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Cefalú (PA), Italy

Daniela Besozzi, email: daniela.besozzi@unimib.it

University of Milano-Bicocca – Department of Informatics, Systems and Communication,

20126 Milano, Italy

Giancarlo Mauri, email: mauri@disco.unimib.it

University of Milano-Bicocca – Department of Informatics, Systems and Communication,

20126 Milano, Italy

SYSBIO.IT Centre of Systems Biology, 20126 Milano, Italy

Paolo Cazzaniga∗, email: paolo.cazzaniga@unibg.it, +39 035 2052933

University of Bergamo – Department of Human and Social Sciences, Piazzale Sant’Agostino

2, 24129 Bergamo, Italy

SYSBIO.IT Centre of Systems Biology, 20126 Milano, Italy

∗Corresponding author



MedGA: A novel evolutionary method for
image enhancement in medical imaging systems

Leonardo Rundoa,b,∗∗, Andrea Tangherlonia,∗∗, Marco S. Nobilea,c,
Carmelo Militellob, Daniela Besozzia, Giancarlo Mauria,c, Paolo Cazzanigad,c,∗

aUniversity of Milano-Bicocca – Department of Informatics, Systems and Communication,
20126 Milano, Italy

bInstitute of Molecular Bioimaging and Physiology, Italian National Research Council,
90015 Cefalú (PA), Italy
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Abstract

Medical imaging systems often require the application of image enhancement

techniques to help physicians in anomaly/abnormality detection and diagno-

sis, as well as to improve the quality of images that undergo automated image

processing. In this work we introduce MedGA, a novel image enhancement

method based on Genetic Algorithms that is able to improve the appearance

and the visual quality of images characterized by a bimodal gray level intensity

histogram, by strengthening their two underlying sub-distributions. MedGA

can be exploited as a pre-processing step for the enhancement of images with

a nearly bimodal histogram distribution, to improve the results achieved by

downstream image processing techniques. As a case study, we use MedGA

as a clinical expert system for contrast-enhanced Magnetic Resonance image

analysis, considering Magnetic Resonance guided Focused Ultrasound Surgery

for uterine fibroids. The performances of MedGA are quantitatively evaluated

by means of various image enhancement metrics, and compared against the

conventional state-of-the-art image enhancement techniques, namely, histogram

equalization, bi-histogram equalization, encoding and decoding Gamma trans-

formations, and sigmoid transformations. We show that MedGA considerably
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outperforms the other approaches in terms of signal and perceived image qual-

ity, while preserving the input mean brightness. MedGA may have a significant

impact in real healthcare environments, representing an intelligent solution for

Clinical Decision Support Systems in radiology practice for image enhancement,

to visually assist physicians during their interactive decision-making tasks, as

well as for the improvement of downstream automated processing pipelines in

clinically useful measurements.

Keywords: Medical imaging systems, Image enhancement, Genetic

Algorithms, Magnetic resonance imaging, Bimodal image histogram, Uterine

fibroids

1. Introduction

Nowadays, medical imaging systems play a key role in the clinical workflow,

thanks to their capability of representing anatomical and physiological features

that are otherwise inaccessible to inspection, thus proposing accurate imag-

ing biomarkers and clinically useful information (Rueckert et al., 2016; Lambin5

et al., 2017). Medical images are considerably different from the pictures usually

analyzed in Pattern Recognition and Computer Vision, as regards the appear-

ance of the depicted objects as well as the information conveyed by the pixels. As

a matter of fact, medical imaging techniques exploit several different principles

to measure spatial distributions of physical attributes of the human body, al-10

lowing us to better understand complex or rare diseases (Toennies, 2017). The

effectiveness of such techniques can be reduced by a plethora of phenomena,

such as noise and partial volume effects (Toennies, 2017), which might affect

the measurement processes involved in imaging and data acquisition devices.

In addition, computer-aided medical image acquisition procedures generally in-15

clude reconstruction methods (producing two, three, or even four dimensional

imaging data), which could cause the appearance of artifacts. Image contrast

and details might also be impaired by the procedures used in medical imaging,

as well as by the physiological nature of the body part under investigation.
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Medical images actually convey an amount of information—mainly related20

to high image resolution and high pixel depth—that could overwhelm the human

vision capabilities in distinguishing among dozens of gray levels (Ortiz et al.,

2013). Improving the appearance—and the visual quality—of medical images is

therefore essential to provide physicians with valuable information that would

not be immediately observable in the original image, assisting them in anomaly25

detection, diagnosis and treatment. This kind of diagnosis includes two basic

processes: image observation (visual perception), and diagnostic interpretation

(cognition) (Krupinski, 2010). Errors occurring in these diagnostic and thera-

peutic decision-making processes may have a significant impact on patient care,

most notably possible misdiagnoses. In this context, image enhancement tech-30

niques aim at realizing a specific improvement in the quality of a given medical

image. The enhanced image is expected to better reveal certain features, com-

pared to their original appearance (de Araujo et al., 2014). In particular, these

methods could have a significant clinical impact when the dynamic range of the

actual pictorial content is not commensurable with the range of the displayed35

data (i.e., monitor luminance response), as well as when the input image is char-

acterized either by a high level of noise or by a low contrast (Paranjape, 2009;

Gonzalez & Woods, 2002). This also applies to specialized computer screens for

diagnostic reporting.

Although the majority of the enhancement techniques are typically applied40

to generate improved images for a human observer, others are exploited as a pre-

processing step to provide enhanced images to further algorithms for computer-

assisted analyses (Paranjape, 2009). The first category includes techniques de-

voted to remove noise, enhance contrast and sharpen the details. The second

category, partially overlapped with the former one, includes additional tech-45

niques such as edge detection and object segmentation for automated process-

ing (Rangayyan, 2009). It was shown that a high-contrast medical image could

lead to a better interpretation of the different adjacent tissues in the imaged

body part (Chen et al., 2015). Accordingly, the resulting enhanced image—

in terms of signal intensities of different tissues—can facilitate the automated50
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segmentation, feature extraction, and classification of these tissues.

In the clinical routine, Contrast-Enhanced (CE) Magnetic Resonance Imag-

ing (MRI) is a diagnostic technique that enables a more precise assessment of the

imaged tissues after the administration of a Gadolinium-based contrast medium

in patients (Sourbron & Buckley, 2013). MRI is currently the most prominent55

modality to obtain soft-tissue imaging (Brown et al., 2014), especially in on-

cology, since it provides significant improvements—in terms of image contrast

and resolution—between lesion and healthy tissue (Metcalfe et al., 2013). For

these reasons, MRI is considered more suitable than Computed Tomography in

determining the extent of cancer infiltration. Furthermore, the excellent MRI60

soft-tissue contrast has led to an increasing role of this modality in target volume

delineation for therapy applications, such as image-guided surgery and radio-

therapy treatment, and for patients follow-up (i.e., staging and assessing tumor

response) (Evans, 2008). However, MRI data are affected by acquisition noise

(Styner et al., 2000) and are also prone to imaging artifacts, related to mag-65

netic susceptibility and large intensity inhomogeneities of the static magnetic

field (i.e., streaking or shadowing artifacts (Bellon et al., 1986)), especially us-

ing high magnetic field strengths. These aspects make MR image enhancement

a challenging task aiming at improving the results of automatic segmentation

methods. The existing image enhancement approaches generally attempt to im-70

prove the contrast level of the whole image and do not address the issues related

to overlapped gray level intensities; as a consequence, neither the region contour

sharpness nor the image thresholding results can be improved. In the case of

threshold-based image segmentation with two classes (i.e., foreground and back-

ground) (Muangkote et al., 2017), the input image is assumed to have a bimodal75

distribution of the histogram bins (Xue & Zhang, 2012). Thus, an appropriate

image enhancement method that yields medical images with a sharper bimodal

distribution is required. However, determining the best pre-processing of an

image—able to preserve the structural information of the image, while enhanc-

ing the underlying bimodal distribution—is a complex task on a multi-modal80

fitness landscape that demands the use of global optimization approaches.
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This paper presents a novel image enhancement technique based on Ge-

netic Algorithms (GAs) (Holland, 1992), called MedGA, specifically aimed at

strengthening the sub-distributions in medical images with an underlying bi-

modal histogram of the gray level intensities. Among the existing soft comput-85

ing methods for global optimization, GAs represent the most suitable technique

for this application, because of the discrete structure of the candidate solutions

and the intrinsic combinatorial structure of the problem under investigation.

