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Highlights 

• Measuring quality is challenging due to preference heterogeneity among experts 

• Online reviews offer a solution through quality features extracted from review text 

• Using structural topic modeling we couple review text with numerical ratings 

• An experimental application to airline passengers’ reviews is demonstrated 

• Quality features better predict variations in passenger preferences and competition 
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Abstract 

Service quality is a multi-dimensional construct which is not accurately measured by aspects 

deriving from numerical ratings and their associated weights. Extant literature in the expert 

and intelligent systems examines this issue by relying mainly on such constrained 

information sets. In this study, we utilize online reviews to show the information gains from 

the consideration of factors identified from topic modeling of unstructured data which 

provide a flexible extension to numerical scores to understand customer satisfaction and 

subsequently service quality. When numerical and textual features are combined, the 

explained variation in overall satisfaction improves significantly. We further present how 

such information can be of value for firms for corporate strategy decision-making when 

incorporated in an expert system that acts as a tool to perform market analysis and assess 

their competitive performance. We apply our methodology on airline passengers’ online 

reviews using Structural Topic Models (STM), a recent probabilistic extension to Latent 

Dirichlet Allocation (LDA) that allows the incorporation of document level covariates. This 

innovation allows us to capture dominant drivers of satisfaction along with their dynamics 

and interdependencies. Results unveil the orthogonality of the low-cost aspect of airline 

competition when all other service quality dimensions are considered, thus explaining the 

success of low-cost carriers in the airline market. 

Keywords: Electronic WOM, Unstructured Data, Service Quality, Correspondence Analysis, 

Structural Topic Model   
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1. Introduction 

Quality measurement is an area of research where expert and intelligent systems have 

contributed substantially in the past (Lin, 2010). Product/ Service quality has been identified 

as a multidimensional construct which has significant challenges on its measurement due to 

the heterogeneity in consumer preferences for various quality dimensions (Hjorth-Andersen, 

1984; Kamakura, Ratchford, & Agrawal, 1988). A generally accepted view in the literature is 

that “…no single expert can possibly rate the quality of products unambiguously because he 

or she would not be able to come up with a composite scale that would appeal to all 

consumers…” (Tellis & Johnson, 2007 p. 760). Due to their intangible, heterogeneous, and 

inseparable nature (Parasuraman, Zeithaml, & Berry, 1985), services exhibit a higher rate of 

complexity especially in cases where service failure occurs, and service quality is 

interdependent on different dimensions of a company’s service offering. 

The primary approach outlined in most of the studies is to either gauge expert input 

(Büyüközkan, Çifçi, & Güleryüz, 2011; W.-C. Chou & Cheng, 2012) or to sample and 

aggregate consumer responses in a structured form (de Oña, de Oña, & Calvo, 2012; Kuo & 

Liang, 2011). However, developing decision-making models utilizing either expert input or a 

sample of consumers is still criticized as inefficient (LaValle, Lesser, Shockley, Hopkins, & 

Kruschwitz, 2011). Online reviews tend to offer an alternative solution to alleviate this issue 

by acting as an important source of information for firms to gain a better understanding not 

only for their product/ service characteristics (e.g., sales performance), but also the conditions 

of the market they operate. Firms tend to leverage the information content of online reviews 

to improve their knowledge and understanding of their clientele preferences and the 

competitiveness of their service/ product offerings (Melo, Hernández-Maestro, & Muñoz-

Gallego, 2017; Rodríguez-Díaz & Espino-Rodríguez, 2017). The primary driver for this trend 

is the abundance of data in unstructured form (e.g., open-ended responses in customer 
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complaints) which, if not extracted, analyzed and converted to actionable interventions, may 

not lead to improved decision making and, eventually, corporate performance (Xu, 

Frankwick, & Ramirez, 2016).  

This study focuses on the problem of measuring service quality using unstructured 

data and converting them into managerial insights, thus paving the ground for developing 

more effective intelligent systems. Specifically, we apply a topic modeling variant that allows 

us to model the dependence between individual topics with response level variables (in terms 

of metadata) through the reliable extraction of service quality indicators. Moreover, we 

investigate how these information gains can further explain the variation of customers overall 

satisfaction. We also present how firms may make use of unstructured data in order to have a 

better understanding of their market positioning and comparison with their main competitors 

in the eyes of customers. Specifically, our study aims to answer the following set of 

questions:  

a. Do service quality features extracted from unstructured data add predictability to 

customer satisfaction models that use numerical sub-indexes?  

b. How do these features capture time-related aspects of service quality taking into 

account the dynamics and interdependencies between service aspects?  

To answer these questions, we consider an experimental scenario using a large dataset 

of airline passengers’ online reviews retrieved from TripAdvisor. Our rationale is guided 

from the following reasons. First, the nature of airline service offerings is interdependent in 

several factors related to different aspects of the service quality (e.g., onboard service, check-

in service, delays, baggage handling, etc.). Second, this service offering is highly dependent 

on seasonal variations and, as such, a large sample containing several monthly observations 

would be able to demonstrate how service quality dimensions fluctuate across a time 

continuum. Third, considering the competition between airlines, as evinced from the 
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heterogeneity between their service offerings, this application domain provides an ideal 

application to demonstrate how valuable insights regarding the drivers of passengers’ 

satisfaction (dissatisfaction) can be extracted at the firm (airline) as well as the market level 

(segment). From a managerial viewpoint, this is a problem of high economic significance 

since differentiation of service quality aspects provides a distinctive advantage that drives 

revenue growth and profitability (Tellis & Johnson, 2007). 

Taking the above context in an experimental application, we demonstrate how the 

perceptual mapping of service quality indicators can be converted into managerial insights, 

namely: (a) the identification of latent quality dimensions, which are not captured by 

incumbent measurement instruments or (b) identification of opportunities for entering a 

particular market segment, which may contribute to increased satisfaction with an airline’s 

quality offerings. The latter is of particular importance since not all service factors influence 

customer satisfaction equivalently with some of them tend to be closely related and others 

more orthogonal. In these cases, irrespective of the firm’s overall performance, consumers 

will value those service factors as the key drivers for the formation of their post-service 

evaluations. While our study focuses on the airline industry we argue that our findings may 

also apply on other types of services (e.g., Hotel services, Hospital services, etc.) to identify 

which service factors lead to higher levels of customer satisfaction. 

To this end, the remainder of the paper is organized as follows: A discussion about the 

information content of online reviews and its use in the context of service quality 

measurement along, the methodological assumptions behind structural topic models (STM), 

as well as a comparison with existing methods are provided in Section 2. The description of 

the data used, the steps involved in the STM method and the topic solutions are discussed in 

Section 3. In Section 4 we present the benefits of the inclusion of the topic solution in a 

regression framework for better explaining the variation of passengers’ satisfaction, how the 
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identified topics capture temporal dynamics, and how this can be utilized in an expert system 

scenario that evaluates airline competition in terms of service quality offerings. Section 5 

discusses theoretical and managerial implications, and our study concludes in Section 6 with 

a discussion of limitations and future research directions. 

