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Abstract

The recognition of coral species based on underwater texture images pose a
significant difficulty for machine learning algorithms, due to the three follow-
ing challenges embedded in the nature of this data: 1) datasets do not include
information about the global structure of the coral; 2) several species of coral
have very similar characteristics; and 3) defining the spatial borders between
classes is difficult as many corals tend to appear together in groups. For this
reason, the classification of coral species has always required an aid from a do-
main expert. The objective of this paper is to develop an accurate classification
model for coral texture images. Current datasets contain a large number of
imbalanced classes, while the images are subject to inter-class variation. We
have analyzed 1) several Convolutional Neural Network (CNN) architectures,
2) data augmentation techniques and 3) transfer learning. We have achieved
the state-of-the art accuracies using different variations of ResNet on the two
current coral texture datasets, EILAT and RSMAS.

Keywords: Classification, Coral Images, Deep Learning, Convolutional Neural
Networks, Inception, ResNet, DenseNet.

1. Introduction

Coral reefs are complex marine ecosystems typical to the warm and shallow
seas of the tropics. The reefs are created by the slow accumulation of hard
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calcium carbonate skeletons that hard coral species leave behind when they die,
waiting for another coral to live in it and expand the reef. Coral reefs are one
of the most valuable ecosystems in the world as they are extremely biodiverse.
They support up to two million species and a quarter of all marine life on
Earth (ESI, 2017). They are also very important from the human point of view
(Ferrario et al., 2014). Coral species help to clean the water and remove nitrogen
and carbon, they are a source for medicine research and economic wealth from
fishing and tourism, they are also a natural barrier for coastal protection against
hurricanes and storms and, since many of them are thousands and even millions
years old, their study helps scientists to understand climatic events of the past.

The study of the distribution of coral reefs over time can provide important
clues about the impact of global warming and water pollution levels. According
to ESI (2017), we have already lost 19% coral reefs areas since the 1950s and,
according to the International Union for Conservation of Nature (IUCN) Red
List of Threatened Species (IUCN, 2017), in 2017 there were 237 threatened
species in the evaluated 40% of the estimated total of species. This is due to
the fact that coral reefs do not tolerate temperature changes and a quarter of
the carbon dioxide emissions in the atmosphere is absorbed by the ocean, in
addition to the water pollution and other problems caused by humans.

With recent advancements in image acquisition technologies and growing
interest in this topic among the scientific community, huge amount of data on
coral reefs is being collected. However, it is complicated to keep a record of all
coral species because there are thousands of them and the taxonomy is mutable.
This is due to new discoveries made by scientist or because they may change
the order, family or genus of existing species as they gather more knowledge
about them. In addition, some coral species have different sizes, shapes and
colors, but other coral species seem to be identical for a human observer. As
a consequence, a successful coral classification has always demanded an expert
biologist. If we can automate the classification by using the amount of coral
images that is being collected, we can help scientists to study more closely
that amount of data, making an important step towards automatic knowledge
discovery process. In fact, automatizing the classification process of coral images
has been addressed in a few number of works. Most of them (Beijbom et al.,
2012; Pizarro et al., 2008; Shihavuddin et al., 2013; Stokes & Deane, 2009) use
machine learning models combined, in some cases, with image enhancement
techniques and feature extractors. Among these works, only Shihavuddin et al.
(2013) use several datasets.

In recent years, Convolutional Neural Networks (CNNs) have shown out-
standing accuracies for image classification (Krizhevsky et al., 2012; Russakovsky
et al., 2015), especially in the field of Computer Vision. Currently, their appli-
cations branch out to a plethora of diverse fields, where analysis of image data
is required. In biology, CNNs have been evaluated and compared with machine
learning algorithms for wood classification (Affonso et al., 2017). In coral clas-
sification, the use of CNNs is challenging due to the variance between images of
the same class, the lightning variations due to the water column or the fact that
some coral species tend to appear together. Besides, CNNs need a large dataset

2



to achieve a good performance. In practice, two techniques are used to over-
come this limitation: transfer learning and data augmentation. There are some
works that use CNNs for coral classification (Elawady, 2015; Mahmood et al.,
2016a,b), but they use popular CNNs, like VGGnet or LeNet and they only use
one dataset to test their models. Besides, they not use EILAT or RSMAS.

