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Abstract

Metaheuristics provide high-level instructions for designing heuristic optimisa-
tion algorithms and have been successfully applied to a range of computation-
ally hard real-world problems. Local search metaheuristics operate under a
single-point based search framework with the goal of iteratively improving a
solution in hand over time with respect to a single objective using certain so-
lution perturbation strategies, known as move operators, and move acceptance
methods starting from an initially generated solution. Performance of a local
search method varies from one domain to another, even from one instance to
another in the same domain. There is a growing number of studies on ‘more
general’ search methods referred to as cross-domain search methods, or hyper-
heuristics, that operate at a high-level solving characteristically different prob-
lems, preferably without expert intervention. This paper provides a taxonomy
and overview of existing local search metaheuristics along with an empirical
study into the effects that move acceptance methods, as components of single-
point based local search metaheuristics, have on the cross-domain performance
of such algorithms for solving multiple combinatorial optimisation problems.
The experimental results across a benchmark of nine different computationally
hard problems highlight the shortcomings of existing and well-known methods
for use as components of cross-domain search methods, despite being re-tuned
for solving each domain.

Keywords: Combinatorial Optimization, Parameter Control, Stochastic Local
Search, Trajectory Methods, Search Algorithms

1. Introduction

The search methodologies used for tackling real-world combinatorial opti-
misation problems (Papadimitriou and Steiglitz, 1982), such as Examination
Timetabling (Petrovic et al., 2007), High School Timetabling (Ahmed et al.,
2015), and Vehicle Routing (Tarantilis et al., 2004) have always been of interest
to researchers and practitioners. Metaheuristics imposing ‘a set of guidelines or
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strategies’ based on a heuristic search framework (Sörensen and Glover, 2013)
can be preferred over exact methods; while exact methods can find optimal solu-
tions, their computational efforts (memory usage, flops, etc) can sometimes be
orders of magnitude higher than heuristic methods. This is mainly due to the
fact that many real-world problems are computationally hard to solve (Garey,
1990; Ausiello et al., 1995) and exact methods can fail to produce acceptable
solutions in a reasonable time frame. For example, a review of heuristic and
exact algorithms (Drezner et al., 2005) for solving the Quadratic Assignment
Problem emphasises this, stating that QAP instances most often discussed in
the literature cannot be solved to optimality by exact methods when the prob-
lem sizes approach 30-40, whereas the heuristic search techniques can rapidly
find high quality solutions.

Metaheuristics are classified by Sörensen and Glover (2013) into three cat-
egories; local search, constructive, and population-based (Beheshti and Sham-
suddin, 2013). Birattari et al. (2001) categorised metaheuristics based on sev-
eral distinctions; trajectory methods versus discontinuous methods, population-
based versus single-point search, memory usage versus memoryless methods,
one versus multiple neighbourhood structures, dynamic versus static objective
function, and the difference between nature-inspired and non-nature inspired
methods. A very similar categorisation is provided by Blum and Roli (2003).
This study focuses on a subset of single objective local search metaheuristics
embedding single-stage move acceptance methods under a single point based
search framework, an outline of which is given in Algorithm 1. In the scien-
tific literature, some of such local search metaheuristics can also be referred
to as stochastic local search methods (Hoos and Stützle, 2004), reactive search
methods (Battiti et al., 2008), trajectory methods (Blum and Roli, 2003) or
hyper-heuristics (Burke et al., 2013). From this point onwards, we will refer to
them solely as local search metaheuristics for consistency.

Algorithm 1: Outline of a Local Search Metaheuristic.

1 s← generateInitialSolution();
2 sbest ← s;
3 while termination criteria not met do
4 s′ ← apply(h, s);
5 process1();
6 s← acceptRejectDecision(s, s′);
7 if f(s′).isBetterThan(f(sbest)) then
8 sbest ← s′;
9 end

10 process2();

11 end
12 return sbest;

A local search metaheuristic iteratively makes changes (perturbations) to
a complete solution (si) at each iteration of the search (i) to produce a sin-
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gle neighbouring solution (s
′

i) by applying a move operator, also known as a
heuristic, (h) to it (Line 4 of Algorithm 1). The resulting solution is then ac-
cepted or rejected for use as the solution in the next iteration (si+1) based on
the decision of the move acceptance method shown in Line 6 of Algorithm 1.
Finally, when the algorithm terminates, the best solution found so far (sbest)
is returned. The objective (evaluation, fitness, cost) function (f(.)) measures
the quality of a solution and guides the search. The processes to maintain and
update relevant data structures in between the main steps of the local search
metaheuristics shown in lines 5 and 10 of Algorithm 1 vary depending on the
particular approach. For example, if no operation is involved in either process,
and a move is accepted if and only if there is an improvement, then the algo-
rithm becomes a local search (hill climbing) algorithm accepting only equal or
improving moves. The behaviour of a local search metaheuristic, and hence its
ability to find good quality solutions, is determined by its neighbourhood and
solution acceptance strategy, as defined by the move operators and its move
acceptance method respectively.

A well-known weakness of local search metaheuristics is their tendency to get
stuck in local optima. They therefore require some mechanism to counteract
such situations during the search process, enabling the algorithm to explore
other regions of the search landscape, potentially leading to solutions with better
quality (Hoos and Stützle, 2004). Hence, the use of a method accepting worse
quality solutions as such a mechanism is a common strategy. There are many
different previously proposed local search metaheuristics making use of a variety
of move acceptance methods, such as Simulated Annealing (Kirkpatrick et al.,
1983), and Great Deluge (Dueck, 1993).

The motivation of this study arises from the problem of selecting a move
acceptance method for solving the cross-domain search problem. Traditionally
when practitioners are faced with solving a problem (even those from within the
same domain), in addition to choosing suitable move operators and objective
functions, they also have to choose a suitable move acceptance method to use
alongside them in order for the overall algorithm to perform well. For existing
problems, the move acceptance method is usually chosen based on whichever
worked well in the past, or which has received the most attention in the re-
spective field. The choice of move acceptance method is, however, most of-
ten left unjustified. Moreover, this becomes an even greater issue when the
problem to be solved is new or unknown because the practitioner is then left
with a dilemma for choosing the best move acceptance method for solving that
problem without previous experience, knowledge, or guidance. An emerging
area of research concerns the development of high-level, general-purpose search
methodologies known as cross-domain search methods. Cross-domain search is
a term used to describe the problem of devising a single search method which
can perform well across multiple characteristically different problems, preferably
without expert intervention or modification (Ochoa et al., 2012). The problems
traditionally used when benchmarking cross-domain search methods are those
where the computational expense of their objective functions are not much of
a concern. Another line of optimisation, called as inverse combinatorial optimi-
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sation, includes such problems where the cost of evaluating the objective value
of a solution is significantly greater than the time taken by the move opera-
tors (Marc and Jérôme, 2014; Heuberger, 2004; Nino-Ruiz et al., 2017; Malcolm
and Klaus, 2002). The problem domains used in this study do not include such
problems, and while it would be interesting to devise a general-purpose search
method with the ability to effectively solve both traditional and inverse CO
problems, the paper is focused on solving “traditional” CO problems and we
leave such work for the concerns of researchers in those related fields.

This poses an even greater problem for the selection of move acceptance
methods as a single high-level strategy must perform well across a diverse set
of problems. A move acceptance method which has good cross-domain perfor-
mance can therefore be reasonably expected to perform well for solving those
new or unknown problems. In this paper, we investigate the effects that the
choice of move acceptance method has on the cross-domain performance of such
general-purpose search methods, based on a classification, by using a subset of
metaheuristics known as local search metaheuristics. Some researchers might
not agree with the given methodology used in this paper, however we believe
that the advancements that are presented are still of value to the wider commu-
nity since this experimentation can be generalised and extended to other local
search frameworks and their hybrids (Talbi, 2013) such as Tabu Search (Glover
and Laguna, 2013) where the inclusion of a memory for guiding the search on
top of the different move acceptance methods can be compared. Similarly, an
Iterated Local Search framework (Lourenço et al., 2003), which perturbs and
then applies hill climbing on an incumbent solution, can be investigated using
various move acceptance methods. In their paper, Lourenço et al. (2003) discuss
the concept of applying such acceptance criteria, referring to Better, RW, and
LMSC as such strategies. Restricting the scope of the study to investigate the
effects of move acceptance on only local search metaheuristics has the benefit
of eliminating other potential confounding factors from related areas including,
but not limited to, for example, population size and the strategy to maintain
population diversity in population-based metaheuristics, and the strategies to
prohibit moves and tabu list length in Tabu Search.

The previous reviews on metaheuristics cover a variety of approaches, ei-
ther conceptually, or in the context of specific problems (Blum and Roli, 2003;
Bianchi et al., 2009; Blum et al., 2011; Beheshti and Shamsuddin, 2013; Hop-
per and Turton, 2001; Lewis, 2008; El-Sherbeny, 2010; Liao et al., 2011). In
this study, we provide a taxonomy for local search metaheuristics embedding
single-stage move acceptance methods. The influence of move acceptance on
the performance of local search metaheuristics in the context of cross-domain
search has not been done before. This is despite Özcan et al. (2008) suggesting
that the choice of move acceptance method in a selection hyper-heuristic (as one
classification of a cross-domain search method) has more effect on the (cross-
domain) performance of hyper-heuristics compared to their embedded heuristic
selection method. Hence, in this study, we perform a substantial number of ex-
periments using a selected move acceptance method from each classification in
our taxonomy to assess their cross-domain performance on 45 problem instances
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from a total of 9 different problem domains (see Section 3 for more details).
A classification for local search metaheuristics based on their move accep-

tance method along with a summarised survey is given in Section 2. The ex-
perimental design and the details and configurations of each local search meta-
heuristic are given in Section 3. The results are discussed in Section 4, and the
study is concluded in Section 5.

2. A Classification for Local Search Metaheuristics

In this section, a taxonomy is given for classifying local search metaheuris-
tics based on the characteristics of their move acceptance methods. Local search
metaheuristics are composed of two fundamental components; a predefined so-
lution neighbourhood, and a move acceptance method. Here, an emphasis is
put on predefined, since the strategy for applying move operator(s) is deter-
mined in advance and there is no discrimination between multiple operators
if there is any. This contrasts with methods such as hyper-heuristics where
(machine) learning techniques could be used for selecting the most appropriate
move operator given the current search state. Similarly, Tabu Search is not
considered in this study as a local search metaheuristic embedding a move ac-
ceptance strategy; Glover and Laguna (2013) have previously contrasted Tabu
Search to single-point based search methods utilising a (move) acceptance cri-
terion. A classification for local search metaheuristics is shown in Figure 1 and
distinguishes them based on two features of their move acceptance methods as
indicated by the dashed arrows. Firstly (left), the nature of the accept/reject
decision, as indicated by the acceptRejectDecision() procedure in Line 6 of Al-
gorithm 1, is considered which takes into account what the objective value of
the candidate solution is compared to, and the resulting probability of accep-
tance that is returned. The second part of the classification (right) considers the
nature of how the algorithmic parameters are set within the move acceptance
method. The mechanism(s), if any, to update the settings of the parameters are
usually employed during the procedures process1() and/or process2() as shown
on Lines 5 and 10 of Algorithm 1 respectively.