In this work, we apply MedGA to a clinical context involving CE MR image

analysis, i.e., Magnetic Resonance guided Focused Ultrasound Surgery (MRg-90

FUS) for uterine fibroids. The performances of MedGA are quantitatively eval-

uated by means of the most relevant image enhancement metrics, and com-

pared against the conventional state-of-the-art image enhancement techniques,

namely, histogram equalization, bi-histogram equalization, encoding and de-

coding Gamma transformations, and three instances of sigmoid transformation.95

Considering the possible clinical applications, MedGA is able to improve the

visual perception of a Region of Interest (ROI) in MRI data with an under-

lying bimodal intensity distribution. In addition, MedGA can be used as an

intelligent pre-processing step, in red any pipeline defined to realize an efficient

threshold-based image segmentation with two classes (i.e., binarization), applied100

to expert systems working on MRI data. Indeed, image thresholding approaches

performed on CE MR image regions could considerably benefit from input data

pre-processed by MedGA.

The main contributions of MedGA in the context of expert and intelligent

clinical systems can be briefly outlined as follows. MedGA acts as an expert105

system by playing a two-fold role: (i) image enhancement to visually assist

physicians during their interactive decision-making tasks, and (ii) improvement

of the results in downstream automated processing pipelines for clinically useful

measurements. The rationale behind the development of MedGA is the need

of an intelligent model that is well-suited to effectively enhance medical im-110

ages with roughly bimodal histograms. To the best of our knowledge, MedGA

is the first work that explicitly deals with the improvement of thresholding-
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based segmentation results (Xue & Zhang, 2012). Therefore, our computational

framework can be employed as an intelligent solution in Clinical Decision Sup-

port Systems (CDSSs). As a matter of fact, MedGA represents an interpretable115

computational model (Castelvecchi, 2016) that allows for the understandabil-

ity of the results (i.e., the gray level histogram is readable by the user). The

compelling issues related to the interpretability of Machine Learning and Com-

putational Intelligence methods in medicine are fundamental for the adoption

and the clinical feasibility of a novel CDSS (Cabitza et al., 2017). In addition,120

no user interaction is required thanks to a reliable calibration step for the pa-

rameter settings of the GA. The goal of this paper consists in showing that

evolutionary computation methods can boost the state-of-the-art performance

in medical image enhancement, thus fostering GAs as a new concrete support

tool for the clinical practice. Such an expert system may have a significant125

impact in real healthcare environments.

This manuscript is organized as follows. Related literature works and a

theoretical comparison with existing methods are outlined in Section 2. Section

3 describes the MedGA image enhancement method. The evaluation metrics

and the MR images used to assess the performance of MedGA are described in130

Section 4. Section 5 presents the achieved experimental results, by extensively

explaining parameter analysis of MedGA. Finally, discussions and conclusive

remarks are reported in Sections 6 and 7, respectively.

2. Background

2.1. Related work135

Most of the existing enhancement techniques are empirical or heuristic me-

thods—strongly related to a particular type of images—that generally aim at

improving the contrast level of images degraded during the acquisition process

(Chen et al., 2018). As a matter of fact, finding the best gray level map-

ping that adaptively enhances each different input image can be considered140

an optimization problem (Paulinas & Ušinskas, 2007; Draa & Bouaziz, 2014).
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Unfortunately, no unifying theory employing a standardized image quality mea-

sure is currently available to define a general criterion for image enhancement

(Munteanu & Rosa, 2004). In addition, in the case of medical imaging, tech-

niques tailored on specific tasks are necessary to achieve a significant enhance-145

ment and, in general, interactive procedures involving considerable human effort

are needed to obtain satisfactory results.

In order to achieve objective and reproducible measurements conveying clin-

ically useful information, operator-dependence should be minimized by means

of automated methods. Point-wise operations in the spatial (pixel) domain,150

representing the simplest form of image processing, are effective solutions since

efficiency requirements have also to be met. In the case of image enhancement,

they re-map each input gray level into a certain output gray level, according to

a global transformation (Gonzalez & Woods, 2002). Thus, such kind of tech-

niques treat images as a whole, without considering specific features of different155

regions, or selectively distinguishing between a collection of contrast enhance-

ment degrees or settings (Munteanu & Rosa, 2004). Histogram Equalization

(HE) is the most common global image enhancement technique, whose aim is

to uniformly redistribute the input gray level values according to the cumula-

tive density function of its histogram (Gonzalez & Woods, 2002; Hall, 1974).160

Unfortunately, HE does not take into account the image mean intensity (Chen

& Ramli, 2003), which is subject to a significant change during the equalization

process by invariably shifting the output mean brightness to the middle gray

level, regardless of the mean gray level in the input image (Gan et al., 2014).

Consequently, HE is not able to preserve the input mean brightness, possibly165

suffering from over-enhancement, and giving rise to artifacts such as the so-

called washed-out effect (Chen & Ramli, 2003). This global transformation

method applies contrast stretching just on gray levels with the highest frequen-

cies, causing a significant contrast loss concerning the gray levels characterized

by low frequencies in the input histogram (Kim, 1997). Bi-Histogram Equaliza-170

tion (Bi-HE), which is a refined version of the traditional HE, was proposed to

overcome the limitations related to input mean brightness preservation, mainly
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caused by histogram flattening (Kim, 1997). Firstly, Bi-HE splits the original

histogram into two sub-histograms according to the global mean of the original

image; afterwards, the sub-histograms are independently processed by applying175

the standard HE method to each of them.

The complexity of the enhancement criteria to be met (i.e., the effective con-

trast stretching combined with image detail preserving) leads to the application

of global search meta-heuristics that allow for coping with several constraints,

which are not generally tractable by means of traditional exhaustive computa-180

tional approaches (Paulinas & Ušinskas, 2007; Munteanu & Rosa, 2004; Ortiz

et al., 2013). Evolutionary methods have been widely adopted in the image en-

hancement domain to find the optimal enhancement kernel (Munteanu & Rosa,

2004), sequence of filters (Kohmura & Wakahara, 2006), or input-output map-

ping transformation (Saitoh, 1999; Carbonaro & Zingaretti, 1999). Recently,185

(Hashemi et al., 2010) proposed a GA-based method that efficiently encodes

the histogram by means of the non-zero intensity levels, by employing genetic

operators that directly process images to increase the visible details and contrast

of low illumination regions, especially in the case of high dynamic ranges. The

authors argued that this method yields “natural-looking” images, considering190

the visual appearance.

Regarding other evolutionary computation approaches, Genetic Program-

ming (GP) (Koza, 1992) was shown to be a powerful framework to select and

combine existing algorithms in the most suitable way. Differently to GAs, GP

evolves a population of functions, or more generally, computer programs to195

solve a computational task. The solutions in the computer program space can

be represented as trees, lines of code, expressions in prefix or postfix notations

as well as strings of variable length (Castelli et al., 2014). For instance, (Bianco

et al., 2017) tackled the video change detection problem (among the frames

of video streams) by combining existing algorithms via different GP solutions200

exploiting several fusion schemes. The fitness function was composed of dif-

ferent performance measures regarding change detection evaluation. For what

concerns the application of GP in image enhancement, (Poli & Cagnoni, 1997)
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proposed an approach to yield optimally pseudo-colored images for visualization

purposes, aiming at combining multiple gray-scale images (e.g., time-varying205

images, multi-modal medical images, and multi-band satellite images) into a

single pseudo-color image. This approach relies on user interactions to deter-

mine which candidate solution should be the winner in tournament selection,

so it does not explicitly require a fitness function. As case studies, a pair of

brain MRI sequences were fused as well as the motion of the heart on echocar-210

diographic images was synthesized into a single pseudo-color image.

