

This is an ACCEPTED VERSION of the following published document:

Doval, Y., Vilares, M. and Vilares, J. (2018) ‘On the performance of phonetic
algorithms in microtext normalization’, Expert Systems with Applications, 113, pp.
213–222. doi:10.1016/j.eswa.2018.07.016.

Link to published version: https://doi.org/10.1016/j.eswa.2018.07.016

General rights:

© 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
https://creativecommons.org/licenses/by-nc-nd/4.0/. This version of the article: Doval,
Y., Vilares, M. and Vilares, J. (2018) ‘On the performance of phonetic algorithms in
microtext normalization’ has been accepted for publication in: Expert Systems with
Applications, 113, pp. 213–222. The Version of Record is available online at
https://doi.org/10.1016/j.eswa.2018.07.016.

https://doi.org/10.1016/j.eswa.2018.07.016
https://doi.org/10.1016/j.eswa.2018.07.016

On the performance of phonetic algorithms in
microtext normalization

Yerai Dovala,b, Manuel Vilaresa, Jesús Vilaresb,∗

aUniversidade de Vigo
Grupo COLE, Departamento de Informática, Escola Superior de Enxeñaŕıa Informática

Campus As Lagoas, 32004 – Ourense (Spain)
bUniversidade da Coruña

Grupo LYS, Departamento de Computación, Facultade de Informática
Campus de Elviña, 15071 – A Coruña (Spain)

Abstract

User–generated content published on microblogging social networks consti-
tutes a priceless source of information. However, microtexts usually deviate
from the standard lexical and grammatical rules of the language, thus making
its processing by traditional intelligent systems very difficult. As an answer, mi-
crotext normalization consists in transforming those non–standard microtexts
into standard well–written texts as a preprocessing step, allowing traditional
approaches to continue with their usual processing. Given the importance of
phonetic phenomena in non–standard text formation, an essential element of
the knowledge base of a normalizer would be the phonetic rules that encode
these phenomena, which can be found in the so–called phonetic algorithms.

In this work we experiment with a wide range of phonetic algorithms for the
English language. The aim of this study is to determine the best phonetic algo-
rithms within the context of candidate generation for microtext normalization.
In other words, we intend to find those algorithms that taking as input non–
standard terms to be normalized allow us to obtain as output the smallest possi-
ble sets of normalization candidates which still contain the corresponding target
standard words. As it will be stated, the choice of the phonetic algorithm will
depend heavily on the capabilities of the candidate selection mechanism which
we usually find at the end of a microtext normalization pipeline. The faster it
can make the right choices among big enough sets of candidates, the more we
can sacrifice on the precision of the phonetic algorithms in favour of coverage in
order to increase the overall performance of the normalization system.

Keywords: microtext normalization, phonetic algorithm, fuzzy matching,
Twitter, texting

∗Corresponding author: tel. +34 981 167 000 ext. 1364, fax +34 981 167 160
Email addresses: yerai.doval@uvigo.es, yerai.doval@udc.es (Yerai Doval),

vilares@uvigo.es (Manuel Vilares), jesus.vilares@udc.es (Jesús Vilares)

Preprint submitted to Expert Systems with Applications July 5, 2018

1. Introduction

With the popularization of mobile phones and Internet social networks, the
use of electronic text messaging, or texting, has reached astonishing figures such
as more than 8,000 tweets produced per second.1 This type of communications
is usually performed in real time and over platforms which impose limits on
the length of the messages, as in the case of Twitter or the traditional SMS
system. Because of this, the writing style of these messages clearly differs from
normal standards and phenomena such as word shortenings, contractions and
abbreviations are commonly used both to gain writing speed and circumvent
length limitations. Thus, the original well–written in–vocabulary–word (IV) is
replaced by an out–of–vocabulary–word (OOV), as in the pairs m8–mate, bc–
because, or imo–in my opinion, for example.2 In a similar way, phonetic–
and graphemic–based substitutions of characters are also often abused to show
a more personal or customized way of writing, as in the pairs dawg–dog, u–
you or sum–some, and the pairs 5o–so, 0kay–okay or th3–the, respectively.
Moreover, even in the case of messaging platforms where length restrictions do
not actually apply (e.g. WhatsApp), it is also common to see a writing style
which tries to better reflect the feelings of the writer; for example, by using
character repetitions to express emphasis, as in noooo–no, dooooo it–do it or
dammmmmn–damn. In general, these deviations from standard writing rules are
included under the general concept of texting phenomena (Thurlow, 2003).

At the same time, the vast amount of data provided by social media in gen-
eral and microblogging social networks in particular, constitutes an invaluable
source of user–generated content of unquestionable utility for very diverse pur-
poses: opinion mining (Vilares et al., 2017), reputation surveillance (Law et al.,
2017), political analysis (Vilares et al., 2015), health surveillance (Karisani and
Agichtein, 2018), crime prediction (Gerber, 2014) or disaster management (Rudra
et al., 2016), to name just a few. However, the processing and analysis of such
a huge amount of data is unfeasible unless intelligent automated systems are
used, which are capable of dealing with this type of content by making use of
Natural Language Processing (NLP) techniques and resources (Jurafsky and
Martin, 2009). Unfortunately, most of the NLP tools and resources available
were originally designed to deal with standard text. Consequently, texts af-
fected by texting phenomena cannot be reliably processed using such automated
tools (Gimpel et al., 2011; Ritter et al., 2011; Foster et al., 2011). As a result,
two possibilities emerge in order to process this kind of texts (Eisenstein, 2013):
tool adaptation, in which traditional methods which work on standard texts are
reimplemented to account for the texting phenomena in non–standard texts,
and text normalization.

In this work we follow the latter proposal, the so-called (micro)text normal-
ization, where, given a written text affected by texting phenomena, the goal is to

1According to http://www.internetlivestats.com/one-second/ on July 2018.
2From now on, we will use this format OOV–IV to represent those pairs formed by an

OOV and its corresponding well-written IV.

2

http://www.internetlivestats.com/one-second/

obtain an equivalent text that better follows the writing rules of the correspond-
ing standard language. A well-established approach is based on performing nor-
malization in two phases (Han and Baldwin, 2011; Saralegi and San Vicente,
2013; Schulz et al., 2016): the first step consists of generating a set of candidate
terms (i.e. possible IVs) for each input OOV; next, selection mechanisms are
applied in order to rank the candidate terms and find the most likely sequence of
those. Thus, the candidate generation process is crucial in this approach; there
is no need to say that if the right IV does not appear between the candidates
generated, it cannot be selected in the second step.

Moreover, during the candidate generation step it is common to resort to
mechanisms that exploit similarities between those words in the input and those
in a dictionary of the language in order to find possible candidates. Spell check-
ers such as the well–known aspell (Atkinson, 2011) implement some of these
mechanisms and could be used in this scenario. Unfortunately, as can be seen in
the previous texting examples, it is not uncommon for their authors to abuse the
phonetic features of their language in order to shorten or customize the spelling
of words. For instance, to an English speaker, the pairs sumone–someone or
u–you sound the same or quite similarly, which is also the case of the empha-
sis example dooooo it when we do not take into account the prolonged /u/.
Therefore, it would be highly desirable to count on a mechanism which could
provide us with this kind of phonetic–based matchings, and this is precisely the
purpose of the so–called phonetic algorithms (Odell and Russell, 1918). Given
an input written word, these algorithms obtain phonetic codes that approxi-
mately indicate the way it is pronounced in a particular language. They can
thus be used to match together words that differ in their written form but not
that much in their pronunciation, as in the case of our previous examples.

However, contrary to expectations, a strict phonetic matching approach
based on grapheme–to–phoneme transcription (Bisani and Ney, 2008) using, for
example, International Phonetic Alphabet (IPA) transcriptions (Jurafsky and
Martin, 2009, Ch. 7 “Phonetics”), would not be useful in this context, as its
output codes would be too specific for our needs. For instance, the processing
of beat–bit or but–bought would result in slightly different codes account-
ing for their slightly different pronunciations (/bi:t/–/bIt/ and /b2t/–/bO:t/,
respectively),3 thus preventing their matching. So, in the context of micro-
text normalization, the use of a fuzzy phonetic–based matching seems a better
choice.

Surprisingly, despite the importance of such phonetic processing of micro-
texts (Kobus et al., 2008; Beaufort et al., 2010; Xue et al., 2011; Baldwin et al.,
2013; Schulz et al., 2016) and the existence of many phonetic algorithms publicly
available for the English language, we have also noticed the lack of any exten-
sive comparison study of the performance of these algorithms for our problem
domain. In this context we have decided to conduct our own study to compare
the performance of several phonetic algorithms on this task. Our main objective

3This kind of word pairs are formally known as minimal pairs.

3

is to facilitate future developers and researchers the choice of the phonetic algo-
rithm to be used in a particular microtext normalization setup. By improving
the process of normalization candidate generation, the potential effectiveness of
the ulterior selection process and, consequently, that of the whole normalization
process should be notably increased. As a result, the input noise introduced
into subsequent information processing systems should be greatly reduced.

