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Abstract

Prominent applications of sentiment analysis are countless, covering areas such as market-

ing, customer service and communication. The conventional bag-of-words approach for

measuring sentiment merely counts term frequencies; however, it neglects the position of

the terms within the discourse. As a remedy, we develop a discourse-aware method that

builds upon the discourse structure of documents. For this purpose, we utilize rhetor-

ical structure theory to label (sub-)clauses according to their hierarchical relationships

and then assign polarity scores to individual leaves. To learn from the resulting rhetor-

ical structure, we propose a tensor-based, tree-structured deep neural network (named

Discourse-LSTM) in order to process the complete discourse tree. The underlying tensors

infer the salient passages of narrative materials. In addition, we suggest two algorithms

for data augmentation (node reordering and artificial leaf insertion) that increase our

training set and reduce overfitting. Our benchmarks demonstrate the superior perfor-

mance of our approach. Moreover, our tensor structure reveals the salient text passages

and thereby provides explanatory insights.

Keywords: Sentiment analysis, Rhetorical structure theory, Discourse tree,

Tree-structured network, Long short-term memory, Tensor-based network
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1. Introduction

Sentiment analysis reveals personal opinions towards entities such as products, services

or events, which can benefit organizations and businesses in improving their marketing,
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communication, production and procurement. For this purpose, sentiment analysis quan-

tifies the positivity or negativity of subjective information in narrative materials (Pang

& Lee, 2008; Feldman, 2013; Chen et al., 2017; Kratzwald et al., 2018). Among the many

applications of sentiment analysis are tracking customer opinions (Tanaka, 2010; Araque

et al., 2017; Bohanec et al., 2017), mining user reviews (Ye et al., 2009; Mostafa, 2013;

Kontopoulos et al., 2013), trading upon financial news (Khadjeh Nassirtoussi et al., 2015;

Kraus & Feuerriegel, 2017; Weng et al., 2018), detect social events (Yoo et al., 2018) and

predicting sales (Yu et al., 2012; Rui et al., 2013).

Sentiment analysis traditionally utilizes bag-of-words approaches, which merely count

the frequency of words (and tuples thereof) to obtain a mathematical representation of

documents in matrix form (Manning & Schütze, 1999; Pang & Lee, 2008; Guzella &

Caminhas, 2009; Dey et al., 2018). As such, these approaches are not capable of taking

into consideration semantic relationships between sections and sentences of a document.

In näıve bag-of-words models, all clauses are assigned the same level of relevance, which

cannot mark certain subordinate clauses more than others for purposes of inferring the

sentiment. Conversely, the objective of this paper is to develop a discourse-aware method

for sentiment analysis that can recognize differences in salience between individual sub-

ordinate clauses, as well as the discriminate the relevance of sentences based on their

function (e. g. whether it introduces a new fact or elaborates upon an existing one).

Let us, for instance, consider the two examples in Figure 1, which express opposite

polarities. By simply counting the frequency of positive and negative words, we cannot

discriminate between the texts, as both contain the same number of polarity terms. To

reliably analyze the sentiment, it is essential to account for the semantic structure and

the variable importance across passages. That is, we can identify the main clauses and

then infer the correct tone of the examples by looking at them. Similarly, RST trees can

locate relevant parts in lengthy texts. For instance, the concluding section of a newspaper

article is typically relevant as it reports the opinion of the author.

Our method is based on rhetorical structure theory (RST), which incorporates the

discourse structures of natural language. RST structures documents hierarchically (Mann

& Thompson, 1988) by splitting the content into (sub-)clauses called elementary discourse

units (EDUs). The EDUs are then connected to form a binary discourse tree. Here RST

discriminates between a nucleus, which conveys primary, and satellite, which conveys

ancillary information. The formalization of nucleus/satellite can be loosely thought of
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(a) Discourse with overall positive sentiment (b) Discourse with overall negative sentiment
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In fact, the main actor is 

known for his [bad]
−
 

comedic acting. 
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All in all, I [enjoyed]
+
 

this comedy. 

2
I haven’t watched a 

movie for a long time.

1
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sentiment
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Background
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this comedy. 

2
I haven’t watched a 

movie for a long time.

1

Negative 

sentiment

Neutral 

sentiment

Negative 
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Figure 1: Illustrative examples in which the discourse tree helps identify the conveyed sentiment from the
main clause (highlighted in black). Here relation type additionally denotes the rhetorical function. The
original inputs are: “I haven’t watched a movie for a long time. All in all, I liked/disliked this comedy.
In fact, the main actor is known for his bad/good comedic acting.”.

main and subordinate parts of a clause. The edges are further labeled according to the

type of discourse – for instance, whether it is an elaboration or an argument. Hence, this

method essentially derives the function of a text passage. Both concepts of the RST tree

help in localizing essential information within documents. Hence, the goal of this work is

to develop a novel approach that identifies salient passages in a document based on their

position in the discourse tree and incorporates their importance in the form of weights

when computing sentiment scores.

Previous research has demonstrated that discourse-related information can improve

the performance of sentiment analysis (see Section 2 for details). The work by Taboada

et al. (2008) is the first to combine rhetorical structure theory and sentiment analysis. In

this work, the authors weigh adjectives in a nucleus more heavily than those in a satellite.

Beyond that, one can reweigh the importance of passages based on their relation type

(Hogenboom et al., 2015b) or depth (Märkle-Huß et al., 2017) in the discourse tree. Some

methods prune the discourse trees at certain thresholds to yield a tree of fixed depth,

e. g. 2 or 4 levels (Märkle-Huß et al., 2017). Other approaches train machine learning

classifiers based on the relation types as input features (Hogenboom et al., 2015a). What

the previous references have in common is that they try to map the tree structure onto

mathematically simpler representations, thereby dropping partial information from the

tree.

An alternative strategy is to apply tree-structured neural networks that traverse dis-

course trees for representation learning. When encountering a node, these networks com-

bine the information from the leaves and pass them on to the next higher level, until

reaching the root at which point a prediction is made. Thereby, the approach merely

adheres to the tree-structure but does not account for either the relation type or whether
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it is a nucleus/satellite. To do so, one can extend the network to include different weights

for each edge in the tree depending on, e. g., the relation type. This essentially introduces

additional degrees of freedom that can weigh the different discourse units by their im-

portance. The work by Fu et al. (2016) extends the network by such a mechanism with

respect to the nucleus/satellite information but discards the relation type and merely

applies the network to individual sentences instead of longer documents. The approach

in Ji & Smith (2017) can only exploit the relation type and not the nucleus/satellite

information. Furthermore, former approaches are based on traditional recursive neural

networks, which are limited by the fact that they can persist information for only a few it-

erations (Bengio et al., 1994). Therefore, these methods struggle with complex discourses,

while we explicitly build upon tree-shaped long short-term memory models, since they

are better equipped to handle very deep structures.

We build upon the previous works and advance them by proposing a specific neu-

ral network, called Discourse-LSTM. The Discourse-LSTM utilizes multiple tensors to

localize salient passages within documents by incorporating the full discourse structure

including nucleus/satellite information and relation types. In brief, our approach is as

follows: we utilize rhetorical structure theory to represent the semantic structure of a

document in the form of a hierarchical discourse tree. We then obtain sentiment scores

for each leaf by utilizing both polarity dictionaries and word embeddings. The resulting

tree is subsequently traversed by the Discourse-LSTM, thereby aggregating the senti-

ment scores based on the discourse structure in order to compute a sentiment score for

the document. This approach thus weighs the importance of (sub-)clauses based on their

position and relation in the discourse tree, which is learned during the training phase. As

a consequence, this allows us to enhance sentiment analysis with discourse information.

Another key contribution is that we propose two techniques for data augmentation that

facilitate training and yield higher predictive accuracy.

The remainder of this paper is structured as follows. Section 2 reviews discourse pars-

ing and RST-based sentiment analysis. Section 3 then introduces our Discourse-LSTM,

as well as our algorithms for data augmentation. Section 4 describes our experimental

setup in order to evaluate the performance of our deep learning methods in comparison

to common baselines (Section 5). Section 6 concludes with a summary and suggestions

for future research.
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2. Background

2.1. Rhetorical structure theory

Rhetorical structure theory formalizes the discourse in narrative materials by organiz-

ing sub-clauses, sentences and paragraphs into a hierarchy (Mann & Thompson, 1988).

The premise is that a document is split into elementary discourse units, which constitute

the smallest, indivisible segments. These EDUs are then connected by one of 18 different

relation types, which represent edges in the discourse tree; see Table 1 for a list. Each re-

lation is further labeled by a hierarchy type, i. e. either as a nucleus (N) or a satellite (S).

Here a nucleus denotes a more essential unit of information, while a satellite indicates a

supporting or background unit of information. We note that RST also defines cases where

both children are labeled as nuclei at the same time. Figure 2 presents an example of a

discourse tree. Here the label elaboration at the root indicates that sentence 3 provides an

additional detail about the content (i. e. the comedy) of the left sub-tree. Furthermore,

background reveals that sentence 1 increases the comprehensibility of sentence 3, since it

is needed to make sense of the phrase “all in all”.

Elaboration

I haven t watched a 

movie for a long time.

All in all, I enjoyed

this comedy. 

In fact, the main actor is known 

for his good comedic acting.

Root

 S 

Node

 N 

 S  N 

Background

1 2

3

Figure 2: Example discourse tree with 3 elementary discourse units, for which N denotes a nucleus and
S a satellite.
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Relation type Description

Elaboration Satellite provides additional details about the nucleus

Joint No specific hierarchy between EDUs

Same-unit Links parts of one EDU to another

Background Satellite provides information to comprehend nucleus

Attribution Satellite contains reporting verbs or cognitive predicates for nucleus

Comparison Refers to similarities and dissimilarities

Temporal Describes a specific ordering in time between units

Enablement Satellite increases the ability to perform the action in nucleus

Contrast Describes comparability or differences

Summary Satellite is a shorter restatement of nucleus

Condition Realization of nucleus depends on realization of satellite

Manner-means Satellite tends to make realization of nucleus more likely

Cause Satellite is a reason for nucleus

Explanation Satellite justifies information from nucleus

Evaluation Satellite assesses nucleus

Textual-organization Describes the composition of the document

Topic-change Topic has changed between units

Topic-comment One EDU annotates another

Table 1: Overview of the different relation types that connect elementary discourse units (Mann &
Thompson, 1988).

Previous research has proposed various methods for automating the parsing of dis-

course trees of documents. Common implementations for documents consisting of multiple

paragraphs are represented by the high-level discourse analyzer HILDA (Hernault et al.,

2010) and the DPLP parser (Ji & Eisenstein, 2014), of which the DPLP parser currently

achieves the better F1-score in identifying relation types. Although DPLP is slightly

outperformed by HILDA in EDU span detection by 1.4 % in terms of the F1-score, it

shows an improvement of 2.6 % and 6.9 % on identifying the hierarchy and relation types,

respectively (Ji & Eisenstein, 2014). Since inferring relation types is regarded as the most

challenging subtask of RST parsing, we decided to utilize the DPLP parser in this work.

Besides RST, other forms of semantic representations have also been devised (Abend

& Rappoport, 2017). These include logical structures which put a focus on quantifica-

tions, negations and coordination, while other works involve temporal relations, inferences

and textual entailment. Further frameworks are speech-act theory and natural semantic

metalanguage. However, their labeling is most often not unique and applied merely at

sentence level without hierarchical structures. In contrast, RST specifically entails char-
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acteristics that provide benefits in our case: we obtain a hierarchical and fully-connected

representation that covers the complete document (Liu & Lapata, 2018). Accordingly,

our methodology adapts to the underlying story, discriminating between key messages

and supplementary materials.

2.2. Sentiment analysis with RST

Previous studies have advocated different approaches for sentiment analysis that uti-

lize the discourse tree. In the following, we categorize these approaches into (a) weighting

rules or (b) tree-structured neural networks.

The paper by Taboada et al. (2008) is the first work that explicitly utilizes rhetori-

cal structure theory in order to extract sentiment from linguistic content. It determines

the relevance of words depending on whether they appear in a nucleus or satellite. Sub-

sequently, further works have developed different weighting rules (see Table 2). These

aggregate the sentiment scores of EDUs based on the tree structure (Heerschop et al.,

2011; Hogenboom et al., 2015b). However, the weights are frequently pre-determined and

hand-crafted. A different stream of research also considers hierarchy labels (nucleus or

satellite) of the nodes and updates the weights based on these. Examples include ap-

proaches that focus on the top-split (i. e. the root node) of the discourse tree and scale

the relative importance based on (hand-crafted) weights (Taboada et al., 2008; Heerschop

et al., 2011; Hogenboom et al., 2015b). The underlying weights can also be optimized

using logistic regression (Chenlo et al., 2014). Hierarchy labels at leaf level also facilitate

a more fine-grained evaluation (Hogenboom et al., 2015b), even though the discourse

tree from above is neglected. Recent research also applies a recursive weighting scheme

that utilizes a scaling factor to reduce the influence of passages from lower parts of the

discourse tree (Hogenboom et al., 2015b; Märkle-Huß et al., 2017). Alternatively, one

can prune the discourse tree at certain thresholds in order to yield a tree of fixed depth,

e. g. 2 or 4 levels (Märkle-Huß et al., 2017). Some works also incorporate relation types

between EDUs (Heerschop et al., 2011; Chenlo et al., 2014; Hogenboom et al., 2015b)

or categorize them into contrastive or non-contrastive relations, which are then weighted

separately (Zirn et al., 2011). What the previous rule-based approaches have in common

is that they cannot incorporate the complete tree into their analysis and, instead, need

to partially discard discourse information, i. e. the links between nodes within the tree

structure.
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Table 3 provides an overview of papers utilizing tree-structured approaches. The RST

tree can be traversed with a recursive neural network (Bhatia et al., 2015); however,

this approach only incorporates the relation types and lacks information regarding the

hierarchy type. The work by Fu et al. (2016) applies a Tree-LSTM to the discourse

trees and extends this method to discriminate nucleus and satellite but at the same time

neither discerning the relation type nor applying data augmentation. A similar approach

traverses the RST tree with the help of a recursive neural network, while utilizing relation-

specific composition matrices (Ji & Smith, 2017). However, the recursive neural network

is known to struggle with complex tree structures because of vanishing or exploding

gradients and, instead, we utilize a long short-term memory. Moreover, the approach

sums the representations in each recursion and, hence, cannot distinguish the hierarchy,

i. e. between nucleus and satellite. Hence, the objective of this paper is to extend the

previous works by advancing representation learning in order to incorporate the complete

discourse tree, including relation types, tree depth and hierarchy labels.

The features used by the aforementioned papers differ. On the one hand, sentiment

scores for EDUs are computed from dictionaries (where words are labeled as positive or

negative). In terms of dictionaries, common examples include SentiWordNet (Zirn et al.,

2011; Heerschop et al., 2011; Hogenboom et al., 2015b,a; Liu & Lee, 2018), hand-crafted

dictionaries (Taboada et al., 2008) or domain-specific dictionaries (Märkle-Huß et al.,

2017). On the other hand, approaches utilize vector representations for the EDUs based

on word embeddings (Fu et al., 2016; Ji & Smith, 2017). For reasons of comparability, we

also utilize both a dictionary-based approach and word embeddings in order to compute

sentiment features from the content of elementary discourse units.

2.3. Representation learning for sequential and tree data

Recent advances in deep neural networks have rendered it possible to learn represen-

tations of unstructured data such as sequences, texts or trees (Goodfellow et al., 2017).

This can, for instance, be achieved by recurrent neural networks, which entail an internal

architecture in the form of a directed cycle, thereby creating an internal state encoding

dependent structures (Chen et al., 2017). Based on these, one can process texts of arbi-

trary length in sequential order, while the internal state learns the complete sequence and

passes information from one word to the next. However, in practice, information only

persists for a few iterations (Bengio et al., 1994). A viable remedy is provided by the long
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Reference Weight optimizations EDU features RST parser Model Considered RST features

Relation Tree Nucleus/

type depth satellite

Chenlo et al. (2014) Weights optimized Dictionary-based SPADE Top-split weighting 3 7 3

by logistic regression sentiment score

Heerschop et al. (2011) Handcrafted weighting factor Dictionary-based SPADE Position-based weighting rule 7 7 7

or optimized by sentiment score Top-split weighting rule 7 Up to level 1 3

genetic algorithm Relation-type weighting 3 7 3

Hogenboom et al. (2015b) Handcrafted weighting factor Dictionary-based HILDA Position-based weighting 7 7 7

or particle swarm optimization sentiment score SPADE Top-split weighting 7 Up to level 1 3

Bottom-split weighting 7 7 3

Hierarchical weighting 7 3 3

Hogenboom et al. (2015a) Weights optimized by SVM Dictionary-based SPADE Top- and leaf-split weighting 3 7 7

sentiment score of 14 relation types

Märkle-Huß et al. (2017) Weights optimized by grid-search Dictionary-based HILDA Hierarchical weighting rule 7 3 3

sentiment score Random forest on pruned tree 7 Up to level 3

2 or 4

Taboada et al. (2008) Manually-chosen weights Adjective-based SPADE Different weighting of 7 Up to level 1 3

sentiment score nucleus vs. satellite of top-split

Table 2: Comparison of methods for sentiment analysis proposing weighting schemes that utilize the discourse structure.

Reference Model Tensor EDU features RST parser Considered RST features Additional character-

istics

structure Relation Tree Nucleus/

type depth satellite

Bhatia et al. (2015) Rhetorical recursive neural

networks

Relation type Dictionary-based DPLP 7 3 3

with recurrent neural net-

work

sentiment scores

Fu et al. (2016) Tree-LSTM (2-ary) Nucleus/satellite Linear combination Dependency and 7 3 3 Only single sentences as

input

of word embeddings constituent parser (Sur-

deanu et al., 2015)

Ji & Smith (2017) Recursive neural network Relation type Hidden states of DPLP 3 3 7

bidirectional LSTM

on word embeddings

This paper: Tree-LSTM (N-ary, child-

sum)

Relation type and Dictionary-based DPLP 3 3 3 Procedures for data

augmentation

Discourse-LSTM nucleus/satellite sentiment scores,

word embeddings

Table 3: Comparison of methods for sentiment analysis proposing tree-structured approaches based on neural networks.



short-term memory (LSTM) network. The LSTM enhances recurrent neural networks by

capturing long dependencies among input signals (Hochreiter & Schmidhuber, 1997).

Previous research has proposed a Tree-LSTM that can deal with representation learn-

ing for trees. This tree-structured LSTM network traverses trees bottom-up in order to

generate representations of the underlying structure (Tai et al., 2015). The Tree-LSTM

computes a representation for each parent node based on its immediate children and does

so recursively until the root of the tree is reached. It thereby stacks individual LSTMs

such that they reflect the tree structure from the input. However, the Tree-LSTM pro-

vides no possibility of incorporating additional information from the discourse trees, such

as the relation type. The Tree-LSTM can be applied to RST trees and we thus rely upon

it as a baseline. We later extend the näıve Tree-LSTM through two tensor structures that

express the additional degrees of freedom. This results in a Discourse-LSTM that allows

us to utilize the complete set of information encoded in discourse tree.

3. Discourse-based sentiment analysis with deep learning

This section introduces our discourse-based methodology, which infers sentiment scores

from textual materials. Figure 3 illustrates the underlying framework and divides the

procedure into steps for discourse parsing, computing low-level polarity features, data

augmentation and prediction. The prediction phase implements either of the baselines or

our proposed Discourse-LSTM.

Polarity features Data augmentation Prediction

EDU sentiment 

score 
Leaf insertion

Dictionary / word 

embeddings

Node 

reordering

Discourse parsing

DPLP parser

Baseline

Discourse-

LSTM

Figure 3: Research framework evaluating the gains in predictive performance from combining our
Discourse-LSTM and data augmentation in comparison to the baselines.

3.1. Discourse parsing

We generate discourse trees for our datasets by utilizing the DPLP parser (Ji &

Eisenstein, 2014). For sake of simplicity, we introduce the following notation. We denote

the relation type of node i as ρi ∈ {elaboration, argument, . . .}. The complete list of
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relation types is given in Table 1. Furthermore, we introduce τi ∈ {nucleus, satellite} as

the hierarchy type of node i.

3.2. Polarity features

We follow common procedures in sentiment analysis and utilize both a pre-defined

dictionary that labels terms as positive or negative (Pang & Lee, 2008; Feldman, 2013),

and word embeddings that represent text in multiple dimensions (Fu et al., 2016; Ji &

Smith, 2017).

Sentiment dictionaries have multiple advantages, as they are domain-independent and

work reliably even with few training observations. In addition, one can easily exchange

the underlying dictionary for one that not only measures polarity or negativity, but is

concerned with other language concepts such as subjectivity, certainty or the domain-

specific tone. Our experimental results are based on the SentiWordNet 3.0 dictionary

(Baccianella et al., 2010), which provides sentiment labels for 117,659 words. Based on

the sentiment labels at word level, we then proceed to compute a sentiment score σi for

each EDU i via

σi =
1

|{w |w ∈ i}|
∑
w∈i

pos(w)− neg(w), (1)

where we iterate over the words w in EDU i, while pos(w) and neg(w) are the positivity

and negativity scores for word w according to SentiWordNet. The resulting sentiment

value σi thus represents the low-level features that later serve as input to our predictive

models.

In addition, we utilize a fully neural approach by incorporating multi-dimensional

word embeddings which contain considerably more information than sentiment values.

In particular, we employ pre-trained 50-dimensional word embeddings from GloVe1 to

represent words in each EDU. Based on the word representations in each EDU i, we form

a high-level feature vector σi, representing the EDU, via

σi =
1

|{w |w ∈ i}|
∑
w∈i

ewi , (2)

with ewi being the word embedding of word w in EDU i. This approach of forming

representations has been shown to work well on short texts, as is the case for RST leaves

1https://nlp.stanford.edu/projects/glove/
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(de Boom et al., 2016).

3.3. Tree-LSTM baseline

We draw upon the Tree-LSTM as a baseline similar to Fu et al. (2016), since it is

widely regarded as the status quo for tree learning (Tai et al., 2015). The Tree-LSTM

takes a discourse tree as input and then processes EDU features while accounting for their

position in the tree. For this purpose, it stacks individual LSTMs in the form of that

tree and adapts the ideas of both a memory cell and gates from traditional LSTMs, but

extends these concepts to tree structures (Tai et al., 2015). Here the underlying LSTM

helps to overcome the problem of exploding gradients.

In the Tree-LSTM, each node j from the discourse tree is translated into a single

LSTM unit, which comprises an input gate ij , an output gate oj , a memory cell cj and

hidden state hj . In contrast to the standard LSTM, the Tree-LSTM contains not a single

forget gate, but rather one forget gate fjk for each child k. This allows each parent node

to recursively compute a representation from its immediate children. The input vectors

to each LSTM unit are given by the hidden state hk and the memory cell ck for all

children k ∈ C(j), where C(j) is the set of children of parent j. This layout of arranging

connections renders it possible for the Tree-LSTM to pass information upward in the tree,

since every node can incorporate selected information from each child-LSTM. Figure 4

details the connection between the gates in a Tree-LSTM.

iparent

fparent-left fparent-right

oparent hparentcparent

hleftcleft hright cright

uparent

oleft oright

Parent node

with LSTM

Left child

with LSTM

Right child 

with LSTM

Figure 4: This schematic illustration shows the composition of the memory state cparent and the hidden
state hparent in a Tree-LSTM with two child nodes.
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Our experiments later compare the performance of two different architectures of Tree-

LSTM models, namely, the child-sum and N -ary Tree-LSTM (Tai et al., 2015). Both are

common in research, but vary in their connections between input and output gates. The

former, the child-sum Tree-LSTM, sums the hidden states hk from the children k ∈ C(j)

in order to obtain a single input to the hidden state h̃parent of the parent. This approach

discards any information regarding the order of the children, since it uses the same weights

U (i), U (f), U (o) and U (u) for all children. In contrast, the N -ary Tree-LSTM requires a

fixed, pre-defined number of N = |C(j)| children for each inner node. It then combines

the child nodes by weighting their hidden states based on parameters U
(i)
m , U

(f)
km , U

(o)
m and

U
(u)
m dependent on the index m = 1, . . . , N of the child.

Mathematically, for input xj ∈ Rm, the child-sum Tree-LSTM transition equations

are defined as

h̃j =
∑

k∈C(j)

hk, (3)

ij = sigmoid
(
W (i)xj + U (i)h̃j + b(i)

)
, (4)

fjk = sigmoid
(
W (f)xj + U (f)hk + b(f)

)
, (5)

oj = sigmoid
(
W (o)xj + U (o)h̃j + b(o)

)
, (6)

uj = tanh
(
W (u)xj + U (u)h̃j + b(u)

)
, (7)

cj = ij � uj +
∑

k∈C(j)

fjk � ck, (8)

hj = oj � tanh(cj), (9)

where � denotes the element-wise multiplication. Moreover, the above equations contain

the weights W (i), W (f), W (o), W (u), each of dimension n × n for pre-defined memory

size n, and b(i), b(f), b(o), b(u) of length n. Similarly, the N -ary Tree-LSTM obtains its

13



memory cell and hidden state via

ij = sigmoid

(
W (i)xj +

N∑
m=1

U (i)
m hjm + b(i)

)
, (10)

fjk = sigmoid

(
W (f)xj +

N∑
m=1

U
(f)
kmhjm + b(f)

)
, (11)

oj = sigmoid

(
W (o)xj +

N∑
m=1

U (o)
m hjm + b(o)

)
, (12)

uj = tanh

(
W (u)xj +

N∑
m=1

U (u)
m hjm + b(u)

)
, (13)

cj = ij � uj +

N∑
m=1

fjm � cjm, (14)

hj = oj � tanh(cj). (15)

In order to make sentiment predictions from the Tree-LSTM at the root node, we

introduce an additional feedforward classification layer. Here we utilize a softmax classifier

that predicts a class label y from the hidden state hroot of the root node. The softmax

layer entails further weights W (s) ∈ Rn×n and b(s) ∈ Rn, based on which it computes the

probability p(ŷ |hroot) of the tree belonging to class ŷ via

y = arg max
ŷ

p(ŷ | hroot) = arg max
ŷ

softmax
(
W (s) hroot + b(s)

)
, (16)

with the negative log-likelihood of the true class label y as the cost function (Goodfellow

et al., 2017).

3.4. Discourse-LSTM

The following section extends the previous Tree-LSTMs through tensor structures.

The Discourse-LSTM introduces two modifications that enable us to incorporate (1) the

relation type between two nodes and (2) the hierarchy type (i. e. nucleus or satellite). For

this purpose, we replace the usual weight matrices in the tree-structured neural networks

with a higher-dimensional representation that allows for additional degrees of freedom

with respect to (1) and (2). Thereby, we yield an array of weight matrices, which is

formalized and implemented via a tensor.

In order to include the relation type, we replace the global LSTM that serves all nodes

with one that is dependent on the relation type r ∈ {1, . . . , n}. Figure 5 visualizes the
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Figure 5: Schematic illustration showing the tensor idea of the Discourse-LSTM. The Discourse-LSTM
unit is applied repeatedly at each node in the tree. In contrast to the traditional Tree-LSTM, the
Discourse-LSTM stacks multiple LSTM units to account for the relation type between two nodes.

idea schematically. We then select an LSTMρi for each node depending on its relation

type ρi.

We incorporate the hierarchy type τi (i. e. nucleus or satellite) by additionally weight-

ing the cell state cj and the hidden state hj before they enter the above tensor-based

LSTM. For this purpose, we introduce tensor-based weights

W (c) =
[
W

(c)
nucleus;W

(c)
satellite

]
, (17)

W (h) =
[
W

(h)
nucleus;W

(h)
satellite

]
, (18)

where W (c) and W (h) are both of dimensions 2×n×n, dependent on the input dimension

n. We then choose the weights according to the hierarchy type τi in the tree. This allows

us to additionally discriminate between the influence of nuclei and satellites.

Accordingly, the Discourse-LSTM must simultaneously optimize both the tensor-based

LSTM, as well as the hierarchy-related tensors W (c) and W (h) based on a combined

objective function. We thus rearrange them as rank-3 tensors as follows: let W (x)[r, :]

indicate the weight tensor for relation type r and W (x)[l, :] denote the weight tensor for

a hierarchy type l ∈ {nucleus, satellite}. On this basis, we now specify the new, updated

equations for calculating the cell and hidden state. As such, the child-sum Discourse-
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LSTM computes

ĥk = W (h)[l, :]hk, (19)

ĉk = W (c)[l, :] ck, (20)

h̃j =
∑

k∈C(j)

ĥk, (21)

ij = sigmoid
(
W (i)xj + U (i)[r, :] h̃j + b(i)[r, :]

)
, (22)

fjk = sigmoid
(
W (f)xj + U (f)[r, :] ĥk + b(f)[r, :]

)
, (23)

oj = sigmoid
(
W (o)xj + U (o)[r, :] h̃j + b(o)[r, :]

)
, (24)

uj = tanh
(
W (u)xj + U (u)[r, :] h̃j + b(u)[r, :]

)
, (25)

cj = ij � uj +
∑

k∈C(j)

fjk � ĉk, (26)

hj = oj � tanh(cj). (27)

Similarly, the N -ary Discourse-LSTM computes its representations via

ĥk = W (h)[l, :]hk, k ∈ C(j) (28)

ĉk = W (c)[l, :] ck, k ∈ C(j) (29)

ij = sigmoid

(
W (i)xj +

N∑
m=1

U (i)
m [r, :] ĥjm + b(i)[r, :]

)
, (30)

fjk = sigmoid

(
W (f)xj +

N∑
m=1

U
(f)
km [r, :] ĥjm + b(f)[r, :]

)
, (31)

oj = sigmoid

(
W (o)xj +

N∑
m=1

U (o)
m [r, :] ĥjm + b(o)[r, :]

)
, (32)

uj = tanh

(
W (u)xj +

N∑
m=1

U (u)
m [r, :] ĥjm + b(u)[r, :]

)
, (33)

cj = ij � uj +

N∑
m=1

fjm � ĉjm, (34)

hj = oj � tanh(cj). (35)

As a result, both the N -ary and child-sum Discourse-LSTM integrate the complete dis-

course tree into the neural network. As opposed to the works in the literature review,

this approach allows us to encode both the relation type and the hierarchy type.
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3.5. Training data augmentation

Deep neural networks typically feature a complex structure with thousands of weights

that need to be trained, which makes them prone to overfitting. A viable remedy is to

artificially increase the number of training samples in order to better tune parameters.

Such approaches are common in computer vision, where one extracts different crops from

the same image and later considers each as a training instance. We thus propose similar

techniques for tree structures that enlarge our training set. These algorithms take a tree

as input and then slightly modify its structure in each epoch of training (one full training

cycle on the training set). The first variant, called node reordering, swaps sub-trees,

while the second, artificial leaf insertion, randomly exchanges a leaf for a node with two

new children. We thereby preserve the tree structure during node reordering, whereas, in

artificial leaf insertion, we experiment with how noisy modifications to the tree structure

can additionally improve representation learning.

3.5.1. Node reordering

Node reordering utilizes RST trees and rearranges the positions of inner nodes while

trying to preserve the inherent structure. That is, the text passages inside the nodes

must maintain their original order since the content might otherwise change its meaning

or grammatical structure. Our approach thus randomly chooses an inner node n and

relocates it to the position of its sibling m in the tree. Thereby, the position of the sibling

is given by the RST structure. The sibling m is then moved down the tree and becomes

a child of n. Afterwards, the previous position of n is filled by one of its former children.

As a result, the order of l, r and m from left to right is unchanged. The corresponding

algorithm for an inner node n is sketched in Figure 6.

This approach for data augmentation tries to modify the structure slightly, thereby

generating potentially different representations of the same tree. The extent of reordering

depends on the level of n, since a reordering of a node at a higher level usually has a

larger effect on the overall tree structure compared to a node at a lower level.

3.5.2. Artificial leaf insertion

Artificial leaf insertion allows us to grow larger trees. Here we make subtle but explicit

modifications to the tree structure and hypothesize that, even in presence of the additional

noise, this still facilitates representation learning of complex trees. The insertion of leaves

into a sub-tree is depicted in Figure 7. This approach randomly picks a leaf n from the
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(a) Tree before node reordering (b) Tree after node reordering
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Figure 6: Schematic illustration of node reordering taking place at node n. The original tree structure is
on the left, while the right shows the tree structure after node reordering.

tree and appends two newly created child nodes l and r which subsequently present the

leaves, while n becomes an inner node. We compute σl and σr by multiplying σn with

random weights ω ∈ [0, 1] and (1− ω), i. e.

σl = ω � σn, (36)

σr = (1− ω)� σn. (37)

These update rules thus try to keep the overall information unchanged, but distribute the

values from n into two separate children given a certain ratio ω. We finally choose the

relation type ρn and the hierarchy type τn randomly.

(a) Tree before leaf insertion (b) Tree after leaf insertion

p

n m

p

n m

l r

Figure 7: Schematic visualization of artificial leaf insertion at node n. The original tree structure is
displayed on the left, while the right illustrates the tree structure after artificial leaf insertion.
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4. Experimental setup

4.1. Datasets

We build upon earlier work and utilize three common datasets. The first consists of

2000 movie reviews from Rotten Tomatoes (Pang & Lee, 2004), for which we perform

10-fold cross-validation and then average the predictive performance across splits. The

second dataset comprises 50,000 reviews from the Internet Movie Database (IMDb), which

are split evenly into 25,000 reviews for training and 25,000 for testing (Maas et al., 2011).

It includes, at most, 30 reviews for any one movie, since reviews for the same movie tend

to have correlated ratings. Furthermore, the training and test sets contain a disjoint set

of movies to avoid correlation based on movie-specific terms. The third dataset consists

of 6400 randomly selected food reviews from the Amazon Fine Foods dataset of which

3200 are labeled as positive and 3200 are labeled as negative (McAuley & Leskovec, 2013).

We split the dataset into 5120 (i. e. 80 %) reviews for training and 1280 (i. e. 20 %) for

testing.

All corpora are preprocessed as follows: we perform tokenization, convert all characters

to lowercase, and conduct stemming. The latter maps inflected words onto a base form;

e. g. “enjoyed” and “enjoying” are both reduced to “enjoy” (Porter, 1980).

4.2. Descriptive statistics

The resulting discourse trees exhibit the following characteristics. In the case of re-

views from Rotten Tomatoes, they entail 51.09 EDUs on average, while this number plum-

mets to 19.79 and 7.88 EDUs for IMDb reviews and Amazon Food reviews, respectively.

The difference stems from the nature of reviews, since Rotten Tomatoes predominantly

collects reviews from known critics, while IMDb and Amazon Food reviews are user-

generated (and often comprise just a few sentences). The largest discourse tree contains

154 levels. Table 4 reports the relation types and corresponding frequencies in the corpus.

The higher number of relations labeled as elaboration also has to do with the nature of re-

views. Often, the critic presents a thought or argument, which is then followed by further

details in support of this claim. When these passages are connected with an additional

thought, the EDUs are labeled as a joint, thus explaining their overall frequency. The

remaining relation types are merely used for specific purposes in the narrative.

19



Dataset 1:

Rotten Tomatoes reviews

Dataset 2:

IMDb reviews

Dataset 3:

Food reviews

Relation Count Percentage Count Percentage Count Percentage

Elaboration 111,330 48.24 % 677,330 53.21 % 39,768 48.38 %

Joint 58,587 25.39 % 126,524 9.94 % 14,883 18.11 %

Attribution 13,048 5.65 % 74,119 5.82 % 11,204 13.63 %

Textual-organization 12,788 5.54 % 235,760 18.52 % 141 0.17 %

Same-unit 12,572 5.45 % 106,530 8.37 % 4461 5.43 %

Topic-change 6950 3.01 % 3219 0.25 % 199 0.24 %

Contrast 4404 1.91 % 7872 0.62 % 1820 2.21 %

Cause 2344 1.02 % 5467 0.43 % 1532 1.86 %

Explanation 2214 0.96 % 4070 0.32 % 602 0.73 %

Condition 1951 0.85 % 19,949 1.57 % 4024 4.90 %

Manner-means 1632 0.71 % 2618 0.21 % 726 0.88 %

Temporal 1382 0.60 % 5695 0.45 % 1029 1.25 %

Comparison 854 0.37 % 3491 0.27 % 967 1.18 %

Background 346 0.15 % 5 0.00 % 111 0.14 %

Topic-comment 264 0.11 % 189 0.01 % 586 0.71 %

Summary 80 0.03 % 50 0.00 % 112 0.14 %

Evaluation 22 0.01 % 14 0.00 % 26 0.03 %

Enablement 0 0.00 % 3 0.00 % 2 0.00 %

Total 230,768 100.00 % 1,272,905 100.00 % 82,193 100.00 %

Table 4: Descriptive statistics of different relation types in our datasets.

4.3. Baselines

We construct näıve benchmarks with bag-of-words as follows. We count term fre-

quencies and convert the numerical features into a document-term matrix. As a second

baseline, we also scale the term frequencies using the term frequency-inverse document

frequency approach (tf-idf), which puts stronger weights on characteristic terms (Manning

& Schütze, 1999). Both feature spaces are then inserted into a random forest, since this

traditional machine learning classifier can detect highly non-linear relationships but still

yields satisfactory performance out-of-the-box. These benchmarks allow us to distinguish

the sentiment conveyed by words from that conveyed by the discourse structure.

4.4. Training process

We optimize the proposed tree-structured models according to the following process.

First, sentiment scores, as well as word embeddings, are fed as leaf node representations
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into the models. Second, the tree-structured models compute the root node representation

which can be utilized for making the prediction through a feedforward layer. Using the

prediction along with the label, we then compute the cross-entropy loss made by the

model and update the weights with backpropagation.

4.5. Model evaluation

We proceed analogous to Kraus et al. (2018) in order to tune the model parameters (see

appendix). In the case of the random forest baseline, we identify the optimal parameters

utilizing a grid search together with 10-fold cross-validation applied to the training set. In

contrast, we optimize the deep learning architectures by taking 20 % of the training data

as a validation set. After each epoch, we shuffle the observations and enlarge our training

set by constructing additional samples based on our technique for data augmentation. We

train our deep learning architecture with early stopping and patience set to ten epochs.

5. Results

In this section, we evaluate the performance of our Discourse-LSTM and compare it to

the previous baselines. In addition, we perform statistical significance tests on the receiver

operating characteristics (ROC) (DeLong et al., 1988). The evaluation provides evidence

that incorporating semantic structure into the task of sentiment analysis improves the

predictive performance.

5.1. Dataset 1: movie reviews from Rotten Tomatoes

Table 5 details the prediction results for the dataset featuring movie reviews from

Rotten Tomatoes. The näıve benchmark with tf-idf features yields a balanced accuracy

of 0.746 and an F1-score of 0.763. The approaches with term frequencies achieve a similar

performance. Here we see no clear indication that one of the baselines is consistently

superior.
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Method Variant Data augmentation Balanced accuracy F1-score

Benchmark without RST

Sum of all sentiment scores – 0.609 0.640

Random forest with term frequency – 0.762 0.752

Random forest with tf-idf – 0.746 0.763

Tree learning with sentiment scores as input

Tree-LSTM Child-sum – 0.780 0.772

Tree-LSTM Child-sum Node reordering 0.785 0.778

Tree-LSTM Child-sum Leaf insertion 0.780 0.774

Tree-LSTM Child-sum Node reordering & leaf insertion 0.780 0.777

Tree-LSTM N-ary – 0.770 0.768

Tree-LSTM N-ary Node reordering 0.775 0.782

Tree-LSTM N-ary Leaf insertion 0.775 0.779

Tree-LSTM N-ary Node reordering & leaf insertion 0.775 0.787

Discourse-LSTM Child-sum – 0.770 0.771

Discourse-LSTM Child-sum Node reordering 0.800 0.805

Discourse-LSTM Child-sum Leaf insertion 0.785 0.779

Discourse-LSTM Child-sum Node reordering & leaf insertion 0.780 0.783

Discourse-LSTM N-ary – 0.770 0.772

Discourse-LSTM N-ary Node reordering 0.775 0.782

Discourse-LSTM N-ary Leaf insertion 0.775 0.787

Discourse-LSTM N-ary Node reordering & leaf insertion 0.780 0.796

Tree learning with word embeddings as input

Tree-LSTM Child-sum – 0.740 0.770

Tree-LSTM N-ary – 0.695 0.738

Discourse-LSTM Child-sum Node reordering & leaf insertion 0.550 0.521

Discourse-LSTM N-ary Node reordering & leaf insertion 0.530 0.544

Table 5: Predictive performance reported for the test set from the Rotten Tomatoes dataset, including
2000 movie reviews.

The simple tree learning based on the Tree-LSTM outperforms all of the previous

benchmarks. It achieves a balanced accuracy of up to 0.785 and an F1-score of 0.787.

Nevertheless, the Tree-LSTM is surpassed by the Discourse-LSTM, which boosts the

balanced accuracy to 0.800 with an F1-score of 0.805. This amounts to an additional

improvement of 0.033 (i. e. 4.3 %) in the F1-score. Altogether, the Discourse-LSTM

benefits from the discourse-related information and thus performs best overall.

Statistical significance tests on the receiver operating characteristics demonstrate that

the Discourse-LSTM outperforms the Tree-LSTM to a statistically significant degree at

the 1 % level. Moreover, the child-sum Discourse-LSTM with node reordering improves

the predictive performance significantly at the 1 % level as compared to the child-sum

Discourse-LSTM without data augmentation. However, the outcomes are not statistically
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significant when assessing leaf insertion.

Finally, we additionally note the following patterns: (1) there is no consistent indica-

tion that either the child-sum or N -ary variant is consistently superior. (2) By comparing

the underlying algorithms for data augmentation, the results indicate a greater increase

in predictive power from node reordering as compared to leaf insertion. This emphasizes

that the larger number of training samples outweighs the additional noise from reorder-

ing. (3) The RST-based approaches also outperform models utilizing actual words as

features. This suggests that a large portion of sentiment-related information is encoded

in the discourse structure. (4) Utilizing pre-trained word embeddings leads to strong

overfitting across all models, thereby lowering the predictive performance. This result

stems from the large number of trainable parameters compared to a small number of

training samples.

5.2. Dataset 2: IMDb movie reviews

Table 6 reports the predictive results for the largest of the three datasets, which is

based on 50,000 IMDb movie reviews. The random forest with tf-idf achieves a perfor-

mance superior to the previous task, yielding an accuracy of 0.825 and an F1-score of

0.823.

Method Variant Data augmentation Balanced accuracy F1-score

Benchmarks without RST
Sum of all sentiment scores – 0.656 0.689
Random forest with term frequency – 0.803 0.801
Random forest with tf-idf – 0.825 0.823

Tree learning with sentiment scores as input
Tree-LSTM Child-sum – 0.845 0.847
Tree-LSTM Child-sum Node reordering 0.850 0.848
Tree-LSTM Child-sum Leaf insertion 0.848 0.845
Tree-LSTM Child-sum Node reordering & leaf insertion 0.848 0.849
Tree-LSTM N-ary – 0.849 0.847
Tree-LSTM N-ary Node reordering 0.850 0.847
Tree-LSTM N-ary Leaf insertion 0.848 0.848
Tree-LSTM N-ary Node reordering & leaf insertion 0.848 0.849
Discourse-LSTM Child-sum – 0.850 0.848
Discourse-LSTM Child-sum Node reordering 0.850 0.845
Discourse-LSTM Child-sum Leaf insertion 0.849 0.849
Discourse-LSTM Child-sum Node reordering & leaf insertion 0.850 0.847
Discourse-LSTM N-ary – 0.849 0.847
Discourse-LSTM N-ary Node reordering 0.850 0.849
Discourse-LSTM N-ary Leaf insertion 0.850 0.846
Discourse-LSTM N-ary Node reordering & leaf insertion 0.848 0.848

Tree learning with word embeddings as input
Tree-LSTM Child-sum – 0.849 0.848
Tree-LSTM N-ary – 0.847 0.849
Discourse-LSTM Child-sum Node reordering & leaf insertion 0.671 0.562
Discourse-LSTM N-ary Node reordering & leaf insertion 0.847 0.852

Table 6: Predictive performance reported for the test set from the IMDb dataset.
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Tree-structured LSTMs outperform our baseline models. For instance, theN -ary Tree-

LSTM raises the balanced accuracy and the F1-score of the näıve baselines by 0.025 and

0.026, respectively. Our Discourse-LSTMs achieve a similar balanced accuracy of 0.850

compared to simple Tree-LSTMs; however, results of the Discourse-LSTMs are more

consistent. It achieves an accuracy of 0.850 and an F1-score of 0.849 by utilizing data

augmentation. Pre-trained word embeddings push the F1-score of the N -ary Discourse-

LSTM with data augmentation to 0.852. Again, we find no general pattern indicating

that one technique for enlarging the training set scores better than the other.

Statistical tests show that the N -ary Discourse-LSTM with node reordering performs

significantly better than the Tree-LSTM at the 10 % level. Also, the N -ary Discourse-

LSTM with node reordering performs significantly better at the 10 % level as compared

to the N -ary Discourse-LSTM without data augmentation.

5.3. Dataset 3: Amazon Fine Food reviews

Table 7 lists the prediction results for the dataset featuring food reviews left by Ama-

zon users. Regarding traditional machine learning, the random forest with tf-idf features

achieves a balanced accuracy of 0.742 and an F1-score of 0.770.

Method Variant Data augmentation Balanced accuracy F1-score

Benchmarks without RST
Sum of all sentiment scores – 0.662 0.725
Random forest with term frequency – 0.713 0.750
Random forest with tf-idf – 0.742 0.770

Tree learning with sentiment scores as input
Tree-LSTM Child-sum – 0.801 0.791
Tree-LSTM Child-sum Node reordering 0.805 0.793
Tree-LSTM Child-sum Leaf insertion 0.805 0.791
Tree-LSTM Child-sum Node reordering & leaf insertion 0.806 0.793
Tree-LSTM N-ary – 0.805 0.787
Tree-LSTM N-ary Node reordering 0.807 0.789
Tree-LSTM N-ary Leaf insertion 0.808 0.791
Tree-LSTM N-ary Node reordering & leaf insertion 0.807 0.789
Discourse-LSTM Child-sum – 0.806 0.789
Discourse-LSTM Child-sum Node reordering 0.808 0.793
Discourse-LSTM Child-sum Leaf insertion 0.808 0.791
Discourse-LSTM Child-sum Node reordering & leaf insertion 0.807 0.789
Discourse-LSTM N-ary – 0.811 0.802
Discourse-LSTM N-ary Node reordering 0.812 0.803
Discourse-LSTM N-ary Leaf insertion 0.804 0.790
Discourse-LSTM N-ary Node reordering & leaf insertion 0.813 0.801

Tree learning with word embeddings as input
Tree-LSTM Child-sum – 0.760 0.747
Tree-LSTM N-ary – 0.771 0.762
Discourse-LSTM Child-sum Node reordering & leaf insertion 0.737 0.739
Discourse-LSTM N-ary Node reordering & leaf insertion 0.525 0.448

Table 7: Predictive performance reported for the test set from the Amazon Fine Food dataset, with 6400
randomly picked reviews.
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Tree-LSTMs outperform all baselines with term frequency features.For instance, the

N -ary Tree-LSTM leads to a balanced accuracy of 0.805 and an F1-score of 0.787. When

exploiting all information from the RST tree, the balanced accuracy increases further

to 0.813, along with an F1-score of 0.801. Therefore, data augmentation leveraged the

balanced accuracy by 0.002 but decreased the F1-score by 0.001. Tree-structured models

utilizing pre-trained word embeddings outperform the random forest with both tf and

tf-idf features, showing a balanced accuracy of 0.771 and an F1-score of 0.762. How-

ever, word embeddings yield inferior performance as compared to the Tree-LSTM and

Discourse-LSTM with sentiment scores.

Statistical tests on the ROC curves show that the performance of the N -ary Discourse-

LSTM is significantly better compared to both Tree-LSTMs at the 1 % level. Although

the N -ary Discourse LSTM benefits from node reordering, showing a higher balanced

accuracy and F1-score, the improvement is not significant.

5.4. Comparison

In the following, we compare our Discourse-LSTM to the relation-specific approach in

Ji & Smith (2017). In contrast to ours, it sums the representations in each recursive cell

and thus cannot distinguish between nucleus and satellite. In addition, their approach

utilizes a recursive neural network, which is known to suffer from vanishing or exploding

gradients (Bengio et al., 1994). In response to such shortcomings, we decided to utilize a

long short-term memory.

We proceed as follows in order to specifically compare their approach to ours. We leave

all other parameters unchanged (i. e. identical to the previous experiments). We thus feed

the networks with EDU-level features from the previous dictionary-based sentiment scores.

The performance measurements indicate that the resulting predictive accuracy is inferior

to the Discourse-LSTM. For the dataset from Rotten Tomatoes, their approach achieves a

balanced accuracy of 0.775 and thus represents a decline of 0.025 (i. e. −3.2 %) compared

to the best-performing child-sum Discourse-LSTM. In the case of the IMDb reviews and

Amazon Fine Food reviews, their approach yields a balanced accuracy of 0.831 and 0.803,

while the Discourse-LSTM achieves 0.850 and 0.813, respectively. Hence, this work results

in an improvement of 0.019 (i. e. 2.3 %) and 0.010 (i. e. 1.2 %).

We additionally compare our proposed methodology for diminishing the effect of over-

fitting against the widely-utilized dropout technique. Dropout, in contrast to our ap-

proach of data augmentation, reduces overfitting by randomly dropping out a certain
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share of neurons in order to improve generalizability of the network. This prevents the

neurons from co-adapting too much during training (Srivastava et al., 2014).

In order to compare dropout to node reordering and leaf insertion, we perform the

following experiment utilizing the Rotten Tomatoes dataset with the N -ary Discourse-

LSTM and the Child-sum Discourse-LSTM. While training the models, we randomly

choose a certain share of weights that is set to zero. Thereby, the set of dropped-out

neurons changes in each iteration of training and is defined by a dropout probability p, i. e.

the probability of a random weight being set to zero. In this comparison, we experiment

with p set to 0.1, 0.2, 0.5 and 0.7. For the N -ary Discourse-LSTM, dropout increases

the balanced accuracy by 0.015 (i. e. 1.9 %), whereas data augmentation increases the

balanced accuracy by 0.01 (i. e. 1.3 %). However, for the Child-sum Discourse-LSTM,

data augmentation leads to a greater improvement of 0.03 (i. e. 3.9 %) compared to the

improvement of 0.02 (i. e. 2.6 %) when utilizing dropout.

In a further experiment, we combine dropout, node reordering and leaf insertion in

order to examine the universal applicability of our approach. In this experiment, we

see an improvement of 0.03 (i. e. 3.9 %) for the Child-sum Discourse-LSTM, which is on

par with the results we obtained when utilizing data augmentation alone. Yet, for the

N -ary Discourse-LSTM, we see a performance increase of 0.02 (i. e. 2.6 %) when utilizing

dropout, node reordering and leaf insertion together. Thus, this combination outperforms

models that only use a single method to avoid overfitting.

5.5. Sensitivity analysis

We now investigate the sensitivity of our models to the quality of the RST parser.

Therefore, we replace a varying percentage of relation types with random noise. Finally,

we evaluate the performance of a N -ary Discourse-LSTM with noisy data and compare

it to the performance on the original trees. For this analysis, we utilize the Amazon Fine

Food dataset.

Table 8 shows the results. When modifying 2 % of the relation types, we see no

difference in terms of balanced accuracy, but a decrease of 0.007 points in the F1-score.

By altering 10 % of the relation types, the balanced accuracy decreases to 0.803 with

an F1-score of 0.794. This reduction is statistically significant at the 1 % level. When

modifying 20 % of the relation types, the performance decreases further to a balanced

accuracy of 0.794 and an F1-score of 0.788.
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Percentage of noisy Balanced accuracy F1-score

hierarchy types

None 0.811 0.802

1% 0.809 0.797

2% 0.811 0.795

5% 0.809 0.800

10% 0.803 0.794

20% 0.794 0.788

Table 8: Sensitivity analysis of how the discourse parser affects the predictive performance of our
Discourse-LSTM. Here a varying proportion of relation types are replaced by random noise. The re-
sults originate from the Amazon Fine Food dataset and an N -ary Discourse-LSTM.

5.6. Discussion

We now investigate the trained weights of our tensor-based mechanism inside the

Discourse-LSTM. This facilitates insights into how the neural network processes the dis-

course and infers the sentiment from the semantic structure of textual materials. Figure 8

compares the normalized weights of the tensors U
(u)
m across different relation types m.

The values result from using a child-sum Discourse-LSTM without data augmentation.

Overall, the tensor weights between both datasets are highly correlated. For instance,

the correlation coefficient between IMDb and Rotten Tomatoes stands at 0.640, statis-

tically significant at the 1 % level. However, we observe large differences in the relative

importance across the relation types. For instance, relation types such as background and

textual-organization entail only marginal importance, consistent with initial expectations.

In contrast, the joint relation yields among the highest weights across both datasets.

With regard to the hierarchy-related tensors, we find a greater importance (i. e. higher

weights) for nuclei as compared to satellites. For instance, the IMDb movie reviews lead

to a nucleus weight of 0.738, whereas the weight of satellites totals a mere 0.588. This is

in line with our intuition and the idea of RST: nuclei are supposed to be more essential

to the writer’s purpose than satellites.

Figure 9 shows the obtained results with an illustrative example. Here we color the

text according to the tensor values inside the child-sum Discourse-LSTM without data

augmentation. A red text color refers to more essential pieces of information as compared

to blue. In example (a), the Discourse-LSTM assigns the highest relevance to the passage

“All in all, I enjoyed this comedy”, whereas it gives the least emphasis to “I haven’t

watched a movie for a long time”. In example (b) from Rotten Tomatoes, the Discourse-

LSTM gives highest weight to the passage “Kolya is one of the richest films i’ve seen
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Figure 8: The weights from the tensors reveal the relative importance of the discourse. More precisely,

the plot shows the normalized weights of the tensor U
(u)
m across different relation types m. The results

stem from the child-sum Discourse-LSTM without data augmentation.

in some time”. It assigns the lowest relevance to the second to fourth passage, which

describe the plot of the movie. In example (c) the Discourse-LSTM gives highest weight

to the passages “it will be a stinker, and to everybody’s surprise ( perhaps even the studio

) the film becomes a critical darling.” and “The plot is deceptively simple”.

The above discussion confirms that the tensors build a mechanism that learns to

weight the importance of sentences based on their position and relations in the discourse

tree. As a result, the Discourse-LSTM can localize the relevant parts of the document

and ascertain the relative importance of sentiment scores

6. Conclusion

Deep learning for natural language predominantly builds upon sequential models such

as LSTMs. While these models usually achieve a high predictive power when applied

to short texts, the complexity of linguistic discourse hampers performance for longer

documents. As a remedy, our paper proposes an innovative, discourse-aware approach: we

first parse the semantic structure based on rhetorical structure theory, thereby mapping
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(a) Short example.

I haven’t watched a movie for a long time.
∣∣ All in all, I enjoyed this comedy.

∣∣ In fact,
the main actor is known for is bad comedic acting.

(b) Medium-length review.

Kolya is one of the richest films i’ve seen in some time.
∣∣ Zdenek Sverak plays a confirmed

old bachelor,
∣∣ who finds his life as a czech cellist increasingly impacted by the five-year

old boy
∣∣ that he’s taking care of.

∣∣ Though it ends rather abruptly
∣∣ – and i’m whining,∣∣ ’cause i wanted to spend more time with these characters –

∣∣ the acting, writing, and

production values are as high as,
∣∣ if not higher than,

∣∣ comparable american dramas.
∣∣

(c) Long review

Every now and then a movie comes along from a suspect studio, with every indication
that

∣∣ it will be a stinker,
∣∣ and to everybody’s surprise ( perhaps even the studio ) the

film becomes a critical darling.
∣∣ MTV films’ election , a high school comedy

∣∣ starring

Matthew Broderick and Reese Witherspoon, is a current example.
∣∣Did anybody know

this film existed a week before it opened?
∣∣The plot is deceptively simple.

∣∣George Wash-

ington carver high school is having student elections.
∣∣ Tracy flick ( Reese Witherspoon

) is an over-achiever with her hand
∣∣ raised at nearly every question , way , way , high.∣∣Mr.

∣∣ ” m ” ( Matthew Broderick ), sick of the megalomaniac student, encourages paul,∣∣a popular-but-slow jock to run.
∣∣And Paul’s nihilistic sister

∣∣ jumps in the race as well,
for personal reasons . . .

Figure 9: Three illustrative examples after pre-processing. Individual EDUs are separated by vertical
bars. A red text color highlights more relevant passages as measured by a higher weight of the tensor

U
(u)
m inside the Discourse-LSTM. Purple and blue text highlights little relevant and irrelevant passages.

the document onto a discourse tree that encodes its storyline. We then apply tailored

tree-structured deep neural networks with an additional tensor structure that enables us

to directly learn the complete discourse tree. Each of the architectures entails more than

10,000 parameters, empowering the models to learn highly non-linear relationships.

Our findings reveal that our Discourse-LSTM substantially outperforms the baselines.

For instance, the best-performing Discourse-LSTMs achieve improvements of 4.27 % (Rot-

ten Tomatoes), 0.60 % (IMDb) and 1.52 % (Amazon Fine Food reviews) in the F1-score

as compared to using simple Tree-LSTMs. These gains are partially a result of our tech-

niques for data augmentation, which slightly alter existing trees in order to enlarge the

size of the training set. Evidently, data augmentation presents a viable option to reduce

the risk of overfitting. Furthermore, the underlying tensor structure learns the relative

importance of passages based on their position in the discourse tree. This facilitates

insights into which discourse units convey essential pieces of information.
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Appendix A. Tuning ranges

Predictive model Parameter Tuning range

Random forest Number of randomly-sampled variables 1, 2, 3, 5, 7

Number of trees 100, 200, 500, 1000

Maximum depth of trees 1, 5, 10, 20, 50, 100, Unconstrained

Tree-LSTM Regularization strength 0.001, 0.01, 0.05

Input dimension for sentiment scores 1

Input dimension for word embeddings 50

Memory size 10, 20, 50

Learning rate 0.00001, 0.0001, 0.001

Discourse-LSTM Input dimension for sentiment scores 1

Input dimension for word embeddings 50

Memory size 10, 20, 50

Regularization strength 0.001, 0.01, 0.05

Learning rate 0.00001, 0.0001, 0.001

Table A.9: Overview of model parameters and their tuning ranges.
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