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Abstract

Diffusion magnetic resonance imaging (dMRI) is an established medical technique

used for describing water diffusion in an organic tissue. Typically, rank-2 or

2nd-order tensors quantify this diffusion. From this quantification, it is possible

to calculate relevant scalar measures (i.e. fractional anisotropy) employed in

the clinical diagnosis of neurological diseases. Nonetheless, 2nd-order tensors

fail to represent complex tissue structures like crossing fibers. To overcome this

limitation, several researchers proposed a diffusion representation with higher

order tensors (HOT), specifically 4th and 6th orders. However, the current

acquisition protocols of dMRI data allow images with a spatial resolution between

1 mm3 and 2 mm3, and this voxel size is much bigger than tissue structures.

Therefore, several clinical procedures derived from dMRI may be inaccurate.

Concerning this, interpolation has been used to enhance the resolution of dMRI

in a tensorial space. Most interpolation methods are valid only for rank-2

tensors and a generalization for HOT data is missing. In this work, we propose a
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aaog@utp.edu.co (Álvaro A. Orozcoa), andres.alvarez1@utp.edu.co (Andrés M. Álvarezb),
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probabilistic framework for performing HOT data interpolation. In particular, we

introduce two novel probabilistic models based on the Tucker and the canonical

decompositions. We call our approaches: Tucker decomposition process (TDP)

and canonical decomposition process (CDP). We test the TDP and CDP in

rank-2, 4 and 6 HOT fields. For rank-2 tensors, we compare against direct

interpolation, log-Euclidean approach, and Generalized Wishart processes. For

rank-4 and 6 tensors, we compare against direct interpolation and raw dMRI

interpolation. Results obtained show that TDP and CDP interpolate accurately

the HOT fields in terms of Frobenius distance, anisotropy measurements, and

fiber tracts. Besides, CDP and TDP can be generalized to any rank. Also,

the proposed framework keeps the mandatory constraint of positive definite

tensors, and preserves morphological properties such as fractional anisotropy

(FA), generalized anisotropy (GA) and tractography.

Keywords: Diffusion magnetic resonance imaging, higher order tensors,

interpolation, probabilistic models, tensor decomposition.

1. Introduction

Diffusion magnetic resonance imaging (dMRI) is an established medical

technique that non-invasively measures water diffusion in organic tissue. The first

attempt to represent this physical phenomenon was the Gaussian model proposed

by Basser et al. (1994, 1993), where symmetric and positive definite tensors5

of rank-2 are estimated from dMRI to quantify the direction and orientation

of diffusion. This model is known as diffusion tensor imaging (DTI). From

this quantification, it is possible to compute relevant physiological information

(i.e. Fractional anisotropy and mean diffusivity) employed in the assessment of

neurological diseases: Parkinson’s disease (Butson et al., 2007), trauma (Ptak10

et al., 2003), multiple sclerosis (Hasan et al., 2005), meningitis (Nath et al.,

2007), among others. Nevertheless, rank-2 tensors fail to represent accurately

some complex tissue structures such as: white matter fiber bundles, crossing

fibers, and bifurcated fibers (Mori et al., 1999; Ozarslan & Mareci, 2003).
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To address these limitations in dMRI, several researchers have proposed15

higher order tensor (HOT) models for describing diffusion inside complex tissue

structures (Barmpoutis & Vemuri, 2010; Liu et al., 2004; Moakher, 2008; Ozarslan

& Mareci, 2003). These models demonstrated accuracy and flexibility to represent

dMRI with low signal to noise ratio. However, the estimation of HOT requires

more gradient directions for each slice in dMRI than the ones needed for DTI20

(Berman et al., 2013). Additionally, the current acquisition protocols of dMRI

restrict the images to a voxel size in a range from 1 mm3 to 2 mm3, no matter if

the representation is with HOT or DTI. The problem here is that this voxel size

is much bigger than tissue fibers and current acquired dMRI of the human brain

have a broad resolution in comparison to anatomical structures. Therefore, the25

analysis of microstructural features can be difficult and some clinical procedures

derived from dMRI may be inaccurate (Dirby et al., 2014).

Interpolation of tensor fields is a feasible methodology to reduce the voxel size

in dMRI and achieves clinical relevance in reconstruction of tissue fiber bundles

for tractography. Furthermore, interpolation of tensor fields is important in any30

application where estimating data among nearby tensors is required, including

image registration (Yassine & McGraw, 2009). A considerable number of methods

for tensorial interpolation have been proposed in the literature, including direct

linear interpolation (Pajevic et al., 2002), log-Euclidean space (Arsigny et al.,

2006), b-splines (Barmpoutis et al., 2007), Riemannian manifolds (Fletcher &35

Joshi, 2007; Pennec et al., 2006), feature-based framework (Yang et al., 2012),

geodesic loxodromes (Kindlmann et al., 2007) and generalized Wishart processes

(Vargas Cardona et al., 2015). They have different shortcomings. For example,

linear interpolation does not ensure positive definite tensors (Pajevic et al., 2002),

and the works of Arsigny et al. (2006); Fletcher & Joshi (2007); Pennec et al.40

(2006) are highly affected by the intrinsic Rician noise added in dMRI during

acquisition. Remarkably, the most significant limitation for all the approaches

mentioned is that they are exclusively valid for rank-2 tensors (DTI), and only

the linear interpolation can easily be employed on HOT fields. As we pointed out

before, DTI is deficient to represent complex tissue structures. For this reason,45

3



it is necessary a tensorial interpolation methodology that can be generalized to

any order. The aim is to achieve a more accurate representation of the brain

tissue.

Regarding HOT field interpolation, the authors of Yassine & McGraw (2008,

2009) developed a method based on tensor subdivision and minimization of50

two properties (curl and divergence) of the field for interpolation of 4th-order

tensors. However, the works in Yassine & McGraw (2008, 2009) only reported

outcomes for rank-4 tensor fields, and the methods do not have a clear extension

to higher orders, lacking generalization. Another valid approach is to interpolate

the dMRI before the tensor reconstruction. For example, in Dirby et al. (2014),55

it was demonstrated that interpolation of raw dMRI with conventional methods

(linear, bicubic and b-spline) can reveal anatomical details only seen in very

high resolution images. Though, this framework may produce the undesirable

swelling effect in tensors (Yang et al., 2014) and blurs the tract boundaries

(Dirby et al., 2014). Also, authors in Astola et al. (2011); Astola & Florack60

(2009) introduced an approach to perform probabilistic tractography in HOT

data. In particular, they developed a Finsler geometry-based methodology for

multi-fiber analysis. The Finsler geometry model is able to perform probabilistic

tractography in HOT fields using the orientation distribution function (ODF),

and it is a generalization of the streamline method applied on DTI (Astola et al.,65

2011). Nevertheless, a derived method of Finsler geometry for interpolation has

not been developed yet.