2.1. Classification of the Accept/Reject Decision

The first part of the classification concerns whether the acceptance of a
solution in any given move is deterministic or not. There are two fundamental
mechanisms for accepting or rejecting non-improving solutions. On one hand,
the acceptance mechanism accepts or rejects a solution outright by using a
binary operator to compare the objective value of the candidate solution to some
acceptance threshold value. These methods are what we call as non-stochastic
move acceptance methods. On the other hand, the acceptance mechanism can
accept a solution probabilistically, either directly by assigning a probability that
the move acceptance should accept a solution, or indirectly by subjecting the
parameter(s) affecting the value of the acceptance threshold to randomness.
These methods are what we call as stochastic move acceptance methods.
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Nature of the
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Sta�c Dynamic Adap�ve

Figure 1: A taxonomy for single-stage local search metaheuristics based on the natures of
the accept/reject mechanism and how the algorithmic parameters are set within their move
acceptance method.

There are two strategies used to calculate the values used for the acceptance
threshold in non-stochastic basic move acceptance methods. The taxonomy
therefore includes a secondary level to further classify such methods. The first
strategy, called as non-stochastic basic, reuses the objective values of previously
encountered solutions for the accept/reject decisions. These either use the ob-
jective value of the current solution, or maintain a memory structure to decide
on an appropriate value for the acceptance threshold at a given point during
the search. The second strategy on the other hand, called as non-stochastic
threshold, uses any real value as the value of the acceptance threshold. The
values of the acceptance threshold are therefore not guaranteed to correspond
to the objective value of any solution to the problem being solved.

The overall classification of a move acceptance method based on the nature
of the accept/reject decision follows a trivial precedence. If the mechanism de-
ciding whether to accept or reject a solution uses, or is influenced by parameters
utilising, stochastic nature then it is stochastic, irrespective of the acceptance
threshold. If the acceptance mechanism is non-stochastic but uses acceptance
thresholds during any point of the search which are not objective values of pre-
vious solutions, then it is non-stochastic threshold. Otherwise, if the acceptance
mechanism only uses objective values of previous solutions for the acceptance
threshold, then it is non-stochastic basic. This can be summarised by the fol-
lowing precedence order relationship (x ≺ y : x precedes y).

stochastic ≺ non-stochastic threshold ≺ non-stochastic basic

2.2. Classification of the Algorithmic Parameter Setting

The second part to the classification concerns the nature of the parameter
settings and the mechanisms used to control them. These are broken down into
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three classifications, static, dynamic, and adaptive. A similar classification ex-
ists for parameter control in the context of multi-point search methods, namely
evolutionary algorithms (EAs) such as those put forward by Eiben et al. (1999);
Eiben and Smit (2011). Our taxonomy abstracts upon those classifications by
only considering whether parameter tuning is based on what they refer to as a
non-iterative control method (static) or an iterative control method (adaptive).
Moreover, ours extends their view on iterative control methods by consider-
ing whether an algorithmic parameter setting mechanism relies on the overall
number of iterations/time budget, along with the current step/elapsed time
(dynamic), and/or acts upon search history (adaptive).

If a move acceptance method has multiple algorithmic parameter settings,
then the final classification of the move acceptance method based on the nature
of the parameter settings and the mechanisms used to control them is deter-
mined by the following precedence relation:

adaptive ≺ dynamic ≺ static

The overall classification based on the algorithmic parameter setting mecha-
nisms can be determined using the descriptions below. This can be encapsulated
as a Venn diagram as shown in Figure 2.

Static algorithmic parameter setting mechanisms. A move acceptance method
is classified as having a static nature of how the algorithmic parameters are set
if given the same candidate and current solutions, the acceptance threshold or
acceptance probability would be the same irrespective of the current elapsed
time or iteration count and search history.

Dynamic algorithmic parameter setting mechanisms. A move acceptance method
is classified as having a dynamic nature of how the algorithmic parameters
are set if given the same candidate and current solutions at the same current
elapsed time or iteration count, the acceptance threshold or acceptance proba-
bility would be the same irrespective of search history.

Adaptive algorithmic parameter setting mechanisms. A move acceptance method
is classified as having an adaptive nature of how the algorithmic parameters are
set if given the same candidate and current solutions at the same current elapsed
time or iteration count, the acceptance threshold or acceptance probability is
not guaranteed to be the same as one or more components depend on search
history.

2.3. Example Classification using Simulated Annealing

Here we provide a breakdown of the classification of Simulated Annealing
(SA), a very popular local search metaheuristic. Starting with the nature of the
accept/reject mechanism, Simulated Annealing would be classified as having
a stochastic accept/reject mechanism. Despite accepting non-worsening moves
outright, worse quality moves are accepted based on an acceptance probability
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• Initial settings
• Current Solution
• Candidate Solution

ADAPTIVE

DYNAMIC

• Current	Iteration
• Elapsed	Time

• Search	History/	
Memory

STATIC

Figure 2: Venn diagram illustrating the information used by each algorithmic parameter
setting mechanism to decide on the settings of the parameters of the move acceptance method.

determined by the Metropolis criterion. All non-reheating cooling schedules,
such as geometric cooling and Lundy and Mees’s cooling, contain mechanisms
to reduce an internal temperature setting over time. These mechanisms are not
effected by search history and depend only on the elapsed duration of the search.
Such mechanisms are therefore dynamic. All other parameters, such as α for
geometric cooling, and β for Lundy and Mees’s cooling, remain fixed, hence
these are static. The acceptance probability, given an elapsed duration, will
therefore always be the same given the same current and candidate solution ob-
jective values. Hence, the classification for the nature of Simulated Annealing’s
algorithmic parameter setting mechanisms is dynamic. In conclusion, Simulated
Annealing has a dynamic stochastic move acceptance method.

2.4. An Overview and Classification of Existing Methods

Local search metaheuristics are used as heuristic optimisation methods for
solving a variety of computationally hard problems. Table 1 forms a succinct
overview of the existing local search metaheuristics from the literature and clas-
sifies them based on the above taxonomy. The abbreviations used for each local
search metaheuristic can be found in Table 2 of Appendix B.

As can be seen by classifying the existing methods, there are no local search
metaheuristics which utilise dynamic algorithmic parameter setting mechanisms
in combination with a non-stochastic basic acceptance strategy. The majority of
the approaches tend towards those with adaptive algorithmic parameter setting
mechanisms. This is unsurprising since it is known that parameter adaptation is
one key prerequisite for improving the performance of metaheuristics. Selection
hyper-heuristics are mostly made up of two key methods which are invoked
successively: heuristic selection and move acceptance. Despite the emergence of
hyper-heuristics as methods for solving the cross-domain search problem (being
reusable and effectively applicable to multiple domains), there are no local search
metaheuristics in the literature that have been developed specifically for solving
this problem. Local search metaheuristics seem to have only been developed to
complement the heuristic selection process in selection hyper-heuristics. This
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finding is interesting as it is suggested in Özcan et al. (2008) that the choice of
move acceptance method in a selection hyper-heuristic, which commonly takes
the form of a local search metaheuristic, has more effect on the (cross-domain)
performance of hyper-heuristics compared to the embedded heuristic selection
method.

There are a variety of local search metaheuristics in the literature, almost
evenly spanning the different natures of the accept/reject decision. The tradi-
tional methods, such as, Simulated Annealing (in 1983), Great Deluge (in 1993),
and Record to Record Travel (also in 1993) are classified as either stochastic
or non-stochastic threshold. Non-stochastic basic methods have more recently
emerged with the earliest of such, excluding those simplistic local search meta-
heuristics, being Late Acceptance in 2008, and Step Counting Hill Climbing
being introduced as recent as 2016.

3. Experimental Design

The performance and behaviours of eight local search metaheuristics are
compared and contrasted with the aim of observing both the intra-domain and
cross-domain effectiveness of different local search metaheuristics classified by
their move acceptance methods based on the taxonomy given in the previous
section. The taxonomy gives a total of 9 distinct classifications for local search
metaheuristics however to date, those from the literature fall into only 8 of
these. A single local search metaheuristic is thus chosen from each of these
by choosing one whose move acceptance method has previously been used for
solving the cross-domain search problem where appropriate, otherwise a well
known method is chosen as illustrated in Table 1 in bold.

Each local search metaheuristic is evaluated across a total of nine minimi-
sation problems, which to date are still or scientific interest, using the Hyper-
heuristics Flexible Framework (HyFlex) (Ochoa et al., 2012). Six of these do-
mains were used within the Cross-domain Heuristic Search Challenge (CHeSC)
20112. These are the One-Dimensional Bin Packing Problem (BP) (Hyde et al.,
2010b; Sridhar et al., 2017; Scheithauer, 2018), Permutation Flow Shop Problem
(FS) (Vazquez-Rodriguez et al., 2010; Fernandez-Viagas et al., 2017, 2018), Per-
sonnel Scheduling Problem (PS) (Curtois et al., 2010; Ernst et al., 2004; Asta
et al., 2016; Santos et al., 2016), Maximum Satisfiability Problem (SAT) (Hyde
et al., 2010a; Morgado et al., 2013; Anstegui et al., 2016), Travelling Salesman
Problem (TSP) (Applegate et al., 2011; Escario et al., 2015; Ezugwu et al.,
2017), and the Vehicle Routing Problem (VRP) (Walker et al., 2012; Lin et al.,

1Note that SARH is a variant of SA where the temperature setting is directly increased
based on a reheating mechanism. This is in contrast to other adaptive variants of SA such
as VFR where the algorithmic parameters affecting the temperature setting are controlled
to allow the temperature to increase/decrease continually over time, hence this distinction is
made.

2The Cross-domain Heuristic Search Challenge 2011 http://www.asap.cs.nott.ac.uk/

external/chesc2011
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2014; Montoya-Torres et al., 2015). The remaining three domains were recently
introduced (Adriaensen et al., 2015) to the HyFlex Framework as a HyFlex Ex-
tension (HyFlext). These are the 0-1 Knapsack Problem (KP) (Adriaensen and
Ochoa, 2015a; Frville, 2004; Zhou et al., 2016; Lim et al., 2016), Max Cut Prob-
lem (MAC) (Etscheid and Rglin, 2014; Ben-Ameur et al., 2014; Zhou et al.,
2015), and Quadratic Assignment Problem (QAP) (Adriaensen and Ochoa,
2015c; Dokeroglu and Cosar, 2016; Hafiz and Abdennour, 2016). The HyFlex
framework is designed such that the search is performed over the search space of
complete and feasible solutions. For each problem domain, 5 problem instances
were chosen as those used in the CHeSC 2011 competition, and 5 characteris-
tically differing instances each from the 3 HyFlext domains as summarised in
Table 2 along with the respective move operator(s) and solution initialisation
procedures used for each domain. No official documentation exists for the TSP
problem domain. For information on the TSP problem, the reader is referred
to (Bellmore and Nemhauser, 1968). The instances used by HyFlex are taken
from TSPLIB. The objective function embedded in the HyFlex implementation
is different from that used in TSPLIB and calculates the cost of a solution as
the sum of the non-rounded Euclidean distances (rather than rounded integer
values) between adjacent cities, including that between the first and last cities.
Hence, solutions exist with better than optimal tour lengths compared to the
results from TSPLIB. Each local search metaheuristic is evaluated 31 times for
each problem instance where the termination criteria for each run (evaluation) is
equal to 10 CHeSC 2011 competition minutes. This is equivalent to 415 seconds
on our machine, as determined by the official benchmark tool3, using an Intel
Core i7-3820 processor at 3.60GHz with 16GB of memory running Windows 7
SP1 and Java 1.8.0 40-b26. The move operators and their settings were chosen
such that each application made a single perturbation to the solution (with the
exception of the PS problem domain due to its specialised problem representa-
tion meaning that the search space cannot be explored sufficiently using single
perturbations).