Furthermore, we can model this two–step normalization procedure as an
expert or intelligent system whose knowledge base specifies those transcription
rules required to normalize non–standard texts. Now, if we take into consid-
eration the importance of phonetic–based phenomena in this domain, the need
for including phonetic rules in our normalization setup should be clear. In con-
clusion, a study such as the one presented here will be highly valuable when
constructing a microtext normalization system, as it will guide the process of
populating its knowledge base.

It should be noted that, although most of the research work on text normal-
ization has been focusing on English (Baldwin et al., 2015; Han and Baldwin,
2011; Xue et al., 2011), there is also interest in applying it to other languages.
In the European context, it is worth mentioning French (Kobus et al., 2008;
Beaufort et al., 2010), Dutch (Schulz et al., 2016) or Spanish, the latter be-
ing a notable case thanks to the TweetNorm Workshop (Alegria et al., 2015,
2013). Additionally, other languages such as Chinese (Wang and Ng, 2013), Ara-
bic (Duwairi et al., 2014), or even low–resource languages like Turkish (Eryiǧit
and Torunoǧlu-Selamet, 2017) or Punjabi (Kaur and Singh, 2015) have been
also receiving attention. With this in mind, the decision of using English in our
experiments was mostly due to the public availability of both evaluation cor-
pora (Baldwin et al., 2015) and ready–to–use implementations for a wide range
of phonetic algorithms (see Section 3).

The structure of the rest of this article is as follows. Firstly, Section 2 intro-
duces the reader to the phonetic algorithms to be analysed and how they work,
while Section 3 deals with their implementation. In Section 4, after describing
the methodology followed, the results of our experiments are presented and dis-
cussed. Next, previously related work is introduced in Section 5 and, finally,
Section 6 presents our conclusions and future work.

2. Phonetic algorithms

Being able to match strings of characters which are superficially different is
a key aspect of a wide range of systems such as search engines, spell checkers or,
as in our case, microtext normalizers. This usually has to do with the tendency
of human actors to misspell words or, in general, deviate from standard writing
rules, both unintentionally and intentionally. These deviations occur due to
particular similarities between words, such as their spellings differing in just
one character, having the same long prefix or being pronounced in almost the
same way. Thus, it would be of great interest to be able to match strings which
share a particular set of features, and not (only) the totality of their constituent

4

characters. These types of partial matchings are included in what is called fuzzy
matching.

Any regular spell checker, such as aspell (Atkinson, 2011), is able to per-
form fuzzy matching to obtain the spelling candidate corrections for an input
word. In this case, those matchings are usually determined by some distance
measure being lower than a given threshold value. The most widely used dis-
tance metric is the Levenshtein distance, commonly known as edit distance,
which counts the number of insertions, deletions, substitutions or transposi-
tions of characters that would need to be applied to one word to be transformed
into another (Levenshtein, 1966).

A microtext normalization system operates in a similar way, although the
candidate generation step also needs to account for texting phenomena, which
cannot be handled by traditional edit–distance based approaches, as in the case
of nuff–enough, da–the or str8–straight, for example. Hence, the phonetic
processing of microtexts turns out to be of key importance in order to obtain
meaningful sets of normalization candidates (Beaufort et al., 2010). This task
can be accomplished through the use of so–called phonetic algorithms.

A phonetic algorithm transforms an input written word into a phonetic code
which roughly indicates the way that term is pronounced in a particular lan-
guage. It is important to highlight the approximate nature of these codes, as
its purpose is to match words with similar pronunciations.

This work studies the most popular state–of–the–art phonetic algorithms
designed for the English language in the context of the microtext normalization
task.4 It is worth noting that most of them were originally designed for the
task of personal–name matching, although it is fair to assume that the phonetic
phenomena initially considered would also be useful in matching other types of
similarly sounding words. Consequently, it will be interesting to analyse the
performance of these algorithms in the task of microtext normalization when
generating normalization candidates.

Next, the different phonetic algorithms considered for this study are intro-
duced. The most relevant features of each algorithm, their variations and the
relations existing between them are detailed. Examples of their output encod-
ings are also shown in Tables 1 and 2 for comparison. Notice that we have
tried to be concise, keeping in mind that the objective of this work is not to
study the algorithms themselves but to analyze their behaviour in the context
of microtext normalization. Should the reader wish to go into detail about any
particular algorithm, appropriate references have been included.

2.1. Soundex

Considered the first phonetic algorithm in history, the well–known and widely
used Soundex algorithm (Odell and Russell, 1918; Odell, 1956) mainly encodes
the consonants of an input word using numerical digits, but also encodes both

4It must be remembered that these algorithms are language–dependent.

5

a
lg
o
r
it
h
m

n
u
f
f

e
n
o
u
g
h

c
n
t
r
t
k
x
n

c
o
n
t
r
a
d
i
c
t
i
o
n

S
o
u

n
d
ex

N
1
0
0

E
5
2
0

C
5
3
6

C
5
3
6

R
ef

.
S

o
u

n
d
ex

N
8
0
2

E
0
8
0
4
0

C
3
8
6
9
6
3
5
8

C
3
0
8
6
9
0
6
0
3
6
0
8

A
lp

h
a

S
IS

0
2
8
0
0
0
0
0
0
0
0
0
0
0

1
2
7
0
0
0
0
0
0
0
0
0
0
0

0
7
2
1
4
1
7
2
0
0
0
0
0
0
,

0
6
2
1
4
1
7
2
0
0
0
0
0
0
,

0
7
2
1
4
1
6
7
2
0
0
0
0
0
,

0
6
2
1
4
1
6
7
2
0
0
0
0
0

0
7
2
1
4
1
7
1
2
0
0
0
0
0
,

0
6
2
1
4
1
7
1
2
0
0
0
0
0
,

0
7
2
1
4
1
6
1
2
0
0
0
0
0
,

0
6
2
1
4
1
6
1
2
0
0
0
0
0

N
Y

S
II

S
N
A
F

E
N
A
G

C
N
T
R
T
C

C
A
N
T
R
A

R
ev

.
N

Y
S

II
S

N
A
F

E
N
A
G

C
N
T
R
T
C
X
N

C
A
N
T
R
A
D
A
C
T
A
N

M
R

A
N
F

E
N
G
H

C
N
T
K
X
N

C
N
T
C
T
N

M
et

a
p
h
o
n

e
N
F

E
N
K
H

K
N
T
R
T
K
X
N

K
N
T
R
T
K
X
N

D
.

M
et

a
p
h
o
n

e
N
F
,
N
F

A
N
K
,
A
N
K

K
N
T
R
,
K
N
T
R

K
N
T
R
,
K
N
T
R

D
–
M

S
o
u

n
d
ex

6
7
0
0
0
0

0
6
5
0
0
0

4
6
3
9
3
5

4
6
3
9
3
4

C
a
ve

rp
h
o
n

e
1

N
F
1
1
1
1

A
N
F
1
1
1

K
N
T
T
K
N

K
N
T
R
T
K

C
a
ve

rp
h
o
n

e
2

N
F
1
1
1
1
1
1
1
1

A
N
F
1
1
1
1
1
1
1

K
N
T
T
K
N
1
1
1
1

K
N
T
R
T
K
S
N
1
1

B
ei

d
er

–
M

o
rs

e
n
u
f

i
i
n
D
g
,
i
i
n
o
g
,
i
i
n
u
g
,
i
n
D
g
,

i
n
D
g
x
,
i
n
a
g
,
i
n
o
g
,
i
n
o
g
x
,

i
n
u
g
,
i
n
u
g
x

k
n
t
r
t
g
z
n
,
k
n
t
r
t
k
z
n
,

t
z
n
t
r
t
g
z
n
,
t
z
n
t
r
t
k
z
n

k
o
n
t
r
a
d
i
k
t
i
o
n
,
k
o
n
t
r
a
d
i
k
t
n
,

k
o
n
t
r
a
d
i
t
s
t
i
o
n
,
k
o
n
t
r
o
d
i
k
t
i
o
n
,

k
o
n
t
r
o
d
i
k
t
n
,
k
o
n
t
r
o
d
i
t
s
t
i
o
n
,

k
u
n
t
r
a
d
i
k
t
i
o
n
,
k
u
n
t
r
a
d
i
t
s
t
i
o
n
,

k
u
n
t
r
o
d
i
k
t
i
o
n
,
k
u
n
t
r
o
d
i
t
s
t
i
o
n
,

t
s
o
n
t
r
a
d
i
k
t
i
o
n
,
t
s
o
n
t
r
a
d
i
t
s
t
i
o
n
,

t
s
o
n
t
r
o
d
i
k
t
i
o
n
,
t
s
o
n
t
r
o
d
i
t
s
t
i
o
n
,

t
s
u
n
t
r
a
d
i
k
t
i
o
n
,
t
s
u
n
t
r
a
d
i
t
s
t
i
o
n
,

t
s
u
n
t
r
o
d
i
k
t
i
o
n
,
t
s
u
n
t
r
o
d
i
t
s
t
i
o
n

F
.