Other works exploited Swarm Intelligence techniques. The approach pre-

sented in (Shanmugavadivu & Balasubramanian, 2014), called Multi-Objective

Histogram Equalization, uses Particle Swarm Optimization (Kennedy & Eber-

hart, 1995) to enhance the contrast and preserve the brightness at the same215

time. (Draa & Bouaziz, 2014) employed the same encoding of candidate so-

lutions and histogram mapping strategy described in (Hashemi et al., 2010),

within an optimization strategy based on the Artificial Bee Colony (ABC) al-

gorithm (Karaboga & Basturk, 2007). However, since ABC natively works in a

continuous space, while a discrete representation is used for the solutions (i.e.,220

gray-level mapping), a discretization step is mandatory in the correction opera-

tion during the search phase. An alternative approach using the ABC algorithm

for image contrast enhancement was proposed in (Chen et al., 2018), wherein

the optimal values for the parameters of a parametric image transformation,

namely the Incomplete Beta Function, are estimated. Differently to the work225

described in (Draa & Bouaziz, 2014), the optimization procedure is carried out

in a continuous search space. Finally, multi objective Bat Optimization and a

neuron-based model of Dynamic Stochastic Resonance were combined in (Singh

et al., 2017) for the enhancement of brain MR images.

2.2. Theoretical comparison with existing methods230

It is worth noting that all works mentioned in Section 2.1 are focused on

consumer electronics or medical applications, to obtain more “visually pleasant”

images by mainly increasing the contrast of the whole image. On the contrary,
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the main key novelty of MedGA consists in better revealing the two underlying

sub-distributions occurring in an image sub-region characterized by a roughly235

bimodal histogram, overcoming the limitations of the state-of-the-art contrast

enhancement methods, which could produce false edges and consequently over-

segmentation when the input images are affected by noise, as in the case of MRI

data (Gandhamal et al., 2017). There exist other algorithms, like Histogram

Specification (HS), whose aim is similar to MedGA and consists in matching the240

histogram of the gray level intensities of the input MR image with a desired out-

put histogram (Gonzalez & Woods, 2002). Unfortunately, this approach cannot

be applied to process image datasets characterized by a high variability in gray

level distributions, since the histogram to be matched should be defined either a

priori for the whole dataset, or interactively for each processed image, through245

a procedure that consists in strengthening and shaping the two underlying sub-

distributions. In such cases, to automatically identify the best solution it is

more advantageous to employ global search meta-heuristics, like GAs used in

MedGA.

Even though MedGA exploits the same encoding of candidate solutions de-250

fined in (Hashemi et al., 2010) and (Draa & Bouaziz, 2014), its purpose is very

different since it was designed to explicitly strengthen the two sub-distributions

of medical images characterized by an underlying bimodal histogram. To this

aim, we defined a specific fitness function that emphasizes the two Gaussian

distributions composing a bimodal histogram. This achievement plays a fun-255

damental role for threshold-based segmentation approaches, since they strongly

rely on the assumption that the bimodal histogram under investigation is com-

posed of two nearly Gaussian distributions with almost equal size and variance

(Xue & Zhang, 2012).

MedGA also differs from GP-based approaches whose generated solutions260

might have a large size (Castelli et al., 2014), even when the GP model is imple-

mented efficiently, thus representing a limitation that could significantly impair

the readability and interpretability of the final outcome. Moreover, MedGA

does not require any user interaction step, differently to (Poli & Cagnoni, 1997)
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(a) (b)

Figure 1: Examples of MR images. The ROI bounding region (i.e., the delineated uterus

region), which includes the actual ROI (i.e., the uterine fibroid region), is highlighted with a

white contour. The image regions including the ROIs, zoomed at the bottom right of each

sub-figure, are characterized by nearly bimodal histograms.

where the user, being directly involved in the tournament selection, controls265

the evolution of simple programs that enhance and integrate multiple gray-scale

images into a single pseudo-color image.

3. MedGA: an intelligent method based on Genetic Algorithms for

medical image enhancement

MedGA is a global enhancement technique able to improve the details of270

medical images characterized by an underlying bimodal histogram of gray lev-

els. Given a medical image wherein a ROI needs to be enhanced to achieve

further analyses, MedGA aims at improving the ROI quality to facilitate the

classification among different neighboring tissues, in order to support both the

interpretation tasks by experienced radiologists and automated image analysis275

approaches.

The image enhancement carried out by MedGA focuses on the pixels within

a sub-region of the input MRI, called ROI bounding region, including the ROI
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itself. To be more precise, starting from an MR image (Fig. 1), a bounding

region that roughly includes the actual ROI (e.g., the uterus region including280

uterine fibroids in Fig. 1) is identified by using either a manual or a compu-

tational method. Afterwards, the entire original MR image is cropped at the

smallest rectangular box including the previously identified ROI bounding re-

gion. The pixels included in the rectangular cropped image, but external to

the ROI bounding region, are set to zero (i.e., the black level). So doing, an285

image characterized by a nearly bimodal histogram is obtained. Then, a linear

contrast stretching is applied to the initial full range of gray levels, that is, the

ordered set Lin = [l
(min)
in , l

(min)
in + 1, . . . , l

(max)
in − 1, l

(max)
in ] ⊂ N, where l 6= l′ for

any l, l′ ∈ Lin. The integers l
(min)
in and l

(max)
in in Lin denote the minimum and

maximum non-zero gray levels of the analyzed image sub-region, respectively.290

The linear contrast stretching applied to Lin exploits the extended range of the

non-zero gray levels, that is, the ordered set L′in = [1, . . . , l
(max)
in ] ⊂ N, where,

typically, l
(min)
in > 1. Note that the zero-padding pixels (i.e., the pixels corre-

sponding to the level 0) are not taken into account, and that any element of Lin
is also an element of L′in. This normalization operation, which employs only295

values of gray levels already representable in the initial dynamic range, does not

alter the image content and allows MedGA to process additional intensity levels

with respect to the initial full range Lin, by considering the intensity variability

within the analyzed MRI dataset. It is worth noting that the pre-processing de-

scribed hereby does not exploit any method that could affect the actual pictorial300

content (e.g., spatial or frequency filtering).

