.fau.edu/~xqzhu/stream.html
http://www.cse.fau.edu/~xqzhu/stream.html

Highlights

 Novel incrementally adapting Fourier Classifier is proposed.

 Strategy for efficiently computing a synopsis of data is presented.

 Novel instance schema pruning method is illustrated.

 Proposed approach outperforms existing benchmark stream classifying algorithms.

*Highlights (for review)