2. Background and Related work  

2.1 Information Content of Online Reviews  

Online reviews offer firms a low-cost vehicle for the acquisition and retention of customers. 

Managers may also take advantage of such mechanisms to identify their own as well as their 

competitors’ strengths and weaknesses, while the power and the velocity of the dissemination 

of information through online communities also serve as a tool that necessitates the 

fulfillment of contractual agreements (Dellarocas, 2003). The primary motivation for 

customers to resort to online articulations from others is to reduce their risk and information 

asymmetries about a product or service (Yan, Xing, Zhang, & Ma, 2015). As such, their 

purchase decisions are significantly influenced by opinions shared by other customers in 

review aggregators. 

The advent of review aggregators such as Yelp! and TripAdvisor has increased the 

availability of reviews to consumers and managers. Such aggregators enable decision-makers 

to assess the performance of product/ service offerings through a consolidated and 

comparative manner. Nevertheless, literature has identified several drawbacks inherent to 

their nature that may be summarized to the existence of response bias (N. Hu, Zhang, & 

Pavlou, 2009), self-selection bias (X. Li & Hitt, 2008), sequential bias (Eryarsoy & 

Piramuthu, 2014) or psychological biases (Stamolampros & Korfiatis, 2018). Even under the 

presence of such biases, given the long-established effect of eWOM on sales elasticities (See 
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for example Floyd et al., 2014), firms should incorporate this information into their business 

strategies. 

A substantial body of literature has so far evaluated the characteristics of online reviews 

and their effect on consumer decision making. Extant studies in this stream explore, among 

others, consumer motivation to participate on eWOM (Tong, Wang, Tan, & Teo, 2013), 

review characteristics that affect the credibility of eWOM (Luo, Luo, Xu, Warkentin, & Sia, 

2015) or their helpfulness (Korfiatis, García-Barriocanal, & Sánchez–Alonso, 2012; 

Krishnamoorthy, 2015; Ngo-Ye, Sinha, & Sen, 2017). However, the pertinent question on 

how firms can utilize the information content of online reviews is focused on either extracting 

information that reflects customer preferences in order to improve their products (Law, 

Gruss, & Abrahams, 2017; Zhang, Xu, & Wan, 2012) or understand the demographic or 

cultural characteristics of their clients (Stamolampros, Korfiatis, Kourouthanassis, & Symitsi, 

2018). 

Our study focuses on the latter stream of literature and in particular how the 

unstructured data of online reviews can be utilized by firms delivering services which are 

characterized by high complexity. Service quality is a multidimensional construct that 

captures individuals’ perceptions pertaining their experiences with a service encounter 

(Atilgan, Akinci, & Aksoy, 2003; Brady & Cronin Jr, 2001) and particular service attributes 

(Bigne, Sanchez, & Sanchez, 2001; Fick & Brent Ritchie, 1991; Ladhari, 2009).  

Although the relation between review scores and customer satisfaction (and its 

subsequent impact on sales) is widely explored in the context of eWOM literature (Radojevic, 

Stanisic, & Stanic, 2017; Viglia, Minazzi, & Buhalis, 2016), its information content is 

restrained by the aggregation of the dimensions of satisfaction in a generic score as well as 

the constraints imposed by the preselection of the individual categories designed from 
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platforms that allow users to score individual service quality dimensions. Consequently, as a 

service quality signal, online reviews carry some of the limitations found on traditional 

surveys where the multidimensionality of the quality (Tellis & Johnson, 2007) makes their 

use problematic because they are designed to reflect specific predefined dimensions leading 

to significant information loss.  

Furthermore, since customer preferences are dynamic, established service quality 

measurement frameworks, such as SERVQUAL, fail to capture changing expectations and 

outcome beliefs (Buttle, 1996; Verhoef et al., 2009). Unstructured online reviews deal with 

those limitations since they reflect up-to-date preferences and provide an open forum for 

customers to pinpoint specific service offering dimensions that positively (or negatively) 

influenced the overall service experience. Therefore, under the reasonable assumption that 

reviewers discuss the primary drivers of their satisfaction (or dissatisfaction) in the reviews 

textual justification, this form of data can be used by firms to extract valuable information 

that is not gauged either by the overall score, or the predesigned individual rating categories.  

2.2 Online Reviews and Service Quality in Travel Research  

The relationship between service quality and satisfaction in the travel context has been a topic 

extensively discussed by scholars (Augustyn & Ho, 1998; Baker & Crompton, 2000; 

González, Comesaña, & Brea, 2007).  

In the context of airline service encounters, service quality is typically assessed using 

performance metrics such as flight delays, customer complaints, mishandled baggage, airline 

safety records and consumer satisfaction indices that are captured through structured research 

instruments (See for example, Chang and Yeh, 2002; Keiningham et al., 2014; Suzuki et al., 

2001). However, structured research instruments have two significant disadvantages. First, 

their investigation scope is limited to a predefined array of measurement items, which as 
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discussed before, leads to information loss. Second, response style biases may exist driven by 

the fact that some consumers tend to be orthogonal on a particular factor (e.g., price) and may 

hinder the importance of residual factors (De Jong, Steenkamp, Fox, & Baumgartner, 2008).  

In a closely related stream of literature, that of hospitality services, analysis of online 

reviews has recently been regarded as an essential method for apprehending individuals’ 

overall satisfaction. One stream of research is involved in determining the emotional polarity 

of individuals against a service encounter by employing sentiment analysis techniques (Park, 

Ok, & Chae, 2016; Ye, Zhang, & Law, 2009) and relating emotions with service performance 

(Phillips, Barnes, Zigan, & Schegg, 2017). Another stream of research follows an explanatory 

stance and probes for specific cues or aspects that elaborate on the service features or 

properties that contributed to the formation of travelers’ perceptions following the service 

encounter (Marrese-Taylor, Velásquez, & Bravo-Marquez, 2014; Sotiriadis & Van Zyl, 2013) 

through content analysis and opinion mining.  

These features reflect the perceived dimensions of service quality and are explicitly 

extracted or implicitly ascertained from the review comments. Unstructured responses 

elicited with free-form textboxes tend to contain additional information that helps overcome 

the abovementioned issues. Predominant opinion mining techniques include aspect-based 

mining with unsupervised learning, such as the Latent Dirichlet Allocation method (Blei et 

al., 2003) and Correlated Topic Models (Blei & Lafferty, 2006). Topic modeling has recently 

gained attention as a useful tool for analyzing customer provided information using 

unstructured textual data (Guo, Barnes, & Jia, 2017; Tirunillai & Tellis, 2014). In principle, 

topic models are unsupervised techniques which self-organize textual corpora in groups of 

topics. These topics are formed based on how specific groups of words appear together using 

both volume and context as inputs. 
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Figure 1: Identification and decomposition of the service aspects by incorporating structured data in the feature 

extraction process. 