MedGA exploits a population P of individuals Ci = [Ci(1), Ci(2), . . . , Ci(n)]

(with i = 1, . . . , |P |) defined as circular arrays of integer numbers of size n,

where n = |L′in| corresponds to the number of different gray levels belonging to

L′in identified in the input MR image (i.e., the gray levels whose frequency is305

greater than zero in the input MR image). Each individual Ci ∈ P is randomly

initialized by sampling n integer values from the discrete uniform distribution

in L′in. The n values are then sorted in ascending order so that the intensity

levels Ci(j) (with j = 1, . . . , n) codified by the individual can be mapped to

12



the intensity levels of the input MR image (i.e., the gray level frequencies of310

the input MR image are assigned to the corresponding intensity levels of the

individual). During the initialization of the individuals, if an integer value is

sampled more than once then the frequency values of the input MR image,

corresponding to these gray level intensities, are summed up and assigned to

the same gray level of the individual.315

The rationale of MedGA is to process the ordered set L′in by modifying its

gray levels using a sequence of genetic operators, to obtain a solution character-

ized by a stronger bimodal gray level distribution in an output gray-scale range

Lout = [l
(min)
out , . . . , l

(max)
out ] ⊂ N, where any element of Lout is also an element of

L′in. In such a way, a direct mapping between the gray levels of the original im-320

age and the final one is defined, so that each gray level in the original histogram

is replaced with the gray level value contained by the same position in the final

best solution Cbest ∈ P . MedGA realizes this global intensity transformation

by improving the separation between H1,i and H2,i, which represent the dark

and bright sub-regions of the histogram Hi encoded by the individual Ci, re-325

spectively. To this aim, MedGA exploits the optimal threshold θopt,i adaptively

selected using the Iterative Optimal Threshold Selection (IOTS) method (Ridler

& Calvard, 1978; Trussell, 1979). This procedure yields enhanced medical im-

ages that better reveal the bimodal intensity distribution in computer-assisted

ROI extraction tasks.330

At each iteration of MedGA, a number of individuals properly selected from

the current population are inserted into intermediate populations, and modified

by means of crossover and mutation operators. Note that, at each iteration,

each individual Ci belonging to the current population codifies for an ordered

set Lout,i = [Ci(1), . . . , Ci(n)] = [l
(min)
out,i , . . . , l

(max)
out,i ], which represents a modi-335

fied gray level distribution of L′in. In order to simplify the notation, in what

follows we do not explicitly express that, at each iteration, each individual Ci

is (possibly) represented by a different circular array corresponding to Lout.

For the selection of individuals, MedGA exploits a tournament strategy for

three main reasons: (i) the selection pressure can be controlled by setting the340
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tournament size k (with k � |P |); (ii) the fitness evaluations are performed only

on the k individuals selected for the tournaments, and not on the whole popu-

lation; (iii) this technique could be easily implemented on parallel architectures

(Miller & Goldberg, 1995).

A single point crossover operator is applied with a given probability pc to345

the individuals selected by the tournament strategy and belonging to the first

intermediate population P ′. Namely, given two parent individuals Cm, Cf ∈ P ′

(for some m, f = 1, . . . , |P |), a crossover point is randomly selected from the

circular arrays [Cm(1), Cm(2), . . . , Cm(n)] and [Cf (1), Cf (2), . . . , Cf (n)] encod-

ing the individuals, and two offspring are generated by swapping 50% of the350

values between the two parents. The offspring are then inserted into a second

intermediate population P ′′.

The mutation operator is applied with probability pm to each element Ci(j) ∈

Ci = [l
(min)
out,i , . . . , l

(max)
out,i ] of each individual belonging to P ′′, where l

(min)
out,i and

l
(max)
out,i are the minimum and maximum non-zero gray levels encoded by Ci dur-355

ing the current iteration, respectively. In particular, if the gray level intensity

encoded in Ci(j) is smaller than the optimal threshold θopt,i evaluated by IOTS

at that iteration for the individual Ci, then an integer is randomly sampled

from the uniform distribution in [l
(min)
out,i , . . . , θopt,i − 1] ⊂ N to update the value

Ci(j); otherwise, an integer is randomly sampled from the uniform distribution360

in [θopt,i, . . . , l
(max)
out,i ] ⊂ N to update the value Ci(j).

Finally, to prevent the quality of the best solution from decreasing during

the optimization, MedGA also exploits an elitism strategy, so that the best in-

dividual from the current population is copied into the next population without

undergoing the genetic operators.365

Fig. 2 illustrates the overall procedure of MedGA, by presenting the ini-

tialization phase as well as the flow diagram of the proposed GA for image

enhancement. The final best solution shows the achieved result on MRI data

characterized by a bimodal histogram, emphasizing the two underlying distri-

butions for the subsequent image thresholding phase, according to the optimal370

adaptive threshold θopt, computed on the final best solution Cbest, by using the
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simple IOTS algorithm (Ridler & Calvard, 1978; Trussell, 1979).

Initialization

Genetic
algorithm

Termination
criterion

yes

no

Fitness 
evaluation

Crossover

Mutation

Selection

Input MR image histogram

An individual of the 
initial population

Final best solution

Figure 2: Workflow of MedGA: the individuals are initialized according to the characteristics of

the input MR image, and processed by the GA. The final best solution of MedGA strengthens

the two underlying distributions in the gray levels intensity characterized by mean values µ1

and µ2 and standard deviations σ1 and σ2, respectively. The two distributions are highlighted

in the plot with blue and green dashed lines.

15



To evaluate the quality of the individuals throughout the optimization,

the fitness function has been conceived to obtain a bimodal histogram in the

gray levels intensities, therefore facilitating further automated image processing

phases. The fitness function F(·) used by MedGA fosters individuals Ci char-

acterized by a histogram with two well separated normal distributions, having

an equal distance from the optimal threshold θopt,i. To this purpose, at each

iteration MedGA estimates, by using the efficient IOTS algorithm (Ridler &

Calvard, 1978; Trussell, 1979), the mean values µ1,i and µ2,i of the two com-

ponents H1,i and H2,i of the histogram Hi, encoded by each individual Ci,

according to the current optimal threshold θopt,i. Afterwards, at each iteration

the fitness function of every individual Ci is calculated as follows:

F(Ci) = τ1 + τ2 + τ3, where:

τ1 =
∣∣2 · θopt,i − µ1,i − µ2,i

∣∣ ,
τ2 =

∣∣ω1,i − 3σ1,i
∣∣ ,

τ3 =
∣∣ω2,i − 3σ2,i

∣∣ .
(1)

The terms ω1,i = 1
2 (θopt,i − min

j∈{1,...,n}
{Ci(j)}) and ω2,i = 1

2 ( max
j∈{1,...,n}

{Ci(j)} −

θopt,i) correspond to the half width of H1,i and H2,i, respectively, while σ1,i and

σ2,i are the standard deviations of H1,i and H2,i, respectively. The three terms375

of the fitness function F(·) cooperate together to achieve the desired image

enhancement: τ1 aims at maintaining the mean values µ1,i and µ2,i equidistant

from the yielded optimal threshold θopt,i, while τ2 and τ3 are designed to force

the sub-histograms H1,i and H2,i to approximate normal distributions.

We exploit the empirical property of normal distributions related to the380

coverage probability with respect the standard deviation. To be more precise,

we consider the so-called 3-σ rule, which states that approximately 99.73% of

the values lie within 3σ according to: Pr(µ−3σ ≤ X ≤ µ+3σ) ≈ 0.9973, where

µ, σ and X represent the mean, the standard deviation and an observation from

a normally distributed random variable, respectively.385

Examples of MR image enhancement results, achieved by MedGA on uterine

fibroid, are shown in Fig. 3. MedGA enhances the input MR image by making
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Figure 3: Enhanced image obtained by MedGA on uterine fibroids of patients who had under-

gone MRgFUS therapy: (a) input MR image normalized by using linear contrast stretching

on the initial full range of the masked MR image; (c) output image after the application of

MedGA. Plots (b) and (d) report the histograms of gray level intensities corresponding to the

MR images in (a) and (c), respectively.

uterine fibroid regions more uniform and with strong edges in terms of both

visual human perception and automated image processing. The histogram in

Fig. 3d proves that the output image is characterized by a more defined bimodal390

distribution compared to the initial image (Fig. 3b), which roughly tends to a

trimodal gray level distribution.

It is worth noting that, in the case of further automated analysis, ROI pixel

classification can be carried out by means of a basic threshold-based segmenta-

tion approach, since MR images enhanced with MedGA reveal a more precise395

separation between the two (possibly overlapping) sub-distributions in the his-

togram. Accordingly, MedGA allows for dealing with image histograms that

do not meet the assumptions imposed by thresholding techniques, regarding bi-
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modal histograms composed of two nearly Gaussian distributions with almost

equal size and variance (Xue & Zhang, 2012). Indeed, MedGA enhances the400

image thresholding results on MRI data, as shown in Fig. 2, where the final

best solution improves the underlying bimodal nature of the input histogram.