3.1. Method of Analysis

In this study, we want to observe both the intra-domain (performance across
multiple instances from the same domain) and cross-domain performance of the
local search methods embedding the characteristically different (based on our
taxonomy) move acceptance methods. The different objective functions used
by each domain, and the variable objective value ranges of different problem
instances poses an issue when comparing general-purpose search methods over
multiple domains and even problem instances. In order to be able to compare
the performances of the move acceptance methods, the results are normalised
following the scheme used in Di Gaspero and Urli (2012), and as shown in
Equation (1) where f(s) is the result being normalised, and f(sbest) (f(sworst))

3HyFlex benchmarking tool available online: http://www.asap.cs.nott.ac.uk/external/
chesc2011/benchmarking.html
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is the best (worst) solution obtained by all algorithms over the same problem
instance. The normalised results are thereby linearly scaled between 0 (best
result) and 1 (worst result) for each problem instance.

fnorm(s) =
f(s)− f(sbest)

f(sworst)− f(sbest)
(1)

Lilliefors test was performed on the computational results to test for nor-
mality and showed that they do not always come from a normal distribution.
The move acceptance methods in the results section are therefore compared us-
ing non-parametric statistical tests with Wilcoxon signed rank test being used
to compare the performances of a pair of algorithms, and the Kruskal-Wallis
one-way ANOVA test being used to compare the performance of more than two
algorithms.

The local search metaheuristic with the best intra-domain performance was
chosen as the one which obtained the lowest sum of normalised scores over all 5
instances from each respective domain. The results of each local search meta-
heuristic were compared within each domain using the aforementioned ANOVA
test with Tukey’s Honestly Significant Difference Procedure post-hoc analysis
to find which algorithm (or group of algorithms) have the best intra-domain
performance for each domain.

A general performance score is calculated as the sum of averaged normalised
results, also referred to as a µnorm score (Adriaensen et al., 2015), over all 45
problem instances to compare, at a high-level, the cross-domain performance of
each local search metaheuristic across the 9 different problems.

For each domain, we discuss the behaviours and characteristics of the local
search metaheuristics and the effects that these have for solving them. The
diverse characteristics of the local search metaheuristics embedding the best
performing move acceptance method for solving each domain are illustrated
using progress plots recorded for the problem instance where the difference
in performance of the respective move acceptance method is maximised when
compared to the remaining methods. The intra-domain scores and the results of
an ANOVA test performed for each problem instance are used to gain an insight
into the features of the move acceptance methods which likely contribute to their
cross-domain effectiveness.

3.2. Local Search Metaheuristic Configurations

The designs and parameter setting mechanisms of the local search meta-
heuristics are taken from the scientific literature where appropriate. The pa-
rameter settings of each local search metaheuristic, apart from those which have
no parameters or are designed to be parameter-less (AILLA and AILTA) and
therefore utilise their default settings, are tuned using a full factorial tuning
process for move acceptance methods with 1 or 2 parameters, or by using the
Taguchi orthogonal array design of experiments method (Roy, 2010) for 3 or
more parameters. Parameter tuning is performed on each domain by arbitrarily
choosing 2 instances from each domain. The final parameter settings used for
each problem domain in each case are given in a table following each description.
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3.2.1. Improving or Equal (IE)

IE uses a static non-stochastic basic move acceptance method. IE accepts
a candidate solution as the current solution in the next stage if and only if the
objective function value of the candidate solution is not worse than the current
solution as shown in Equation (2).

si+1 ←
{
s
′

i f(s
′

i) ≤ f(si)
si otherwise

(2)

3.2.2. Adaptive Iteration Limited List-based Threshold Accepting (AILLA)

AILLA (Mısır et al., 2012) uses an adaptive non-stochastic basic move ac-
ceptance method. AILLA maintains a list of length L recording the objective
values of the L best solutions found. Whenever a new best solution is found, the
worst objective value is removed from the list and replaced with that of the new
best solution. AILLA also incorporates a restart mechanism to reinitialise the
current solution depending on several factors of the current search state and is
explained in detail in (Mısır et al., 2012). AILLA accepts a candidate solution
as the current solution in the next iteration, as shown in Equation (3), if its
objective value is not worse than the current solution, or if it is not worse than
the ith objective value in the list, as detailed in (Mısır et al., 2012), since the last
re-initialisation, and a number of non-improving iterations have passed which is
dynamically reduced from 10 to 5 as the search progresses. Note that by sithbest,
we are referring to the parameter i in the paper for AILLA and not the current
iteration. The implementation and parameter settings for AILLA were taken
from (Mısır et al., 2012). All parameters and adaptation methods used are set
to their default settings since AILLA was designed as a parameter-less move ac-
ceptance method for solving the cross-domain search problem. Moreover, it was
used as the move acceptance component of the winning hyper-heuristic from the
CHeSC 2011 competition which to date remains one of the best cross-domain
search procedures.

si+1 ←

 s
′

i f(s
′

i) ≤ f(si) ∨ (f(sithbest) ∧ w iterations ≥ k)
sre-init (see Mısır et al. (2012))
si otherwise

(3)

3.2.3. Threshold Accepting (TA)

TA (Dueck and Scheuer, 1990) uses a static non-stochastic threshold move
acceptance method. TA accepts a candidate solution as the current solution in
the next iteration if and only if the objective function value of the candidate
solution is not worse than an acceptance threshold calculated as the sum of the
objective function value of the current solution and a threshold parameter, T ,
as shown in Equation (4).

si+1 ←
{
s
′

i f(s
′

i) ≤ f(si) + T
si otherwise

(4)
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TA has a single parameter, T , which defines how much worse than the cur-
rent solution a candidate solution is allowed to be before being rejected. A
static definition of TA from (Sabar et al., 2013) is used in this study, which they
incorrectly identify as record-to-record travel. This variant was used for solving
multiple problems including examination timetabling and the capacitated vehi-
cle routing problem. As a general-purpose search method however, the setting
for T must be set appropriately for the problem being solved. The objective
function values of different problem domains, and even problem instances, return
a different range of values meaning that a single setting would not be effective.
The threshold parameter is therefore calculated as a factor (k) of the cost of
the initial solution as shown in Equation (5). This approach for calculating a
threshold setting has been seen in related local search metaheuristics such as
AILTA (see below) albeit their settings are chosen adaptively.

The settings of k used in the experimentation, as derived from an exhaustive
tuning process, are given in Table 3. Note that in some cases, a setting of
k = 0 could have yielded improved results by reducing TA to IE. This however
would have detracted from the nature of the TA move acceptance method and
a minimum bound of 0.0005 was therefore imposed on k in the tuning process.

T = k × f(s0) (5)

Table 3: Values of k that were used to calculate the threshold parameter T for each problem
domain for the Threshold Accepting move acceptance method.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
k 0.0005 0.0005 2.0000 0.0010 0.0010 0.0500 0.1500 0.1000 0.0005

3.2.4. Great Deluge (GD)

GD (Dueck, 1993) uses a dynamic non-stochastic threshold move acceptance
method. A dynamic time-based version of GD from (Özcan et al., 2010) is used
in this study. GD accepts a candidate solution as the current solution if the
objective function value of the candidate solution (f(s′i)) is not worse than the
current solution (f(si)), or if it is not worse than a threshold value (τi) which
is linearly decreased in time between the objective function value of the initial
solution (f(s0)) and some target value (qualityLB), as shown in Equation (6)
where the acceptance threshold is calculated as in (Özcan et al., 2010) shown
in Equation (7).

si+1 ←
{
s
′

i f(s
′

i) ≤ max(f(si), τi)
si otherwise

(6)

τi = qualityLB + (f(s0) + qualityLB)×
(

1− Telapsed
Ttotal

)
(7)

A target value of 0 does not make sense in the context of a general-purpose
search method since the objective function value ranges vary between differ-
ent problem domains. Moreover, some problem domains may have non-positive
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objective value ranges causing the threshold to increase over time. The objec-
tive values of the optimal, where known, are therefore used and the respective
settings are summarised in Table 4.

Table 4: Target values (qualityLB) used by Great Deluge for solving each problem instance.
Bold styling is used to show where known optimal values are known and hence used as the
target value. Bin Packing problem instances use a target value of 0 equal to the lower bound
of its objective function. Flow Shop instances use the lower bound of the problems’ makespan.
All other values are best known solution fitnesses.

Domain (Instance, Target Value) Pairs
BP (1, 0.00) (7, 0.00) (9, 0.00) (10, 0.00) (11, 0.00)
FS (1, 6099.00) (3, 5979.00) (8, 26353.00) (10, 10979.00) (11, 26320.00)
PS (5, 3.00) (8, 3121.00) (9, 8814.00) (10, 1294.00) (11, 270.00)

SAT (3, 0.00) (4, 0.00) (5, 1.00) (10, 1.00) (11, 7.00)
TSP (0, 48191.00) (2, 6773.00) (6, 50801.00) (7, 64253.00) (8, 19982859.00)
VRP (1, 8617.10) (2, 3332.80) (5, 142478.95) (6, 50278.50) (9, 135540.07)

KP (0, -104046.00) (1, -1263861.00) (3, -431363.00) (5, -4417737.00) (8, -1530536.00)
MAC (0, -41684814.00) (2, -3064.00) (5, -13359.00) (7, -10299.00) (9, -3014.00)
QAP (0,0 152002.00) (6, 441786736.00) (7, 43849646.00) (8, 7620628.00) (9, 273038.00)

3.2.5. Adaptive Iteration Limited Threshold Accepting (AILTA)

AILTA (Mısır et al., 2010) uses an adaptive non-stochastic threshold move
acceptance method. It is similar to AILLA but with two key differences. One
being that it calculates a threshold value rather than reusing objective values
of previously visited solutions, and the other that it considers only the current
best solution’s objective value rather than maintaining a list of L best solution
values, instead opting to adapt an acceptance threshold factor, ε, coming from
a predefined list of settings. AILTA accepts a candidate solution as the current
solution in the next iteration if the objective value of the candidate solution
is not worse than the current solution, or if a certain number of consecutive
rejected moves have occurred and the objective value of the candidate solution
is less than an acceptance threshold calculated as a factor of the cost of the best
solution found so far as shown in Equation (8).

si+1 ←

 s
′

i f(s
′

i) ≤ f(si)∨
w iterations ≥ k ∧ f(s

′

i) ≤ f(sbest) + |f(sbest)× ε|
si otherwise

(8)

The original equation for calculating the threshold from (Mısır et al., 2010)
works only for problems whose objective functions return non-negative values.
For this study, the equation was therefore modified from f(sbest) + (1 × ε) to
f(sbest) + |f(sbest)× ε| to allow it to work over all objective value ranges.