Figure 1 outlines the framework for the feature extraction process of service quality 

dimensions followed in this study. We consider three significant stages where structured data 

in numerical form (ratings of customer i for airline j) are combined with a corpus of 

unstructured data consisting of the textual justifications (tij) of these ratings (document 

format) in order to extract topics. In Stage B the numerical ratings are used as an input to 

derive the document-topic distribution, and a document topic matrix is generated where each 

topic representing a quality dimension is represented proportionally for each textual 

justification (Stage C). We outline the estimation process in the section that follows. 

2.3 Extracting Service Quality dimensions from Structural Topic Models  

In this study, we employ a probabilistic topic modeling method, coined as Structural 

Topic Models (STM), where topic coverage and word distribution are approximated through 

Bayesian inference (Roberts et al., 2016, 2014). This approach extends established 
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probabilistic topic models, such as Latent Dirichlet Allocation ‒LDA (Blei et al., 2003) or 

Correlated Topic Models-CTP (Blei & Lafferty, 2006), since documents (which in our case 

are the textual justifications that accompany review ratings) represent a mixture of latent 

topics and a distribution of words describes each topic. A significant advantage of STM, 

when compared to LDA and CTP, is that it allows the connection of arbitrary information, in 

the form of covariates, with the degree of association of a document with a topic (topic 

prevalence) as well as the degree of association of a word with a topic (content prevalence).  

The primary principle behind topic modeling is the concept of exchangeability, which 

assumes that all authors are equally likely to write a document and the topics within this 

document are drawn from a prior distribution (Blei et al., 2003). In the case of STM, the 

probability of topic prevalence can be modeled with other covariates making it a more 

suitable methodology for online reviews allowing for example to connect the numerical 

rating of a review with the topics derived from the topic solution. Roberts et al. (2016) 

displayed that structural topic models outperform other approaches on topic modeling 

because of the possibility of including document level covariates (or metadata) as the primary 

factor driving the topic distribution. Applications of the STM model have gained momentum 

in the literature. Roberts et al. (2014) analyzed open-ended survey responses in political 

science; Light & Odden, (2017) focused on the dynamics of critics valuation on music 

albums; most recently, Kuhn (2018) elaborated on the discourse elements in accident 

investigation reports.  

The STM process for review text is graphically depicted in Figure 2 using plate 

notation. The steps are described as follows:  

Let us assume a corpus of R reviews with each review r indexed as            

containing w observed words within each review which are indexed as           . Each 
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word is part of the general vocabulary of the review corpus with each term denoted by 

           a word in the vocabulary is denoted by     . The primary input variable in a 

topic model is the number of topics           drawn from a distribution and this should be 

defined at the beginning of the estimation process. There are various ways to identify the 

number of topics in a corpus such as using the concepts of heldout likelihood and a 

combination of qualitative criteria which may require input by domain experts. 

 

Figure 2: Structural topic model process using plate notation (Adopted by Roberts et al., 2016) 

The distribution is affected by topic prevalence covariates which are specified in a 

    vector   . When no topic prevalence covariates are defined, then the STM process 

works in the same way as Latent Dirichlet allocation by using Gibbs sampling to draw the 

topics from a Dirichlet distribution.    contains the review-based covariates that affect the 

dominance of a topic    for each review   , such as its rating score, reviewer’s metadata, as 

well as the time the review was posted. The process runs in three steps as follows:  

First, the review-level relation to each topic   is drawn from a logistic normal 

generalized linear model based on covariates and a set of priors as shown in Equation (1).  
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 ⃗                               ) (1) 

  

, where   represents a         matrix of coefficients drawn from a Normal distribution 

for each k (           with the other K-1 topics to provide bivariate dependence 

between topics.   is a              covariance matrix. 

Second, using the review-specific distribution over words initially attributed to each 

topic (k) by the log frequency distribution (m) of the vocabulary vector, a topic-specific 

deviation from the initial stage    as well as a covariate for group deviation    and an 

interaction term    between them can be modeled as:  

           (                          ) (2) 

Each of                  are vectors (V-length) that contain one input per word in the 

vocabulary. 

 

Finally, for each word            in a review text    the word-specific topic 

assignment      can be modelled based on the review-specific distribution over the given 

finite set of topics as: 

       ⃗                ⃗   (3) 

The probability of an observed word to be attributed on this topic is given by:  

                                            (4) 

The model is then fit using a semiparametric estimation from a semi Expectation – 

Maximization algorithm (Blei & Lafferty, 2007; Wang & Blei, 2013) which upon 

convergence identifies the topic-specific proportions        of a review using information 

from the vector of covariates provided in the initial stages of the estimation.  
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2.4 Comparison with other approaches 

Several approaches for extracting service quality dimensions have been proposed in the 

literature. Table 1 provides an overview of the pros and cons of these approaches in terms of 

(a) data sources and input and (b) the set of predefined parameters that need to be defined.  

Table 1: Overview of existing approaches in measuring service quality  

Approach Data Source Pros Cons Indicative 

Studies 

Survey 

Instruments 

(SERVQUAL)  

Customer 

perceptions 

(structured 

questionnaire) 

‒ Pre-defined set 

of dimensions of 

service quality 

‒ Known validity 

and reliability of 

the survey 

instrument.  

‒ Allows for 

comparable 

benchmarks 

when 

information is 

available. 

‒ Constrained 

information set 

based on the 

constructs 

available in the 

survey 

instrument.  

‒ No possibility for 

comparison with 

other companies 

due to non-

publicly available 

data. 

‒ Prone to sampling 

issues and 

response style 

biases  

(Basfirinci & 

Mitra, 2015; 

Rajaguru, 

2016; Suki, 

2014) 

 

Post-service 

feedback 

(company 

administered) 

Customer 

Perceptions 

(structured 

questionnaire) 

‒ High response 

rate based on 

single item 

constructs.  

‒ Immediate 

feedback which 

allows for the 

incorporation in 

performance 

dashboards  

‒ Limited 

information set 

based on single-

question 

attributes.  

‒ Prone to sampling 

issues and 

response style 

biases 

‒ Cross-sectional in 

nature 

(Liou, Hsu, 

Yeh, & Lin, 

2011; Liou, 

Tsai, Lin, & 

Tzeng, 2011)  

Consumer 

Surveys 

Customer 

Perceptions 

(Structured 

questionnaire 

administered 

by third-

parties, e.g., 

Skytrax) 

‒ Benchmark data 

available for 

comparison 

‒ Continuous 

information flow 

with repeated 

measurements 

(longitudinal) 

‒ Carefully 

selected panel 

‒ Limited 

information set 

based on single-

question attributes 

‒ Sample of the 

whole population 

and limits of 

panel composition 

(Y.-W. 