We propose to use more capable CNNs to overcome the limitations of previ-
ously applied deep learning models. We want to develop a much more accurate
model approaching the human expert, facing the specific problems of coral clas-
sification using several datasets. In particular, we have considered three of
the most promising CNNs, Inception v3 (Szegedy et al., 2016), ResNet (He
et al., 2016) and DenseNet (Huang et al., 2017). Inception is a newer version of
GoogleNet, which won the ImageNet Large Scale Visual Recognition Competi-
tion (ISLVRC) (Russakovsky et al., 2015) competition in 2014. ResNet won the
same competition in 2015 and DenseNet beat the results of ResNet in 2016. We
have considered two underwater coral datasets, RSMAS and EILAT (Shihavud-
din, 2017), and we have compared our results with the most accurate model
(Shihavuddin et al., 2013). In these datasets, the images are patches of the
corals, that is, they are small and they show a little part of the coral, a texture,
not the entire structure of the coral.

The contributions of this work are the following:

• Study, explore and analyze the performance of the most promising CNNs
in the classification of underwater coral texture images.

• Analyze the impact of data augmentation on the performance of the coral
texture classification model.

• Compare our results with the state-of-the-art classical methods which re-
quire high human supervision and intervention.

The rest of the paper is organized as follows. An overview of the three
considered CNNs is provided in Section 2. The challenges of coral classification
and related works are given in Section 3. A description of the coral datasets we
have used is provided in Section 4. The experiments and results are given in
Section 5 and the final conclusions of this study are given in Section 6.

2. CNN Classification Models

CNNs have achieved outstanding accuracies in a plethora of contemporary
applications, automatizing its design (Ferreira et al., 2018). In fact, since 2012
the prestigious ILSVRC competition (Russakovsky et al., 2015) have been won
exclusively by CNN models. The CNN layers capture increasingly complex fea-
tures as the depth increases. In recent years, these architectures have evolved by
increasing first the depth of the networks, then the width and finally using lower
features obtained from the lower layers into higher layers. This section provides
an overview of the CNNs used in this work. We have considered three influential
CNNs, Inception v3 (Subsection 2.1), ResNet (Subsection 2.2), and one of the
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Figure 1: Base Inception v3 module. Figure from (Szegedy et al., 2016).

newest, DenseNet, (Subsection 2.3). Finally, we describe the optimization tech-
niques that we have used to overcome the small sizes of the considered datasets
(Subsection 2.4).

2.1. Inception v3

GoogLeNet (Szegedy et al., 2015) won the ILSVRC in 2014 and it is based on
the repetition of a module called inception. This module have six convolutions
and one max-pooling. Four of these convolutions use a 1×1 kernel, which is
introduced to increase the width and the depth of the network and to reduce
the dimensionality when it is necessary. In this sense, a 1 × 1 convolution is
performed before the other two convolutions in the module, a 3× 3 and a 5× 5
convolution. After all the computation, the output of the module is calculated
as the concatenation of the output of the convolutions. This module is repeated
9 times and at the end it uses a dropout layer. In total, GoogLeNet has 22
learnable layers.

Inception v3 can be considered as a modification of GoogLeNet. The base
inception module is changed by removing the 5×5 convolution and introducing
instead two 3×3 convolutions, as we can see in Figure 1. The resulting network
is made up of 10 inception modules. Furthermore, the base module is modified
as the network goes deeper. Five modules are changed by replacing the n × n
convolutions by a 1 × 7 followed by a 7 × 1 convolution in order to reduce the
computational cost. The last two modules replace the last two 3×3 convolutions
by a 1 × 3 and a 3 × 1 convolutions each one, this time in parallel. Lastly, the
first 7×7 convolution in GoogLeNet is also changed by three 3×3 convolutions.
In total, Inception v3 has 42 learnable layers.

2.2. ResNet

Increasing the network depth to obtain a better precision makes the network
more difficult to optimize since it may produce the vanishing or exploding gra-
dients problem. ResNet (He et al., 2016), which won the ILSVRC classification
task in 2015, address this issue by fitting a residual mapping instead of the
original mapping, and by adding several connections between layers. These new
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Figure 2: ResNet building block. Figure from (He et al., 2016).