A sequential and a parallel version of MedGA have been implemented. The

sequential version has been entirely developed using the Python programming

language (version 2.7.12), while the parallel version is based on a Master-Slave405

paradigm employing mpi4py, which provides bindings of the Message Passing

Interface (MPI) specifications for Python to leverage High-Performance Com-

puting (HPC) resources (Dalćın et al., 2005).

4. Materials and evaluation metrics

4.1. MRI dataset410

Eighteen patients affected by symptomatic uterine fibroids, who underwent

MRgFUS therapy, were taken into account. The total number of the exam-

ined fibroids was 29 represented on 163 CE MR slices, since some patients

presented a pathological scenario with multiple fibroids. The analyzed images

were acquired using a Signa HDxt MRI scanner (General Electric Medical Sys-415

tems, Milwaukee, WI, USA) at two different institutions. These MRI data

were acquired after the MRgFUS treatment, executed with the ExAblate 2100

(Insightec Ltd., Carmel, Israel) HIFU equipment. The considered MRI series

were scanned using the T1w “Fast Spoiled Gradient Echo + Fat Suppression +

Contrast mean” (FSPGR+FS+C) protocol. This MRI protocol is usually em-420

ployed for Non-Perfused Volume (NPV) assessment (Gorny et al., 2011), since

ablated fibroids appear as hypo-intense areas due to low perfusion of the con-

trast medium. Sagittal MRI sections were processed, in compliance with the

current clinical practice for therapy response assessment (Militello et al., 2014).

MRI acquisition parameters were: Repetition Time (TR): 150-260 ms; Echo425

Time (TE): 1.392-1.544 ms; pixel depth: 16-bit; matrix size: 512 × 512 pixels;
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slice thickness: 5.0 mm; slice spacing: 6.0 mm; pixel spacing: 0.6641-0.7031

mm.

As explained in Section 3, before applying MedGA image enhancement, the

uterus region (i.e., ROI bounding region) must be delineated. This task can be430

accomplished manually by the user or automatically by means of computational

methods to reduce operator-dependency, as previously proposed in (Militello

et al., 2015b). Afterwards, the pixels with values lower than the optimal thresh-

old θopt, computed by means of the efficient IOTS method (Ridler & Calvard,

1978; Trussell, 1979), are segmented in the binarized MR image. In this clinical435

scenario, segmentation approaches must deal with NPV inhomogeneities, due

to sonication spots during the MRgFUS treatment.

4.2. Image enhancement evaluation metrics

In this section, we recall the definition of the metrics typically used to eval-

uate image enhancement approaches, which will be exploited to assess the per-440

formance of MedGA. These metrics are essential to quantitatively evaluate the

effects of image enhancement techniques, since measuring the “quality” of an

image might be strongly subjective. In particular, we benefit here from the

metrics considered in (Hashemi et al., 2010) to assess the capability of image

enhancement approaches in improving contrast, details and human visual per-445

ception.

Let Iorig and Ienh be the original input image and the enhanced image,

respectively, consisting in M rows and N columns. Considering that the range of

gray levels of the output image Lout = [l
(min)
out , . . . , l

(max)
out ] could be different from

the original range Lin = [l
(min)
in , . . . , l

(max)
in ], as a first step before computing the

metrics we remap the output pixel intensities (i.e., the gray levels) into the

original range, as follows:

Ĩenh(a, b) =
(Ienh(a, b)− l(min)out ) · (l(max)in − l(min)in )

(l
(max)
out − l(min)out )

+ l
(min)
in , (2)

where a = 1, . . . ,M and b = 1, . . . , N . Note that we actually consider the

extended range L′in for Iorig, as explained in Section 3.
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The Peak Signal-to-Noise Ratio (PSNR) denotes the ratio between the max-

imum possible intensity value of a signal and the distortion between the input

and output images:

PSNR = 10 · log10

(
(l

(max)
in )2

MSE

)

= 20 · log10

(
l
(max)
in√
MSE

)
,

(3)

where MSE = 1
M×N

∑M
a=1

∑N
b=1

∥∥∥Iorig(a, b)− Ĩenh(a, b)
∥∥∥2 is the Mean Squared

Error, which allows us to compare the pixel values of Iorig to those of Ĩenh.450

Furthermore, the PSNR is usually expressed in terms of the logarithmic

Decibel scale. With regard to our application, we employ only a limited portion

of the full dynamic range of the 16-bit images (see Section 3); we thus use as the

largest possible value the maximum intensity value present in the original image

(i.e., l
(max)
in = max{Lin} = max{L′in}) instead of the maximum representable455

value in a 16-bit image (i.e., 216 − 1 = 65, 535).

Munteanu & Rosa (2004) stated that good contrast and enhanced images are

characterized by high numbers of edgels (i.e., pixels belonging to an edge), and

that an enhanced image should have a higher intensity of the edges, compared

to its non-enhanced counterpart (Saitoh, 1999). Therefore, a good enhance-

ment technique should yield satisfactory results in the case of standard vision

processing tasks, such as segmentation or edge detection (Starck et al., 2003).

Here, to evaluate image enhancement of MRI data, we employ the method

proposed by Canny (1986), which is a highly reliable and mathematically well-

defined edge detector. This approach deals with weak edges and accurately

determines edgels, by applying a double threshold (to identify potential edges)

and a hysteresis-based edge tracking. Let MCanny be the edge map yielded by

the Canny’s edge detector, which is a binary image wherein only edgels are set

to 1. The number of detected edges (#DE) in MCanny is computed as:

#DE =

M∑
a=1

N∑
b=1

MCanny(a, b). (4)
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An additional metrics, called Absolute Mean Brightness Error (AMBE )

(Chen & Ramli, 2003; Arriaga-Garcia et al., 2014), can be employed to measure

the brightness preservation of the enhanced image:

AMBE =

∣∣∣E[Iorig]− E[Ĩenh]
∣∣∣

L
, (5)

where E[·] denotes the expected (mean) value of a gray level distribution. AMBE

is normalized in [0, 1], divided by L = l
(max)
in −l(min)in , which is the dynamic range

of the input gray-scale (in our case, L′in). Note that low values of AMBE denote

that the mean brightness of the original image is preserved.460

Finally, we consider an alternative quality metrics called Structural Simi-

larity Index (SSIM ) (Wang et al., 2004), used to assess the image degradation

perceived as variations in structural information (Bhandari et al., 2016). The

structural information defines the attributes that represent the structure of ob-

jects in the image, independently of the average luminance and contrast. In465

particular, local luminance and contrast are taken into account since overall

values of luminance and contrast can remarkably vary across the whole image.

SSIM is based on the degradation of structural information—assuming that hu-

man visual perception is highly adapted for extracting structural information

from a scene—and compares local patterns of pixel intensities. As a matter470

of fact, natural image signals are highly structured, since pixels are strongly

dependent on each other, especially those close by. These dependencies convey

important information about the structure of the objects in the viewing field.