Chang & 

Chang, 2010; 

Han, Ham, 

Yang, & 

Baek, 2012; 

Jiang & 

Zhang, 2016)  

Expert input 

(TOPSIS) 

Customer 

Perceptions 

(Sample) / 

Expert 

‒ Small sample 

‒ Optimal 

configuration 

available 

‒ Pre-defined 

parameters on the 

information set  

‒ Requires 

(Awasthi, 

Chauhan, 

Omrani, & 

Panahi, 2011; 
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Opinion 

(qualitative 

interpretation 

based on 

interviews) 

‒ Rank-ordering of 

service quality 

dimensions 

recruitment of 

experts 

(customers or 

service 

managers). 

Büyüközkan 

et al., 2011; 

Sun, 2010)  

Fuzzy input 

(FSQCA) 

Customer 

Perceptions 

(Sample) / 

Expert 

Opinion 

(qualitative 

interpretation 

based on 

anchor 

classification 

scores) 

‒ Small sample 

‒ Configuration 

options based on 

Fuzzy sets  

‒ Difficulty of 

interpretation  

‒ Sampling bias  

‒ Sensitive to the 

membership 

function of the 

fuzzy set. 

(S.-Y. Chou, 

Shen, Chiu, 

& Chou, 

2016; Hsiao, 

Chen, Chang, 

& Chiu, 

2016; Wu, 

Yeh, 

Woodside, & 

others, 2014) 

Consumer 

reviews – 

Sentiment 

Analysis 

Customer 

Reviews 

(unstructured 

text) 

‒ Identification of 

positive and 

negative aspects 

of satisfaction 

using rating 

segmentation 

‒ Publicly 

available data  

‒ Continuous 

information flow 

‒ Bag-of-words 

based approach 

using opinion 

dictionaries is 

prone to word 

length bias. 

‒ Self-selection bias 

(overly satisfied 

and overly 

dissatisfied 

consumers) 

(Calheiros, 

Moro, & 

Rita, 2017; 

Geetha, 

Singha, & 

Sinha, 2017; 

Kim, Park, 

Yun, & Yun, 

2017) 

Consumer 

Reviews – 

LDA  

Customer 

Reviews 

(unstructured 

text, e.g. 

online 

reviews) 

‒ Topic models 

built from 

textual feedback 

‒ Flexible 

membership of 

each document 

to a topic 

‒ No reliable way 

to estimate the 

predefined 

number of topics 

‒ No possibility to 

model the 

dependence 

between topics 

and review 

metadata (rating 

and service 

characteristics). 

(Guo et al., 

2017; Y.-H. 

Hu, Chen, & 

Lee, 2017; 

Rossetti, 

Stella, & 

Zanker, 

2016) 

 

Approaches for measuring service quality consider established instruments, however 

the multi-dimensionality of service quality as a construct leads to information loss along with 

other negative aspects, such as sampling and responder bias. Sentiment classification-based 

approaches are also reported in the literature; yet, this type of analysis uses a bag-of-words 

model where each word in the review is indexed using a unigram model. As such, it carries 

the limitation of not considering the order of words, but only associations between terms 
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based on the collocation of each word in the same document. Moreover, the reliability of 

scoring dictionaries for sentiment detection is established in the literature when considering 

single word frequencies, which can be hindered by context-specific limitations that are 

abundant in open-ended response text such as negations (e.g., ‘not great service’).  

Topic-model based approaches address most of the limitations of the approaches 

discussed so far, but they hinder two significant drawbacks. First, the definition of the 

number of topics can be arbitrary and is subject to the interpretability of the topic solution by 

the researchers. Second, the consideration that responses are documents with no exogenous 

covariates (as in the standard LDA and correlated LDA models) can hinder the reliability of 

the topic solution. In the case of online reviews, a critical meta-information - that of the 

numerical rating, can be of a significant factor for the document-topic as well as the word-

topic distribution.  

Structural topic models provide distinct advantages that address these issues. First, the 

interdependence of topics is explicitly modeled in terms of topic correlation. This allows for 

latent factors to be described by a combination of topics that are closer together in higher‒

order dimensions of the central latent concept. Second, STM allows for the topic vocabulary 

(the collection of words for a particular topic) to be associated with covariates in addition to 

the topic itself. Third, by explicitly including the covariate relationships in the model, we can 

include measurement uncertainty from the estimation of the latent topics into regression 

analysis, thus the number of topics can be accurately estimated. Fourth, based on open-ended 

responses there is significant information gain since predesigned aspects often come with 

missing ratings. Using the closest associated topic from the review text, we can impute 

missing information and increase the predictive accuracy. Based on the above, STM 

comprises a suitable method to extrapolate pertinent service quality dimensions from online 

reviews. 
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3. Data and Method 

3.1 Dataset Description  

Our data are sourced from TripAdvisor, the dominant online travel intermediary when it 

comes to booking hotels and evaluating hospitality experiences. More recently, TripAdvisor 

allows its members also to book flights and evaluate their experiences with a carrier. We 

collected all available airline passenger reviews (N= 557,208) with information about flight 

date, name of airline, route (start and destination airport), cabin class (first class, business 

class, premium economy, and economy class) and reviewers’ level of contribution to the 

platform (computed from the number of review posts). Passengers provide an overall score 

for their total experience (in an ordinal categorical scale from 1 to 5), which is accompanied 

by an individual rating for 8 specific service aspects of the flight namely: (a) Seat Comfort, 

(b) Customer Service, (c) Cleanliness, (d) Food and Beverage, (e) Legroom, (f) In-Flight 

Entertainment (g) Value for Money and (h) Check-in and Boarding.  

We also computed the flight distance for each flight by geocoding the longitude and 

latitude of the departure and destination cities using the Haversine method. We initially 

collected 557,208 reviews written from 376,519 passengers. Approximately more than half of 

the reviews in our sample are written in English (254,424) with an approximate length of 560 

characters for the review text. The average rating for all reviews in our sample is relatively 

good (M=3.68, SD = 1.29) and comparable to the rating score of the individual aspects. The 

ratings regarding the cleanliness/state of aircraft cabin (M=3.94, SD=1.03), customer service 

(M=3.75, SD=1.34) and check-in experience (M=3.81, SD=1.25) were above the average of 

the overall score. On the other hand, ratings for Seat Comfort (M=3.46, SD=1.11), Food and 

Beverages (M=3.32, SD=1.27) and Inflight Entertainment/Wi-Fi (M=3.01, SD=1.47) were 

below the overall rating, while Value for Money was very close to the Overall Score 

(M=3.66, SD=1.23). 
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3.2 Topic Prevalence Parameters 

The primary variable that influences topic prevalence (the assignment of a review in a 

particular topic) in our STM model is the overall satisfaction of passengers with the service 

they received by an airline during a flight. Cabin class, flight distance and reviewers’ 

(passengers’) level of contribution on TripAdvisor, which also acts as a proxy for passenger 

experience, are considered as additional controls that may influence topic prevalence.  