The ε parameter controls how much worse a solution is allowed to be before
it is rejected, and k determines how many continuous rejected moves should
elapse before switching from the improving or equal acceptance strategy to the
threshold accepting strategy. In this study, the setting for k was the same as
used in (Mısır et al., 2010) which was 100. The ε parameter is incremented
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according to a number of consecutive non-improving moves exceeding a pa-
rameter max iter and reset to its initial value upon accepting an improving
move. In that paper, this was set to 5000 however it was used exclusively for
the homecare scheduling problem taking approximately 62500 iterations. Due
to the variable iteration count encountered in cross-domain search, if the total
number of iterations does not exceed 62500, then max iter is set proportional
to an estimated number of iterations for each problem instance based on pre-
experimental analysis as shown in Equation (9) rounded to the nearest integer
value. Upon exceeding this limit, ε is incremented from its initial setting of
0.003 by 0.001 up to a maximum setting of 0.010.

max iter = min

(
5000× total iterations

62500
, 5000

)
(9)

3.2.6. Näıve Acceptance (NA)

NA (Burke et al., 2010) uses a static stochastic move acceptance method.
NA accepts a candidate solution as the current solution in the next iteration if
the objective function value of the candidate solution is strictly better than the
current solution, else it accepts the candidate solution with a fixed probability as
shown in Equation (10). The only parameter in NA is the probability to accept
equal or worse quality solutions. Previous studies mostly fixed this value to be
0.5 as is the case in (Burke et al., 2010) which evaluated NA for cross-domain
search, hence we use this value in this study.

si+1 ←
{
s
′

i f(s
′

i) < f(si) ∨ random ∈ [0, 1] < 0.5
si+1 otherwise

(10)

3.2.7. Simulated Annealing (SA)

SA (Kirkpatrick et al., 1983) uses a dynamic stochastic move acceptance
method. SA accepts a candidate solution if its quality is better than or equal
to the cost of the current solution, or if a random number in the range [0, 1] is
less than some probability P determined by the metropolis criterion (Metropo-
lis et al., 1953) as shown in Equation (11). The metropolis criterion has two
parameters, one being the signed difference between the current and candidate
solution, δ = f(s′) − f(s), and the other being a system temperature, T , de-
termined by an accompanying annealing schedule. Annealing schedules from
the literature include linear cooling, geometric cooling and Lundy and Mees
cooling (Lundy and Mees, 1986). The components and settings of SA used in
this paper, as well as the procedure for calculating the system temperature, are
those from (Jackson et al., 2017) using the θDL settings for the initial and final
temperatures. In this study, an extended set of problems are used and hence
the settings are given in Table 5.

si+1 ←
{
s
′

i f(s
′

i) ≤ f(si) ∨ random ∈ [0, 1] < e−δ/T

si otherwise
(11)
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Table 5: Values of χ0 and tfinal that were used for each problem domain in the Simulated
Annealing local search metaheuristic.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
χ0 5% 10% 90% 5% 10% 70% 30% 90% 70%
tfinal 10−5 10−3 104 10−1 100 10−3 103 10−1 100

3.2.8. Simulated Annealing with Reheating (SARH)

SARH (Connolly, 1992) uses an adaptive stochastic move acceptance method.
SARH extends upon the traditional definition of Simulated Annealing by period-
ically increasing the temperature of the system during the search to either pre-
vent it from becoming stuck or to escape from local optima. There are multiple
approaches in the literature for deciding the value of the reheated temperature
setting, how the cooling schedule operates after reheating, and when a reheat
should occur. Such ways in which the reheated temperature is set includes a
function of the temperature when the maximum specific heat occurs (Abramson
et al., 1999), the initial temperature setting (Sim, 2011), and some factor of the
temperature setting when the best solution was found, for example 1.0 × Tbest
or 2.0 × Tbest in (Connolly, 1992) and (Anagnostopoulos et al., 2006) respec-
tively. After performing a reheat, the cooling schedule can either be left to
operate as is, decreasing the temperature over time (Abramson et al., 1999), or
disabled such that the temperature is fixed at the reheat temperature for the
remainder of the search (Connolly, 1992). Note that reheating is not the same
as re-annealing (Ingber, 1989) where the parameters affecting the temperature
setting are controlled to gradually decrease and increase the temperature over
time depending on the search features. Strategies for deciding when to perform
the reheat include doing so when when the maximum specific heat occurs in the
system (Abramson et al., 1999), by keeping track of when the last improvement
was made, reheating the temperature after a predefined number of continuous
non-improving moves have occurred (Connolly, 1992), and after a predefined
number of moves since the best solution was last improved (Anagnostopoulos
et al., 2006).

In this study, we use the earliest example of such mechanism for deciding
when to perform reheating as it can be seen in other adaptive approaches within
the literature to signal an adaptation event such as in AILLA and AILTA. For
the reheat temperature, we chose to use the approach used in (Anagnostopoulos
et al., 2006) where the temperature is set to twice that when the best solution
was found as preliminary testing showed this to be more effective. After per-
forming a reheat, the cooling schedule is allowed to continue for the remainder of
the search. SARH as used in this study contains three parameters, k, wait time,
and Tfinal. The initial temperature is calculated as f(s0) × k, α is calculated
initially and upon each reheat as Tfinal/T0 and Tfinal/(2× Tbest) respectively.
The wait duration is calculated as a product of the computational time budget
and the wait time parameter where wait time ∈ [0, 1], exclusive and inclusive.
The settings for each domain are given in Table 6.

18



Table 6: Values of k, wait time and tfinal that were used for each problem domain in the
Simulated Annealing with Reheating local search metaheuristic.

Parameter BP FS PS SAT TSP VRP KP MAC QAP
k 0.8 0.6 1.0 0.2 0.2 0.2 0.2 0.2 0.2
wait time 0.2 0.1 0.1 0.1 1.0 0.2 0.1 0.1 0.1
tfinal 10−5 10−4 104 10−1 100 10−3 103 10−3 10−1

The mechanism for move acceptance is the same as that used by SA in Equa-
tion (11). The adaptation procedure for dealing with reheating of the system
temperature is shown in Algorithm 2 and an updated version of the cooling
schedule to deal with the reheating capability and time-based termination cri-
terion is shown in Equation (12).

Algorithm 2: process2() for Simulated Annealing with Reheating.

1 if move was accepted then
2 if f(s′).isBetterThan(f(s)) then
3 time reheat← wait duration+ time elapsed;
4 end
5 if f(s′).isBetterThan(f(sbest)) then
6 tbest ← ti;
7 end

8 else if time elapsed > time reheat then
9 t0 ← tbest × 2;

10 time reheat← wait duration+ time elapsed;
11 time previous reheat← time elapsed;
12 α← tfinal/t0;

13 return sbest;

T = T0 × α
time elapsed− time previous reheat

time total (12)

4. Results

This section, covering the results and analysis of the local search metaheuris-
tics embedding different move acceptance methods, is structured as follows.
Firstly, the intra-domain results are discussed and the progress plots of the best
general move acceptance method are examined for each of the nine problem
domains forming Sections 4.1 to 4.9. A summary of the results highlighting
the best move acceptance methods to use for solving each problem under the
stochastic local search framework is given in Section 4.10, and the cross-domain
results are discussed in Section 4.11. The intra-domain and cross-domain scores
are given in Table 7 and boxplots of the normalised results from all 5 instances
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per domain are given in Figure 3 and Figure 4. Results from the Kruskal-Wallis
one-way ANOVA tests performed for each problem domain can be found in
Table 8. The non-normalised results for each problem instance from the exper-
imentation can be found in Table 1 of Appendix A. Finally, observations are
made in relation to the progress plots and acceptance stats for the best move
acceptance methods for solving each problem in Section 4.12. The progress plots
and results from this analysis can be found in Figure 5, and in both Table 9 and
Table 10 respectively.

Table 7: Intra-domain scores for each local search metaheuristic over the 9 problem domains,
calculated as explained in Section 3, with the best general-purpose method for each problem
domain stylised bold. The final column shows the cross-domain score for each move acceptance
method, calculated as the sum of intra-domain scores.

BP FS PS SAT TSP VRP KP MAC QAP Cross-domain
IE 0.13 0.52 3.62 0.74 2.05 3.60 5.00 1.38 0.64 17.67
AILLA 1.26 0.56 2.53 0.10 2.25 3.47 5.00 0.45 0.30 15.91
TA 3.30 2.15 0.55 0.74 2.69 1.94 3.09 4.47 1.13 20.04
GD 0.56 0.71 1.67 0.12 1.58 3.38 5.00 0.06 0.07 13.15
AILTA 1.16 2.52 3.61 0.74 2.82 2.74 4.85 0.22 0.40 19.05
NA 4.60 3.88 0.58 4.83 3.17 2.00 1.23 4.49 4.83 29.61
SA 3.28 0.63 0.60 0.14 1.91 2.09 0.92 0.30 0.23 10.10
SARH 3.25 0.74 0.65 0.09 2.72 1.97 0.69 0.07 0.04 10.22

Table 8: Kruskal-Wallis One-way ANOVA comparing the performance of all local search
metaheuristics for each problem domain with n0 that all results are from the same distribution
at CI = 95%. The values are the mean ranks (lower is better) of the aforementioned test with
the best local search metaheuristic, and those which do not statistically significantly differ
from the best, for each domain being stylised bold.

Problem IE AILLA TA GD AILTA NA SA SARH χ2(7) p
BP 96.9 478.2 868.7 257.9 441.1 1109.4 853.8 858.1 1051.1 1.07× 10−222

FS 348.5 379.3 759.9 488.6 951.7 1102.1 430.2 503.7 677.9 4.05× 10−142

PS 998.4 809.5 380.5 603.6 997.4 374.8 394.2 405.8 648.0 1.13× 10−135

SAT 848.3 282.4 848.3 331.0 848.3 1163.0 386.7 256.0 1010.4 6.89× 10−214

TSP 505.7 574.3 712.3 355.0 759.6 873.1 455.9 728.0 261.1 1.19× 10−52

VRP 859.7 824.8 445.8 800.6 644.2 457.4 481.7 450.0 286.9 3.76× 10−58

KP 953.5 953.5 506.65 953.5 858.1 285.8 275.6 177.3 1113.0 4.65× 10−236

MAC 823.1 614.1 1081.1 172.7 456.1 1089.9 541.1 186.1 1083.3 1.23× 10−229

QAP 837.1 549.5 865.1 213.9 684.7 1163.0 509.0 141.7 987.8 5.18× 10−209

4.1. Bin Packing

The best move acceptance method for solving Bin Packing (BP) problems ac-
cording to the intra-domain scores was IE. The results of performing an ANOVA
test on the normalised results of all BP instances shows that IE is the best
general method with a mean rank of 96.9 and that the results of the move ac-
ceptance methods do not come from the same distribution. This means that
IE must perform significantly better than at least one other move acceptance
method. Post-hoc analysis shows that IE performed significantly better than
all other methods with the least significant difference being between IE and
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Figure 3: µnorm scores obtained by each local search metaheuristic over all 31 trials for all
5 instances for each of the Bin Packing, Flow Shop, Personnel Scheduling, and Maximum
Satisfiability problem domains.
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Figure 4: µnorm scores obtained by each local search metaheuristic over all 31 trials for all
5 instances for each of the Travelling Salesman, Vehicle Routing, Knapsack, Max Cut, and
Quadratic Assignment problem domains.
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GD with a p-value of 1.96 × 10−3. The results show that move acceptance
methods with a stochastic accept/reject nature perform inferior to those with
non-stochastic mechanisms. The TA method is however an exception to this rule
due to the high setting of the threshold parameter. Moreover, the nature of the
algorithmic parameter setting does not influence the overall performance of the
local search metaheuristics. The Improving or Equals move acceptance method
in this case performs better on average than all other move acceptance methods
over all the 5 instances. The progress plot for Bin Packing, shown in Figure 5a,
shows IE continually improving upon the current solution and finding the best
solution at the last step. IE and GD have similar intra-domain performance due
to the accept equal or improving moves mechanism utilised by GD when the
acceptance threshold falls below the cost of the current solution. In conclusion,
for solving BP problems under the given framework, it does not appear to be
necessary to employ a strategy accepting moves of worsening quality.

4.2. Flow Shop

The best move acceptance method for solving Flow Shop (FS) problems ac-
cording to the intra-domain scores was IE. The results of performing an ANOVA
test on the normalised results of all FS instances shows that IE is the best gen-
eral method and that AILLA and SA do not perform significantly different
from IE. Hence, IE, AILLA, and SA are all able to solve FS problems equally
as well. The results show that the effects of the accept/reject nature on the
performance of the local search metaheuristic for solving Flow Shop problems
is not clear cut. In general, non-stochastic basic move acceptance methods per-
form slightly better on average across all 5 instances with intra-domain scores
of 0.52 and 0.56, compared to the next best method with a score of 0.63. Aside
from the non-stochastic basic methods, those with static algorithmic parameter
setting natures perform much worse than their dynamic and adaptive counter-
parts. The fixed set of threshold factors (ε), whose settings are too high, cho-
sen from by AILTAs adaptation mechanism leads to its inferior performance.
Figure 5b shows the progress plot for IE solving the Flow Shop problem. IE
accepts improving moves throughout the search; however, the search landscape
has many shoulder/plateau regions. Since AILLA does not accept worse moves
until after a period of non-improving moves are accepted, its characteristics and
performance is similar to IE. Furthermore, the settings for SA promote a rapid
decrease in its temperature parameter meaning that few to no worse moves are
accepted after the initial stages of the search. The progress plot also shows
that while the best solution is found near to the end of the search, there is a
large proportion of the search after this where the solution is not improved. IE
could solve some instances the best whilst AILLA was the best at solving other
instances. This is due to the presence of large shoulder regions in the search
landscape allowing AILLA and SA to escape those regions. In summary, local
search metaheuristics solving different instances of FS problems benefit from ei-
ther accepting no to very few worse moves. The plateau regions present suggest
that the inclusion of an accept only improving moves mechanism or tabu list
strategy may be helpful in avoiding becoming stuck on such landscape features.
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4.3. Personnel Scheduling

The best move acceptance method for solving Personnel Scheduling (PS)
problems according to the intra-domain scores was TA. The results of perform-
ing an ANOVA test on the normalised results of all PS instances would suggest
that NA is the best general method, performing slightly better than TA, and
that TA, SA, and SARH do not perform significantly different from NA. The
results would suggest that a local search metaheuristic needs to use a move ac-
ceptance method with a stochastic accept/reject nature; however, TA performs
equally as well. The non-stochastic basic and non-stochastic threshold move
acceptance methods did not perform well, apart from TA which has a high τ
setting. The progress plot for Personnel Scheduling, shown in Figure 5h, shows
TA accepting most, if not all, worse moves. In addition to TA, the stochastic
methods also use parameter settings which cause them to accept most, if not all,
worse moves; hence, the intra-domain performances of all four methods are sim-
ilar. Furthermore, the nature of the algorithmic parameter setting mechanisms
did not have much effect on the local search metaheuristic’s intra-domain per-
formance. The Personnel Scheduling problem is the only problem that needs to
utilise specialised move operators. These operators appear to guide the search
finding the best solution close to the end of the search, despite no or little guid-
ance form the move acceptance methods which perform the best. In conclusion,
a local search metaheuristic simply needs a näıve move acceptance strategy
accepting most or all worse moves for solving such problems under the given
framework.

4.4. Maximum Satisfiability

The best move acceptance method for solving Maximum Satisfiability (SAT)
problems according to the intra-domain scores was SARH. The results of per-
forming an ANOVA test on the normalised results of all SAT instances shows
that SARH is the best general method, and that AILLA and GD are equally as
good at solving SAT problems. The results show that the nature of the algorith-
mic parameter setting mechanism has a strong effect on the effectiveness of the
move acceptance method to solve MAX-SAT problem instances with the move
acceptance methods utilising a static algorithmic parameter setting mechanism
performing poorly on this problem. The nature of the accept/reject decision
did not have much of an effect on the intra-domain performance of algorithms
to solve SAT problems. AILTA is the only method to break this pattern for the
reasons discussed in previous problem domain results. The settings of τ in this
case were too small. AILTA could therefore not accept worse moves, leading to
its inferior performance and similarity to IE. Neither IE, TA, nor AILTA could
accept worse moves, and NA accepted far too many worse moves, in all cases
resulting in poor overall performance. The Wilcoxon Signed Rank test results
shows that depending on the instance they are solving, SARH and AILLA in-
terchangeably perform significantly better than each other. The progress plot,
shown in Figure 5c, shows SARH solving a Maximum Satisfiability problem.
The behaviour shown is characteristic of Simulated Annealing algorithms, ini-
tially accepting many worse moves, and reducing them over time to converge on
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a good quality solution towards the end of the search. In this scenario, SARH
behaves the same as SA (without reheating). Moreover, the setting of 1.0 for
the wait time parameter used for solving this problem effectively disabled the
reheat mechanism. The lowest initial temperature setting is preferred by both
SA and SARH reflecting the advantages of both temperature setting strategies,
and suggesting that the different initial temperature setting mechanism is the
cause of the improved performance of SARH over SA for solving these prob-
lems. In conclusion, a strategy to accept worse moves which reduces over time
is needed for solving Maximum Satisfiability problems, and this is characteristic
of both SA methods, GD, and AILLA. Furthermore, it is evident that Simulated
Annealing algorithms are extremely sensitive to initial temperature settings and
different strategies to choose them can significantly affect the algorithms overall
performance.

4.5. Travelling Salesman Problem

The best move acceptance method for solving Travelling Salesman (TSP)
problems according to the intra-domain scores was GD. The results of perform-
ing an ANOVA test on the normalised results of all TSP instances shows that
GD is the best general method, with SA performing equally as good at solving
TSP problems. The results also show that there is no discernible difference in
performance between the move acceptance methods utilising different natures of
the accept/reject decision. Furthermore, the nature of the algorithmic param-
eter setting mechanisms neither had much effect on the overall performance of
the move acceptance method to solve the TSP problem instances. TA, AILTA,
NA, and SARH performed worse in general than other methods due to the ac-
ceptance of too many worse moves. With the same reasons as the Maximum
Satisfiability problem, SARH used the lowest setting for k, and 1.0 was used
for the wait time. The settings for TA and AILTA were also too high with the
same effect. The target threshold parameter for GD was set based on the known
optimal solution costs for each instance. Figure 5i provides the progress plot for
GD solving a TSP problem. It shows the current solution cost closely following
the current threshold setting up to about 1.1×107 iterations where the solution
no longer improves at the same rate as the acceptance threshold. At this point,
GD descends into IE acceptance. During this stage, GD accepting small and
frequent worse moves, improving the solution over time at the same rate as the
acceptance threshold decreases. Furthermore, the initial temperature setting
for SA was small at χ0 = 10% and descending to a final temperature much
smaller than the optimal solution values. The results of performing Wilcoxon
Signed Rank test shows the best method(s) for solving each instance differed
between IE, AILLA, GD, and SARH; however, combined with the results of the
Kruskal-Wallis one-way ANOVA test, it is evident that GD and SA are able to
perform consistently well across all the instances. In conclusion, an acceptance
strategy needs to accept worse moves with small move deltas in a controlled
manor, gradually improving the solution over time to best solve TSP problems.
Acceptance of too many worse moves proves detrimental to performance and
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not accepting worse moves, as is the case with IE, leads to an acceptable but
inferior intra-domain performance.

4.6. Vehicle Routing Problem

The best move acceptance method for solving Vehicle Routing (VRP) prob-
lems according to the intra-domain scores was TA. The results of performing an
ANOVA test on the normalised results of all VRP instances shows that TA is
the best general method, with all stochastic methods performing equally as well.
The results show that there is no that there is no discernible difference between
the performances of each move acceptance method using different algorithmic
parameter setting mechanism natures. The nature of the accept/reject decision
has the most significant effect on the algorithm’s performance with stochastic
methods outperforming both non-stochastic variants. In this case, TA, perform-
ing the best, was tuned to utilise a threshold setting high enough to allow all
worsening moves to be accepted which appeared to benefit this domain. The
progress plot, shown in Figure 5f and enhanced in Figure 5g, illustrates the ac-
ceptance of all improving, equal, and worse moves by utilising a comparatively
high threshold setting, complementing an effective search initially. Soon after
finding a reasonable best solution, the search stagnates due to the lack of in-
tensification in the TA move acceptance method. In conclusion, an acceptance
strategy needs to accept most worse moves to effectively solve VRP problems,
and the introduction of dynamic or adaptive parameter setting mechanisms has
minimal effect on its performance.

4.7. Knapsack Problem

The best move acceptance method for solving 0-1 Knapsack problems (KP)
according to the intra-domain scores was SARH. The results of performing an
ANOVA test on the normalised results of all KP instances shows that SARH is
the best general method, with TA and SA performing equally as well. The na-
ture of the accept/reject decision clearly has a significant effect on the effective-
ness of a local search metaheuristic with all stochastic methods forming equally
the best and significantly better than non-stochastic methods. In general, the
nature of the algorithmic parameter settings slightly effected the performance,
albeit insignificant. Figure 5d provides the progress plot for SARH solving an
instance of the KP problem. In this case, the effectiveness of SARH comes from
the initial temperature setting mechanism rather than the reheat mechanism
itself, illustrating the sensitivity of this parameter for SA based move accep-
tance methods. Initially, many worse moves are accepted and the current best
solution slowly improves over time for the first 2/3rds of the search. Thereafter,
the solution rapidly improves to find the best solution at the end of the search.
Evidently, acceptance of many worse moves enhances the effectiveness of the
search process. It should be noted that the greedy initialisation procedure used
in this domain means that it is an absolute requirement that moves worse than
the initial solution are accepted under such framework as the search starts from
a local optimum. In conclusion, an acceptance strategy needs to accept most
worse moves to effectively solve KP problems under the current setup.
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4.8. Max Cut Problem

The best move acceptance method for solving Max Cut problems (MAC)
according to the intra-domain scores was GD. The results of performing an
ANOVA test on the normalised results of all MAC instances shows that GD is
the best general method, with SARH performing equally as well. The nature
of the algorithmic parameter settings had a marked effect on the effectiveness
of local search metaheuristics for solving this problem. The nature of the ac-
cept/reject decision did not have as much of an effect, and in fact, the success of
a move acceptance method was down to the acceptance of few, but some, worse
moves. IE, accepting no worse moves, did not perform well as well as NA which
accepts 50% of worse moves. GD in comparison accepted just 5.7% of worse
moves. The progress plot, shown in Figure 5j, shows the current best solution
improving at the same rate as the acceptance threshold and finding the best so-
lution at the end of the search. Infrequent acceptance of worse moves also aids
the search to prevent it from becoming stuck in local optima. In conclusion, an
acceptance strategy needs to accept some worse moves to efficiently solve MAC
problems but a careful balance needs to be achieved to prevent becoming stuck
in local optima, or from performing a random walk over the search space.

4.9. Quadratic Assignment Problem

The best move acceptance method for solving Quadratic Assignment (QAP)
problems according to the intra-domain scores was SARH. The results of per-
forming an ANOVA test on the normalised results of all QAP instances shows
that SARH is the best general method, with GD performing equally as well.
Similarly with MAC problems, the nature of the algorithmic parameter settings
had a marked effect on performance whereas the nature of the accept/reject
decision did not. Again, success of the search relied on acceptance of some, but
not too many, worse moves. Figure 5e provides the progress plot for a char-
acteristic trace of a Simulated Annealing algorithm. Towards the end of the
search, a reheat phase is activated allowing an improved solution to be found.
In conclusion, similarly with solving MAC problems, an acceptance strategy
needs to accept some worse moves to efficiently solve QAP problems but a care-
ful balance needs to be achieved to prevent becoming stuck in local optima, or
from performing a random walk over the search space.

4.10. Summary of Intra-domain Results

To observe the best move acceptance method(s) for solving each type of
problem, a Wilcoxon Signed Rank test is performed between the best general
move acceptance method, as determined by the best intra-domain score, and
the remaining methods for each problem using the normalised set of results
from all 5 instances. There are some domains where a single move acceptance
method performs statistically significantly better than all other methods, and
some domains where multiple move acceptance methods perform not signifi-
cantly different from the best general method, hence a set of such methods
are said to perform the equally as well. Bin Packing (IE), Travelling Salesman
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Figure 5: Objective function value traces of accepted solutions for: IE solving (a) instance 11
of the Bin Packing problem and (b) instance 11 of the Flow Shop problem, and SARH solving
(c) instance 4 of the MAX-SAT problem, and (d) instance 5 of the 0-1 Knapsack Problem,
and (e) instance 9 of the Quadratic Assignment problem.
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Figure 5: Objective function value traces of accepted solutions and acceptance thresholds for:
TA solving (f) instance 5 of the Vehicle Routing problem with (g) focusing on the area where
the best solution is found, and (h) instance 9 of the Personnel Scheduling problem, and GD
solving (i) instance 6 of the Travelling Salesman problem, and (j) instance 7 of the Max Cut
problem.

29



(GD), and Quadratic Assignment (SARH) are all solved best by a single move
acceptance method as indicated in parenthesis. On a side note, due to the
non-normal distribution of the results, the Wilcoxon Signed Rank test shows
that SARH performs significantly better than the best general method using
the cross-domain scores (TA) for the VRP domain. For these cases, it is in-
teresting to see that the different move acceptance methods come from each
classification of the accept/reject nature from the taxonomy. Moreover, they
all come from different algorithmic parameter setting natures. This however
could be due to the fixed internal settings used by the adaptive non-stochastic
threshold classification (AILTA) meaning that it could have performed better
than GD for solving Travelling Salesman problems if a better mechanism was
used. Flow Shop (IE, AILLA), Personnel Scheduling (TA, NA, SA), MAX-SAT
(SARH, AILLA), 0-1 Knapsack (SARH, NA) and Max Cut (GD, SARH) are
all best solved by a group of move acceptance methods given in parenthesis pro-
ceeding the respective domains. With the exception of the Personnel Scheduling
problem, the set of move acceptance methods which best solves each problem
contains an adaptive nature of the algorithmic parameter setting mechanism.
Flow Shop favours being solved by non-stochastic basic methods whereas Per-
sonnel Scheduling and 0-1 Knapsack both favour stochastic methods. MAX-SAT
and MAX Cut do not favour any particular nature of the accept/reject decision
with a stochastic method and a non-stochastic (basic/threshold respectively)
method solving them the best. Clearly then, for some problems a particular
accept/reject nature is required to solve them well and the nature of the algo-
rithmic parameter settings does not significantly effect their effectiveness. For
some problems however, a particular accept/reject nature is not favoured but
an adaptive method is always present. If a local search metaheuristic is sought
for solving problems from a particular domain, then the respective move accep-
tance method is recommended to be used as its move acceptance component. If
a new or unknown problem is to be solved, or a general purpose search method
is sought, we showed that out of those tested, Simulated Annealing was the most
effective method in general and is therefore recommended for such scenarios.

4.11. Cross-domain Results

The cross-domain scores for the local search metaheuristics as the sum of
intra-domain scores over nine problem domains are shown in the final column of
Table 7. With a minimum and maximum possible score of 0 and 45 respectively
(lower is better) we can see from the results that most move acceptance methods,
with NA being the exception, perform better than average obtaining scores
less than 22.5. IE as a move acceptance method represents a standard hill
climbing local search approach with no mechanism for accepting worse moves.
IE should therefore be considered as the baseline result for cross-domain search
with methods failing to surpass its performance being deemed to have poor
cross-domain performance. Moreover, IE is parameter free meaning that no
expert intervention is required to reconfigure it for solving different problems.
AILLA, GD, SA, and SARH all improved over IE’s cross-domain performance
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whereas TA, AILTA, and NA performed worse under the given local search
metaheuristic framework.

No move acceptance method could consistently perform the best across all
problems, despite their parameters being re-tuned for each problem domain
where necessary. Moreover, different move acceptance methods were able to
outperform each other when solving different problem instances for some of the
domains. The move acceptance method with the best cross-domain performance
was Simulated Annealing which never actually performed the best for a given
problem domain. Moreover, SA was only able to outperform the remaining move
acceptance methods, on average, for 3 out of 45 problem instances. This result
highlights the trade-off between requiring and selecting from multiple algorithms
which perform exceptionally for solving a few problems each, and having a single
algorithm which performs sufficiently well for solving all problems.

The cross-domain performance of SARH closely followed that of SA with
scores of 10.10 and 10.22 respectively. An important factor in the design of
general-purpose search methods is the ideological goal of eliminating the need
for expert intervention. In this study, the parameters of the move acceptance
methods were re-tuned for each problem domain to show their potential as a
general-purpose search method if a parameter configuration oracle existed. Fur-
thermore, SA had a slight advantage over SARH in that the initial temperatures
were determined using an additional procedure which takes place prior to pa-
rameter tuning whereas for SARH, the initial temperate was set as a factor of
the initial solution cost. On the other hand, this makes SARH more general
in that no expert intervention is required to determine a suitable value for the
initial temperature beforehand.

Generally, it can be observed that using algorithmic parameter setting mech-
anisms which are not static improves the cross-domain performance of the al-
gorithms at the same accept/reject nature level. For static methods, use of a
non-stochastic basic algorithmic parameter setting mechanism has a clear ad-
vantage over a non-stochastic threshold mechanism which in turn outperforms a
stochastic mechanism. This is no surprise since static parameter setting mech-
anisms have no way to reduce the number of accepted worse moves if too many
are being accepted. In contrast, this is now possible given dynamic or adaptive
parameter setting mechanisms. Hence the reason basic is better than threshold
and stochastic for static parameter setting mechanisms, but the opposite is true
when using dynamic/adaptive mechanisms.

SA, as well as many of the existing move acceptance methods, contains
multiple parameters. These parameters however require re-tuning when the
task at hand concerns solving problems across different domains to achieve good
performance. Move acceptance methods which are parameter-free (contain no
parameters) or parameter-less (designed in such a way that their settings should
not need to be changed) can be regarded as more general since they do not
require expert intervention when tasked with solving different problems. The
parameter-free/parameter-less move acceptance method with the best cross-
domain performance was AILLA.

It is extremely important to carefully consider the design of adaptive algo-
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rithmic parameter setting mechanisms. Both AILTA and AILLA are classified
as adaptive and their adaptation mechanisms are quite similar acting upon a set
of values which are used directly to determine the acceptance threshold. AILTA
acts upon a set of threshold values (ε) which are multiplied with the cost of
the best solution found so far whereas AILLA acts upon a set of previous best
solution values. The significant difference between AILTA and AILLA is that
the set of threshold values used by AILTA are themselves fixed whereas the set
of previous best solution values depend on maintaining a memory of the search
history and hence are adaptive. That is, AILTA contains an adaptive mecha-
nism to choose from a set of fixed/static settings, whereas AILLA contains an
adaptive mechanism to choose from a set of values which are adapted. For this
reason, AILTA has a poor cross-domain performance compared to AILLA.

4.12. Progress Plot and Acceptance Observations

Progress plots including the current and best solution values, along with
the threshold values where applicable, were recorded for the move acceptance
method which performed the best for solving each problem domain. These plots,
shown in Figure 5, are presented to gain insight into the behaviours of each move
acceptance method which allows them to solve each problem well. Moreover, ac-
ceptance statistics showing the ratio of accepted and rejected improving, equal,
and worse moves are given in Table 9 and Table 10 to emphasise the variety of
behaviours exhibited by the different best performing move acceptance methods
over the nine problem domains in this study.

Table 9: Percentage of each type of move based on the acceptance decision and move delta,
δ = f(s′)− f(s), as improving, equal, and worsening when using the best general local search
metaheuristic for solving an instance, as used in the objective function value traces, of the
respective problem domain. Note that no move acceptance mechanism has the ability to reject
improving moves.

Domain BP FS PS SAT TSP VRP KP MAC QAP
Best Method IE IE TA SARH GD TA SARH GD SARH
Accept δ < 0 0.6% 0.0% 40.8% 19.7% 0.0% 0.1% 43.8% 5.0% 20.3%
Reject δ < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ = 0 22.9% 3.5% 26.7% 16.8% 0.1% 99.9% 6.2% 8.3% 0.2%
Reject δ = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ > 0 0.0% 0.0% 32.5% 19.7% 0.0% 0.1% 43.8% 5.0% 20.3%
Reject δ > 0 76.5% 96.5% 0.0% 43.8% 99.9% 0.0% 6.2% 81.7% 59.1%

For the Bin Packing, Figure 5a, and Flow Shop, Figure 5b, problems, the
IE move acceptance method performed the best, continuously improving the
solution over time and finding the best solution towards the end of the search.
Trivially, IE accepts all improving and equal moves while rejecting all worse
moves. Observing the ratio of accepted and rejected improving, equal, and worse
moves, there is a very low frequency of improving moves in both instances with
BP having 22.9% and 76.5% of equal and worse attempted moves, and FS having
3.5% and 96.5% of those move attempts respectively. There are three other
domains which have the same characteristic, these are TSP, VRP, and MAC.

32



Table 10: Percentage of accepted and rejected moves based on improving, equal, and worsening
move deltas when using the best general local search metaheuristic for solving an instance, as
used in the objective function value traces, of the respective problem domain. Note that no
move acceptance mechanism has the ability to reject improving moves.

Domain BP FS PS SAT TSP VRP KP MAC QAP
Best Method IE IE TA SARH GD TA SARH GD SARH
Accept δ < 0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Reject δ < 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ = 0 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
Reject δ = 0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Accept δ > 0 0.0% 0.0% 100.0% 31.0% 0.0% 100.0% 87.6% 5.7% 25.6%
Reject δ > 0 100.0% 100.0% 0.0% 69.0% 100.0% 0.0% 12.4% 94.3% 74.4%

It is interesting to see that these domains are also best solved by other non-
stochastic move acceptance methods. Specifically, GD, TA, and GD for solving
TSP, VRP, and MAC problems respectively. The GD move acceptance method
was the best for solving the TSP, Figure 5i, and MAC, Figure 5j, problems.
In both problems, there is a large ratio of worse moves and GD accepts only a
small number of them. In both cases, GD improves the solution over time with
the current solution cost closely following the threshold value. For solving the
MAC problem, GD facilitates gradual improvement of the solution over time
for the whole duration of the search, finding the best solution at the end of
the search. This contrasts with when GD is used to solve TSP problems where
part way though the search, the rate at which the threshold value decreases
overcomes the improvement achieved by the move operators causing GD to
reduce to the IE move acceptance method. Further improvement of the solution
after this point then relies solely on the move operators being able to improve the
current solution and the best solution is found part way through this secondary
behavioural stage. Using TA to solve VRP, Figure 5f, problems is interesting
because the high threshold value meant that it accepted all moves, as can be
seen in Figure 5g, leaving the progress of the search in the hands of the move
operators. Moreover, TA found the best solution towards the start of the search
where the search then worsens slightly before stagnating. This can be seen by
the 99.9% of equal quality moves produced and is down to the move operator
itself.

For the remaining four domains, the ratios between either all improving,
equal, and worse moves or just improving and worse moves were reasonably
balanced, and, with the exception of PS, were solved best by a stochastic move
acceptance methods. Another case where TA had the best performance was
for solving PS problems. Similarly with solving VRP problems, TA accepted all
improving, equal, and worse moves. In contrast however, the ratio between these
moves was balanced at 40.8%, 26.7%, and 32.5% respectively, and as can be seen
from the progress plot in Figure 5h, the threshold value is set high enough such
that no worse moves are rejected. This also points towards the fact that the
choice of move operator(s) was beneficial to solving this problem. SAT, KP, and
QAP were all solved best using the SARH move acceptance method. In each
of these domains, the ratio of improving, equal, and worse attempted moves
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were more reasonably balanced compared to those covered previously where
the attempted worsening moves clearly dominated attempted improving moves.
Perhaps most interestingly, the percentage of accepted improving and worse
moves, as shown in Table 9, were the same in each domain for all three domains
where SARH outperformed the remaining move acceptance methods. Looking
at the progress plots for SAT, KP, and QAP, we can observe the characteristic
plots for Simulated Annealing based algorithms. For QAP, in Figure 5e, about
5% from the end of the search, we can see a reheat occur which consequently
enables the best solution to be improved further than what would have been
found without a reheat mechanism. For solving SAT and KP however, the best
solutions are found close to the end of the search, thus no reheat mechanism
is activated during the search. This means that SARH consequently behaved
the same as SA and highlights the sensitivity of the initial parameter settings
for SA based algorithms since different strategies were used for calculating the
initial temperature as discussed in Section 3.2.7 and Section 3.2.8.

5. Conclusions and Future Work

In this study, we proposed a taxonomy for classifying local search meta-
heuristics based on their move acceptance method and performed a survey of
these algorithms spanning the different components in the taxonomy. In addi-
tion, an empirical study comparing the performance of said move acceptance
methods, one from each of the possible classifications, was carried out comparing
their performance across 9 characteristically different problems under a single
point-based search framework, representing the cross-domain search problem.

If a researcher or practitioner is seeking guidelines for which move acceptance
method to use for solving a new, unknown, or existing problem that is not
covered in this study, then Simulated Annealing is recommended since it has
the best performance over our cross-domain benchmark. If time is constrained,
and/or sufficient resources are not available for conducting parameter tuning
experiments, then AILLA, as a parameter-less method, should be used to gain
reasonable results. If the problem to be solved however is known and covered
in this study, then the move acceptance method recommended for use is that
which has the best intra-domain performance, as stylised bold in Table 7, for
that problem domain.

The level of generality at which search methods can act have been raised
through the use of hyper-heuristics in the past, allowing them to solve problems
from different domains without modification. Realistically however, their effec-
tiveness for solving problems well from different domains is not as good as what
they should be, and remains in the focus of current research. Since the design
of AdapHH in 2011 (Mısır et al., 2011a), only a few methods have been able to
improve upon its cross-domain performance. This was either achieved using ma-
chine learning techniques for improving heuristic selection (Kheiri and Özcan,
2016), or by using accidental complexity analysis to both simplify and optimise
the existing design of AdapHH (Adriaensen and Nowé, 2016). In this study,
we have shown that even under a simple local search metaheuristic framework,
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the choice of move acceptance method can have a significant effect on the cross-
domain performance of such search methods; the variation in performance of
each of the move acceptance methods can even be seen across each of the prob-
lem domains despite performing parameter tuning for solving each problem.
Considering these outcomes, a potential future research direction to improve
the effectiveness of general purpose search methods should focus on improving
the move acceptance components by designing them specifically for solving the
cross-domain search problem.

Traditionally, problems are solved using a single move acceptance method
and their parameters are tuned and/or controlled for the given problem. The
results show that different problems are better solved by move acceptance meth-
ods with different classifications of the accept/reject decision nature. Based on
this, there are at least two ways in which the effectiveness of general purpose
search methods may be improved. One strategy could involve the use of multi-
stage algorithms which utilise different move acceptance methods throughout
the search. This has the advantage of being able to mix such methods which are,
with respect to our taxonomy, characteristically different. In theory, such search
methods could then use search history to adapt the search process by chang-
ing between each of them as required to effectively solve the problem in hand.
A multi-stage approach was used in (Kheiri and Özcan, 2016) employing two
move acceptance strategies; greedy and threshold acceptance. At each stage,
the greedy strategy is invoked stochastically, otherwise the threshold accepting
strategy is employed. Another possibility is to select a single move acceptance
method, or use the decisions, from a set of move acceptance methods. Previous
work has involved the mixture of move acceptance criteria. Tensor analysis, as
an advanced machine learning technique, was used in (Asta and Özcan, 2015)
to associate a set of move operators with two move acceptance methods within
a hyper-heuristic. Each move acceptance method was used in a phase based
approach where each subsequent phase employed the opposite move acceptance
method to the one currently used. Group decision making was used in (Kheiri
et al., 2016), and is a technique used to collaboratively arrive at a decision to
accept or reject a move based on several independent move acceptance methods.
Each move acceptance method within a group decision making strategy can be
assigned a weight to change the influence that each move acceptance method
has in the overall decision. Furthermore, adaptation of these weights based on
the nature of the accept/reject decision of the move acceptance methods can be
used to increase the influence that each has based on the state of the search.
These are just some of the ways in which move acceptance methods using dif-
ferent natures of accept/reject decisions can be used together under the same
search method.

In this study, we used a single point-based search framework as provided in
Algorithm 1, perturbing a solution and then making an accept/reject decision
for the new solution. While not all researchers may agree with the methodology
used in this paper, the work that is presented is still of value to the wider com-
munity since this experimentation can be generalised and extended to other local
search frameworks and their hybrids (Talbi, 2013) such as Tabu Search (Glover
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and Laguna, 2013) where the inclusion of a memory for guiding the search on
top of the different move acceptance methods can be compared. Similarly, an
Iterated Local Search framework (Lourenço et al., 2003), which perturbs and
then applies hill climbing on an incumbent solution, can be investigated using
various move acceptance methods. In their paper, Lourenço et al. (2003) discuss
the concept of applying such acceptance criteria, referring to Better, RW, and
LMSC as such strategies.

In addition to developing new move acceptance methods, another future re-
search direction for improving the effectiveness of general-purpose search meth-
ods is to further extend the definition of a hyper-heuristic to be a hyper-hyper-
heuristic (hyper2heuristic). The definition of a hyper-heuristic is “a search
method or learning mechanism for selecting or generating heuristics to solve
computationally difficult problems”. Hyper-heuristics contain a single heuris-
tic selection/generation strategy, and a single move acceptance method. A
hyper2heuristic would be a “search method or learning mechanism for select-
ing or generating the heuristic selection and move acceptance components of
a hyper-heuristic to solve computationally hard problems”. Based on our ob-
servations in this study, a search method which can select a move acceptance
method whose characteristics are appropriate for the current problem being
solved could potentially overcome the shortcomings of using a single move accep-
tance method within a hyper-heuristic. As with conventional hyper-heuristics,
there are also two types of hyper2heuristic; generation hyper2heuristics, and
selection hyper2heuristics. Since hyper2heuristics can generate or select from
hyper-heuristic components, they themselves can simultaneously embed both
generation and selection hyper-heuristics. A generation hyper2heuristic is a
heuristic that generates a heuristic selection or move acceptance component of
a hyper-heuristic. Previous work includes Hyde et al. (2009) where genetic pro-
gramming was used to evolve move acceptance methods combining accept all
moves and great deluge within hyper-heuristics. A similar method was used
in Sabar et al. (2015) which used gene expression programming. Machine learn-
ing was used in Asta and Özcan (2014) to generate different move acceptance
methods to be used with each move operator under a hyper-heuristic framework.
A selection hyper2heuristic on the other hand is a heuristic that selects from
a set of heuristic selection and move acceptance methods. To our knowledge,
such selection hyper2heuristics have not been explored and is proposed as a new
and interesting area of research with the potential to increase the effectiveness
of present generation general-purpose search methods.
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R., 2013. Hyper-heuristics: A survey of the state of the art. Journal of the
Operational Research Society 64, 1695–1724.

38



Bykov, Y., Petrovic, S., 2016. A step counting hill climbing algorithm applied
to university examination timetabling. Journal of Scheduling 19, 479–492.