S
o
u

n
d
ex

N
1

E
5

C
5
3
6
3
7
5

K
5
3
6
3
9
5

L
ei

n
N
4
0
0

E
2
5
0

C
2
1
3

C
2
1
3

O
n

ca
N
1
0
0

E
5
2
0

C
5
3
6

C
5
3
6

P
h
o
n

ex
N
1

A
5
2

C
5
3
2
5

C
5
3
6
3
2
3
5

P
h
o
n

ix
N
5
,
7

V
5
,
7

C
2
5
3
6
3
2
,
2
8
5

K
2
5
3
6
3
2
3
,
5

P
h
o
n

ix
C

o
m

m
N
7
0
0

v
7
0
0

C
5
3
6

K
5
3
6

R
og

er
R

oo
t

0
2
8
0
0

1
2
7
0
0

0
7
2
1
4

0
7
2
1
4

S
ta

tC
a
n

N
F

E
N
G
H

C
N
T
R

C
N
T
R

E
u

d
ex

6
4
8
5
1
8
3
4
6
3
4
1
3
5
1
4
9
2

1
5
5
6
4
4
4
0
3
1
2
4
9
4
4
2
6
1
1
6

4
3
7
4
4
4
6
9
1
6
2
2
4
6
2
4
8
2

1
5
9
3
6
0
6
8
6
4
9
3
3
8
1
7
3
7
3

Table 1: Example encodings for each of the phonetic algorithms analysed (1): nuff–enough
and cntrtkxn–contradiction

6

a
lg
o
r
it
h
m

d
a

t
h
e

o
n
e
z

o
n
e
s

S
o
u

n
d
ex

D
0
0
0

T
0
0
0

O
5
2
0

O
5
2
0

R
ef

.
S

o
u

n
d
ex

D
6
0

T
6
0

O
0
8
0
5

O
0
8
0
3

A
lp

h
a

S
IS

0
1
0
0
0
0
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0
0
0
0
0
0

1
2
0
0
0
0
0
0
0
0
0
0
0
0

1
2
0
0
0
0
0
0
0
0
0
0
0
0

N
Y

S
II

S
D

T
H

O
N

O
N

R
ev

.
N

Y
S

II
S

D
T

O
N

O
N

M
R

A
D

T
H

O
N
Z

O
N
S

M
et

a
p
h
o
n

e
T

0
O
N
S

O
N
S

D
.

M
et

a
p
h
o
n

e
T
,
T

0
,
T

A
N
S
,
A
N
S

A
N
S
,
A
N
S

D
–
M

S
o
u

n
d
ex

3
0
0
0
0
0

3
0
0
0
0
0

0
6
4
0
0
0

0
6
4
0
0
0

C
a
ve

rp
h
o
n

e
1

T
1
1
1
1
1

T
1
1
1
1
1

A
N
S
1
1
1

A
N
S
1
1
1

C
a
ve

rp
h
o
n

e
2

T
A
1
1
1
1
1
1
1
1

T
1
1
1
1
1
1
1
1
1

A
N
S
1
1
1
1
1
1
1

A
N
S
1
1
1
1
1
1
1

B
ei

d
er

–
M

o
rs

e
d
a
,
d
i
,
d
o

t
,
t
i

Y
n
i
s
,
Y
n
i
t
s
,
o
n
i
,
o
n
i
S
,

o
n
i
s
,
o
n
i
t
s
,
u
n
i
s

Y
n
i
s
,
o
n
i
,
o
n
i
S
,

o
n
i
s
,
u
n
i
s

F
.

S
o
u

n
d
ex

D
T

O
5
9

O
5
9

L
ei

n
D
0
0
0

T
0
0
0

O
2
5
0

O
2
5
0

O
n

ca
D
0
0
0

T
0
0
0

O
5
0
0

O
5
0
0

P
h
o
n

ex
D

T
A
5
2

A
5

P
h
o
n

ix
D
,
3

T
,
3

V
5
,
8

V
,
5
8

P
h
o
n

ix
C

o
m

m
D
0
0
0

T
0
0
0

v
8
0
0

v
8
0
0

R
og

er
R

oo
t

0
1
0
0
0

0
1
0
0
0

1
2
0
0
0

1
2
0
0
0

S
ta

tC
a
n

D
T
H

O
N
Z

O
N
S

E
u

d
ex

8
6
4
6
9
1
1
2
8
4
5
5
1
3
5
2
3
2

1
0
0
8
8
0
6
3
1
6
5
3
0
9
9
2
1
2
8

1
0
6
6
4
5
2
3
9
1
7
6
1
4
5
1
4
3
2
4

1
0
6
6
4
5
2
3
9
1
7
6
1
4
5
1
4
1
9
6

Table 2: Example encodings for each of the phonetic algorithms analysed (2): da–the and
onez–ones.

7

consonants and vowels in the first position using that same character. The differ-
ent digits used are related to the place of articulation of the consonant (Jurafsky
and Martin, 2009, Ch. 7: “Phonetics”), so the labial consonants b, f, p and v

are encoded as the number 1, for example. Before any other rule is applied,
the algorithm checks for character sequences represented by the same number
and chooses either to retain the first of those characters or the full sequence
depending on other characters in the context. Its codes have a fixed length of
four characters, padded with trailing 0’s when needed.

Soundex conforms the basis for many other modern phonetic algorithms.
These newer algorithms mostly try to address its poor precision, as in the refined
version of the original algorithm (Ref. Soundex) available in ASF (2017), which
is also tested here. This revised version does not impose a length limit on the
encodings and takes vowels more into consideration for the encoding.

2.2. IBM Alpha Search Inquiring System

Popularly known as Alpha SIS (Moore, 1977), this algorithm uses two differ-
ent conversion tables, one for the first characters of the input word and the other
for the rest. The encodings are conformed by a fixed number of 14 numerical
digits, appending trailing 0’s as padding for shorter words. If two characters
with the same phonetic code are adjacent, only the first one will be used, but
a third character would be retained. Alpha SIS also focuses on the encoding of
consonantal sounds, although vowels are encoded if appearing at the beginning
of a word. It also may return multiple alternative encodings as output.

2.3. New York State Identification and Intelligence System

Commonly known as NYSIIS (Taft, 1970), its encoding procedure makes use
of a small letter alphabet instead of numerical digits. Its more complex rule-
set with respect to the Soundex algorithm allows for the processing of notable
character n–grams such as sch or rd, performing different actions depending on
their context characters being vowels or not, and on characters being at the end
of the word. The first character of the word is maintained as–is while the rest
of the vowels are replaced with the letter a. Finally, the code is truncated to its
first six characters.

A revised version of this algorithm (Rev. NYSIIS), which adds new rules in
order to obtain higher precision codes, is also available (Kell, 1988).

2.4. Match Rating Approach

Usually referred to as MRA for short, in this case we are not only talking
about a phonetic algorithm but also about a particular comparison scheme for
the phonetic codes (Moore, 1977). The encoding rules are quite simple: delete
all vowels —except the first one if the word begins with it—, remove character
repetitions and reduce the length of the code to six by using the first and
last three characters only. However, the complexity of the system lies in the
comparison rules. For encoded strings with a length difference less than three, a
matching threshold value is first calculated using a table. Then, using a forward

8

and backward pass over the codes of the strings to be compared, the number of
distinct characters between them is obtained. Finally, the encoded strings are
considered similar depending on this number being equal or greater than the
given threshold value.

2.5. Metaphone

Widely–used, the Metaphone algorithm is employed in the aspell spell
checker (Philips, 1990). Its set of contextual rules maps between n–grams of
characters from the source to n–grams of characters from an alphabet of sixteen
consonantal symbols. Again, the main focus of this algorithm is on encoding
consonantal sounds, while vowels are included only if appearing in the first
position of the word. No limit on code length is imposed this time.

2.6. Double Metaphone

With respect to the original Metaphone, the Double Metaphone algorithm
(D. Metaphone) takes into account several spelling peculiarities from different
languages, including English, and outputs two alternative encodings of the input
word (Philips, 2000).

Although an even newer iteration in the Metaphone family exists, named
Metaphone 3, unfortunately its source code is not freely available and for this
reason has not been included in this study.

2.7. Daitch-Mokotoff Soundex

The so–called Daitch–Mokotoff Soundex algorithm (D–M Soundex) consti-
tutes an improvement on the original Soundex seeking to improve its precision
when dealing with Slavic and Yiddish surnames (Mokotoff, 2007). The most
notable differences with the original algorithm are the length of the codes, up
to six characters long; the first character of the word being encoded as the rest,
handling some specific character n–grams as a unit; and, lastly, the possibility
of outputting multiple possible codes instead of a single one.

2.8. Caverphone

Designed by Hood (2002) to match common names from New Zealand, this
algorithm (Caverphone 1) performs recursive substitutions and deletions on the
original word following a set of rules mostly dealing with character n–grams. In
its last steps, it appends a padding of 1’s to the code to finally trim its length
down to six characters, which is the fixed length for all codes.

Hood (2004) revised his algorithm later (Caverphone 2) by adding a few
extra rules and increasing the length of the encodings to ten characters.