Figure 3: Example of a dense block. Figure from (Huang et al., 2017).

connections skip various layers and perform an identity, which not adds any
new parameters, or a simple 1 × 1 convolution. In particular, this network is
also based on the reiterated use of a module, called a building block. The depth
of the network depends on the number of the used building blocks. For 50 or
more layers, the building block consists of three convolutions, a 1 × 1 followed
by a 3 × 3 followed by a 1 × 1 convolution, and a connection joining the input
of the first convolution to the output of the third convolution, as we can see in
Figure 2. For our problem, we have used the model with 50 layers, ResNet-50,
and with 152 layers, ResNet-152.

2.3. DenseNet

DenseNet is also based on the repetition of a block, called the dense block.
Inspired by the building block of ResNet, DenseNet connects the output of all
the layers to the input of all the following layers within the dense block (Huang
et al., 2017). The connections between blocks, called transition layers, work as
a compression factor in a sense that the transition layer generates less feature
maps than it receives. The difference between connections in the dense block and
connections in the building block of ResNet is that in the dense block the outputs
of previous layers are added to the following layers before its computation is
performed. A dense block is the repetition of a Batch Normalization, a ReLU,
a 1 × 1 convolution, a Batch Normalization, a ReLU and a 3 × 3 convolution a
specific number of times. In Figure 3 we can see an example of a DenseNet block.
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The transition layers are a 1 × 1 convolution followed by an average pool with
kernel 2 × 2. Similarly to ResNet, the number of dense blocks determines the
number of layers in the network. In this work, we have analyze DenseNet-121
and DenseNet-161, which include 121 and 161 layers respectively.

2.4. CNN Optimization Techniques

CNN-based models require a large set of training samples to achieve good
generalization capabilities. However, generating large datasets is either costly,
time-consuming, or sometimes simply impossible. In practice, two techniques
are used to overcome this limitation: transfer learning and data augmentation.
Since the current coral datasets are too small to train an effective CNN from
scratch, we propose to use these two approaches:

• Transfer learning: instead of starting the training from a scratch by
randomly initializing weights, we initialize weights using a pre-trained
network on different datasets, usually much larger in size. In this work,
we have considered using the knowledge learned from ImageNet (Deng
et al., 2009) in our coral classification. We remove the layer that classifies
the images into the classes of ImageNet and we add two fully connected
layers that classify the images into our concrete problem. We train these
last two layers, instead of fine-tune the whole network, which would also
require larger datasets.

• Data augmentation: consists of artificially increasing the volume of
the training set by applying several distortions to the original images,
such as changing the brightness, scaling or zooming, rotation, vertical
or horizontal mirroring, etc. The applied distortions should not alter
the spatial pattern of target classes (Tabik et al., 2017). Usually the
distortions are performed during the training time, which allows to do it
on the fly without saving the new images.

3. Previous Advances on Automatic Coral Reef Classification

In this section we explain the challenges of the underwater coral and coral
reef images classification and we give an overview on existing works for au-
tomating the classification of coral reef habitat using underwater imagery. The
reasons why the classification of such images is difficult are provided in Subsec-
tion 3.1. Previous works in coral classification can be divided into two groups,
methods that combine classical models (Subsection 3.2) and methods that use
CNNs (Subsection 3.3).

3.1. Challenges of Coral Classification

The classification of underwater coral images is challenging for the following
reasons:
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• Partial occlusion of objects due to the three-dimensional structure of the
seabed. Depending on the water type, there can be significant variation in
presence of scattering effect, which increases additive noise on the image
acquisition and makes it difficult for any computer vision algorithm to
perform as in a normal environment.

• Lightning variations due to wave focusing and variable optical properties
of the water column. In the deep underwater scenario, it is common that
there is no natural light source other than the remote sensing device, which
implies non uniform illumination across the acquired images.

• Subjective annotation of the training samples by different analysts.

• Variation in viewpoints, distances and image quality.

• Significant inner-class variability in the morphology of benthic organisms.

• Complex spatial borders between classes, as many coral species tend to
appear together.

• The difficulty of keeping the autonomous vehicles stable in the underwater
environment, which creates significant motion blur when the images are
acquired in a video format.

• There are very few datasets of underwater coral reef images and in general
they contain patches of the texture of the coral, while at the same time
they do not include any information on the global structure of the coral.