3.3 Applying STM to Evaluate Quality Dimensions 

To perform our analysis, we followed a three-step process: First, we applied established pre-

processing techniques to extract the corpus used in the analysis; Second, we identified the 

number of topics that best describe the variability of the corpus; Third, we estimated how the 

topics change for different review ratings and additional controls. In the following parts we 

describe these steps in more details. 

3.3.1 Text Preparation for Analysis 

From the total pool of reviews, we selected only those written in English. In addition to the 

availability of stop-word lists, topic model approaches work best with English corpora due to 

the availability of part-of-speech taggers that assist with text preparation and estimation of 

marginal frequencies. The pre-processing workflow was based on previous studies (Guo et 

al., 2017; Tirunillai & Tellis, 2014) and involved the following steps: (i) word text 

tokenization, (ii) elimination of numbers and punctuation marks, (iii) exclusion of language 

stop-words (using the SMART list) as well as context-specific stopwords such as names of 

airlines, airports, and routes, and words with a length under a specific threshold (set to three 

characters), (iv) filtering the remaining words to keep only adverbs adjectives and nouns as 

these words have information about the product and product quality (Guo et al., 2017; 

Tirunillai & Tellis, 2014). This was done using part-of-speech (POS) tagging and the Python 

Natural Language Processing Toolkit (NLTK). 
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After pre-processing, we stemmed and lemmatized each word to derive groups with 

the same root form, excluding those that didn’t appear in at least 1% of the initial corpus. 

This step reduced our final corpus to 184,502 online reviews which were used for the 

estimation of the topic solution.  

3.3.2 Estimating the Number of Topics 

Our analysis was performed in R (R Core Team, 2017) using the STM package. The basic 

STM considers the assignment of a document vector (with each document corresponding to 

each review r) containing a vocabulary of size (V) into K topics. As aforementioned, the 

underlying assumption of STM is that document level covariates influence the assignment of 

documents to topics (e.g., a review which is written by a business class passenger). Following 

Roberts et al., (2017), the number of topics was selected using three criteria: (i) Heldout 

likelihood (a measure on how the candidate number of topics is able to explain the overall 

variability in the review corpus) (ii) Semantic Coherence of the words to each topic and (iii) 

Exclusivity of topic words to the topic.  

In order to generate a candidate number of topics for evaluation, we began with a 

stepwise estimation for an initial number of eight topics, (parameter K in the STM process as 

shown in Figure 2) similar to the number of rating categories that are offered by TripAdvisor, 

and evaluated the heldout likelihood until a maximum of 40 topics using an increment of two 

topics in each step. Then, the topic solutions with the highest heldout likelihood were 

evaluated against the FREX criterion (Roberts et al., 2016) as follows: 

        (
 

    (          
 
   )

 
   

    (    )
)

  

 
(5) 

, where k is the k-th topic,   is the word under consideration, β is the word distribution for the 

k-th topic and ω a prior used to impose exclusivity (the default is 0.7). FREX is estimated as 

a weighted harmonic mean of a word’s rank in terms of exclusivity and semantic coherence. 
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Semantic coherence, developed by Mimno et al. (2011), uses the frequency of co-occurrence 

of the most probable words in each topic of the topic solution, while exclusivity considers the 

mutual appearance of the most probable words in more than one topics.  

Table 2: Labels, distribution and FREX score for the top 7 keywords in the topic solution. 

# Topic Label Prop. (%) Top 7 FREX words 

1 Business Class 3.24 flat, lounge, business, class, bed, access, wine 

2 Value for Money 6.84 good, food, value, overall, experience, money, airplane 

3 Baggage Policy 3.02 bag, carry, charge, line, checked, fee, item 

4 Low Cost 4.94 low, budget, price, cheap, cost, fare, carrier 

5 Legroom (Critique) 2.02 room, space, enough, tall, foot, extra, amount 

6 Delays 11.03 delay, hotel, hour, late, due, minute, connection 

7 Staff (Praise) 10.11 
friendly, helpful, clean, efficient, professional, 

courteous, smooth 

8 Premium Economy 2.23 
economy, premium, comfort, upgrade, difference, 

section, haul 

9 Staff (Critique) 5.50 water, stewardess, toilet, poor, terrible, light, steward 

10 Passenger Experience 6.01 best, many, domestic, world, past, travel, frequent 

11 Frequent Flyer Status 1.91 flyer, member, traveller, group, point, aircraft 

12 Mode of Travel 5.49 trip, return, direct, stop, home, round, non 

13 Seating (Critique) 6.70 row, front, uncomfortable, seat, window, aisle, exit 

14 Refund/Cancelation 5.42 phone, card, credit, email, call, agent, ticket 

15 
Food/In-flight 

entertainment 
6.24 

entertainment, movie, inflight, selection, screen, meal, 

average 

16 Staff Assistance 5.22 child, holiday, nothing, much, special, cabin, crew 

17 Legroom (Praise) 1.71 leg, lot, plenty, journey, second, extra, bit 

18 Check-in 4.75 hand, luggage, check, queue, case, baggage, online 

19 Airport Experience 4.98 free, snack, board, terminal, early, boarding, WIFI 

20 Onboard Service 2.65 short, tea, full, usual, bit, etc, available 

 

Using the FREX criterion, a 20-topic solution has the best relationship between 

heldout likelihood, semantic coherence, and exclusivity. We assigned labels to topics by 

recruiting two experts with airline customer service experience to help us evaluate each topic 

using a sample of the top 10 loading reviews and the top 7 FREX words. Both experts agreed 

that the selected topic solution had a high degree of coherence in terms of the top loading 

reviews and assigned mutually agreed labels. The estimated topic solution with the words 

having the highest FREX score and the assigned labels is provided in Table 2.  
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4. Analysis and Results 

In this part, we summarize the results of the experimental application of STM in our corpus 

and evaluate our results in terms of (a) information gain from the inclusion of the topic 

solution to a regression analysis framework and (b) the temporal dynamics of the service 

factors identified from the topic solution. Our primary goal is to examine whether the features 

extracted from the STM process can add predictive ability to the overall satisfaction by 

minimizing information loss due to scale design as well as capture the temporal nature of 

service quality offerings. 

4.1 Assessing the Information Gain from Unstructured Data 

We begin our analysis using the information derived from review ratings. An ordinal logistic 

regression was performed, which is the suitable method based on the nature of our Likert-

scaled response variable (Wooldridge, 2010). For covariates, we included the eight service 

categories that TripAdvisor allows passengers to vote along with the overall satisfaction of 

the travel experience controlling for cabin class, flight distance and reviewer’s level of 

contribution to the platform. Our econometric specification is estimated as follows: 

           ∑     
 
  

 

   

 ∑         
 

 

   

                                 (6) 

, where: RevScorei is the overall score given for this review.   
 
 is the individual rating score 

for the sub-rating category j of the review i, with j corresponding to one of the following 

eight categories: Seat Comfort, Customer Service, Cleanliness, Food & Beverages, Legroom, 

Inflight Entertainment, Value for Money, Check-in /Boarding.       
  is the cabin class of 

the passenger for the specific flight he wrote the review with c representing one of the 

following: Premium Economy, Business Class, First Class (Economy is used as a baseline). 

               provides the number of reviews that the passenger who wrote the review i 
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has written and is also used as a proxy of passenger experience.          is the flight 

distance for the flight that corresponds to the review i.  

To illustrate the effect of the incorporation of the estimated topic proportions to the 

explanatory power of the specified model, we estimated additional variations of the baseline 

model by incrementally adding one topic variables at a time. To conserve space and since 

studying all the topics found from the topic solution is beyond the scope of this analysis, we 

select a more parsimonious model including only the three topics with the biggest (positive or 

negative) marginal effects in their prevalence (Topics: 6, 14, and 7). As such, we considered 

three additional models: Model 2 with Topic #6 (issues with delays), Model 3 with Topic #14 

(Refunds / Cancelation issues) and Model 4 with Topic #7 (Staff Praise). For each review the 

estimated θ parameter for the topic from the topic solution (Figure 1) was included as a 

covariate in the form of a dichotomous variable, denoting whether this topic was the 

dominant topic for this review or not. The results are shown in Table 3 along with the 

likelihood ratio tests that are provided to evaluate the increased information gain (in the form 

of χ
2
 difference tests). Considering that not all passengers rate all the eight aspects of the 

service provided during the flight, the final number of observations was truncated to N = 

173,481. 

 

 

Table 3: Baseline and additional models for assessing the predictive relevance of topic proportions on the 

overall rating 

 
(1) (2) (3) (4) 

Rating Categories     

Seat Comfort 
 0.460***  

(0.009) 

     0.483***  

(0.009) 

     0.506*** 

(0.009) 

      0.449***  

(0.009) 

Customer Service 
 0.905***  

(0.007) 

     0.886***  

(0.007) 

      0.800***  

(0.007) 

      0.720*** 

(0.007) 

Cleanliness  0.200***       0.217***        0.242***        0.222*** 
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(0.008) (0.008) (0.008) (0.008) 

Food & Beverages 
 0.334***  

(0.006) 

      0.346***  

(0.006) 

      0.372***  

(0.006) 

      0.340*** 

(0.006) 

Legroom 
 0.184***  

(0.008) 

      0.187***  

(0.008) 

      0.182***  

(0.008) 

      0.186*** 

(0.008) 

In-flight Entertainment 
 0.175***  

(0.005) 

      0.169***  

(0.005) 

      0.177***  

(0.005) 

      0.183*** 

(0.005) 

Value for Money 
 0.756***  

(0.007) 

      0.751***  

(0.007) 

      0.737***  

(0.007) 

      0.729*** 

(0.007) 

Check-in /Boarding 
 0.507***  

(0.006) 

      0.434***  

(0.006) 

      0.389*** 

(0.006) 

      0.356*** 

(0.006) 

Control Variables     

Premium Economy 
-0.085**  

(0.029) 

    -0.230*** 

(0.029) 

     -0.295*** 

(0.029) 

-0.035 

 (0.030) 

Business Class 
-0.433*** 

(0.018) 

     -0.553*** 

(0.018) 

     -0.644*** 

(0.019) 

     -0.336*** 

(0.019) 

First Class 
-0.378*** 

(0.033) 

     -0.444*** 

(0.034) 

     -0.390*** 

(0.034) 

0.009 

 (0.035) 

Reviewer Level  

of Contribution 

 0.046***  

(0.003) 

      0.040***  

(0.003) 

      0.023***  

(0.003) 

       0.046*** 

(0.003) 

Flight Distance. 
-0.123*** 

(0.006) 

    -0.172*** 

(0.006) 

     -0.222*** 

(0.006) 

     -0.134*** 

(0.006) 

Topic Membership (θ)     

Delays  

(Topic: 6) 

     -4.413*** 

(0.055) 

     -4.655***  

(0.056) 

    -3.667***  

(0.056) 

Refund/Cancelation 

(Topic: 14) 

       -9.122***  

(0.111) 

     -7.576***  

(0.110) 

Staff Praise 

(Topic: 7) 

       10.042***  

(0.100) 

AIC 270040.4 263413.5 255508.6 243023.7 

LL -135,003 -131,689 -127,735 -121,492 

χ
2
  6628.9*** 7906.8*** 12486.9*** 

Note: N=173,481 observations for all models after case wise deletion for those reviews where no service 

category ratings were available. Bootstrap standard errors in parenthesis. 
*
p<0.05; 

**
p<0.01; 

***
p<0.001 

 

Using this specification and considering the nature of our response variable (review 

score) an ordered logistic regression model was estimated. This was assigned as the baseline 

model (Model 1 in Table 3) to examine how the information about the topic distribution 

(extracted from the STM process) could increase the predictability of the review score. We 

evaluated the prevalence of each topic for the continuum of the values of the review rating 

(Low rating: 1 to High Rating: 5) to decide which topics will augment the baseline model. 
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Figure 3 displays the marginal effects of the overall rating to the topics discussed. The longer 

the distance of the topic from the dotted line (that depicts the zero effect), the more prominent 

the change in the proportion of the topic as part of the overall corpus. Customer service is the 

critical factor that is highly connected with increased satisfaction since Staff praise (topic #7) 

has the most significant change per rating score increase (a 4% increase per unit score). This 

is in line with the previous studies regarding drivers of service satisfaction (Anderson, Pearo, 

& Widener, 2008) or loyalty (Vlachos & Lin, 2014) in airlines where interaction with 

personnel is described as a critical factor. The second more significant positive effect per unit 

increase of rating score is related to Topic #2 that corresponds to Value for Money. The 

stronger negative effects are observed for the topics related to delays (Topic #6), staff critique 

(Topic #9) as well as the refund/cancellation topic (Topic #14) which refers to service 

recovery failures.  

 

 

 

Figure 3: Marginal effects in the change of the expected proportions of topic prevalence based on low and high 

review score. The dotted line represents the zero effect. The interpretation of the graph for example in the case 

of the topic Staff (Praise) is that per unit increase in overall satisfaction there is an increase of 4% in the 

discussion about the specific topic. 
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Comparing the marginal effects obtained from our STM solution (Figure 3), with the 

size of the covariates of the rating aspects from the baseline regression (Model 1), we found 

an agreement regarding the importance of customer service and value for money service 

factors. As the distance from the dashed axis increases (decreases), the probability of specific 

topics become more dominant. For instance, Delays and Carriers’ responses to service 

failures (refunds/cancellations) are critical factors that lead to customer dissatisfaction when 

occurring and if not appropriately addressed. On the other hand, staff praise by consumers is 

the primary driver of high ratings as the topic is becoming dominant for extremely satisfied 

customers. However, there are several dimensions, which are not directly captured from the 

current review interface in TripAdvisor and thus not measured. This indicates the value of the 

topic modeling approach on extracting additional quality dimensions.  

4.2  Temporal Variations in Service Quality Dimensions 

In addition to the information gain analysis demonstrated in a regression framework, we turn 

our attention to the second limitation that cross-sectional service quality surveys exhibit, 

namely capturing the temporal variation of service levels, which may be over or under-

represented in a sample at the time of data collection. We do so by considering the effect of 

seasonal variations on the main topics in our topic solution and estimating the effect of 

review time on the topic prevalence. As such we consider the topic membership function (θ) 

to fluctuate by time as:    {        } where T is the bandwidth of the period (in terms of 

days) that is available in our dataset is (T=584). To test the impact of time on the prevalence 

of the k-th topic prevalence) we consider the following model:  

      [
            

 
           

]        [
        

 
        

]     [
  

 
  

]     [
  

 
  

]      

(7) 
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Where βik indexes the influence of the time-related rating covariate on the topic prevalence, 

   and    indexes the airline and cabin class respectively and d is a smoothing covariate to 

account for time effects. For each topic we estimated the influence of these covariates on the 

topic distribution and plotted the marginal effects for the bandwidth of 574 days that were 

available in our dataset. 

The plot in Figure 4 shows the temporal dynamics during periods of high load for 

airlines (summer period and Christmas). This is in line with the literature that observes 

similar dynamics in online ratings (X. Li & Hitt, 2008). However, in our case temporal 

dynamics exhibited upon the dominance of some topics in the corpus can be explained by 

specific conditions (in the case of airlines – high load) where some topics (e.g., Delays) 

become more prevalent than others. Thus, the analysis in that level better captures the current 

service provisioning conditions than the variations exhibited on online ratings. That result 

signifies that customer preferences change over time (Buttle, 1996; Verhoef et al., 2009) and 

as such firms which want to maximize the insights offered from online reviews should 

develop expert systems to monitor not only their service offerings but the overall market 

conditions. We discuss the application of such an expert system for airlines in the section that 

follows.
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Figure 4: Seasonality patterns in the growth and decline of topics in our corpus (Bandwidth: 574 days) 
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4.3 Mapping Airline Service Quality Competition  

In order to demonstrate how airlines can exploit the textual content of online reviews for 

evaluating their competitive performance, a perceptual mapping using correspondence 

analysis for service quality dimensions extracted from the STM topic solution was performed 

by selecting the seven most prevalent topics from our corpus (Table 2). Service quality 

dimensions are multifaceted, and the goal of each airline is to be more or sometimes less 

associated with them based on their strategy. For example, airlines that build their model on 

pricing (Low cost) such as Ryanair and EasyJet, would like to evaluate their position towards 

other quality factors as well as their relative position with other airlines, especially 

considering the introduction of low-cost subsidiaries by legacy carriers. 

We consider a bivariate frequency table F having n rows indexing an airline (i) such 

as i=1,…,n and m columns indexing the service quality dimensions (j) extracted from our 

STM solution such as j=1, …,m conditioning n ≫ m (Suggesting that the number of airlines 

to be evaluated is significantly larger than the number of passengers). Following Greenacre 

(2017) we consider the total number of observations indexed in the table as    

     
 
   

 
   . The vectors of marginal probabilities for airline i to belong to the service 

quality dimension wm and for the service quality dimension to load for that particular airline 

wn are given by    
 

  
    and    

 

  
  

   where    is the column vector of the 

maximum probability for each dimension. In estimating the deviation from independence 

between service quality dimensions for each airline we assume that all service quality 

dimensions are orthogonal, suggesting that each airline has an equal probability to exhibit a 

service quality dimension. As such the deviation from independence (M) can be estimated in 

a matrix form as   
 

  
      . Using generalized value decomposition (VD), M can be 

decomposed and factor scores for the airlines (n) and service quality dimensions (m) can be 
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extracted as           and        . With    and    representing the diagonals 

of    and    respectively.  

Table 4: Chi-squared (χ
2
) decomposition of the factors obtained from the model solution. For both segments 

row- and column-based Benzecri Root Mean Squared Error (RMSE) < 0.001 

Factor   Proportion Cum. Proportion 

Segment 1 – Intra-European (total χ
2
 = 0.846) 

Factor 1 0.513       0.607 60.7 

Factor 2  0.189      0.223 83.0 

Factor 3   0.075     0.089 91.9 

Factor 4    0.029    0.035 95.4 

Factor 5     0.021   0.024 97.8 

Factor 6      0.015  0.018 99.6 

Factor 7       0.004 0.004 100 

Segment 2 – Intercontinental (χ
2
 = 0.592) 

Factor 1 0.407       0.688 68.8 

Factor 2  0.088      0.148 83.5 

Factor 3   0.046     0.077 91.3 

Factor 4    0.034    0.058 97.1 

Factor 5     0.010   0.016 98.7 

Factor 6      0.004  0.007 99.4 

Factor 7       0.004 0.006 100 

 

We extracted two subsets from our topic solution considering the different nature of 

service offerings for airlines and the associated aircrafts used (narrow-body vs. wide-body). 

The first is for flights within Europe (Intra-European segment) and the airlines that are active 

in this market while the second subset considers those airlines which compete on 

intercontinental routes (Intercontinental segment). For each passenger review in both subsets, 
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we estimated the topic membership (θ) extracted from the topic solution and aggregated it on 

airline level.  

As can be obtained from Table 4, for both subsets more than 80% of the variation in 

service quality dimensions can be explained by two dominant components. Considering the 

first subset (Europe) correspondence analysis resulted in two principal components who 

jointly explained 83% of the variance in the topic prevalence which were used for the 

visualization if of the service components in Figure 5. Several interesting observations can be 

extracted regarding the positioning of airlines to dimensions of service quality from topic 

solution. For example, the dimension of low cost is relatively orthogonal to all the other 

dimensions of focus. In that aspect, we can see that both EasyJet and Ryanair have the same 

loading for this dimension. However, EasyJet and other low-cost carriers (e.g., Transavia) are 

closer to the dimension of Staff praise which was the most dominant factor for high ratings 

given the results reported in the previous section. Considering recent events in the airline 

market (e.g., Ryanair’s cancelations due to pilot shortage and Air Berlin’s Bankruptcy) it is 

no surprise that Ryanair is closer to the delay aspects, and Air Berlin was the top loading 

airline for issues related with refund and cancellation. An interesting observation is that 

despite our dataset contains observations until July 2017 the aggregation of topic prevalence 

reveals some predictability of future events. From the perspective of non-low-cost airlines, 

we can see that Aegean airlines has the best combination of staff praise and price levels 

which confirms its status as the best regional airline in Europe according to ERA Awards – 

Skytrax
a
. 

Traditional carriers, such as British Airways, score higher for staff critique which is 

also expected considering the strike actions and the cabin crew disputes with the airline
b
. On 

the other hand, Lufthansa scores highly for value for money and legroom praise and manages 

to distance itself from all the negative aspects of quality dimensions extracted from our topic 
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solution. This comes as no surprise as in the past three years the company has reported 

increased profitability
c
. 

 

 

 

Figure 5: Competition of service quality dimensions for Intra-European segment.  

 

For the second subset considering the service offerings in intercontinental routes 

(Figure 6), we similarly observe the orthogonality of the low-cost dimension with Norwegian 

currently being the winner on that segment while Air Lingus and Jet Airways being more 

praised for their staff. The best combination of value for money and staff praise is given to 

Singapore Airlines and Emirates closely followed by Qatar Airways, Quantas, and Cathay 
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Pacific. This is expected considering that all these airlines are currently ranked as 5-star and 

4-star airlines by Skytrax
d
.  

 
Figure 6: Competition in service quality dimensions for the intercontinental segment. 

 

5. Discussion and Implications  

5.1 Implications for Theory 

Compared with extant approaches in the literature when applied on service quality 

measurement our study has significant advantages. First, rank-based approaches, such as 

TOPSIS, typically rely on a limited pool of experts for evaluating a set of pre-defined criteria 

(Liu, Bi, & Fan, 2017). Our approach relaxes the requirement of pre-defining the service 

quality dimensions as well as expert recruitment and directs its attention on open-ended 
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responses from customers. Second, by modeling the dependence between the extracted 

dimensions, our model shows significant qualitative performance and interpretability when 

compared with factual information. As such, we show that the inclusion of topic models 

increases significantly the variation of the customer satisfaction explained in our model, 

while at the same time it allows us to capture factors that are not measured by predefined sub-

indexes. In that way we respond to several calls by researchers in the expert and intelligent 

systems literature (J. Li, Xu, Tang, Wang, & Li, 2018; Tsui, Wang, Cai, Cheung, & Lee, 

2014) related to the value of unstructured data, by establishing information gains that can be 

achieved when textual features from open-ended responses are incorporated with structured 

information from measurement scales.  

Our study also provides a methodological contribution by demonstrating the suitability 

of a particular class of topic models, namely the Structural Topic Model – STM (Roberts, 

Stewart, & Airoldi, 2016) for mapping service quality dimensions, thus allowing a more 

effective measurement of service quality. This class of topic models, when compared to 

established probabilistic topic models, and in particular the widely used Latent Dirichlet 

Allocation (Blei, Ng, & Jordan, 2003), offers distinctive advantages stemming mainly from 

the inclusion of covariates of interest into the prior distributions of the document-topic 

proportion and topic-word distribution. This text mining method also presents increased 

predictive power and qualitative interpretability in determining the dominant topics of online 

reviews compared to extant text analytics methods based on the bag-of-words approach (e.g., 

dictionary scoring).  

5.2 Implications for Practice 

The study has valuable implications for managerial practice. Specifically, it enables airline 

managers to pinpoint salient dimensions of service quality from user-generated data that 

influence customer satisfaction and relate these dimensions to ascertain the competitive 
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positioning of each airline company within the industry. Interestingly, our findings are in line 

with the literature discussing the importance of Big Data as a mean to capture forward-

looking information and evolving customer preferences (Lambrecht & Tucker, 2017) and 

may inform the identification of different passenger clusters based on the salient service 

quality dimensions (e.g., price-sensitive passengers and convenience passengers). Since the 

STM method may be employed dynamically on changing customer perceptions over time, 

this study paves the ground for the specification of expert systems that analyze such 

unstructured data to reshape a company’s strategy.  

In the context of the airline industry, managers may identify up-to-date drivers of 

customer satisfaction (or dissatisfaction) and their dynamics across time and position their 

service offerings accordingly. Our study identifies such clusters of airline companies that 

share common perceptions on specific service quality properties (i.e., cost, cabin comfort, 

staff behavior, etc.) and reveal the importance that passengers attribute to these dimensions. 

For example, our study confirms the importance of such dimensions as cost and comfort as 

proxies of customer satisfaction and, ultimately, loyalty (Koklic, Kukar-Kinney, & Vegelj, 

2017; Lee & Yu, 2018). This is more apparent with legacy carriers who operate a low-cost 

operation under another brand but would like to keep or change some distinctive 

characteristics in quality offering that stem from their own brand (e.g., KLM and Transavia, 

British Airways and Vueling, etc.).  

An additional managerial implication concerns review aggregators and in particular 

those aggregators that provide specialized review interfaces to measure specific dimensions 

of the overall rating. The design of review interfaces is a challenging task and requires 

informed selection of the pertinent dimensions. Such dimensions may vary depending on the 

culture or past experiences of passengers. Therefore, an intelligent system that dynamically 

probes for such dimensions may contribute to the design of personalized review interfaces 
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based on inherent passenger features. Interestingly, our findings from the topic modeling 

method application unraveled essential dimensions, such as delays and baggage policy, which 

are not included in the rating dimensions specified by contemporary review aggregators, such 

as TripAdvisor. 

6. Limitations and Future Research 

While our study has provided an innovative way to capture service quality indicators from 

unstructured data and showcased their predictive ability on customer satisfaction and airline 

competition, it has a set of limitations which are pertinent to the use of online reviews as we 

outlined in Section 2.4. Indeed, response biases based on consumer demographics and culture 

can alter the textual content as well as the rating of online reviews (Korfiatis & Poulos, 2013; 

Stamolampros et al., 2018) and as such more control variables are needed in the estimation of 

document-topic and word-topic distributions. 

Nevertheless, several promising avenues for future research can be initiated. First, the 

study can be extended to accommodate the effect of temporal shifts in the service quality 

offering under periods of high load (e.g., summer months). Airlines tend to function with 

different schedules (winter and summer) where additional staff is brought in to increase 

capacity (either in the form of ground crew or additional aircraft leases), and this may 

influence the service offering (something that we are not able to control). Second, the 

identified service quality factors may be further analyzed by extending the unit of analysis to 

other stakeholders, such as airports (Kuo & Liang, 2011). While the service level in our study 

could be proxied by the cabin class, additional information about the respondents, such as 

demographics, could add further predictive validity on our study. Along with this line, our 

investigation lens could be extended through other forms of online information that have 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

37 

 

gained momentum in the literature such as for example employee reviews (Symitsi, 

Stamolampros, & Daskalakis, 2018). 
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