9

2.9. Beider–Morse

The main goal of the Beider–Morse algorithm (Beider, 2008) is to reduce the
large amount of false positives usually returned by Soundex. This problem is
managed by first determining the language of the input text so that a particular
set of rules can be used accordingly. If the language cannot be determined, a
generic set of rules is applied instead. A set of common rules is also applied after
such language–specific or generic rules. These common rules account for final
devoicing and regressive assimilation of consonants. Moreover, the alphabet of
this system is based on the IPA (Jurafsky and Martin, 2009, Ch. 7 “Phonetics”),
which is then simplified in order to merge together symbols with very similar
sounds and to make it easier to write the codes using a standard keyboard.
Finally, as with other improvements on the Soundex algorithm, it takes into
account frequent character n–grams, code length is not limited, has a better
support for vowels and outputs multiple possible encodings.

2.10. Fuzzy Soundex

This variation of the Soundex algorithm proposed by Holmes and McCabe
(2002) and named Fuzzy Soundex (F. Soundex), employs two mapping tables
in two subsequent stages. In the first, a table with mappings between character
n–grams is used. Then, for the second stage, another table with mappings
between individual characters and numerical digits is used to obtain the final
output code, which is not restricted in length.

2.11. Lein

A simple variation of the Soundex, the Lein algorithm differs from the orig-
inal one only in its conversion table (Lynch and Arends, 1977).

2.12. Onca

The Onca algorithm (Gill and Baldwin, 1987; Gill et al., 1993) merely con-
sists of a two–step application of the NYSIIS and the Soundex algorithms pre-
viously described in Sections 2.3 and 2.1, respectively. According to its authors,
the new algorithm overcomes the low precision of pure Soundex while retaining
its 4–character format.

2.13. Phonex

Phonex is a Soundex–like algorithm which aims for a greater coverage of
common orthographic variations (Lait and Randell, 1996). It is also influenced
by the Metaphone method, hence its name. After removing trailing s characters,
it uses two sets of rules: one for encoding leading characters and the other for
the rest of the word. As in the original Soundex, 4–character codes are obtained
as output.

10

2.14. Phonix

Not to be confused with the previous Phonex algorithm, there are two vari-
ants or interpretations of the Phonix algorithm. Its original interpretation
(Phonix), described by Gadd (1988, 1990), specifies a set of rules to encode
the input and target words as well as to obtain a matching code, called ending-
sound, for each one of them. It then specifies another set of matching rules
regarding the word encodings and ending–sounds previously obtained, which
allows for the distinction between three different categories of matches: most–
likely, less–likely and least–likely matches (to be referred to in this work as
Phonixmost, Phonixless and Phonixleast, respectively). However, the common
interpretation of the algorithm (Phonix Comm) skips the part concerning the
ending–sound and operates in a similar way to the original Soundex algorithm.

2.15. Roger Root

The Soundex–like Roger Root algorithm (Lynch and Arends, 1977) produces
5–numerical codes using two conversion tables: one for the first characters of a
word and the second one for the rest.

2.16. Census Modified Statistics Canada

Commonly known as StatCan for short, it is a very simple phonetic algo-
rithm which preserves the first characters, deletes the remaining vowels and y’s,
collapses identical adjacent characters and truncates the result to four charac-
ters (Lynch and Arends, 1977).

2.17. Eudex

The Eudex algorithm (Ticki, 2016) encodes words in a way that exposes
the differences in their pronunciations, by calculating the Hamming distances
between their codes. It returns an 8–byte array as output and makes use of
four different conversion tables: two for ASCII and C1 (Latin Supplement)
characters at the initial position of a word, and another two similar ones for
the remaining characters. These tables were obtained using the IPA classifica-
tions of consonants and vowels, encoding the sound articulation features of each
symbol into a binary format. This encoding has the property that similarly pro-
nounced symbols correspond to codes with a small Hamming distance, but also
highlighting the differences between them in the same way. For this reason, its
author suggests using a similarity function that matches codes with a Hamming
distance below a given threshold value.

3. Implementation of the phonetic algorithms

In order to avoid unnecessary effort and make their future use by developers
and researchers easier, instead of reimplementing from scratch the specifications
for the algorithms studied, we downloaded and evaluated implementations of
them that are publicly available on the Internet. For each downloaded imple-
mentation, its compliance with the original specification of the corresponding

11

algorithm was tested. If the implementation did not comply, alternatives were
sought or, when necessary, the source code was modified accordingly.5

After having performed this selection process, these are the open source
projects from which the algorithm implementations to be used were obtained:

• Apache Commons Codec package (ASF, 2017): in the case of the imple-
mentations of the Soundex, Refined Soundex, Daitch–Mokotoff Soundex,
Beider–Morse, Caverphone 1, Caverphone 2, MRA and Double Metaphone
algorithms.

• talisman package (Plique, 2017): Alpha SIS, Eudex, Fuzzy Soundex,
Lein, Onca, Phonex, Roger Root, StatCan, Metaphone and NYSIIS al-
gorithms.

• stringmetric package (Madden, 2014): Refined NYSIIS algorithm.

• phonetic search package (Ølsgaard, 2016): Phonix algorithm.

4. Evaluation

As stated before, this work intends to study the behaviour of the different
phonetic algorithms available for English in the context of candidate generation
for microtext normalization tasks. The criterion assumed for this purpose states
that, for each input OOV, the best algorithms should return as output the
smallest possible candidate set which still contains the corresponding equivalent
normalized word.

4.1. Evaluation corpora

Seeking reproducibility, it was decided to use the two lexical normalization
dictionaries which were made publicly available in the W–NUT 2015 Shared
Task #2 (Baldwin et al., 2015). These dictionaries, named utdallas and
unimelb, consist of text files conformed by lists of non–standard words obtained
from real–world microtexts and their corresponding standard equivalents. It
must be noted that non–standard words from these lists are affected by a wide
range of texting phenomena, not limited to the phonetic phenomena in which
this work is interested. For instance, consider the graphemic substitution in 5o

(so) or the abbreviation 2nd (second). Despite this, the full datasets were used
in the evaluation, thus resorting to error analysis to account for those instances
missed by the phonetic algorithms.

In a similar way, the canonical English dictionary made available by the
W–NUT 2015 organization for the task (from now on canonical) was used.
This dictionary is the list of words from which the normalization candidates are
retrieved using the phonetic algorithms. Some simple statistics of these datasets
are shown in Table 3.

5All source code produced during this work is available at http://www.grupocole.org/

software/VCS/phon.

12

http://www.grupocole.org/software/VCS/phon
http://www.grupocole.org/software/VCS/phon

dictionary #chars/word #entries #OOV

utdallas 5 3,974 47
unimelb 7 41,181 96

canonical 8 165,458 –

Table 3: Evaluation corpora statistics. The column #chars/word indicates for the first two
rows, corresponding to the lexical normalization dictionaries, the average number of characters
per non–standard word; for the last row, corresponding to the canonical dictionary, it indicates
the average per standard word. Column #entries indicates the number of lines in each
evaluation dataset. In the case of the first two rows, #OOV shows the number of standard
words not included in the canonical lexicon used.

4.2. Experimental methodology

In order to obtain the normalization candidates for each non–standard word
of the evaluation corpora, the following procedure was applied:

1. Before the normalization process, create the phonetic lookup dictionary
of key–value pairs (phonetic code, set of words) corresponding to each
phonetic algorithm. Each pair groups all the words from the canonical
dictionary with the same phonetic code for a particular algorithm.

2. During the normalization process, and for a given phonetic algorithm,
match the phonetic codes obtained from the non–standard words of the
evaluation corpora with these codes (keys) of the corresponding phonetic
dictionaries. If a match is found, retrieve its corresponding set of words
(values), which now constitute its normalization candidates. When multi-
ple alternative codes are available for the same non–standard input word,
the final candidate set is formed by the union of those partial sets obtained
with each alternative code.

Additionally, in the case of the MRA and Phonix algorithms, their particular
lookup procedures (MRAcustom, Phonixmost, Phonix less and Phonix least, re-
spectively), previously explained in Section 2, were also considered. Similarly,
multiple results were obtained for the Eudex algorithm by varying the Hamming
distance threshold value: Eudex, Eudex5, Eudex 10 and Eudex 15 for threshold
values 0 (i.e. perfect matching), 5, 10 and 15, respectively. In these cases, both
the results corresponding to the general and specialized lookup procedures were
obtained.6

Regarding the original Phonix algorithm in particular, three different sets of
results were distinguished based on the likelihood of the candidates indicated
by the lookup procedure: (1) one set containing the most likely candidates

6For the MRA and Eudex algorithms, it is worth mentioning the relatively high computa-
tional cost of their particular lookup procedures. Under their current implementations, they
may be suitable for quick checks between pairs of words but not for the extensive dictionary–
wide checks required in the current context.

13

(Phonixmost); (2) one including the most and less likely candidates (Phonix less)
and (3) one which also adds the least likely candidates (Phonix least). Moreover,
results obtained using the alternative interpretation of this algorithm are also
included (PhonixComm).