3.2. Coral Classification Based on Classical Methods

Most of the existing approaches for classifying underwater coral images com-
bine one feature extractor with a classifier and show their performance only us-
ing a single dataset, i.e., with specific size, resolution of the images, number of
classes and color information (Beijbom et al., 2012; Pizarro et al., 2008; Stokes
& Deane, 2009). The first paper in this subject was by Pizarro et al. (2008). The
authors analyze more marine habitat besides corals, so it is more general. They
use a SIFT descriptor and a bag of features approach, which means that they
choose from the training set the images that are more similar to each test image.
Beijbom et al. (2012) introduced the Moorea Labelled Corals (MLC) dataset,
which has large images containing different coral species, and they used Support
Vector Machines along with filters and a texture descriptor. They obtained an
accuracy of 83.1% on this dataset using the images of 2008 and 2009 for training
and the images of 2010 for testing. Stokes & Deane (2009) used a normalized
color space and a discrete cosine transform to extract texture features. Again,
they only used one dataset, provided by the National Oceanic and Atmospheric
Administration (NOAA) of the U.S. Department of Commerce Ocean Explorer.

The portability of these methods to new datasets has not been demonstrated
yet. Only Shihavuddin et al. (2013) developed an unified classification algo-
rithm for four different datasets of different characteristics, in which we can find
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RSMAS and EILAT. The authors combined multiple image enhancement tech-
niques, feature extractors and classifiers, among other techniques. In particular,
the image enhancement step contain four algorithms, one mandatory (Contract
Limited Adaptive Histogram Specification or CLAHS) and three optional (color
correction, normalization and color channel stretching). The feature extraction
step contain one optional, used as color descriptor, and three mandatory algo-
rithms, used as texture descriptors. Then, the method has a kernel mapping
step with three mandatory algorithms, a dimension reduction step with two
optional algorithms and a prior settings step with one algorithm. Then it per-
forms the classification using one of the following algorithms: SVM multiclass,
KNN, a neural network or probability density weighted mean distance. Lastly,
if the original image was a mosaic containing several patches, it uses a thematic
mapping using sliding window and morphological filtering. By configuring the
hyperparameters and the different combinations of these algorithms, the model
can be adapted to different datasets.

This method is considered to be the state-of-the-art for RSMAS and EILAT
datasets. In particular, in these two datasets the best combination of algo-
rithms is the following: in the image enhancement step it uses just CLASH.
In the feature extraction step it uses the opponent angle histogram, the hue
channel histogram, the grey level co-occurrence matrix, the completed local bi-
nary pattern and the Gabor filter response. In the kernel mapping step it uses
L1 normalization, chi-square kernel and Hellinger kerl for the completed local
binary pattern and the color histogram. In the dimension reduction step it uses
principal component analysis and Fisher kernel. In the prior settings step it uses
class frequency to estimate prior probability. Finally, as classification algorithm
it uses KNN.

As it can be seen, this algorithm implies a lot of human supervision and
intervention, as there we need to test a lot of algorithms with several hyperpa-
rameters and many possible combinations between the algorithms. Furthermore,
when we have the best combination we need to use a lot of algorithms every
time we need to classify a new image. In the particular case of EILAT and
RSMAS, we need to use six algorithms to obtain the classifier and every time
we need to classify a new image we need to use the first four algorithms, until
we obtain the features of the image.

3.3. Coral Classification Based on CNNs Methods

The use of CNNs for coral classification allow us to use the images without
the image enhancements, although it is possible to use them, and without the
feature extraction, saving a lot of experiments to detect the best combination
of algorithms and therefore, saving time.

The first work that used CNNs for coral classification was by Elawady
(2015). The authors first enhanced the input raw images via color correction
and smoothing filtering. Then, they trained a LeNet-5 (LeCun et al., 1998)
based model whose input layer consisted of three basic channels of color image
plus extra channels for texture and shape descriptors consisting of the following
components: zero component analysis whitening, phase congruency, and Weber
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local descriptor. The model obtained around 55% accuracy on the two datasets
they used.

Mahmood et al. (2016a) use VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet and the dataset BENTHOZ-2015 (Bewley et al., 2015) to
fine-tune the network. This dataset contains more than 400,000 images and
associated sensor data collected by an autonomous vehicle over Australia. The
authors extract several patches from each image centered in different pixels and
using different scales and they apply a color channel stretch to the patches as a
pre-processing technique. In this article, they propose a mechanism to automat-
ically label unseen coral reef images to obtain the coral coverage in the region
where the images are collected (i.e., classifying new images as coral or non-coral
ones). A marine expert later verifies the accuracy of this automatic method. In
the presented experimental study, authors conducted several experiments and
reported over 90% accuracy obtained in each of them.

Mahmood et al. (2016b) use the MLC dataset to propose the usage of CNNs
along with hand-crafted features. Moreover, they introduce a mechanism to
extract such features. This proposal is based on the observation that CNNs
cannot be trained from scratch using the available coral datasets due to its small
size. The features extraction with CNNs has been carried out with the network
VGGnet pre-trained on ImageNet. To classify both types of features, they use
a two layer Perceptron. In their experiments, they obtain better accuracies
with this technique than just with VGGnet or just the hand-crafted features,
although the difference between VGGnet and the combination of the features is
small. In their best experiment, they obtain an accuracy of 84.5% in MLC.

These works use classical CNNs: VGGnet and LeNet and they do not
use EILAT or RSMAS. Besides, sometimes the accuracies obtained are low
(Elawady, 2015), the classification is simple (Mahmood et al., 2016a) or they
use hand-made feature extraction along with CNNs (Mahmood et al., 2016b).

4. Datasets

There exist eight open benchmarks used for underwater coral classification.
These include five public color datasets: EILAT, RSMAS, MLC, EILAT2 (a
subset of EILAT) and the Red Sea Mosaic dataset. The remaining three are
black and white datasets: UIUCtex, CURET and KTH-TIPS. Some of them
include non-coral classes such as fabric, wood and brick. It is worth to mention
that the Red Sea Mosaic dataset is actually one single large image that contains
a large number of different coral species.

In this work, we have used the most recent RGB datasets that contain the
highest number of corals, RSMAS and EILAT (Shihavuddin, 2017). These two
datasets are comprised of patches of coral images. These patches capture mainly
the texture of different parts of the coral and do not include any information of
the global structure of the entire coral. The usage of CNNs with texture images
has already been successfully carried out for granite tiles classification (Ferreira
& Giraldi, 2017). In this case, both datasets are also highly imbalanced. Some
classes have a high number of samples whereas other classes include very few
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Table 1: Characteristics of EILAT, RSMAS and StructureRSMAS. The #imgs refers to the
number of images in the corresponding class.

Dataset Classes #imgs
EILAT Sand. 87

Urchin. 78
Branches Type I. 29
Brain Coral. 160
Favid Coral. 200
Branches Type II. 216
Dead Coral. 296
Branches Type III. 11

RSMAS Acropora Cervicornis (ACER). 109
Acropora Palmata (APAL). 77
Colpophyllia Natans (CNAT). 57
Diadema Antillarum (DANT). 63
Diploria Strigosa (DSTR). 24
Gorgonians (GORG). 60
Millepora Alcicornis (MALC). 22
Montastraea Cavernosa (MCAV). 79
Meandrina Meandrites (MMEA). 54
Montipora spp. (MONT). 28
Palythoas Palythoa (PALY). 32
Sponge Fungus (SPO). 88
Siderastrea Siderea (SSID). 37
Tunicates (TUNI). 36

samples, which makes the classification more difficult. The main characteristics
of these two datasets are as follows:

• EILAT contains 1123 image patches of size 64× 64, taken from coral reefs
near Eilat in the Red sea. The image patches are pieces of larger images.
The original images were taken under equal conditions and with the same
camera. See examples of patches in Figure 4. The patches have been
classified into eight classes, but the used labels do not correspond to the
coral species names. EILAT is characterized by imbalanced distribution
of examples among classes, as it can be seen in Table 1.

• RSMAS contains 766 image patches of size 256×256. The images were
collected by divers from the Rosenstiel School of Marine and Atmospheric
Sciences of the University of Miami. These images were taken under dif-
ferent conditions as they were taken with different cameras in different
places. See examples in Figure 5. The patches have been classified into
14 classes, whose labels correspond to the names of the coral species in
Latin, as it can be seen in Table 1.