Let X and Y be the Iorig and Ienh image signals, respectively; SSIM combines

three relatively independent terms:475

• the luminance comparison l(X,Y) = 2µXµY+κ1

µ2
X+µ2

Y+κ1
;

• the contrast comparison c(X,Y) = 2σXσY+κ2

σ2
X+σ2

Y+κ2
;

• the structural comparison s(X,Y) = σXY+κ3

σXσY+κ3
;

where µX, µY, σX, σY, and σXY are the local means, standard deviations,

and cross-covariance for the images X and Y, while κ1, κ2, κ3 ∈ R+ are regu-
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larization constants for luminance, contrast, and structural terms, respectively,

exploited to avoid instability in the case of image regions characterized by local

mean or standard deviation close to zero. Typically, small non-zero values are

employed for these constants; according to Wang et al. (2004), an appropriate

setting is κ1 = (0.01 · L)2, κ2 = (0.03 · L)2, κ3 = κ2/2, where L is the dynamic

range of the pixel values in Iorig (represented in L′in). SSIM is then computed

by combining the components described above:

SSIM = l(X,Y)α · c(X,Y)β · s(X,Y)γ , (6)

where α, β, γ > 0 are weighting exponents. As reported in Wang et al. (2004),

if α = β = γ = 1 and κ3 = κ2/2, the SSIM becomes:

SSIM =
(2µXµY + κ1) (2σXY + κ2)(

µ2
X + µ2

Y + κ1
) (
σ2
X + σ2

Y + κ2
) . (7)

SSIM generalizes the Universal Quality Index (UQI ), defined in Wang & Bovik

(2002), which is obtained by setting κ1 = κ2 = 0, and yields unstable results480

when either
(
µ2
X + µ2

Y

)
or
(
σ2
X + σ2

Y

)
tends to zero. Notice that the higher the

SSIM value, the higher the structural similarity, implying that the enhanced

image Ienh and the original image Iorig are quantitatively similar.

5. Results

This section presents the experimental results achieved by our image en-485

hancement method. We first analyze the performances of MedGA by varying

the parameter settings of the GA at the basis of our methodology; we then

compared it against the most common and popular image enhancement tech-

niques in the image processing field (see Gonzalez & Woods (2002) for additional

details).490

5.1. MedGA settings analysis and calibration

To analyze the performances of MedGA and identify the best settings for

the image enhancement problem, we considered a calibration set consisting of
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80 medical images randomly selected from the available MRI data (described in

Section 4.1), and we varied the settings of MedGA used throughout the opti-495

mization process, that is: (i) the size of the population |P | ∈ {50, 100, 150, 200};

(ii) the crossover probability pc ∈ {0.8, 0.85, 0.9, 0.95, 1.0}; (iii) the mutation

probability pm ∈ {0.01, 0.05, 0.1, 0.2}; (iv) the size of the tournament selection

strategy k ∈ {5, 10, 15, 20}. In all tests MedGA was run for T = 100 iterations.

Each MedGA execution was performed by varying one setting at a time, for a500

total of 320 different settings tested and a total number of 320 × 80 = 25600

MedGA executions.

The results of these tests (data not shown) highlighted that, for each value

of |P |, the best settings in terms of fitness values achieved are:

1. |P | = 50, pc = 0.85, pm = 0.01, k = 15;505

2. |P | = 100, pc = 0.9, pm = 0.01, k = 20;

3. |P | = 150, pc = 0.85, pm = 0.01, k = 20;

4. |P | = 200, pc = 0.85, pm = 0.01, k = 20.

Figure 4 reports the comparison of the performances achieved by MedGA

with these settings, where the Average Best Fitness (ABF) was computed by510

taking into account, at each iteration of MedGA, the fitness value of the best

individuals over the 80 optimization processes. It is clear from the plot that,

despite the final ABF values are comparable in all settings, the convergence

speed increases with the size of the population, as well as the running time

required by MedGA; therefore, to choose the best settings, we analyzed the515

computational performances concerning the 4 tests listed above.

Considering that an MRI series related to a single patient contains on av-

erage 10 slices with ROI fibroids, we tested the clinical feasibility of MedGA

by calculating the total execution time for enhancing 10 randomly chosen MR

images. For what concerns the tests 1-4 described above, the executions lasted520

on average 672.12 s, 1290.15 s, 1987.8 s, and 2669.74 s, respectively, for the

optimization of the same batch of 10 images running a single core of the Intel

Xeon E5-2440 CPU with 2.40 GHz clock frequency. On the other hand, by ex-
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Figure 4: Comparison of the ABF achieved by MedGA with the best parameterizations found

for each value of |P | tested here. The average was computed over the results of the optimization

of 80 MR images.

ploiting the 6 cores of the same CPU to execute the parallel version of MedGA,

we achieved up to 3.6× speed-up with respect to the sequential version. The525

results achieved using the parallel version of MedGA confirm the importance

of HPC solutions in the field of real healthcare environment to obtain clinically

feasible outcomes, that is, enhancing MR images in reasonable time for medical

imaging practice.

By considering both the performance of MedGA in terms of ABF and the530

running time required to process 80 images, we selected the parameter settings

|P | = 100, pc = 0.9, pm = 0.01, k = 20 as the best trade-off characterized by a

good convergence speed and an adequate running time (for this specific appli-

cation), and we exploited this configuration for all tests reported and discussed

in the following section.535

5.2. Comparison with state-of-the-art methods

The performances of MedGA were compared against the following image

enhancement techniques:
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• Histogram Equalization (HE) (Paranjape, 2009; Hall, 1974), which adjusts

pixel intensities for contrast enhancement according to the normalized540

histogram of the original image Iorig. With HE, gray levels are more

uniformly distributed on the histogram, by spreading the most frequent

intensity values;

• Bi-Histogram Equalization (Bi-HE) (Kim, 1997)—a modification of the

traditional HE—that addresses issues concerning mean brightness preser-545

vation;

• Gamma Transformation (GT), which is a non-linear operation using the

power-law relationship s(r) = crγ , where r and s are the input and the

output gray-scale values, respectively, and c is a multiplication constant

(c = 1 in the following tests). The parameter γ is set to values greater550

than 1 (i.e., decoding gamma) to obtain a gamma expansion, or to values

smaller than 1 (i.e., encoding gamma) to realize a gamma compression

(see Fig. 5a). In our tests we considered the values γ = 0.4 and γ = 2.5,

as higher (lower) values of γ tend to logarithmic (anti-logarithmic) func-

tions, resulting in an excessively bright (dark) output image, unsuitable555

for practical medical applications (Gandhamal et al., 2017);

• Sigmoid intensity Transformation (ST) function (Fig. 5b), also called S-

shaped curve, which is a global non-linear mapping defined as follows:

s(r) =
l
(max)
in

1 + exp
(
−λ(r − α)

) , (8)

where l
(max)
in = max{Lin} = max{L′in} is the asymptotic maximum value

of the function, α = 1
2

(
l
(max)
in − l(min)in

)
is the midpoint value, and λ

defines the function steepness. This transformation stretches the intensity

around the level α, by making the hypo-intense histogram part darker and560

the hyper-intense histogram part brighter. Thus, the difference between

the minimum and maximum gray values and the gradient magnitude of

the image are increased, obtaining strong edges (Gandhamal et al., 2017).
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Figure 5: Plots of the implemented global non-linear intensity transformations for image

enhancement: (a) Gamma Transformation; (b) Sigmoid intensity Transformation. We report

on the x-axis the input intensity range [l
(min)
in , . . . , l

(max)
in ], and on the y-axis the output

intensity range [l
(min)
out , . . . , l

(max)
out ].

In our tests, we used sigmoid functions that allow for considering the

entire input dynamic range, by varying the curve slope with the values565

λ ∈
{

4
α ,

6
α ,

8
α

}
.

In order to achieve a thorough comparison between MedGA and the en-

hancement techniques listed above, we exploited the entire set of MRI data

consisting in 163 medical images of uterine fibroids (including both calibration

and unseen data). For each technique, we computed the metrics PSNR, #DE,570

AMBE, SSIM defined in Section 4.2. The resulting values are given in Fig.

6 (boxplots) and in Table 1 (median, mean and standard deviation). Overall,

these results highlight that MedGA significantly outperforms the conventional

image enhancement approaches in terms of signal quality and perceived struc-

tural information in the images, while preserving the input mean brightness.575

As a matter of fact, MedGA achieves the highest PSNR and SSIM median

and mean values (see Fig. 6 and Table 1). Concerning the other enhancement

techniques, we observe that Bi-HE achieves better performances with respect to
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Figure 6: Boxplots of the image enhancement evaluation metrics considered in this work,

obtained on an MRI dataset composed of 18 patients with uterine fibroids who had undergone

MRgFUS treatment (total number of MR slices: 163). The lower and the upper bounds of

each box represent the first and third quartiles of the statistical distribution, respectively,

corresponding to the interquartile range. The median and the mean values are represented by

a black solid line and a red star, respectively. Whiskers value is 1.5 in all cases and outliers

are displayed as black diamonds.
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Table 1: Median, mean and standard deviation of image enhancement evaluation metrics

achieved by HE, Bi-HE, GT (with γ ∈ {0.4, 2.5}), ST (with λ ∈
{

4/α, 6/α, 8/α
}

) and MedGA,

considering the uterine fibroid MRI dataset consisting in a total of 163 medical images.

PSNR #DE AMBE SSIM

Median Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev. Median Mean Std. Dev.

HE 31.331 30.957 2.068 1020 1136.865 561.791 0.077 0.086 0.053 0.864 0.852 0.072

Bi-HE 32.059 32.014 2.232 929 1048.301 472.550 0.023 0.034 0.029 0.914 0.904 0.046

GT γ = 0.4 30.540 30.223 1.994 707 862.871 510.196 0.221 0.217 0.022 0.824 0.820 0.033

GT γ = 2.5 30.588 30.106 2.063 1012 1092.847 444.502 0.262 0.261 0.021 0.571 0.573 0.094

ST λ = 4/α 34.389 34.127 1.880 883 1011.061 468.799 0.034 0.039 0.024 0.875 0.874 0.031

ST λ = 6/α 32.673 32.449 1.950 879 1002.196 443.344 0.051 0.058 0.035 0.702 0.701 0.074

ST λ = 8/α 31.782 31.513 1.983 863 962.141 411.109 0.062 0.070 0.042 0.600 0.598 0.089

MedGA 37.891 37.914 2.821 841 1008.773 499.906 0.024 0.029 0.023 0.941 0.936 0.029

HE, while increasing the values of γ and λ corresponds to a degradation of the

performances of GT and ST, respectively.580

For what concerns the #DE metrics, HE over-enhances the processed MR

images, as denoted by the highest median and mean values achieved, while

Bi-HE allows for the preservation of the mean brightness, as also indicated

by the lowest mean value of AMBE. On the contrary, GT achieved the worst

performance in terms of AMBE metrics. This poor result is due to the intrinsic585

nature of GT that transforms the input gray-scale range into a darker (γ > 1)

or brighter (γ < 1) one, by increasing the number of hyper-intense and hypo-

intense pixels, respectively. By doing so, GT does not preserve the input mean

brightness, thus obtaining the highest values of AMBE. All the other methods

are characterized by comparable #DE values, while the PSNR is characterized590

by very high mean values in the case of GT with respect to the other techniques.

On the one hand, considering the SSIM metrics, GT with γ = 0.4 remarkably

yields better results compared to GT with γ = 2.5, especially in the case of the

SSIM ; on the other hand, all metrics related to the tested ST functions show

that their performances decrease as the value of λ increases. This phenomenon595

is related to the rapid variation characterizing the highest values of λ, which

do not allow for taking into consideration the existing dependency among the

pixels, especially those in the neighborhood.

Finally, we show in Fig. 7 two examples of MR images enhanced by using all
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Figure 7: Examples of enhancement achieved on medical images of uterine fibroids by HE,

Bi-HE, GT (with γ ∈ {0.4, 2.5}), ST (with λ ∈
{

4/α, 6/α, 8/α
}

) and MedGA, compared with

the original input MR image.

the methods considered in this work. As it can be observed, MedGA strengthens600

the ROI edges by enhancing details and features useful for image binarization;

this result confirms, from a qualitative perspective, the quantitative results pre-

sented above.

From an overall view of the metrics, we can claim that the approaches ob-

taining the highest values of the #DE measure (i.e., HE and GT with γ = 2.5)605

could imply an over-enhancement of the output image, according to the other

image quality metrics. This finding is also confirmed by means of a visual in-

spection of Fig. 7, where the images enhanced using HE and GT with γ = 2.5

present an inadequate appearance for image observation and interpretation. To

conclude, MedGA achieves outstanding results in performance evaluation with610

respect to classic image enhancement techniques.

6. Discussion

The main purpose of state-of-the-art methods for image enhancement is the

improvement of the contrast level of the whole image, to obtain a “visually

pleasant” result. On the contrary, MedGA is the first enhancement method615

that explicitly addresses the challenging issues related to the improvement of

medical images that are characterized by a nearly bimodal gray level histogram
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distribution. The solution provided by our intelligent image enhancement sys-

tem can be beneficial to visually assist physicians in interactive decision-making

tasks, as well as to improve the final outcome of downstream automated process-620

ing pipelines for useful measurements in the clinical practice (Rueckert et al.,

2016).

MedGA also deals with the practical problems regarding the interpretability

of the results yielded by advanced Machine Learning and Computational Intelli-

gence methods in medicine (Cabitza et al., 2017). Indeed, the final best solution625

found by MedGA (i.e., the output gray level histogram) and the corresponding

enhanced image are understandable by physicians. In addition, the efficient en-

coding of the individuals—taking inspiration by (Hashemi et al., 2010)—coupled

with effective HPC solutions, allows for a clinically feasible computational frame-

work. We designed a specific fitness function to emphasize the two Gaussian dis-630

tributions composing a bimodal histogram, while the existing approaches based

on evolutionary computation or Swarm Intelligence techniques were conceived

for a different purpose, i.e., improving the perceived visual information in terms

of image contrast. Thanks to this ad hoc fitness function—differently to the GP-

based image enhancement method in (Poli & Cagnoni, 1997), where no fitness635

function is defined because the user interactively selects the best solution—and

the robustness achieved by means of the calibration step for GA’s parameter

setting, MedGA does not require any user interaction step. Moreover, MedGA

differs from GP-based approaches, in which the final generated solution could

have large size (Castelli et al., 2014), so heavily affecting the readability and640

interpretability of the provided solutions. The main impact of this contribution

consists in showing how an effective method based on evolutionary computation

can outperform the existing methods in medical image enhancement.

In this work, we tested and validated our approach on MR images regarding

MRgFUS therapy for uterine fibroids. More generally, the application of MedGA645

can be extended also to real-world problems involving the analysis of images

characterized by an underlying bimodal histogram, as in the case of bright-field

and fluorescence microscopy imaging (Meijering, 2012).
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Considering the achieved results in terms of #DE (see Table 1), MedGA’s

performance could be further improved—in terms of contrast—by integrating a650

novel component in the fitness function, which explicitly relies on the number of

detected edges. Since this additional component would have a different purpose

and a different magnitude, a multi-objective optimization method should be

taken into account. In particular, MedGA could be extended by means of an

effective evolutionary computation approach, such as NSGA-III (Deb & Jain,655

2014), to simultaneously optimize both conflicting objectives, which consist in

maximizing the number of edges while minimizing the distance between the

optimal threshold and the two normal distributions.

7. Conclusion and future work

A novel image enhancement method based on GAs, specifically tailored for660

medical images characterized by a bimodal histogram, was proposed in this

paper. This computational framework, named MedGA, exploits a fitness func-

tion that better reveals the two underlying sub-distributions of the gray level

intensities, consequently allowing for an improvement in the results achieved

by threshold-based algorithms. Unlike the traditional image enhancement tech-665

niques that generally improve the contrast level of the whole image, MedGA fo-

cuses on MR image sub-regions characterized by a roughly bimodal histogram,

making it valuable in clinical contexts involving CE MRI analysis.