Precision, recall and F1 metrics, over a list of words from a particular evalu-
ation dataset, are used to measure the performance of the phonetic algorithms.
In the present application context, precision (P) is defined as the mean of the
ratio of correct candidates7 over the total number of candidates retrieved for
each word, all of this over the total number of words:

P =

∑
word

|hitsword|
|candidatesword|

|words|
(1)

In the case of recall (R), it is calculated as the number of times when the correct
candidate was among the set of normalization candidates retrieved for each word
over the total number of words:

R =
|hits|
|words|

(2)

Finally, F1 score is defined in the usual way by aggregating precision and recall:

F1 = 2 · P ·R
P + R

(3)

4.3. Results and discussion

Tables 4 and 5 show the results obtained for each algorithm, sorting them
by their corresponding F1 scores. As it can be seen, the scores obtained are
quite low, mainly due to the low precision figures obtained in most of the cases.
Accordingly, those algorithms with the highest precision scores end up at the
top of this ranking, with Eudex, MRA and Metaphone outperforming the rest
of them.

It is interesting to note that the performance of the MRA algorithm decreases
ostensibly when used with its particular lookup procedure (MRAcustom). This
procedure tries to enlarge the matching window of its otherwise high–precision
codes. Thus, it is reasonable to assume that using a large canonical dictionary,
as in this case, renders this procedure of little use, as it was designed to work
with much smaller lists. Moreover, Phonix least, that is, Phonix using least–likely
matches, suffers from the same problem.

At this point, it should be noted that, when developing a microtext nor-
malization system, it may be interesting to gain some recall while sacrificing
some precision in exchange. This is due to the fact that a low recall tends to
impose an upper limit on the overall performance of the system: there is no
way of selecting the right IV unless it appears among the generated candidates.

7In this case, the number of correct candidates will be either 1 or 0.

14

algorithm #hits avg #cands P R F1

Eudex 1,376 5.641 0.117 0.346 0.175
MRA 1,498 9.165 0.113 0.376 0.174
Metaphone 2,071 26.232 0.078 0.521 0.137
Beider–Morse 1,636 25.514 0.080 0.411 0.134
StatCan 2,225 21.415 0.070 0.559 0.124
Ref. Soundex 1,569 15.378 0.073 0.394 0.123
Eudex5 1,800 94.125 0.047 0.452 0.085
Rev. NYSIIS 1,416 27.404 0.047 0.356 0.083
Phonixmost 1,681 36.503 0.044 0.422 0.080
F. Soundex 2,160 41.765 0.043 0.543 0.080
NYSIIS 1,410 17.565 0.043 0.354 0.078
Caverphone 2 2,039 69.022 0.039 0.513 0.073
Caverphone 1 2,246 98.240 0.031 0.565 0.060
Eudex10 2,076 310.535 0.025 0.522 0.048
D–M Soundex 2,154 96.137 0.024 0.542 0.046
Alpha SIS 2,359 241.792 0.022 0.593 0.042
Phonix less 2,191 141.575 0.020 0.551 0.040
Eudex15 2,199 551.689 0.016 0.553 0.032
Roger Root 2,516 133.588 0.016 0.633 0.032
Soundex 2,469 80.570 0.015 0.621 0.030
D. Metaphone 2,395 84.389 0.014 0.602 0.028
Lein 2,471 101.642 0.013 0.621 0.026
Phonix Comm 2,453 194.972 0.011 0.617 0.023
Onca 2,396 109.237 0.010 0.602 0.020
Phonex 2,656 266.348 0.009 0.668 0.019
Phonix least 2,332 611.050 0.006 0.586 0.013
MRAcustom 3,695 15,270.327 0.000 0.929 0.000

Table 4: Results for the utdallas dictionary, ranked by F1. For each phonetic algorithm,
the second column (#hits) indicates the number of instances from the corpora for which the
algorithm could provide the correct answer. The average number of normalization candidates
returned for each OOV using that algorithm is shown in the third column (avg #cands). The
rest of the columns contain the values obtained for the evaluation metrics used; from left to
right: precision (P), recall (R) and F1 score (F1).

Moreover, it is also reasonable to assume that the candidate generation step will
be connected to a capable candidate selection step afterwards. Taking this into
account, Tables 6 and 7 show again the results obtained in our experiments, but
this time ranked by their recall figures. The resulting rankings are now very
different, providing us with new insights about the performance of the analyzed
phonetic algorithms.

Overall, these results indicate that the StatCan, Metaphone, Soundex or
Roger Root algorithms would be good choices for candidate generation in a
microtext normalization system, depending on the level of compromise sought
between precision and recall. This way, the Metaphone algorithm shines when
precision is needed, as it is among the top–three algorithms in the F1 classifica-
tion (see Tables 4 and 5) while it does not fall to the bottom of the recall rankings
(Tables 6 and 7) as in the case of MRA or Eudex, the other two algorithms with
the highest F1. On the other hand, Soundex and Roger Root stand as good
choices if we want to maximize recall while not hurting precision in excess, as in

15

algorithm #hits avg #cands P R F1

MRA 17,485 5.963 0.171 0.424 0.244
Eudex 16,150 3.682 0.174 0.392 0.241
Metaphone 22,448 16.640 0.136 0.545 0.218
Ref. Soundex 18,693 10.464 0.126 0.453 0.197
Beider–Morse 18,307 13.792 0.123 0.444 0.193
Rev. NYSIIS 17,844 16.149 0.091 0.433 0.150
F. Soundex 23,694 28.393 0.083 0.575 0.145
Eudex5 18,498 42.203 0.085 0.449 0.143
StatCan 28,632 29.902 0.076 0.695 0.138
Phonixmost 19,039 23.382 0.081 0.462 0.137
Caverphone 2 21,580 43.374 0.075 0.524 0.132
NYSIIS 21,094 17.039 0.066 0.512 0.118
Caverphone 1 24,227 61.604 0.062 0.588 0.112
Eudex10 19,988 150.981 0.054 0.485 0.097
Alpha SIS 26,064 145.874 0.048 0.632 0.089
D–M Soundex 24,470 64.662 0.045 0.594 0.084
Phonix less 23,093 83.416 0.041 0.560 0.077
Eudex15 20,892 290.397 0.038 0.507 0.071
Roger Root 28,928 98.075 0.028 0.702 0.054
Phonex 28,048 200.475 0.020 0.681 0.040
D. Metaphone 26,253 89.951 0.020 0.637 0.039
Soundex 29,557 94.946 0.018 0.717 0.035
Phonix Comm 26,937 134.754 0.018 0.654 0.035
Phonix least 24,434 387.919 0.017 0.593 0.034
Onca 28,601 109.179 0.014 0.694 0.028
Lein 29,633 134.894 0.012 0.719 0.025
MRAcustom 38,768 20,767.367 6.873e-05 0.941 0.000

Table 5: Results for the unimelb dictionary, ranked by F1.

the case of the Lein algorithm, and after having dismissed MRAcustom for the
reasons given above. Finally, Statcan strikes the best balance in precision and
recall, as we can see in the good overall positions obtained in both rankings.

It is interesting to note that a phonetic algorithm can also be considered as
a locality–sensitive hashing algorithm. These are algorithms that maximize the
probability of a collision for similar items; this is, that the output for slightly
different input elements is the same. In terms of phonetic algorithms, this is
equivalent to maximizing the probability of two similar–sounding words having
the same phonetic code. From this perspective, the average number of candi-
dates retrieved by a phonetic algorithm is in fact directly proportional to the
compression ratio of the locality–sensitive hashing it is performing.

During the error analysis, particular attention was paid to those instances
from the corpora where none or just a few of the algorithms were able to provide
the correct answer (in our context, a hit). In the case of the zero–hits list, i.e.
instances for which no algorithm provided a correct answer, it contains examples
such as baddest–worst or 5ayin–saying, variations which do not correspond
to phonetic phenomena and are thus outside the scope of this work. A few
OOV words such as thankyou or sheesh also appear in this list. However,
other interesting examples not directly supported by any phonetic algorithm

16

algorithm #hits avg #cands P R F1

MRAcustom 3,695 15,270.327 0.000 0.929 0.000
Phonex 2,656 266.348 0.009 0.668 0.019
Roger Root 2,516 133.588 0.016 0.633 0.032
Lein 2,471 101.642 0.013 0.621 0.026
Soundex 2,469 80.570 0.015 0.621 0.030
Phonix Comm 2,453 194.972 0.011 0.617 0.023
Onca 2,396 109.237 0.010 0.602 0.020
D. Metaphone 2,395 84.389 0.014 0.602 0.028
Alpha SIS 2,359 241.792 0.022 0.593 0.042
Phonix least 2,332 611.050 0.006 0.586 0.013
Caverphone 1 2,246 98.240 0.031 0.565 0.060
StatCan 2,225 21.415 0.070 0.559 0.124
Eudex15 2,199 551.689 0.016 0.553 0.032
Phonix less 2,191 141.575 0.020 0.551 0.040
F. Soundex 2,160 41.765 0.043 0.543 0.080
D–M Soundex 2,154 96.137 0.024 0.542 0.046
Eudex10 2,076 310.535 0.025 0.522 0.048
Metaphone 2,071 26.232 0.078 0.521 0.137
Caverphone 2 2,039 69.022 0.039 0.513 0.073
Eudex5 1,800 94.125 0.047 0.452 0.085
Phonixmost 1,681 36.503 0.044 0.422 0.080
Beider–Morse 1,636 25.514 0.080 0.411 0.134
Ref. Soundex 1,569 15.378 0.073 0.394 0.123
MRA 1,498 9.165 0.113 0.376 0.174
Rev. NYSIIS 1,416 27.404 0.047 0.356 0.083
NYSIIS 1,410 17.565 0.043 0.354 0.078
Eudex 1,376 5.641 0.117 0.346 0.175

Table 6: Results for the utdallas dictionary, this time ranked by recall.

can also be found, as is the case of the so–called number homophones (Thurlow,
2003) such as 2morrow–tomorrow or 4got–forgot. This is to be expected since
this texting phenomenon, while also being a phonetic substitution, plays with
the pronunciation of digits, and phonetic algorithms usually work only with
letters. Furthermore, these examples would be easily supported in a microtext
normalization system by preprocessing the input and spelling such numbers
before applying the phonetic algorithm.