To the best of our knowledge, there is not a generalized methodology for

interpolating HOT fields (no matter the rank), that retains all mandatory

constraints for tensorial representation of dMRI. In this work, we propose a novel70

methodology to perform interpolation in HOT fields of any order. In this regard,

we employ tensor representations and modulate their parameters with Gaussian

processes (GPs), aiming to estimate new data with robustness, considering

that GPs are functions of a multi-dimensional input variable. Specifically, we

introduce two probabilistic models, that we refer to as the Tucker decomposition75

process (TDP) and the canonical decomposition process (CDP). Our models
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are based on the Tucker and canonical decomposition of tensors (Carroll &

Chang, 1970; Gulliksen & Frederiksen, 1964), respectively. The main advantage

of tensor decompositions is the transformation of a complex mathematical object

in a superposition of scalars, vectors or matrices. These simple representations80

allow to index a tensor in an independent variable (i.e. spatial coordinates),

facilitating the probabilistic modeling of tensor fields, no matter the order (rank).

We test the TDP and CDP in 2nd, 4th and 6th rank HOT fields. For rank-2

tensors, we compare against direct interpolation (Pajevic et al., 2002), log-

Euclidean approach (Arsigny et al., 2006), and Generalized Wishart processes85

(Vargas Cardona et al., 2015). For rank-4 and rank-6 tensors we compare against

direct interpolation and raw dMRI interpolation with b-splines (Dirby et al.,

2014). Results obtained show that TDP and CDP interpolate accurately the

HOT fields, and generalize to any rank. Importantly, the proposed framework

safeguards the mandatory constraint of positive definite tensors, and preserve90

morphological properties such as fractional anisotropy (FA), white matter (WM)

segmentation, generalized anisotropy (GA), and tractography.

2. Materials and Methods

In this section, we first define the proposed framework. Second, we briefly

explain the main concepts of a Gaussian process. Then, we introduce the Tucker95

and canonical decomposition of a tensor, and we describe the priors that we use

to represent tensorial fields by combining the Tucker and canonical decomposition

with Gaussian processes. Also, we introduce the higher order tensors for modeling

dMRI data. Bayesian inference for the proposed probabilistic models is then

discussed. Finally, we give details of the experimental setup.100

2.1. Proposed approach for tensor interpolation

A tensor is a geometric or physical object specified by a set of coefficients

Ti1i2...il of a multi-linear form T = φ(x1,x2, ...,xl) ∈ K
I1×I2×...×Il of l vector

arguments x1,x2, ...,xl written in some orthonormal basis, where K may refer to
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R (real) or C (complex). The number l is known as the order or rank of the tensor105

and each vector argument has an independent (may be different) dimensionality.

Alternatively, a tensor can be represented in several forms employing vectorial

or matrix approximations:

T ∼ M (α1,α2, ...,αm) ,

being M ∈ K
I1×I2×...×Il any vectorial or matrix decomposition of T , and

α1,α2, ...,αm parameters of the given representation. Following this notion, our110

main goal is to develop probabilistic models (PM) over tensors indexed by an

independent variable z = [z1, z2, ..., zJ ]
⊤, being J the dimensionality of z. For

example, if z refers to spatial coordinates, then, z = [x, y, z]⊤ and J = 3. The

PM can be seen as probability distributions over a tensor field, this is, a grid of

interconnected and related tensors. Furthermore, such probability distributions115

allow the interpolation of new tensor data for any input locations (z∗), according

to the following definition:

T (z) ∼ M (α1(z),α2(z), ...,αm(z)) , (1)

where M is a tensor representation, and α1(z),α2(z), ...,αm(z) are free parame-

ters that depend on the mathematical definition of M. The probabilistic nature

of M arises because the parameters α1(z),α2(z), ...,αm(z) are realizations of120

stochastic processes. Specifically to define M, we employ the canonical (Carroll

& Chang, 1970) and the Tucker decomposition (Gulliksen & Frederiksen, 1964)

of tensors to construct the probabilistic model. The motivation of using both

tensorial decompositions is for the simplicity in their representations. It is not

necessary to model a complex object such a tensor, but simpler mathematical125

arrays: scalars, vectors and matrices. This allows to model a tensor field through

stochastic methods (i.e. Gaussian processes) that modulate those scalars, vectors

and matrices as function of an independent variable z.
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2.2. Gaussian process

A Gaussian Process (GP) is a collection of random variables which have

a joint Gaussian distribution (Rasmussen & Williams, 2006). The GP can

be understood as the generalization of a Gaussian distribution over a finite

vector space to a function space of infinite dimension (Mackay, 1998). A GP is

completely defined by its mean function, µ(z), and covariance function, k(z, z′),

such that f(z) ∼ GP (µ(z), k(z, z′)). For simplicity, the mean µ(z) is usually

set to 0. In supervised learning, the squared exponential kernel is commonly

employed as covariance function, and it is given by (Alvarez & Lawrence, 2011):

k(z, z′) = σ2
k exp

(

−
||z− z′||2

2θ2

)

, (2)

where θ and σ2
k are the length-scale and the variance hyperparameters, respec-130

tively.

2.3. Canonical decomposition of a tensor

Any tensor can always be decomposed (possibly non-uniquely) as:

T =

r
∑

i=1

λiui ⊗ vi ⊗ · · · ⊗wi, (3)

where ui ∈ R
I1 , vi ∈ R

I2 , ... wi ∈ R
Il are unitary vectors, λi ∈ R

+ are

generalized eigenvalues, and ⊗ denotes the outer or Kronecker product. The135

tensor rank, rank(T ), is the smallest integer r such that this decomposition holds

exactly. The rank of T = [tj1...jl ] ∈ K
I1×...×Il is defined as:

rank(T ) := min

{

r
∣

∣

∣T =
r

∑

i=1

λiui ⊗ vi ⊗ · · · ⊗wi

}

.

If in (3), we have ui = vi = · · · = wi for every i, then we call it a symmetric

outer product decomposition, yielding I1 = I2 = Il = n, (being n the dimension

of the tensor) and a symmetric rank, ranks(T ):140

ranks(T ) := min

{

s
∣

∣

∣T =

s
∑

i=1

λiyi ⊗ · · · ⊗ yi,

}

,
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where yi ∈ R
n are unitary vectors. Henceforth, we will adopt the following

notation:

y⊗l = y ⊗ · · · ⊗ y, l copies . (4)

In addition to complete symmetry, some applications demand additional

constraints, such as positivity definite tensors. Regarding this, a tensor T of even

order is positive definite if and only if the smallest generalized eigenvalue λmin145

of T is positive (Qi et al., 2009). The definition of symmetric rank is relevant

because of the following proposition (Comon et al., 2008):

• Let T ∈ K
n×...×n. Then there exist y1, ...,ys ∈ K

n, such that

T =
s

∑

i=1

λiy
⊗l
i . (5)

The above proposition establishes that a symmetric and positive definite

tensor can be represented as the superposition of outer (Kronecker) products150

of s unitary vectors yi ∈ K
n scaled by the positive generalized eigenvalues λi

∈ R
+, i = 1, ..., s. The outer product decomposition has often been regarded

synonymously as the data analytic models CANDECOMP (Carroll & Chang,

1970) and PARAFAC (Harshman, 1970), where the decomposition is used to

analyze multi-way psychometric data.155

2.4. Canonical decomposition process (CDP)

The CANDECOMP is a superposition of outer products of scaled-vectors.

This decomposition represents a symmetric tensor in s positive scalars λi and s

unitary vectors yi whose number of elements depends of the tensor dimension-

ality. The main advantage of the canonical decomposition is due to the easy160

reconstruction of the tensor, as we can see in equation (5). Also, it is worth

noting the parameters of this decomposition are simple objects: scalars and

vectors, that can easily be described through independent Gaussian processes.

According to the formulation given in equations (1) and (5), we propose a

stochastic approach for tensorial interpolation. Let us define λ(z) = {λ1, ..., λs}165
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as the eigenvalues vector. Following our general approach, the idea would be

to index each λi by the spatial variable z. Since the values of λ should remain

positive, we transform the elements λi with a log function. Then, we assume that

log(λi) follows a Gaussian process. Once we obtain the posterior of logλ, we

apply the exp function to recover λ. Also, for the entries in the unitary vectors170

yi (i = 1, ..., s), we assume each element yij , (j = 1, ..., n) follows an independent

Gaussian process. We normalize each yi for ensuring unitary vectors. We refer

to this process by the name of the canonical decomposition process (CDP):

T (z) ∼ CDP(λ(z),yi(z), s, l) =

s
∑

i=1

λi(z)yi(z)
⊗l, (6)

where, log λi(z) ∼ GP(µ, k(z, z′)) and yji(z) ∼ GP(0, k(z, z′)). We use an

squared exponential kernel (see equation (2)), for constructing the covariance of175

the GPs (Rasmussen & Williams, 2006).

2.5. Tucker decomposition of a Tensor

Consider T ∈ K
I1×I2...×Il and A(1) ∈ K

J1×I1 , A(2) ∈ K
J2×I2 and A(l) ∈

K
Jl×Il . Then, the Tucker mode-1 product T ·1 A

(1), mode-2 product T ·2 A
(2)

and mode-l product T ·l A
(l) are defined by

(

T ·1 A
(1)

)

j1i2...il
=

I1
∑

i1=1

Ti1i2...ilA
(1)
j1i1

, ∀j1, i2, ..., il,

(

T ·2 A
(2)

)

i1j2...il
=

I2
∑

i2=1

Ti1i2...ilA
(2)
j2i2

, ∀i1, j2, ..., il,

(

T ·l A
(l)
)

i1i2...jl
=

Il
∑

il=1

Ti1i2...ilA
(l)
jlil

, ∀i1, i2, ..., jl.

A Tucker decomposition of a cubic tensor (I1 = I2 = Il = n) T ∈ K
n×...×n is a

decomposition of T of the form (Gulliksen & Frederiksen, 1964):

T = C ·1 A
(1) ·2 · · ·A

(l−1) ·l A
(l), (7)

for which C ∈ K
n×...×n is known as the core tensor, and A(1), A(2),..., A(l) ∈

K
n×R (R ≤ n) are matrices with column unitary vectors. If the decomposed
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tensor is symmetric and positive definite, A(1) = A(2) = ... = A(l). For an

l−order tensor, equation (7) is rewritten as follows:

T = C ·1 A ·2 · · ·A ·l A =
[

A⊗l A
]

vec C, (8)

where vec is an operator that transforms a tensor into a vector.

2.6. Tucker Decomposition Process (TDP)

The Tucker decomposition is defined by a set of outer products of matrices180

multiplied by a core tensor. The advantage of Tucker is that it guarantees an

exact decomposition, while CANDECOMP may be approximated in some cases.

Also, when the tensor is symmetric, the size of representation matrix A does not

depend of the rank, which is a remarkable aspect, because higher orders fields

do not increase considerably the time necessary for executing the learning stage.185

Based on equations (1) and (8), we propose an additional model for tensorial

interpolation that we call Tucker decomposition process (TDP). Let T (z) be a

random field of tensors. We say that T (z) follows a TDP according to:

T (z) ∼ T DP(C,A(z), l) = C ·1 A(z) ·2 · · ·A(z) ·l A(z) =
[

A(z)⊗l A(z)
]

vec C,

(9)

where C is a l−order symmetric core tensor, and A is a n×R matrix with column

unitary vectors. The variable n is the tensorial dimension, and R is the degree

of the decomposition (R ≤ n). In our probabilistic model, we assume that each

element of A follows an independent GP indexed by z. Again, we normalize

each column vector of A for ensuring unitary vectors. Also, we establish that190

the unique elements of the core tensor C are random variables sampled from a

spherical multivariate Gaussian distribution. The number of unique elements of

a tensor depends on its order l. For example if l = 4, we have El = 15 unique

elements in a 4th order tensor. The prior distributions over the parameters in the

TDP are given by A(z) with elements Aij(z) ∼ GP(0, k(z, z′)) for i, j = 1, 2, 3;195

vec C ∼ N (0, c2I), with c2 the common variance for the elements in vec C.
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2.7. Higher Order Tensors and dMRI

In previous subsections, we introduced two probabilistic models (CDP and

TDP) for describing tensor fields of any order indexed by an independent variable

(i.e. spatial coordinates). In the context of diffusion magnetic resonance imaging

(dMRI), higher order tensors (HOT) are employed for modeling diffusion of water

particles in organic tissue. A HOT ∈ R
n1×...×nl has a dimensionality n = 3 for

all array arguments, n1 = n2 = ... = nl = 3. A structured diffusion process

through dMRI is defined by the generalized Stejskal-Tanner formula (Ozarslan

& Mareci, 2003):

logSk(z) = logS0(z)− b×
3

∑

i1=1

3
∑

i2=1

· · ·
3

∑

il=1

D
(l)
i1i2...il

(z)gi1gi2 · · · gil , (10)

where Sk is the kth dMRI acquired in a particular input position z = [x, y, z]⊤,

S0 is the baseline image, b is the diffusion coefficient, l is the order of tensor,

gi1gi2 · · · gil is the direction of a gradient vector, and Di1i2...il is the diffusion

tensor. From equation (10), it is possible to compute all elements of a tensor

using multi-linear regression (Barmpoutis & Vemuri, 2010), for all input locations

in a dMRI. The diffusion function D(g) is defined as:

D(g) =

3
∑

i1=1

3
∑

i2=1

· · ·
3

∑

il=1

Di1i2...ilgi1i2...il .

The order l must be strictly even: an odd l implies that D(−g) = −D(g), leading

to non-positive definite tensors, that do not have physical interpretation. For

this reason, the rank of a higher order tensor (HOT) always must be even. A200

rank-l tensor has 3l elements. This number is very large for higher orders. But

total symmetry of HOT reduces significantly the number of unique components

of the tensor to El =
(l+1)(l+2)

2 .

From a whole dMRI study, it is possible to estimate a tensor field. A HOT

has a discrete graphical representation defined by parametrized surfaces known205

as glyphs (Ozarslan & Mareci, 2003). Figure 1 shows examples of HOT fields of

rank-2,4 and 6.
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(a) (b) (c)

Figure 1: Examples of HOT fields: (a) rank-2, (b) rank-4, and (c) rank-6. RGB colors indicate

the principal direction of the diffusion tensor: right-left (RED), anterior-posterior (GREEN)

and ventral-inferior (BLUE)

2.8. Bayesian inference for TDP and CDP

For TDP and CDP, we follow the classical Bayesian approach for finding the

posterior parameters:

posterior ∝ prior × likelihood.

Given a finite set of higher order tensors X (Z) = {D(zi)}
N
i=1, obtained from

solving the Stejskal-Tanner formula for different input locations zi (Z ∈ R
n×N

is a matrix that contains all spatial locations of the training set, and N is the

number of training data), we use Bayesian inference to compute the posterior

distribution for the HOT field:

p(T (z)|X (Z)) ∝ p(T (z))p(X (Z)|T (z)).

We use the TDP or the CDP as the prior for p(T (z)), and for the likelihood

function, we assume each element from the HOT data follows an independent

Gaussian distribution with the same variance σ2. This leads to a likelihood with

the form:

p(X (Z)|T (z)) ∝
N
∏

i=1

exp

(

−
1

2σ2
‖X (zi)− T (zi)‖

2
F

)

,

where ‖A − B‖F is the tensorial Frobenius distance of order l given by

‖A − B‖F =





3
∑

i1,...,il

(Ai1,...,il − Bi1,...,il)
2





1/2

. (11)
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(a) Training data (b) Prior (c) Posterior
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(d) LogLik curve

Figure 2: Learning process for a 3× 3 rank-4 HOT field. (a) is the training set (low spatial

resolution field), (b) is the initial field obtained from the TDP prior, (c) is the posterior field

obtained after 6000 iterations, and (d) is the learning curve given by the log-likelihood.

Posterior distributions for the TDP are computed for matrix A(z), the length-

scale parameter θ of the squared exponential kernel (for which a log-normal prior210

is used), and the core tensor C. We use Markov chain Monte Carlo algorithms to

sample in cycles. The variance parameter σ2
k of the kernel is set to 1 for ensuring

the restriction k(z, z) = 1. Metropolis-Hastings (Robert & Casella, 2005) is

used to sample the posterior of θ, and for the elements of the core tensor C.

To sample A(z), we employ elliptical slice sampling (Murray et al., 2010). We215

set R = n = 3 no matter the rank of the HOT field. For the CDP, we employ

elliptical slice sampling for obtaining the posterior of λ(z) and yi(z). We set

s = 8 when the rank l = 2, s = 10 when l = 4, and s = 12 when l = 6.

We obtain initial values of relevant parameters sampling from the priors. For

MCMC methods, we employ 7000, 9000, 11000 cycles for rank-2, 4 and 6 respec-220

tively, adding 1300 for the burn-in stage. The goal of the burn-in is to guarantee

statistical independence among samples. For Metropolis-Hastings algorithm,

we employ a Gaussian function as proposal distribution with σ2 = 0.001. For

elliptical slice sampling, we set a different rate parameter (lr) depending of the

rank. For rank-2 tensors we set lr = 0.001, for rank-4 and 6 we set lr = 0.0001.225

Coefficients of the tensors are scaled in the range −5 to 5. Figure 2 shows an

example of the learning process for the TDP.
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2.9. HOT prediction with the TDP and CDP

Once we learn the posterior distribution for all the parameters, we compute

the predictive distribution for p(T (z∗)|T (z), z∗), in a new spatial position230

z∗ = [x∗, y∗, z∗]
⊤.

First, we have to infer the distribution over all unknown GP function values

from A(z∗) for the TDP and λ(z∗), yi(z∗) for the CDP. If we vectorized all

elements of A(z), A(z
∗
); λ(z), λ(z∗), yi(z), yi(z∗), we obtain two vectors u

and u∗ with p = nRN and q = nRNv (for TDP) or p = nsN and q = nsNv (for235

CDP) elements, respectively. N is the number of training data and Nv is the

number of validation data. The joint distribution over u and u∗ is given by,





u

u∗



 ∼ N



0,





KB B⊤

B K∗







 .

Here, KB is a nRN × nRN (TDP) or nsN × nsN (CDP) block diagonal

covariance matrix, where each block is a N ×N Gram matrix K with entries

Kij = k(zi, zj), being k(·, ·) the squared exponential kernel. If u∗ and u240

have p and q elements respectively, B is a p × q matrix that represents the

covariances between u∗ and u for all pairs of training and validation data, this

is Bij = ki(z∗, zj) for i + (i − 1)N ≤ j ≤ iN , and 0 otherwise. K∗ is a p × p

Gram matrix with entries K∗
ij = k(z∗i, z∗j), being z∗, the spatial coordinates of

the test data. Using the properties of a Gaussian distribution, and conditioning245

on u, we obtain:

p (u∗|u) ∼ N
(

BKB
−1u,K∗ −BKB

−1B⊤
)

. (12)

From the mean value for u∗ obtained from p (u∗|u), we organize A(z∗) or

λ(z∗) and yi(z∗). Then, we compute T (z∗) using equations (6) and (9) for CDP

and TDP, respectively.

2.10. Experimental setup and datasets250

We test the TDP and CDP in HOT fields of rank 2,4 and 6 in two different

types of datasets. First, we obtain a 2D synthetic crossing fibers field (30×30 vox-
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els) from the algorithm of the fanDTasia toolbox (Barmpoutis & Vemuri, 2010),

available at http://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/. Second,

we estimate HOT data from a real dMRI study using the method proposed255

in Barmpoutis & Vemuri (2010). The dMRI study was downloaded from the

human connectome project : https://www.humanconnectome.org/, specifically

from MGH Adult Diffusion Data repository. The data were collected from a

male subject (age between 20-24) on the customized Siemens 3T Connectom

scanner, a 64-channel tight-fitting brain array coil was used for data acquisition,260

and 70 gradient directions with a value for b equal to 5000 S/mm2. The study

contains 140× 140× 96 images in the axial plane with isotropic voxel size of 1.5

mm, and we select a region of interest (ROI) of 40× 40× 10 voxels centered in

the corpus callosum. As ground-truth or gold standard we use the original HOT

data (synthetic and real), then we downsample the HOT fields by a factor of265

two. The downsampled fields are the training sets. In this work, we split the

entire field in four subfields in order to seek a faster execution of algorithms. We

test the proposed methods simultaneously over each subfield. CDP and TDP

are patch-based methods, then we select a 3× 3 patch for the training, obtaining

a 5× 5 patch in the validation stage. The patch is moved across the subfield for270

processing all tensors.

After we train the TDP and CDP, we compute the predictive distribution

for the HOT fields. For rank-2 data, we compare our approaches with direct

linear interpolation (Pajevic et al., 2002), log-Euclidean interpolation (Arsigny

et al., 2006), and generalized Wishart processes (GWP) (Vargas Cardona et al.,275

2015). For rank-4 and 6, we compare against direct linear interpolation and

raw dMRI interpolation with b-splines (only for the real dMRI data set). For

a quantitative evaluation, we calculate an error metric based on the tensorial

Frobenius distance (see eq. (11)) between the interpolated field and the respective

ground-truth, evaluating only the predicted tensors. Also, we test morphological280

validation employing fractional anisotropy (FA) maps and tractography analysis

(2D and 3D) for rank-2 tensors. FA is a measurement of anisotropy levels in

dMRI, where a 0 value corresponds to an isotropic tensor and 1 refers to a full
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http://www.cise.ufl.edu/~abarmpou/lab/fanDTasia/
https://www.humanconnectome.org/


anisotropic tensor. In the case of 3D tractography, we evaluate the number

of generated fibers and the average length of tracts. For rank-4 and 6, we285

evaluate generalized anisotropy (GA) curves. GA is a generalization of FA for

higher orders. Additionally, we perform an experiment related to white matter

segmentation over second order fields through thresholding of FA images and

graph cuts Shi & Malik (2000). Finally, we measure the computational time for

each method in a PC: Intel Core-i7, 3,4 GHz, 16 Gb RAM; and we perform a290

×4 interpolation for evaluating the generalization capability of methods when

we have a few amount of training data. Figure 3 illustrates a flow diagram of

the proposed framework.

Probabilistic models:

- Distance Metrics

Input

Method

Learning Stage

Validation 

Low resolution

dMRI-HOT MCMC methods:

- Metropolis 

Hastings

- Elliptical Slice 

Sampling

- FA maps

- Fiber tracts

Canonical decomposition:

Tucker decomposition:

Interpolated HOT

field

- GA histograms

- WM segmentation

Figure 3: Flow diagram of the proposed framework. The input is a low resolution field (i.e.

3× 3 tensors). Then, we model the HOT field with CDP or TDP. Next, we find the posterior

of parameters employing MCMC methods. Finally, we validate the enhanced resolution field

(i.e. 5× 5 tensors) comparing with a gold standard through distance metrics, FA maps, GA

histograms, fiber tracts, and white matter segmentation.

3. Results and Discussion

In this section, we first illustrate how parameters of the models are estimated295

using Monte Carlo methods. Second, we perform a Rician noise analysis evaluat-

ing error in interpolation of 2D synthetic tensor fields (30×30 voxels) for various

signal-to-noise ratio (SNR) values. Then, we show quantitative and qualitative

results obtained in two different dMRI data: a simulation of crossing fibers field
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and a real dMRI study acquired from a human subject. For all datasets, we300

interpolate HOT fields of rank 2,4 and 6.

3.1. Monte Carlo methods

Figure 4 shows the samples and posterior distributions of relevant parameters

for CDP and TDP, when we train a rank-2 synthetic field: length-scale (θ),

y11 element of CDP and A11 element for TDP respectively. In this case, the305

initial values of mentioned parameters are sampled from the priors. Recall that

the prior of θ is a log-normal distribution with µθ = 0 and σθ = 0.001 while

elements of vectors yi and matrix A follow independent Gaussian processes

GP(0, k(z, z)). A closer look to figure 4 demonstrates a stable behavior of all

parameters analyzed. For example, the θ hyper-parameter has some strong310

jumps, but its distribution function is not highly disperse. y11 and A11 have a

similar tendency, where they present an unique mode.
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Figure 4: Samples and posterior distributions obtained for some relevant parameters: a) and

b) correspond to the length-scale hyper-parameter θ of the squared exponential kernel k(z, z′);

c) and d) illustrate the element y11 of the unitary vector y1 used in CDP; e) and f) refer to

the element A11 of the matrix A employed in TDP. Metropolis-Hastings is used for θ, and

elliptical slice sampling is the algorithm used for elements of yi and A.
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a). Iteration 0 (Prior) b). Iteration 10 c). Iteration 100

d). Iteration 1000 e). Iteration 7000 f). Training data

g). Interpolated field h). Ground-Truth

Figure 5: Learning and predictive process for a rank-2 synthetic field. Subfigures a) to e) show

the evolution of a initial field obtained from sampling a prior (in this example we employ CDP,

but a similar process occurs for TDP) until the learning stage is completed in iteration 7000

(recall, we employ 1300 samples in the burn-in stage); f) corresponds to the training data or

low resolution field; g) corresponds to the interpolated or high resolution field, and h) is the

ground-truth data.

Figure 5 describes the learning and prediction process for a rank-2 tensor

field. As we can observe, the initial field obtained from the prior (CDP or TDP)

is gradually modified until it achieves the values and shapes of the training data.315

To construct the posterior of CDP and TDP, we select the parameters with the

biggest log-likelihood. Then, using the predictive distribution, we interpolate

new data for enhancing spatial resolution of the tensor field.
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3.2. Noise Analysis

We perform a noise analysis by testing the interpolation methods over tensor320

data corrupted with Rician noise for several SNR values. The noise is randomly

distributed in the tensor field. Figures 6 and 8 show training data and ground

truth for rank-2 and 4, respectively. Also, figures 7 and 9 show the mean error

and standard deviation of interpolation in rank-2 and 4. For all magnitude

variations of SNR and different tensor orders (including rank-6), the proposed325

methods outperform to the comparison approaches.

3.2.1. Rank-2 data
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Figure 6: Rank-2 synthetic data corrupted with Rician noise for several SNR values. Top and

bottom row correspond to the training data and ground truth respectively.
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Figure 7: Mean and standard deviation of interpolation error (Frobenius norm) in rank-2

synthetic data for SNR equals to 1, 3, 10, and 100.

3.2.2. Rank-4 data
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Figure 8: Rank-4 synthetic data corrupted with Rician noise for several SNR values.
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Figure 9: Mean and standard deviation of interpolation error in rank-4 synthetic data for

several SNR values.

3.3. HOT fields interpolation in crossing fibers data

3.3.1. Rank-2 Results330

Figure 10 and Table 1 show results for the rank-2 crossing fibers field.

Again, CDP and TDP outperform direct interpolation, Generalized Wishart

processes (GWP) and log-Euclidean interpolation, when we evaluate accuracy

and morphological validation.
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Figure 10: Normalized error maps for interpolation of a rank-2 crossing fibers HOT field: (a)

Ground-truth, (b) CDP, (c) TDP, (d) Direct interpolation , (e) GWP, and (f) log-Euclidean.

Table 1: Frobenius distance and MSE of FA for rank-2 crossing fibers HOT field

D. interpolation Log-Euclidean GWP TDP CDP

Frobenius distance (FD) 0.551± 0.625 0.505± 0.531 0.372± 0.353 0.139± 0.112 0.125± 0.110

MSE of FA (×10−3) 9.62± 3.34 9.53± 3.38 4.60± 2.30 3.90± 2.25 3.90± 2.36

Interface (FD) 0.881± 0.223 0.798± 0.195 0.671± 0.147 0.551± 0.115 0.521± 0.121

3.3.2. Rank-4 and 6 results335

Table 2: Frobenius distance for rank-4 and 6 crossing fibers HOT fields

CDP TDP Direct interpolation

Rank-4 0.734± 0.634 0.790± 0.731 1.106± 1.957

Rank-6 1.514± 1.013 1.632± 0.994 2.276± 2.776

Interface (Rank-4) 1.841± 0.522 2.421± 0.501 2.954± 0.756

Interface (Rank-6) 3.241± 0.898 3.577± 0.847 3.624± 0.898
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Table 2 shows the average Frobenius distance for HOT interpolation in rank-4

and 6 crossing fibers data. Figures 11 and 12 show the error map for rank-6 and

the histogram of generalized anisotropy (GA) for rank-4, respectively.
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Figure 11: Normalized error maps (Frobenius distance) for interpolation of rank-6 crossing fibers

HOT field: (a) Training data, (b) Ground-truth, (c) CDP, (d) TDP, (e) linear interpolation.
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Figure 12: Generalized anisotropy (GA) curve for the rank-4 crossing fibers HOT field
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3.4. HOT fields interpolation in real dMRI data

3.4.1. Rank-2 Results340

Figure 13 and Table 3 show results for the rank-2 real data. Similar to

the results for the synthetic and crossing fibers examples, the CDP and TDP

offer better performance compared to the linear, log-Euclidean interpolation and

GWP.
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Figure 13: Normalized error maps for interpolation of rank-2 real HOT field: (a) Ground-truth

data, (b) CDP, (c) TDP, (d) direct interpolation, (e) GWP, and (f) log-Euclidean. The

analyzed region is a slice of the corpus callosum.

Table 3: Frobenius distance for rank-2 real HOT field

Direct interpolation Log-Euclidean GWP TDP CDP

Frobenius distance 0.275± 0.219 0.224± 0.196 0.182± 0.178 0.118± 0.105 0.102± 0.093

MSE of FA (×10−3) 2.52± 1.91 2.47± 1.88 1.55± 0.81 1.42± 0.79 1.06± 0.35

Table 4 shows a quantitative comparison of the performance of methods in345

a 3D tractography carried out in the region of interest (ROI) centered in the
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corpus callosum, having the number of generated fibers (NGF) and the average

length of tracts (ALT) as metrics. Figure 14 shows the graphical comparison of

the same procedure. Visual and quantitative comparison demonstrates that it

is possible to improve the fibers tracts reconstruction through interpolation of350

tensor fields.

Table 4: 3D Tractography metrics obtained by each interpolation method applied in the rank-2

real HOT field. NGF corresponds to the number of generated fibers and ALT is the average of

length of tracts.

NGF (Number) Error NGF (%) ALT(mm) Error ALT (%)

Ground-Truth 2465 0 114.51 0

CDP 2332 5.39 113.66 0.74

TDP 2320 5.88 113.85 0.58

GWP 2236 9.29 112.6 1.67

Direct 1462 40.68 107.08 6.49

Log-Euclidean 1579 35.94 107.87 5.80

Raw-dMRI 1971 20.04 111.88 2.29
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Figure 14: 3D tractography of the rank-2 dMRI field for the selected ROI centered in the

corpus callosum. The reference is the ground-truth data. We show three cartesian planes and

a 3D view.
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3.4.2. Rank-4 and 6 results

Table 5 shows error results for HOT interpolation in rank-4 and 6 real dMRI

data. Figures 15 and 16 illustrate the error map for rank-4 and the histogram

of generalized anisotropy (GA) for rank-6, respectively. The TDP and CDP355

improve the performance when compared to linear interpolation and dMRI raw

interpolation.

Table 5: Frobenius distance for rank-4 and 6 real HOT fields

CDP TDP Raw dMRI Direct interpolation

Rank-4 1.178± 1.025 1.320± 1.288 1.804± 0.978 2.739± 2.526

Rank-6 3.211± 2.923 3.492± 3.347 4.719± 2.547 6.243± 6.252
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Figure 15: Normalized error maps for interpolation of rank-4 real HOT field: (a) Training

data, (b) Ground-truth, (c) CDP, (d) TDP, (e) Raw dMRI
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Figure 16: Generalized anisotropy (GA) curve for the rank-6 real dMRI HOT field

3.5. White matter (WM) segmentation

Table 6 and figure 17 show the white matter (WM) segmentation results.

Our proposed methods outperform comparison approaches in synthetic, crossing360

fibers and real 2nd order fields, when we evaluate the Dice coefficient.

Table 6: Dice coefficient for white matter segmentation performed in synthetic, crossing fibers

and real dMRI data.

Direct interpolation Log-Euclidean GWP TDP CDP

Synthetic 0.964 0.917 0.961 0.974 0.980

Crossing fibers 0.958 0.953 0.963 0.982 0.986

Real dMRI 0.926 0.859 0.942 0.979 0.981
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Figure 17: White matter (WM) segmentation results for synthetic, crossing fibers and real

dMRI 2nd order fields. White voxels are WM, green and pink voxels correspond to false and

positive negatives, respectively.
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3.6. Computational time and ×4 Interpolation

Table 7 shows the time demanded for each algorithm during the interpolation

of synthetic HOT fields (30× 30 tensors).

Table 7: Computational times (in seconds) demanded for each algorithm. DNA: does not

apply.

Direct Log-Euclidean GWP TDP CDP

Rank-2 6.4 20.1 1528.2 2614.0 2469.2

Rank-4 7.6 DNA DNA 3944.5 4963.7

Rank-6 8.9 DNA DNA 66032.4 15243.9

Figure 18 illustrates the training data and ground-truth fields. Table 8365

exhibits the Frobenius distance for ×4 interpolation experiments.

(a) (b) (c)

(d) (e) (f)

Figure 18: Training data and ground-truth fields for ×4 interpolation. (a), (b), (c) are the

2nd, 4th and 6th-order training data. (d), (e), (f), are the ground-truth fields.

Table 8: Frobenius distance for ×4 interpolation in rank-2, 4, 6 HOT fields. DNA: does not

apply.

Direct Log-Euc GWP TDP CDP

Real (rank-2) 0.796± 0.113 0.735± 0.266 1.167± 0.460 0.726± 0.236 0.562± 0.113

Crossing fibers (rank-4) 1.349± 0.948 DNA DNA 1.353± 0.536 1.115± 0.468

Synthetic (Rank-6) 2.109± 0.678 DNA DNA 2.234± 1.146 1.969± 0.855
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3.7. Discussion

The proposed approaches (CDP and TDP) demonstrate better performance

in interpolation of HOT fields of 2nd, 4th, and 6th-order, compared to direct

linear interpolation and dMRI raw interpolation. In rank-2 data, the CDP and370

TDP also outperform log-Euclidean interpolation and the recently proposed

framework based on generalized Wishart processes (Vargas Cardona et al., 2015).

Our methods are adaptive to different type of data. Thus, they can capture

the global spatial trend of smooth fields or deliver precise estimation among

neighboring tensors. The CDP and TDP are flexible to model several transitions375

inside HOT fields. This property is important because HOT data are very

heterogeneous. Quantitative results of Frobenius distance presented in tables 1,

2, 3, 5 show that the CDP and TDP always outperform the compared methods,

for each dataset and for any order. The accuracy in estimation of new data

is mandatory for interpolation of HOT data. Another key factor is that the380

proposed methods ensure positive definite tensors.

The Rician noise analysis is very useful for probing robustness of the CDP

and TDP. Diagrams of mean error and standard deviation of figures 7, 9 show a

better performance of CDP and TDP than the state of the art approaches. If

we compare CDP and TDP each other, both methods obtain statistically similar385

results. This behavior remains constant for all evaluated cases of SNR levels

(including an extreme case of SNR=1) and different tensor orders. Robustness to

noise of CDP and TDP is due to probabilistic modeling (Gaussian processes) of

their parameters. The GPs modulate those parameters considering the tensors

as noisy data. Therefore, there is an assumption of intrinsic noise in the model.390

Unlike classical deterministic interpolation, a probabilistic inference methodology

is not highly affected when the training data are corrupted by noise. We must

consider that brain dMRI data are always altered by Rician noise and different

artifacts added in acquisition procedure.

Qualitative results of figures 10, 11. 13, 15 illustrate an interesting behavior395

when there are strong changes among nearby tensors. Looking at the figures in

detail, the traditional methods can not capture accurately the rapid transitions
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in the field, no matter the rank. The most extreme case is the crossing fibers

fields (figures 10, 11). These strong changes in spatial dynamic of HOT fields

are very difficult to follow, even for robust methods. The CDP and TDP400

capture these changes with low error. For example the direct transition from

blue to green tensors, when they are highly anisotropic. Probabilistic models

presented in this work adapt much better to abrupt changes compared to the

other methods. Another remarkable aspect of the proposed approaches is the

guarantee of positive definite (PD) tensors. For this reason, the estimated data405

are physically realizable. Some methods such as linear direct interpolation and

log-Euclidean can not ensure the estimation of PD tensors in noisy data, i.e.

the real dMRI dataset. MSE of FA displayed in tables 1, 3 demonstrate that

probabilistic approaches for tensorial interpolation are robust and can preserve

morphological properties relevant in clinical applications. Again, outcomes for410

CDP and TDP are better than the comparison methods in all experiments.

3D tractography results exhibited in table 4 and figure 14 are particularly

relevant to remark the pertinence of reducing voxel size in HOT fields. Regarding

this, interpolation of tensor data allows to highlight anatomical details that

can be seen only in very high resolution acquisitions. We consider that a HOT415

study with enhanced spatial resolution can improve the quality of tractography

and aids the mapping of tissue structures. If we observe, the fiber tracts

reconstructed from low resolution data (see first row of figure 14) is poorer than

the reconstruction from high resolution data (second row of figure 14), where

the density and number of fibers is clearly inferior in the corpus callosum and420

surrounding regions. Additionally, interpolation of the HOT fields reveals more

fined structural features of complex fiber bundles (i.e. crossing and bifurcated

fibers), improves the representation of tract shapes, and it augments the contrast

in tissue boundaries. Furthermore, segmentation of gray matter (GM) and white

matter (WM) is easier from FA maps, because of the increased contrast. In425

this sense, enhancing spatial resolution of HOT data takes relevance in clinical

applications. For example; the surgical planning, where tractography is employed

to map the displacements of projecting tracts and low resolution scans’ insufficient
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accuracy can cause difficulties in this procedure (Dirby et al., 2014). Also, the

preliminary diagnosis of tumorous, ischemic or inflammatory lesions of the spinal430

cord (Vargas et al., 2008), where it is required high resolution visual data.

In agreement with quantitative results of table 4, the CDP and TDP achieve

tractography metrics close to the ground-truth study (the selected ROI has a

size of 40 × 40 × 10 voxels, centered in the corpus callosum). In this case we

evaluate the number of generated fibers (NGF) and the average length of tracts435

(ALT). The GWP and dMRI-raw interpolation obtain acceptable results, while

the deterministic methods (direct and log-Euclidean) have the lower performance.

Qualitative results of fiber reconstruction (see figure 14) show missing fibers

and a considerable reduction of the fiber density in some regions for direct and

log-Euclidean approaches. Moreover, we observe a smoothing of fiber tracts440

that generates a contrast loss for dMRI-raw interpolation; the problem of this

blurring effect is that tiny brain structures and edges tend to disappear. As

we explained before, proposed methods interpolate the tensors with low error

and obtain tractography metrics nearby to the gold-standard. Summarizing,

when we employ probabilistic methodologies for interpolation of tensor data, it445

is possible to get accurate 3D tractographic reconstruction from post processed

low resolution dMRI scans.

Generalized anisotropy is an extension of FA for rank-4 and 6. The GA

curves (figures 12, 16) obtained for the proposed methods follow the trend of the

ground truth, especially the CDP. It means that interpolation of HOT with CDP450

or TDP does not affect the intrinsic physiological information of dMRI. While,

the linear interpolation can not retain the trends in high values of GA (from 0.8

to 1.0). multiple crossings (i.e crossing fibers) in HOT fields occur in anisotropic

regions. In consequence, linear interpolation is not able to capture with good

accuracy the complex tissue structures. The method of Raw dMRI interpolation455

tested only in the real dataset, can keep the GA tendency. However, it generates

swelling effect in the estimated tensors.

CDP and TDP are Bayesian models whose parameters are modeled with

Gaussian processes. Due to the probabilistic nature of CDP and TDP, it is not
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possible to achieve an analytical solution for the posterior distribution. It is460

necessary to employ Markov Chain Monte Carlo methods for finding the posterior

(elliptical slice sampling and Metropolis Hastings). There is a bottleneck in the

construction of tensors with Tucker or canonical decomposition, when we calculate

Kronecker products. A feasible option is to employ mode-n products. However,

this procedure demands more operations and loops. Therefore, computational465

cost of CDP and TDP increases considerably with the number of training data.

As we pointed out before, we split the entire field in several subfields and we

employ a patch-based scheme. Then, we execute the algorithms at the same

time, improving the performance and reducing the time needed for a successful

training.470

An important aspect that must be taken into account is the slow convergence

of the MCMC methods used in our framework. This issue is critical for a large

number of voxels in training data, because the time demanded to complete the

training stage increases considerably. For this reason, we split the entire field in

subfields that we process simultaneously. Also, it is necessary to employ dynamic475

patches into each subfield (i.e. 3× 3 for enhancing to 5× 5).

When we make a direct comparison between CDP and TDP, we do not

find statistically significant differences in their outcomes, no matter the rank or

dataset. We can say both methods have a comparable performance under any

condition. Intuitively, we think this identical performance of CDP and TDP is480

due to their similar mathematical construction based on outer products, taking

account that parameters of CDP are scaled-vectors and parameters of TDP are

matrices and a core tensor. Also, the MCMC-based learning stage is almost

the same for them. In relation to the convergence of each proposed method, we

observe that time of training stage of CDP is more affected by the tensor rank485

than TDP. As we explained before, the size of matrices of TDP does not depend

on the rank, while the number of vectors and eigenvalues in CDP increases

considerably for higher orders. For example, in rank-2 fields, the learning stage

of CDP is faster than TDP. For rank-4 is similar. However, for rank-6 tensors

there is a considerable difference in favor of TDP. According to this, we consider490
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that CDP is a suitable approach for lower ranks (2 and 4), and TDP is the

appropriated method for higher orders (6 or more).

White matter (WM) segmentation results of table 6 and figure 17 illustrate

another advantage of our framework. Both CDP and TDP achieve high accuracy

in WM segmentation, obtaining a low number of false positives or negatives, and495

a Dice coefficient near to one. We think a probabilistic modeling allows to keep

the main characteristics of physiological information contained in a dMRI study,

such as the WM tissue and anisotropy descriptors.

We measure the time demanded for each algorithm during the interpolation

of synthetic data in tensor fields of several orders. Results of table 7 make500

evident that execution times in probabilistic approaches (CDP, TDP, GWP) are

considerably higher than the baseline methods. Currently, the computational

cost of CDP and TDP is the main bottleneck of the proposed framework. Future

work includes using Gaussian Processes for Big Data Hensman et al. (2013) to

reduce computational complexity.505

Finally, we evaluate a ×4 interpolation for the same datasets. Results of table

8 demonstrate that CDP obtains the best error and has a better generalization

capability than TDP. Also, linear interpolation is an acceptable approach for

estimating new tensors with a few amount of training data.

4. Conclusions and future work510

In this paper, we presented two methods for tensorial interpolation of diffusion

magnetic resonance imaging: the canonical decomposition process (CDP) and

the Tucker decomposition process (TDP). The proposed methods generalize to

higher order tensors, in contrast to traditional methods presented in the state

of the art, valid only for rank-2 tensors. The canonical and the Tucker process515

outperformed the linear method, log-Euclidean, Generalized Wishart processes,

and dMRI raw interpolation, when we tested three different datasets and for

tensor fields of rank-2, 4 and 6.

Also, we performed a morphological validation. For rank-2 tensor fields we
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evaluated fractional anisotropy (FA) maps and tractography (2D and 3D). For520

rank-4 and 6 tensors, we obtained the generalized anisotropy (GA) histograms.

CDP and TDP can preserve morphological properties of dMRI, avoiding non

positive definite tensors and the swelling effect. For HOT data, it was possible

to achieve high accuracy in GA curves, even in anisotropic regions.

CDP and TDP are Bayesian models, where their parameters are defined by525

a set of Gaussian processes. The probabilistic nature of proposed approaches

favored the robustness, flexibility, generalization capability, and adaptability

to heterogeneous or noisy data. On the other hand, the comparison methods

reduced considerably their performance in presence of high levels of Rician noise.

Future work includes using Gaussian Processes for Big Data Hensman et al.530

(2013) to reduce computational complexity.
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