We tested and validated our approach on MR images representing uterine

fibroids of patients who underwent MRgFUS therapy. MedGA was compared670

against the most common image enhancement techniques, overall achieving the

best performances with respect to both signal and perceived image quality, while

preserving, unlike classic HE techniques, the input mean brightness. This novel

medical image enhancement technique was therefore shown to be a promising

solution, suitable for medical expert systems.675

We remark that, although MedGA exploits the same encoding of individuals

defined in (Hashemi et al., 2010) and (Draa & Bouaziz, 2014) we did not compare
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it to other approaches based on evolutionary computation or Swarm Intelligence

techniques (see also (Chen et al., 2018)), since they were conceived for a different

purpose, that is, improving the perceived visual information of the whole image.680

As a matter of fact, these approaches explicitly include in the fitness function

both the number of edge pixels and the intensity of such pixels, thus achieving

high #DE values that would consistently lead to over-enhanced images.

As a future extension of this work, in the case of large size images (e.g.,

1000× 1000 pixels) we plan to use Graphics Processing Units, which represent685

an enabling technology for real-time radiology applications (Eklund et al., 2013),

since the running time of histograms computation can be considerably reduced

by using a parallel implementation (Scheuermann & Hensley, 2007).

In addition, we plan to integrate MedGA as a pre-processing step within

an automatic pipeline defined in the context of MR image classification for ef-690

ficient computer-assisted segmentation using thresholding techniques, such as

(Ridler & Calvard, 1978; Trussell, 1979; Otsu, 1975). Indeed, MR image seg-

mentation is a compelling task in radiology practice, for instance in brain tumor

detection and delineation (Sompong & Wongthanavasu, 2017). Especially, we

plan to apply MedGA to metastatic cancer segmentation in neuro-radiosurgery695

therapy (Leksell, 1949), wherein the enhancement region must be accurately

segmented (Militello et al., 2015a; Rundo et al., 2017). In order to make the

resulting expert system fully automatic, the segmentation of the ROI bounding

region could be performed by robust computational methods that can ensure

results repeatability during patients follow-up. In the case of a significant data700

availability, this step may be performed by means of approaches based on Deep

Neural Networks (Rajchl et al., 2017). In these clinical scenarios, MedGA can

be suitably integrated in expert systems tailored for MRgFUS treatment evalu-

ation (Rundo et al., 2019), and brain tumor segmentation in neuro-radiosurgery

(Meier et al., 2016).705
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Paulinas, M., & Ušinskas, A. (2007). A survey of genetic algorithms applications

for image enhancement and segmentation. Inf. Technol. Control , 36 , 278—-865

284.

Poli, R., & Cagnoni, S. (1997). Genetic programming with user-driven selection:

experiments on the evolution of algorithms for image enhancement. In 2nd

Annual Conference on Genetic Programming (pp. 269–277).

38

http://dx.doi.org/10.1016/j.compbiomed.2015.04.030
http://dx.doi.org/10.1016/j.compbiomed.2015.04.030
http://dx.doi.org/10.1016/j.compbiomed.2015.04.030
http://dx.doi.org/10.1016/j.eswa.2017.08.029
http://dx.doi.org/10.1109/TSMCB.2003.818533
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.1016/j.asoc.2012.11.020
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/B978-012373904-9.50008-8
http://dx.doi.org/10.1016/B978-012373904-9.50008-8
http://dx.doi.org/10.1016/B978-012373904-9.50008-8


Rajchl, M., Lee, M. C. H., Oktay, O., Kamnitsas, K., Passerat-Palmbach, J.,870

Bai, W. et al. (2017). DeepCut: object segmentation from bounding box

annotations using convolutional neural networks. IEEE Trans. Med. Imaging ,

36 , 674–683. doi:10.1109/TMI.2016.2621185.

Rangayyan, R. M. (2009). Part I - Enhancement. In I. N. Bankman (Ed.), Hand-

book of Medical Image Processing and Analysis (pp. 1–2). Burlington, MA,875

USA: Academic Press. (2nd ed.). doi:10.1016/B978-012373904-9.50008-8.

Ridler, T. W., & Calvard, S. (1978). Picture thresholding using an iterative

selection method. IEEE Trans. Syst. Man Cybern., 8 , 630–632. doi:10.1109/

TSMC.1978.4310039.

Rueckert, D., Glocker, B., & Kainz, B. (2016). Learning clinically useful infor-880

mation from images: past, present and future. Med. Image Anal., 33 , 13–18.

doi:10.1016/j.media.2016.06.009.

Rundo, L., Militello, C., Tangherloni, A., Russo, G., Lagalla, R., Mauri, G., Gi-

lardi, M. C., & Vitabile, S. (2019). Computer-assisted approaches for uterine

fibroid segmentation in MRgFUS treatments: quantitative evaluation and885

clinical feasibility analysis. In Quantifying and Processing Biomedical and

Behavioral Signals (pp. 229–241). Springer volume 103 of Smart Innovation,

Systems and Technologies. doi:10.1007/978-3-319-95095-2_22.

Rundo, L., Stefano, A., Militello, C., Russo, G., Sabini, M. G., D’Arrigo, C.,

Marletta, F., Ippolito, M., Mauri, G., Vitabile, S., & Gilardi, M. C. (2017). A890

fully automatic approach for multimodal PET and MR image segmentation

in Gamma Knife treatment planning. Comput. Methods Programs Biomed.,

144 , 77–96. doi:10.1016/j.cmpb.2017.03.011.

Saitoh, F. (1999). Image contrast enhancement using genetic algorithm. In Proc.

IEEE International Conference on Systems, Man, and Cybernetics (SMC)895

(pp. 899–904). IEEE volume 4. doi:10.1109/ICSMC.1999.812529.

39

http://dx.doi.org/10.1109/TMI.2016.2621185
http://dx.doi.org/10.1016/B978-012373904-9.50008-8
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://dx.doi.org/10.1109/TSMC.1978.4310039
http://dx.doi.org/10.1016/j.media.2016.06.009
http://dx.doi.org/10.1007/978-3-319-95095-2_22
http://dx.doi.org/10.1016/j.cmpb.2017.03.011
http://dx.doi.org/10.1109/ICSMC.1999.812529


Scheuermann, T., & Hensley, J. (2007). Efficient histogram generation using

scattering on GPUs. In Proc. Symposium on Interactive 3D Graphics and

Games (pp. 33–37). ACM. doi:10.1145/1230100.1230105.

Shanmugavadivu, P., & Balasubramanian, K. (2014). Particle swarm optimized900

multi-objective histogram equalization for image enhancement. Opt. Laser

Technol., 57 , 243–251. doi:10.1016/j.optlastec.2013.07.013.

Singh, M., Verma, A., & Sharma, N. (2017). Bat optimization based neuron

model of stochastic resonance for the enhancement of MR images. Biocybern.

Biomed. Eng., 37 , 124–134. doi:10.1016/j.bbe.2016.10.006.905

Sompong, C., & Wongthanavasu, S. (2017). An efficient brain tumor segmenta-

tion based on cellular automata and improved tumor-cut algorithm. Expert

Syst. Appl., 72 , 231–244. doi:10.1016/j.eswa.2016.10.064.

Sourbron, S. P., & Buckley, D. L. (2013). Classic models for dynamic contrast-

enhanced MRI. NMR Biomed., 26 , 1004–1027. doi:10.1002/nbm.2940.910

Starck, J. L., Murtagh, F., Candes, E. J., & Donoho, D. L. (2003). Gray and

color image contrast enhancement by the curvelet transform. IEEE Trans.

Image Process., 12 , 706–717. doi:10.1109/TIP.2003.813140.
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