On the remaining lists, it is interesting to note the presence of instances
where some phonetic algorithms gave a correct answer despite them not being
designed to deal with that particular case. We can mention here those algo-
rithms whose generated codes are shortened to a specific maximum length. Be-
cause of this shortening, such algorithms are able to cope with any misspellings
occurring in those parts of the original word which are not finally translated into
the phonetic code. For example, the MRA algorithm gives the correct answer
performance for the input word perfomence as the second r is not encoded in
PRFMNC.

Finally, taking into consideration the listing of non–standard orthographic
forms from Thurlow (2003) and the lists of errors obtained in these experiments,

17

algorithm #hits avg #cands P R F1

MRAcustom 38,768 20,767.367 6.873e-05 0.941 0.000
Lein 29,633 134.894 0.012 0.719 0.025
Soundex 29,557 94.946 0.018 0.717 0.035
Roger Root 28,928 98.075 0.028 0.702 0.054
StatCan 28,632 29.902 0.076 0.695 0.138
Onca 28,601 109.179 0.014 0.694 0.028
Phonex 28,048 200.475 0.020 0.681 0.040
Phonix Comm 26,937 134.754 0.018 0.654 0.035
D. Metaphone 26,253 89.951 0.020 0.637 0.039
Alpha SIS 26,064 145.874 0.048 0.632 0.089
D–M Soundex 24,470 64.662 0.045 0.594 0.084
Phonix least 24,434 387.919 0.017 0.593 0.034
Caverphone 1 24,227 61.604 0.062 0.588 0.112
F. Soundex 23,694 28.393 0.083 0.575 0.145
Phonix less 23,093 83.416 0.041 0.560 0.077
Metaphone 22,448 16.640 0.136 0.545 0.218
Caverphone 2 21,580 43.374 0.075 0.524 0.132
NYSIIS 21,094 17.039 0.066 0.512 0.118
Eudex15 20,892 290.397 0.038 0.507 0.071
Eudex10 19,988 150.981 0.054 0.485 0.097
Phonixmost 19,039 23.382 0.081 0.462 0.137
Ref. Soundex 18,693 10.464 0.126 0.453 0.197
Eudex5 18,498 42.203 0.085 0.449 0.143
Beider–Morse 18,307 13.792 0.123 0.444 0.193
Rev. NYSIIS 17,844 16.149 0.091 0.433 0.150
MRA 17,485 5.963 0.171 0.424 0.244
Eudex 16,150 3.682 0.174 0.392 0.241

Table 7: Results for the unimelb dictionary, this time ranked by recall.

we can conclude the following:8

• Shortenings (e.g. dec–december, epi–episode) are difficult to account
for as they usually remove whole chunks of characters from the original
standard word, including consonants. The difficulty here is that conso-
nants are the main building blocks for most phonetic codes and, conse-
quently, important information for the algorithms has been stripped from
the term to be normalized. This may be solved by adding an extra step in
the normalization pipeline which would make use of other word similarity
metrics such as the longest common subsequence, overlap coefficient or
cosine distance (Okazaki and Tsujii, 2010).

• Contractions (e.g. frm–from, lov–love) can be dealt with as they gen-
erally include the most meaningful details of the standard word, which
mainly consist of its consonants.

• g–Clippings (e.g. losin–losing, frikin–freaking) are a simple but
problematic texting phenomenon for many of the algorithms studied. Most

8These lists are available at http://www.grupocole.org/software/VCS/phon

18

http://www.grupocole.org/software/VCS/phon

of them are able to incidentally handle it through their trimming of the
output codes. In this way, in sufficiently long words the final g consonant
is not taken into account for the encoding, hence bypassing the need for
specific rules for managing it. On the other hand, it is worth noting that
algorithms like Beider–Morse or Phonex, with a wide range of encoding
rules, do handle this particular scenario effectively.

• Handling other types of clippings is possible for a wide range of algorithms
if they perform some kind of clipping themselves during encoding (e.g.
luk–luck, metalic–metallic) or when the clipping only affects vowels
or non–pronounceable characters (e.g. ther–their, oclock–o’clock).

• Acronyms and initialisms (e.g. omg–oh my god, lol–laughing out loud)
are not included in the evaluation datasets. In any case, they are consid-
ered to be outside the scope of phonetic phenomena and, consequently,
are not consistently supported by any phonetic algorithm. Nevertheless,
they may be normalized using specialized dictionaries (Doval et al., 2015;
Han and Baldwin, 2011).

• In the case of homophony phenomena, letter homophones (e.g. b–be,
r–are) are generally supported, whereas, as noted earlier, number homo-
phones (e.g. 4got–forgot, in2–into) are not.

• Other misspellings, typos, non–conventional spellings and accent styliza-
tion (e.g. acount–account, basterds–bastards, huni–honey, dat–that)
can be handled by most algorithms as long as the sequence of consonants
was preserved in the resulting non–standard word. In the case of examples
as eva–ever or ova–over, they are only supported by the lowest preci-
sion algorithms or by those having specific rules for dealing with such
phenomena.

5. Related work

As already mentioned in the introductory section of this work, phonetic
algorithms have been traditionally used for personal name matching. In the
literature, the design of a new phonetic algorithm tends to be coupled with a
comparative study with the contemporary state of the art in order to highlight
its strengths. However, in most cases it is not an exhaustive study, since only a
small part of the existing phonetic algorithms are considered, and also because it
focuses on the name–matching task, as in the case of the works of Hood (2004),
Beider (2008), Mokotoff (2007), Holmes and McCabe (2002) and Parmar and
Kumbharana (2014). Some exceptions in which a broader comparative study
was performed are the studies made by Lynch and Arends (1977) and Lait and
Randell (1996).

There are also purely comparative studies of name–matching algorithms
where a wider range of techniques were considered, including phonetic algo-
rithms and other types of similarity metrics. This is the case of the works

19

of Christen (2006), Snae (2007), Bilenko et al. (2003), Branting (2003) or Gálvez
(2006). In their conclusions, these authors propose a series of recommendations
to select the right approach or algorithm for a particular setup or domain, much
in the same vein of the present work. However, even in these cases, they only
compare a small subset of the phonetic algorithms available and, more impor-
tantly, they do so in the context of a different task.

Moving on from the name–matching task, the work of Pinto et al. (2012)
enters the domain of microtexts. However, the authors only provide a com-
parative study between the original Soundex and their proposed improvements,
which are not publicly available. Furthermore, their case is not that of microtext
normalization either.

Finally, it is worth mentioning the recent work of Fuentes et al. (2016), which
compares notably more phonetic algorithms than previous works although in a
different scenario: word recognition in Spanish microtext mining. This may
be the most similar work to the present contribution, although it focuses on
precision and accuracy metrics, Spanish microtexts and, once again, it is not
tailored to the microtext normalization task.

In general, these comparative studies mostly use precision and F1 metrics
for their quantitative analysis, defining them accordingly for the task at hand.
Some of them also give qualitative insights in order to exemplify the behaviour
of the phonetic algorithms in each particular use case. On our end, we follow the
common trend of using precision and F1, while also explicitly including the recall
and other interesting measures such as the average number of normalization
candidates retrieved by each algorithm. Likewise, we perform a qualitative
study based on a classification of the texting phenomena. Overall, we present
a wider comparison of phonetic algorithms than in previous work, focusing on
the task of microtext normalization, while using tried and tested methods for
performance measurements.

6. Conclusions and future work

In this work we have evaluated a wide range of English state–of–the–art
phonetic algorithms within the context of generating normalization candidates
in microtext normalization tasks. This work constitutes, to the best of our
knowledge, the only wide–range comparative study of its kind. We perform
both qualitative and quantitative analyses —adapting the usual performance
metrics to our domain— in order to identify the most salient properties of these
phonetic algorithms and their appropriateness for the task at hand. We expect
that the results obtained will be of help to both developers and researchers
of this field when building new intelligent systems for microtext information
processing.