5. Classification of Coral Texture Images with CNNs

This section is organized in four parts. First, we describe the experimental
framework we have used (Subsection 5.1). Second, we analyze the results of our

10



(a) Sand (b) Urchin (c) BranchesI (d) Brain Coral

(e) Favid Coral (f) BranchesII (g) Dead Coral (h) BranchesIII

Figure 4: Selected patches from EILAT. Each column shows two examples per class.
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(a) ACER (b) APAL (c) CNAT (d) DANT (e) DSTR (f) GORG

(g) MALC (h) MCAV (i) MMEA (j) MONT (k) PALY (l) SPO

(m) SSID (n) TUNI

Figure 5: Selected patches from RSMAS. Each column shows two examples per class.
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CNN-based classifiers without data augmentation and compare them with the
state-of-the-art classical models on EILAT and RSMAS (Subsection 5.2). Third,
we analyze the impact of data augmentation on these two texture datasets
(Subsection 5.3). Finally, we provide a deeper analysis on the missclassified
EILAT and RSMAS images by their best models (Subsection 5.4).

5.1. Experimental Framework

All the results provided in this section have been obtained performing a 5
fold cross validation technique. To analyze and compare the performance of
different CNNs architectures, configurations and optimizations, we have used
the mean of the five accuracies obtained in the five folds. The accuracy is
calculated as follows:

Accuracy =
True Positives + True Negatives

N
,

where N is the total number of instances.
To evaluate ResNet and DenseNet, we have used Keras (Chollet et al., 2015)

as front-end and Tensorflow (Abadi et al., 2015) as back-end. To evaluate
Inception, we have used its implementation in Tensorflow. We have used transfer
learning by initializing the considered CNNs with the pre-trained weights of
the networks on Imagenet. We have also analyzed the impact of these data
augmentation techniques on the performance of the learning process:

• Random shift (referred to later as shift) consists of randomly shifting the
images horizontally or vertically by a factor calculated as the fraction
of the width or length of the image. In this work we shift the images
horizontally and vertically in all the cases. Given a number x, the width
and length of the image will be shifted by a random factor selected in the
interval [0, x].

• Random zoom (referred to later as zoom) consists of randomly zooming
the image by a certain range. Given a value x, each image will be resized
in the interval [1 − x, 1 + x].

• Random rotation (referred to later as rotation) consist of randomly rotat-
ing the images by a certain angle. Given a value x, each image will be
rotated by an angle in [0, x].

• Random horizontal flip (referred to later as flip) consist of randomly flip-
ping the images horizontally.

An illustration of these data augmentation techniques is shown in Figure 6.
As it can be seen, the distorted images maintain the original size and the pixels
outside the boundaries are filled with the values of the limit pixels. This effect
can be clearly seen in Figure 6b.

Besides these data augmentation techniques, we have also evaluated the im-
pact of different hyperparameters on the performance of the analyzed networks,
such as the number of iterations, the batch size and the number of layers.

13



(a) Original (b) Shift (c) Zoom

(d) Rotation (e) Flip

Figure 6: The result of applying four data augmentation techiques to (a) a original RSMAS
image: (b) shift, (c) zoom, (d) rotation and (e) flip.

Table 2: The accuracies obtained by Inception v3, ResNet-50, ResNet-152, DenseNet-121,
DenseNet-161 and the classical state-of-the-art Shihavuddin model. The results of all the
Convolutional Neural Networks (CNNs) were obtained without data augmentation. The best
results are stressed in bold.

Shihavuddin’s
method

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT 95.79 95.25 97.85 97.85 91.03 93.81
RSMAS 92.74 96.03 97.67 97.95 89.73 91.10

5.2. Classification of Coral Texture Images without Data Augmentation

In this subsection we have evaluated exhaustively Inception v3, ResNet and
DenseNet with different hyperparameters and we have compared the results
obtained for these three CNNs with the state-of-the-art model by Shihavuddin
et al. (2013) on EILAT and RSMAS. For Inception, we have analyzed the impact
of different numbers of iterations and batch sizes. For ResNet and DenseNet,
we have evaluated different combinations of number of epochs, batches sizes and
network depths.

As the results provided by Shihavuddin et al. (2013) were performed using
a 10 fold cross validation, we had to re-evaluate their model using a 5 fold cross
validation with the same folds we have used for all other models in order to
compare them under the same conditions. We have also used the best hyper-
parameters for each dataset at each step of the method described in Subsection
3.2.

The results of Shihavuddin’s method, Inception v3, ResNet with 50 and 152
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Table 3: The set of hyperparameters that provides the best performance shown in Table 2 for
each CNN model.

Inception v3 ResNet-50 ResNet-152 DenseNet-121 DenseNet-161

EILAT
Batch Size 100 64 64 32 32
Epochs 4000 500 300 300 700

RSMAS
Batch Size 100 64 32 32 64
Epochs 4000 1300 300 700 1000

layers and DenseNet with 121 and 161 layers are shown in Table 2, while the
corresponding best configurations are shown in Table 3. As it can be seen from
this table, ResNet-152 outperforms Shihavuddin’s model and the rest of the
CNN models. Inception provides a better accuracy than Shihavuddin’s method
on RSMAS, but shows a worse accuracy on EILAT. DenseNet shows the worst
results on both datasets. In general, these results show that CNNs are able to
become the state-of-the-art in coral classification tasks. In RSMAS, the best
model is ResNet-152, with more than a 5% improvement with respect to Shi-
havuddin’s method. In EILAT, ResNet-50 and ResNet-152 achieve exactly the
same accuracy, it is not a cause of rounding, and they outperform Shihavuddin’s
method for more than 2%.

Obtained results allow us to conclude that only by training the last layers
of a CNN that is already pre-trained on ImageNet and without data augmen-
tation, which is the technique that usually takes more time, we can outperform
a method that takes long running times and need high human supervision. In
fact, Shihavuddin’s method is composed of six steps and each step is composed
of one or various algorithms. Then, in order to obtain the best performance,
it is needed to evaluate all the possible algorithm combinations through all the
steps and to optimize the hyperparameters of each algorithm. Furthermore, this
has to be done independently for each dataset we want to classify.

5.3. Classification of Coral Texture Images with Data Augmentation

In this subsection we have analyzed the effect of the data augmentation
techniques listed in Subsection 5.1 on the classification of texture images. To
carry out this analysis, we have selected the best performing model for each
dataset. In EILAT, ResNet-50 and ResNet-152 are the best models and provide
the same accuracy, so we have chosen ResNet-50 as it is simpler and has less
parameters. In RSMAS, the best model is ResNet-152.

Recall that if we note rotation = 2, it means that we are applying a ran-
dom rotation to the images by an angle in the interval [0, 2]. This notation is
equivalent for all the other techniques.

Tables 4 and 5 show respectively the results of ResNet-50 and ResNet-152
on EILAT and RSMAS using data augmentation together with the parameters
that provide the best performance. The number of steps is the number of times
that we generate a batch of new images by data augmentation at each epoch. As
the number of steps increases, the accuracy improves but also the time needed
to complete each experiment increases. In this case, 300 was the best number
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Table 4: The accuracies obtained by the best performing CNN on EILAT, ResNet-50, with
different data augmentation techniques using the set of hyperparameters indicated in Table
3. The best result is stressed in bold.

without data
augmentation

shift = 0.2 zoom = 0.2 rotation = 2 flip
shift = 0.2,
zoom = 0.2

Accuracy 97.85 98.03 97.85 97.40 97.53 97.85

Table 5: The accuracies obtained by the best performing CNN on RSMAS, ResNet-152, with
different data augmentation techniques using the set of hyperparameters indicated in Table
3. The best result is stressed in bold.

without data
augmentation

shift = 0.2 zoom = 0.4 rotation = 2 flip
shift = 0.2,
zoom = 0.4

Accuracy 97.95 98.36 98.63 97.40 97.578 98.08

of steps. Although we are only showing the best accuracies we have obtained
from using data augmentation, the difference in accuracy between the best data
augmentation technique and the results obtained without data augmentation is
quite small. In both cases the improvement is less than 1%.

This slight improvement using data augmentation can be explained by the
nature of used images. Since the original images are small and close-up, the
applied modifications do not have much effect on the learning of the models as
they need to be small: the shift implies to loose part of the images, and they
are already very small; and the zoom implies to loose quality of the images, and
they are already blurry because they are underwater images. On the other hand,
the images are so close-up that the rotation and the flipping do not introduce
significant variations among them. Besides, the performance of the base models
is already good without any data augmentation. Therefore, we can conclude
that the use of data augmentation techniques in texture coral images does not
significantly improve the learning model.