Connolly, D., 1992. General purpose simulated annealing. The Journal of the
Operational Research Society 43, 495–505.

Cowling, P., Kendall, G., Soubeiga, E., 2001. A Hyperheuristic Approach to
Scheduling a Sales Summit. Springer Berlin Heidelberg, Berlin, Heidelberg.
pp. 176–190.

CRIL, 2007. Sat competition 2007 benchmark data sets.

CRIL, 2009. Sat competition 2009 benchmark data sets.

Curtois, T., 2009. Staff rostering benchmark data sets.

Curtois, T., Ochoa, G., Hyde, M., Vazquez-Rodriguez, J.A., 2010. A HyFlex
Module for the Personnel Scheduling Problem. Technical Report. School of
Computer Science, University of Nottingham.

Di Gaspero, L., Urli, T., 2012. Evaluation of a family of reinforcement learning
cross-domain optimization heuristics, in: Learning and Intelligent Optimiza-
tion. Springer Berlin Heidelberg. Lecture Notes in Computer Science, pp.
384–389.

DIMACS, 2015. 7th dimacs implementation challenge.

Dokeroglu, T., Cosar, A., 2016. A novel multistart hyper-heuristic algorithm
on the grid for the quadratic assignment problem. Engineering Applications
of Artificial Intelligence 52, 10–25.
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Appendices
A. Non-normalised Results for all Problem Instances

Table 1: Mean averages and statistical significance between each local search metaheuristic
and the best general method over 31 runs for each problem domain where the local search
metaheuristic with the best intra-domain score is stylised bold for each problem, and < (>)
is used to show that the respective method performs statistically significantly better (worse)
than the best general method using a left (right) tailed Wilcoxon signed rank test with CI =
95%, and ≤ (≥) is used when there is no statistically significant difference but shows that the
respective method performs better (worse) compared to their mean results. ≡ is used when
the mean of both algorithms are exactly the same.

Bin Packing (BP)
Instance 1 Instance 7 Instance 9 Instance 10 Instance 11

IE 0.0044 - 0.0080 - 0.0137 - 0.1088 - 0.0244 -
AILLA 0.0175 > 0.0304 > 0.0234 > 0.1126 > 0.0374 >
TA 0.0324 > 0.0680 > 0.0368 > 0.1258 > 0.0584 >
GD 0.0104 > 0.0192 > 0.0178 > 0.1089 > 0.0303 >
AILTA 0.0178 > 0.0215 > 0.0219 > 0.1128 > 0.0362 >
NA 0.0577 > 0.1820 > 0.0368 > 0.1272 > 0.0656 >
SA 0.0328 > 0.0597 > 0.0419 > 0.1221 > 0.0610 >
SARH 0.0349 > 0.0687 > 0.0352 > 0.1235 > 0.0619 >

Flow Shop (FS)
Instance 1 Instance 3 Instance 8 Instance 10 Instance 11

IE 6279.00 - 6345.90 - 26804.32 - 11385.68 - 26638.87 -
AILLA 6271.19 ≤ 6356.48 > 26800.03 ≤ 11400.23 ≥ 26646.26 ≥
TA 6276.71 ≤ 6355.81 > 27302.45 > 11519.26 > 27075.61 >
GD 6277.90 ≤ 6355.42 > 26833.45 > 11411.94 > 26690.74 >
AILTA 6365.26 > 6406.00 > 27273.94 > 11595.32 > 27045.90 >
NA 6576.29 > 6611.55 > 27303.77 > 11768.61 > 27076.84 >
SA 6282.61 ≥ 6347.32 ≥ 26815.16 > 11406.13 > 26666.61 >
SARH 6274.97 ≤ 6354.87 ≥ 26858.87 > 11418.10 > 26682.16 >

Personnel Scheduling (PS)
Instance 5 Instance 8 Instance 9 Instance 10 Instance 11

IE 1223.42 > 60041.94 > 99145.97 > 3036.16 > 4550.13 >
AILLA 928.87 > 56430.29 > 97238.45 > 2186.68 > 1884.45 >
TA 49.71 - 49444.94 - 45444.84 - 1627.03 - 494.65 -
GD 577.74 > 56578.71 > 69897.03 > 2019.19 > 473.61 ≤
AILTA 1207.00 > 60041.94 > 99145.97 > 3036.16 > 4550.13 >
NA 47.77 < 48672.52 < 51132.55 > 1612.23 ≤ 455.26 <
SA 49.71 ≡ 48566.10 < 51855.35 > 1655.48 > 474.61 ≤
SARH 50.42 ≥ 49376.87 ≤ 51798.97 > 1684.03 > 472.61 <

Maximum Satisfiability (SAT)
Instance 3 Instance 4 Instance 5 Instance 10 Instance 11

IE 30.10 > 40.42 > 54.94 > 27.65 > 12.81 >
AILLA 6.77 > 6.23 > 14.42 > 4.87 < 7.77 <
TA 30.10 > 40.42 > 54.94 > 27.65 > 12.81 >
GD 7.45 > 5.45 > 8.19 ≤ 10.03 > 9.23 >
AILTA 30.10 > 40.42 > 54.94 > 27.65 > 12.81 >
NA 171.74 > 180.61 > 255.06 > 237.03 > 82.90 >
SA 7.81 > 7.65 > 13.74 > 8.87 ≥ 8.26 ≤
SARH 5.87 - 3.97 - 9.61 - 8.68 - 8.35 -

TSP
Instance 0 Instance 2 Instance 6 Instance 7 Instance 8

IE 61397.45 > 8015.58 > 59660.40 > 76636.78 < 2.503×107 <
AILLA 57731.16 > 7765.92 < 61460.80 > 78715.32 > 2.506×107 >
TA 59083.71 > 8014.17 > 61878.83 > 79086.41 > 2.507×107 >
GD 56722.47 - 7810.23 - 59534.18 - 76675.67 - 2.504×107 -
AILTA 57590.58 > 8274.93 > 61871.75 > 79086.82 > 2.507×107 >
NA 63039.82 > 8279.75 > 61888.08 > 79086.89 > 2.507×107 >
SA 58777.11 > 7936.98 > 59621.38 > 76982.33 > 2.506×107 >
SARH 56162.12 ≤ 8253.69 > 61888.08 > 79086.89 > 2.507×107 >
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VRP
Instance 1 Instance 2 Instance 5 Instance 6 Instance 9

IE 44486.12 > 31117.25 > 580546.60 > 326023.29 > 390515.55 >
AILLA 44484.07 > 29697.39 ≥ 580543.39 > 325751.88 ≥ 390286.71 >
TA 30602.21 - 28943.13 - 316610.64 - 324344.30 - 389129.20 -
GD 44484.32 > 29046.09 ≥ 580544.25 > 325173.72 ≥ 389654.16 >
AILTA 44448.59 > 29601.24 ≥ 382948.27 > 324492.35 < 389052.44 <
NA 30941.72 ≥ 28782.94 ≤ 341398.15 > 324202.99 < 388681.77 <
SA 30565.62 ≤ 29523.78 ≥ 347218.93 > 324710.35 ≥ 389054.67 <
SARH 30531.03 ≤ 29117.72 ≥ 335212.79 ≥ 323792.05 < 388615.01 <

KP
Instance 0 Instance 1 Instance 3 Instance 5 Instance 8

IE -96693.00 > -298587.00 > -192251.00 > -1225473.00 > -770658.00 >
AILLA -96693.00 > -298587.00 > -192251.00 > -1225473.00 > -770658.00 >
TA -97588.19 > -641594.55 > -315430.13 > -1650922.19 > -1051084.32 >
GD -96693.00 > -298587.00 > -192251.00 > -1225473.00 > -770658.00 >
AILTA -96693.00 > -298587.00 > -192251.00 > -1446536.94 > -817592.81 >
NA -97487.03 > -1002562.97 > -401438.87 > -3260820.55 > -1400554.52 <
SA -97987.32 < -1162161.68 > -385713.74 > -3682250.84 > -1291521.26 >
SARH -97771.35 - -1196733.74 - -403552.81 - -3971527.97 - -1357087.48 -

MAC
Instance 0 Instance 2 Instance 5 Instance 7 Instance 9

IE -3.524×107 > -3009.71 > -13039.13 > -9916.26 > -2932.06 >
AILLA -3.987×107 > -3052.77 > -13227.35 > -10135.10 > -2980.84 >
TA -3.012×107 > -2873.42 > -12347.03 > -9141.45 > -2105.68 >
GD -4.144×107 - -3059.23 - -13356.32 - -10276.58 - -2996.65 -
AILTA -4.113×107 > -3059.16 ≥ -13301.52 > -10205.10 > -2965.48 >
NA -3.007×107 > -2868.87 > -12349.77 > -9142.23 > -2103.55 >
SA -4.115×107 > -3053.90 > -13279.52 > -10164.16 > -2964.77 >
SARH -4.154×107 < -3059.90 < -13355.03 < -10261.48 > -2994.13 ≥

QAP
Instance 0 Instance 6 Instance 7 Instance 8 Instance 9

IE 154560.39 > 5.146×108 > 4.495×107 > 8314086.58 > 275459.68 >
AILLA 152861.16 > 5.113×108 > 4.486×107 > 8207670.32 > 273895.03 >
TA 155877.23 > 5.108×108 > 4.489×107 > 8532912.84 > 280221.16 >
GD 152202.39 > 5.009×108 ≥ 4.489×107 > 8147444.32 > 273221.61 >
AILTA 153472.71 > 5.034×108 > 4.503×107 > 8259894.32 > 274763.87 >
NA 168563.55 > 5.983×108 > 4.793×107 > 9280370.39 > 289552.26 >
SA 152504.19 > 5.076×108 > 4.490×107 > 8203339.48 > 273730.26 >
SARH 152162.97 - 5.007×108 - 4.485×107 - 8141744.77 - 273115.23 -
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B. Local Search Metaheuristic Abbreviations

Table 2: Key of local search metaheuristic abbreviations

Abbreviation Name
AA Adaptive Acceptance
AILLA Adaptive Iteration Limited List-based Threshold Accepting
AILLA-F Adaptive Iteration Limited List-based Threshold Accepting

with a Fixed Limit
AILTA Adaptive Iteration Limited Threshold Accepting
AM All Moves
BATA Backtracking Adaptive Threshold Accepting
EGD Extended Great Deluge
EMC Exponential Monte Carlo
EMCQ Exponential Monte Carlo with Counter
FD Flex Deluge
GD Great Deluge
IE Improving or Equals
ILTA Iteration Limited Threshold Accepting
LA Late Acceptance
LBTA List-based Threshold Accepting
LMC Linear Monte Carlo
NA Näıve Acceptance
NLGD Non-linear Great Deluge
OI Only Improving (sometimes referred to as Improving Only)
RRT Record-to-record Travel (sometimes stylised RTR)
SA Simulated Annealing
SARH Simulated Annealing with Reheating
SCHC Step Counting Hill Climbing
TA Threshold Accepting
VFR Very Fast Simulated Re-annealing
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