Seeking reproducibility and simplicity by using currently existing implemen-
tations and publicly available datasets, we have measured the performance of
these algorithms, and their strengths and weaknesses were analysed to identify
the best algorithms in terms of a compromise between precision and recall. In
the end, we have found that the choice of phonetic algorithm depends heavily on

20

the capabilities of the subsequent candidate selection mechanism to be applied
within the microtext normalization pipeline. The faster it can make the right
selections among big enough input sets of candidates, the more we can sacrifice
in terms of the precision of the phonetic algorithm in favour of coverage. This
would be desirable since when obtaining a low number of normalization candi-
dates, the system would run the risk of imposing an upper limit to its overall
performance at this early stage.

Finally, as future lines of work, we plan to continue working on a more devel-
oped microtext normalization system and, in this way, improve the preliminary
results obtained in our previous approach in this field (Doval et al., 2015). The
results obtained in this study will greatly impact the design of the candidate
selection method, which will be our main focus hereafter. The objective will
be to obtain an accurate and efficient method that would allow us to take full
advantage of wide–coverage phonetic algorithms in the candidate generation
step. With respect to the limitations of the phonetic algorithms studied here
when facing some texting phenomena, these can be tackled by other modules
in the candidate generation step of the final normalization system. This may
include, for instance, the use of spell checkers and non–standard–to–standard–
text dictionaries (Doval et al., 2015; Han and Baldwin, 2011) or the integration
of specialized word tokenizers (Doval et al., 2016). Extending this work to
other languages such as Spanish (Alegria et al., 2015) or even code-switching
scenarios (Vilares et al., 2016) is another possibility to be considered.

Acknowledgements

This research has been partially funded by the Spanish Ministry of Economy,

Industry and Competitiveness (MINECO) through projects TIN2017-85160-C2-1-R,

TIN2017-85160-C2-2-R, FFI2014-51978-C2-1-R and FFI2014-51978-C2-2-R, and by

the Autonomous Government of Galicia through projects ED431D-2017/12, ED431B-

2017/01 and ED431D R2016/046. Moreover, Yerai Doval is funded by the Span-

ish State Secretariat for Research, Development and Innovation (which belongs to

MINECO) and by the European Social Fund (ESF) under a FPI fellowship (BES-

2015-073768) associated to project FFI2014-51978-C2-1-R.

Alegria, I., Aranberri, N., Comas, P. R., Fresno, V., Gamallo, P., Padró, L.,
San Vicente, I., Turmo, J., Zubiaga, A., 2015. TweetNorm: a benchmark for
lexical normalization of Spanish tweets. Language Resources and Evaluation
49 (4), 883–905.

Alegria, I., Aranberri, N., Fresno, V., Gamallo, P., Padró, L., San Vicente,
I., Turmo, J., Zubiaga, A. (Eds.), 2013. TweetNorm 2013. Tweet Normal-
ization Workshop 2013. Proceedings of the Tweet Normalization Workshop
co-located with 29th Conference of the Spanish Society for Natural Lan-
guage Processing (SEPLN 2013) Madrid, Spain, September 20th, 2013. Vol.
1086 of CEUR Workshop Proceedings. CEUR-WS.org. Corpus available at:
http://komunitatea.elhuyar.org/tweet-norm/ (accessed July 2018).

21

http://komunitatea.elhuyar.org/tweet-norm/

Apache Software Foundation, 2017. Apache Commons Codec. http://

commons.apache.org/proper/commons-codec/ (accessed July 2018).

Atkinson, K., 2011. GNU Aspell. http://aspell.net (accessed July 2018).

Baldwin, T., Cook, P., Lui, M., MacKinlay, A., Wang, L., 2013. How noisy so-
cial media text, how diffrnt social media sources? In: Proc. of the 6th Inter-
national Joint Conference on Natural Language Processing (IJCNLP 2013).
Asian Federation of Natural Language Processing/ACL, pp. 356–364.

Baldwin, T., de Marneffe, M.-C., Han, B., Kim, Y.-B., Ritter, A., Xu, W.,
2015. Shared Tasks of the 2015 Workshop on Noisy User-generated Text:
Twitter Lexical Normalization and Named Entity Recognition. In: Proc. of
the ACL 2015 Workshop on Noisy User-generated Text (W-NUT 2015). ACL,
pp. 126–135. W-NUT 2015 website: http://noisy-text.github.io/2015/

index.html (accessed July 2018).

Beaufort, R., Roekhaut, S., Cougnon, L.-A., Fairon, C., 2010. A hybrid
rule/model-based finite-state framework for normalizing SMS messages. In:
Proc. of the 48th Annual Meeting of the Association for Computational Lin-
guistics (ACL 2010). ACL, pp. 770–779.

Beider, A., 2008. Beider-Morse phonetic matching: An alternative to Soundex
with fewer false hits. Avotaynu: the International Review of Jewish Genealogy
(Summer 2008).

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S., 2003. Adap-
tive name matching in information integration. IEEE Intelligent Systems
18 (5), 16–23.

Bisani, M., Ney, H., 2008. Joint–sequence models for grapheme–to–phoneme
conversion. Speech communication 50 (5), 434–451.

Branting, L. K., 2003. A comparative evaluation of name–matching algorithms.
In: Proc. of the 9th International Conference on Artificial Intelligence and
Law (ICAIL’03). ACM, pp. 224–232.

Christen, P., 2006. A comparison of personal name matching: Techniques and
practical issues. In: Data Mining Workshops, 2006. ICDM Workshops 2006.
Sixth IEEE International Conference on. IEEE Press, pp. 290–294.

Doval, Y., Gómez-Rodŕıguez, C., Vilares, J., 2016. Spanish word segmentation
through neural language models. Procesamiento del Lenguaje Natural 57, 75–
82.

Doval, Y., Vilares, J., Gómez-Rodŕıguez, C. 2015. LYSGROUP: Adapting a
Spanish microtext normalization system to English. In (Baldwin et al., 2015),
pp. 99–105.

22

http://commons.apache.org/proper/commons-codec/
http://commons.apache.org/proper/commons-codec/
http://aspell.net
http://noisy-text.github.io/2015/index.html
http://noisy-text.github.io/2015/index.html

Duwairi, R. M., Marji, R., Sha’ban, N., Rushaidat, S., 2014. Sentiment Analysis
in Arabic Tweets. In: 2014 5th International Conference on Information and
Communication Systems (ICICS). IEEE Press.

Eisenstein, J., 2013. What to do about bad language on the Internet. In: Proc.
of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (NAACL-HLT
2013). ACL, pp. 359–369.

Eryiǧit, G., Torunoǧlu-Selamet, D., 2017. Social media text normalization for
Turkish. Natural Language Engineering 23 (6), 835–875.

Foster, J., Cetinoglu, O., Wagner, J., Le Roux, J., Nivre, J., Hogan, D., van
Genabith, J., 2011. From news to comment: Resources and benchmarks for
parsing the language of Web 2.0. In: Proc. of the 5th International Joint Con-
ference on Natural Language Processing (IJCNLP 2011). Asian Federation of
Natural Language Processing/ACL, pp. 8–13.

Fuentes, A. A. G., Parra, I. P., Quevedo-Torrero, J. U., Perez, R. D., 2016.
Comparative Analysis of Phonetic Algorithms Applied to Spanish. In: Com-
putational Science and Computational Intelligence (CSCI), 2016 International
Conference on. IEEE Press, pp. 1180–1185.

Gadd, T., 1988. ’Fisching fore werds’: phonetic retrieval of written text in
information systems. Program 22 (3), 222–237.

Gadd, T., 1990. Phonix: The algorithm. Program 24 (4), 363–366.

Gálvez, C., 2006. Identificación de nombres personales por medio de sistemas de
codificación fonética. Encontros Bibli: revista eletrônica de biblioteconomia e
ciência da informação 22, 105–116. Available at http://www.redalyc.org/

articulo.oa?id=14702209 (accessed July 2018).

Gerber, M. S., 2014. Predicting crime using Twitter and kernel density estima-
tion. Decision Support Systems 61, 115–125.

Gill, L. E., Baldwin, J. A., 1987. Textbook of Medical Record Linkage. Oxford
University Press, Ch. Methods and Technology of Record Linkage: Some
Practical Considerations, pp. 39–54.

Gill, L., Goldacre, M., Simmons, H., Bettley, G., Griffith, M., 1993. Com-
puterised linking of medical records: methodological guidelines. Journal of
Epidemiology & Community Health 47 (4), 316–319.

Gimpel, K., Schneider, N., O’Connor, B., Das, D., Mills, D., Eisenstein, J.,
Heilman, M., Yogatama, D., Flanigan, J., Smith, N. A., 2011. Part-of-speech
Tagging for Twitter: Annotation, Features and Experiments. In: Proc. of
the 49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (ACL-HLT 2011) - Volume 2. ACL, pp. 42–47.

23

http://www.redalyc.org/articulo.oa?id=14702209
http://www.redalyc.org/articulo.oa?id=14702209

Han, B., Baldwin, T., 2011. Lexical normalisation of short text messages: makn
sens a #twitter. In: Proc. of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Technologies (ACL-HLT 2011)
- Volume 1. ACL, pp. 368–378.