5.4. Analyzing the Missclassified Images

In this subsection we have analyzed the missclassified images in each parti-
tion of the 5 fold cross validation in both datasets, EILAT and RSMAS.

In EILAT, ResNet-50 produced 22 missclassified images in all of the test
folds. 14 of this missclassified images have been classified as Dead Coral. Dead
Coral is the class with the highest number of images as all the dead corals (no
matter what species) are in this class. This implies that this class shares some
features with all the other classes, as we can see in Figure 7. Additionally,
this may also be caused by a classification bias emerging due to the imbalance
nature of EILAT (Krawczyk, 2016). Similarly, there are four Dead Coral images
classified as other classes. In total, 18 of 22 images are missclassified due to
this class. The remaining three images are from the class Branches Type II
missclassified as Branches Type III or vice versa. As we can observe in Figure
8, some images in these two classes are very similar and therefore it is very
difficult to distinguish between them.
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(a) Examples of five images missclasified as Dead Coral

(b) Dead Coral images

Figure 7: Examples of (a) missclassified images in EILAT as Dead Coral and (b) original
Dead Coral images.

(a) Branches Type III images

(b) Branches Type II images

Figure 8: Examples that show the similarities between (a) Branches Type III and (b) Branches
Type II. The third image form (a) is missclasified as Branches Type II. The first and second
images from (b) are missclassified as Branches Type III.
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(a) APAL

(b) ACER

Figure 9: Examples that show the similarities between (a) APAL and (b) ACER. The third
and fourth images from (a) are missclassified as ACER. The first and second images from (b)
are missclassified as APAL.

(a) MCAV

(b) MMEA

Figure 10: Examples that show the similarities between (a) MCAV and (b) MMEA. The
second and third images in (a) are missclassified as MMEA.
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In RSMAS, ResNet-152 produced only 10 missclassified images in all of the
test folds. In general, the model tends to missclassify APAL as ACER and
vice versa. The model always missclassified MCAV as MMEA. We can see
the similarities between these classes in Figures 9 and 10. The rest of the
missclassified images are blurry images.

From these missclassified images, we can conclude that in the case of EILAT
it would be needed an expert to distinguish between the images in the class
Dead Coral and the rest of the classes, as the images are very similar. For the
images in Branches Type II and Type III a good solution might be for an expert
to reclassify the images into more specific classes, like the coral species, which
we have seen with RSMAS that is a good option. In the case of RSMAS, the
missclassified images are again between classes that looks very similar between
them, so we would need an expert to distinguish between them. In this case, as
the images are so close-up, maybe it would be a good solution to make use of
images from the same species that contain the whole coral body.

6. Conclusions

The classification of underwater coral images is challenging due to the large
number of different coral species, the great variance among images of the same
coral species, the lightning variations due to the water column, or the fact that
several species tend to appear together, leading to an increasing overlapping
among different classes. Few works have tackle this problem, but the only one
that classifies EILAT and RSMAS is a really complex method which makes use
of several algorithms and takes a lot of human intervention and time. We have
addressed these problems by using some of the most powerful CNNs, namely
Inception v3, ResNet and DenseNet. We have carried out a study of the foun-
dations of this three CNNs, their parameter set-up, and possibility of using data
augmentation techniques to aid their learning process. We have been able to
outperform the state-of-the-art approach, proving that CNNs are an excellent
technique for automatic classification of underwater coral images.

We have showed that CNNs based models achieved the state-of-the-art ac-
curacies on the coral datasets RSMAS and EILAT, surpassing classical methods
that require a high human intervention, and without using data augmentation.
In particular, ResNet have been the best CNN in RSMAS and EILAT.

When considering the impact of data augmentation, we have shown that
from these two datasets, which contain very close-up images taken under similar
conditions and have a lot of inner-class variance, there is a little benefit obtained
from using such techniques.

This work enables new advanced challenges like classifying not just texture
coral images, but structure coral images too. In particular, the problem of
classifying any coral image using a single classifier, either texture or structure,
will be addressed.
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