Holmes, D., McCabe, M. C., 2002. Improving precision and recall for Soundex
retrieval. In: Information Technology: Coding and Computing, 2002. Pro-
ceedings. International Conference on. IEEE Press, pp. 22–26.

Hood, D., 2002. Caverphone: Phonetic matching algorithm. Technical Pa-
per CTP060902, University of Otago, New Zealand. Available at http:

//caversham.otago.ac.nz/files/working/ctp060902.pdf (accessed July
2018).

Hood, D., 2004. Caverphone revisited. Technical Paper CTP150804, Univer-
sity of Otago, New Zealand. Available at http://caversham.otago.ac.nz/

files/working/ctp150804.pdf (accessed July 2018).

Jurafsky, D., Martin, J. H., 2009. Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics, and
Speech Recognition, 2nd Edition. Pearson–Prentice Hall.

Karisani, P., Agichtein, E., 2018. Did you really just have a heart attack?:
Towards robust detection of personal health mentions in social media. In:
Proc. of the 2018 World Wide Web Conference (WWW’18). ACM, pp. 137–
146.

Kaur, J., Singh, J., 2015. Toward Normalizing Romanized Gurumukhi Text
from Social Media. Indian Journal of Science and Technology 8 (27).

Kell, J., 1988. NAMEHASH: Phonetic Name Indexing Routine. OS/2 REXX
adaptation available at http://www.markcrocker.com/rexxtipsntricks/

rxtt28.2.0482.html (accessed July 2018).

Kobus, C., Yvon, F., Damnati, G., 2008. Transcrire les SMS comme on reconnâıt
la parole. In: Actes de la 15e Conférence sur le Traitement Automatique des
Langues (TALN 2008). pp. 128–138.

Lait, A. J., Randell, B., 1996. An assessment of name matching algorithms.
Technical report, University of Newcastle upon Tyne, Department of Com-
puting Science, United Kingdom. Available at http://homepages.cs.ncl.

ac.uk/brian.randell/Genealogy/NameMatching.pdf (accessed July 2018).

Law, D., Gruss, R., Abrahams, A. S., 2017. Automated defect discovery for
dishwasher appliances from online consumer reviews. Expert Systems with
Applications 67, 84–94.

Levenshtein, V. I., 1966. Binary codes capable of correcting deletions, insertions
and reversals. Soviet Physics Doklady 10 (8), 707–710.

24

http://caversham.otago.ac.nz/files/working/ctp060902.pdf
http://caversham.otago.ac.nz/files/working/ctp060902.pdf
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
http://www.markcrocker.com/rexxtipsntricks/rxtt28.2.0482.html
http://www.markcrocker.com/rexxtipsntricks/rxtt28.2.0482.html
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf
http://homepages.cs.ncl.ac.uk/brian.randell/Genealogy/NameMatching.pdf

Lynch, B. T., Arends, W. L., 1977. Selection of a surname coding procedure for
the SRS record linkage system. Washington, DC: US Department of Agricul-
ture, Sample Survey Research Branch, Research Division.

Madden, R., 2014. stringmetric package. http://github.com/rockymadden/
stringmetric (accessed July 2018).

Mokotoff, G., 2007. Soundexing and genealogy. http://www.avotaynu.com/

soundex.html (accessed July 2018).

Moore, G. B., 1977. Accessing individual records from personal data files us-
ing non–unique identifiers. Vol. 13. US Department of Commerce, National
Bureau of Standards.

Odell, M., Russell, R. C., 1918. The Soundex coding system. US Patents
1261167.

Odell, M. K., 1956. The profit in records management. Systems 20 (20).

Okazaki, N., Tsujii, J., 2010. Simple and efficient algorithm for approximate
dictionary matching. In: COLING’10: Proc. of the 23rd International Con-
ference on Computational Linguistics. ACL, pp. 851–859.

Ølsgaard, M., 2016. phonetic search package. http://github.com/

olsgaard/phonetic_search (accessed July 2018).

Parmar, V. P., Kumbharana, C., 2014. Study Existing Various Phonetic Al-
gorithms and Designing and Development of a working model for the New
Developed Algorithm and Comparison by implementing it with Existing Al-
gorithm(s). International Journal of Computer Applications 98 (19), 45–49.

Philips, L., 1990. Hanging on the Metaphone. Computer Language 7 (12), 39–43.

Philips, L., 2000. The Double Metaphone Search Algorithm. C/C++ Users
Journal 18 (6), 38–43.

Pinto, D., Vilariño, D., Alemán, Y., Gómez, H., Loya, N., Jiménez-Salazar, H.,
2012. The Soundex Phonetic Algorithm Revisited for SMS Text Representa-
tion. In: Text, Speech and Dialogue. Springer, pp. 47–55.

Plique, G., 2017. talisman package. http://github.com/Yomguithereal/

talisman (accessed July 2018).

Ritter, A., Clark, S., Mausam, Etzioni, O., 2011. Named entity recognition in
tweets: An experimental study. In: EMNLP’11: Proc. of the Conference on
Empirical Methods in Natural Language Processing. ACL, pp. 1524–1534.

Rudra, K., Banerjee, S., Ganguly, N., Goyal, P., Imran, M., Mitra, P., 2016.
Summarizing situational tweets in crisis scenario. In: Proc. of the 27th ACM
Conference on Hypertext and Social Media (HT’16). ACM, pp. 137–147.

25

http://github.com/rockymadden/stringmetric
http://github.com/rockymadden/stringmetric
http://www.avotaynu.com/soundex.html
http://www.avotaynu.com/soundex.html
http://github.com/olsgaard/phonetic_search
http://github.com/olsgaard/phonetic_search
http://github.com/Yomguithereal/talisman
http://github.com/Yomguithereal/talisman

Saralegi, X., San Vicente, I., 2013. Elhuyar at Tweet-Norm 2013. In (Alegria
et al., 2013).

Schulz, S., Pauw, G. D., Clercq, O. D., Desmet, B., Hoste, V., Daelemans,
W., Macken, L., 2016. Multimodular Text Normalization of Dutch User-
Generated Content. ACM Transactions on Intelligent Systems and Technol-
ogy (TIST) 7 (4), 61:1–61:22.

Snae, C., 2007. A comparison and analysis of name matching algorithms. In-
ternational Journal of Applied Science. Engineering and Technology 4 (1),
252–257.

Taft, R. L., 1970. Name search techniques. Special Report no. 1, Bureau of
Systems Development, New York State Identification and Intelligence System,
Albany, NY.

Thurlow, C., 2003. Generation Txt? The sociolinguistics of young people’s text–
messaging. Discourse Analysis Online 1 (1). Available at http://extra.shu.

ac.uk/daol/articles/v1/n1/a3/thurlow2002003-paper.html (accessed
July 2018).

Ticki, 2016. Eudex: A blazingly fast phonetic reduction/hashing algorithm.
http://github.com/ticki/eudex (accessed July 2018).

Vilares, D., Gómez-Rodŕıguez, C., Alonso, M. A., 2017. Universal, unsupervised
(rule-based), uncovered sentiment analysis. Knowledge-Based Systems 118,
45–55.

Vilares, D., Alonso, M. A., Gómez-Rodŕıguez, C., 2016. EN-ES-CS: An English-
Spanish Code-Switching Twitter Corpus for Multilingual Sentiment Analy-
sis. In Proc. of the Tenth International Conference on Language Resources
and Evaluation (LREC 2016). European Language Resources Association
(ELRA).

Vilares, D., Thelwall, M., Alonso, M. A., 2015. The Megaphone of the People?
Spanish SentiStrength for Real-time Analysis of Political Tweets. Journal of
Information Science 41 (6), 799–813.

Wang, P., Ng, H. T., 2013. A Beam-Search Decoder for Normalization of So-
cial Media Text with Application to Machine Translation. In: Proc. of the
2013 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies (NAACL-HLT 2013).
ACL, pp. 471–481.

Xue, Z., Yin, D., Davison, B. D., 2011. Normalizing microtext. In: Analyzing
Microtext, Papers from the 2011 AAAI Workshop, San Francisco, California,
USA, August 8, 2011. Technical Report WS-11-05. AAAI Press.

26

http://extra.shu.ac.uk/daol/articles/v1/n1/a3/thurlow2002003-paper.html
http://extra.shu.ac.uk/daol/articles/v1/n1/a3/thurlow2002003-paper.html
http://github.com/ticki/eudex

	Introduction
	Phonetic algorithms
	Soundex
	IBM Alpha Search Inquiring System
	New York State Identification and Intelligence System
	Match Rating Approach
	Metaphone
	Double Metaphone
	Daitch-Mokotoff Soundex
	Caverphone
	Beider–Morse
	Fuzzy Soundex
	Lein
	Onca
	Phonex
	Phonix
	Roger Root
	Census Modified Statistics Canada
	Eudex

	Implementation of the phonetic algorithms
	Evaluation
	Evaluation corpora
	Experimental methodology
	Results and discussion

	Related work
	Conclusions and future work
	PortadaRUC_declaracionDerechos.pdf
	This is an ACCEPTED VERSION of the following published document:
	General rights:

