
Multi-output Bus Travel Time Prediction
with Convolutional LSTM Neural Network

Niklas Christoffer Petersena,b,∗, Filipe Rodriguesb, Francisco Camara Pereirab

aPublic Transport Movia, Gammel Køge Landevej 3, 2500 Valby, Denmark
bDepartment of Management Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

Abstract

Accurate and reliable travel time predictions in public transport networks are essential for delivering an attrac-
tive service that is able to compete with other modes of transport in urban areas. The traditional application
of this information, where arrival and departure predictions are displayed on digital boards, is highly visible
in the city landscape of most modern metropolises. More recently, the same information has become critical
as input for smart-phone trip planners in order to alert passengers about unreachable connections, alternative
route choices and prolonged travel times. More sophisticated Intelligent Transport Systems (ITS) include the
predictions of connection assurance, i.e. an expert system that will decide to hold services to enable passenger
exchange, in case one of the services is delayed up to a certain level. In order to operate such systems, and to
ensure the confidence of passengers in the systems, the information provided must be accurate and reliable.
Traditional methods have trouble with this as congestion, and thus travel time variability, increases in cities,
consequently making travel time predictions in urban areas a non-trivial task. This paper presents a system
for bus travel time prediction that leverages the non-static spatio-temporal correlations present in urban bus
networks, allowing the discovery of complex patterns not captured by traditional methods. The underlying
model is a multi-output, multi-time-step, deep neural network that uses a combination of convolutional and
long short-term memory (LSTM) layers.

The method is empirically evaluated and compared to other popular approaches for link travel time pre-
diction and currently available services, including the currently deployed model at Movia, the regional public
transport authority in Greater Copenhagen. We find that the proposed model significantly outperforms all the
other methods we compare with, and is able to detect small irregular peaks in bus travel times very quickly.

Keywords: Bus Travel Time Prediction, Intelligent Transport Systems, Convolutional Neural Network
(CNN), Long short-term memory (LSTM), Deep Learning.

1. Introduction

One of the most visible applications of Intelligent
Transport Systems (ITS), within the field of public
transportation, is the display of real-time traffic in-
formation. This has happened, traditionally, in the
form of arrival and departure times on digital de-
parture boards at stops and stations, and more re-
cently in smart-phone apps and in-vehicle infotain-
ment screens. It is widely deployed in most major

∗Corresponding author
Email addresses: niklch@dtu.dk (Niklas Christoffer

Petersen), rodr@dtu.dk (Filipe Rodrigues), camara@dtu.dk
(Francisco Camara Pereira)

cities, and is now considered a standard method to
deliver an attractive and competitive public transport
service. To an increasing extent, real-time informa-
tion channels constitute the only source of passenger
information.

Public transport authorities have long found that
GPS trajectory data from already deployed Auto-
matic Vehicle Location systems (AVL) can be used
in the production of arrival and departures times
(Schweiger, 2003).

Our motivation is to improve the accuracy yielded
by current prediction methods by exploiting spatio-
temporal correlations present in public transport net-
works. Our focus is especially on urban bus networks

Preprint submitted to Expert Systems with Applications March 8, 2019

ar
X

iv
:1

90
3.

02
79

1v
1 

 [
st

at
.M

L
] 

 7
 M

ar
 2

01
9



that often share considerable parts of the infrastruc-
ture with other modes of transport, and therefore are
prone to ripple effects. The proposed system, and
the information it produces, can be integrated into
ITSs in various ways with different applications. In
its most basic form, the system can simply substi-
tute current methods as a data source in passenger
information systems, presenting real-time arrival and
departure times. Passengers presented with reliable
travel times can make use of this information in their
decision-making (Cats, Koutsopoulos, Burghout, &
Toledo, 2011), e.g. choose alternative routes or modes
of transport to avoid prolonged travel time on their
current route. The availability of the information pro-
duced by the system to awaiting passengers can also
simply function as a comforting assurance, as stud-
ies have shown that reliable real-time information at
bus stops has a statistically significant dampening ef-
fect on the perceived waiting time (Fan, Guthrie, &
Levinson, 2016).

A more intelligent use of the information can be
in the context of automated trip planners. These al-
ready accept this kind of real-time information, e.g.
using the General Transit Feed Specification (GTFS).
This allows for alerting passengers or proposing alter-
native routes earlier on the passenger’s trip when a
connecting service might be unreachable due to pro-
longed travel times.

Operating more sophisticated ITS applications suc-
cessfully requires, to an even larger extent, accurate
and reliable travel time predictions, since the cost of
making erroneous decisions based on the predictions
increases. Lo and Chang (2012) present a decision
support system for bus holding that requires accurate
estimated arrival times to function optimally. Other
advanced ITS examples include connection assurance
between two low frequency public transport services,
where an expert system advises the driver or the traf-
fic management system that one of the services should
wait for the other, based on the arrival time predic-
tions for both services. If the travel time predictions
are too optimistic, the expert system ends up advising
to hold the connecting service for longer than antic-
ipated, introducing a prolonged delay for the other
service and the passengers already present on that
service. The use of our proposed system in this con-
text can be achieved with a simple rule-based decision
engine on top of the travel time model presented in
detail in this paper.

1.1. Bus travel time prediction

Arrival/departure time prediction is commonly ap-
proached as a specialization of travel time prediction
as illustrated in Figure 1. The predicted travel time
for each link is simply accumulated downstream the
route to yield the arrival/departure time predictions
at each stop point of the rest of the current journey.
Thus, in the example, to predict when the bus at
stop A will arrive at stop B, we would just sum up
our predicted link travel times for Links 1 to 3. Be-
sides the link travel time, estimations of dwell time
(i.e. when a bus is holding at a stop point) should
also be accumulated downstream.

Link 1 Link 2 Link 3

A B

Figure 1: Arrival- and departure using link travel time.

Producing precise bus travel time predictions in ar-
eas with little external influence, e.g. rural areas, can
to a large extent be solved with historical averaging or
simple regression methods (Altinkaya & Zontul, 2013;
Williams & Hoel, 2003). The problem becomes much
more complex in urban areas where congestion, spe-
cial events, roadworks, weather, etc. highly influence
the traffic flow and passenger demand. As on-board
GPS and AVL systems have become more affordable
and common, data has both grown in coverage, i.e.
number of vehicles with AVL installed, and frequency,
i.e. number of GPS positions collected for each vehicle
per time-unit.

Using geofencing techniques the raw GPS trajec-
tory data can be converted into arrivals and depar-
tures at stop points, and subsequently, travel times
on the links between the stop points. The objective is
an intelligent expert system that utilizes this data in
order to produce precise short-term predictions (e.g.
up to 0− 1.5 hours in the future) for link travel time,
specifically for bus traffic in urban areas.

Our contribution is an intelligent model for bus
travel time prediction that takes advantage of the
non-static spatio-temporal correlations present in ur-
ban bus traffic. We leverage on recent state-of-
the-art techniques from machine learning by com-
bining convolutional and long short-term memory
(LSTM) (F. A. Gers, Schmidhuber, & Cummins,
2000; Hochreiter & Schmidhuber, 1997) neural net-
works, thus allowing the discovery of patterns across

2



both time and space. Our proposed model is also
multidimensional in its output with respect to both
spatial and temporal aspects, i.e. we predict travel
times for all links, for multiple time-steps ahead.

The porposed method is empirically evaluated and
compared to other popular approaches for link travel
time prediction, including the model currently de-
ployed in production by the public transport author-
ity for the Greater Copenhagen Area, Movia. Fur-
thermore, the method is compared to Google Traffic
(part of Google Maps), a popular online service for
travel time prediction.

This paper is structured in the following manner:
In the next section, related work and relevant litera-
ture are reviewed. Section 3 introduces Convolutional
LSTM neural networks in general, and in Section 4 we
present the proposed multi-output model in more de-
tail, including e.g. network topology, and data prepa-
ration. Section 5 introduces the Copenhagen dataset,
which the model has been evaluated on, and our re-
sults are presented and discussed in Section 6. Fi-
nally, we conclude on the work in Section 7.

2. Related work

Bus link travel time prediction has been explored
in research as GPS and AVL data has become in-
creasingly available. The problem overlaps with other
research areas such as general traffic flow and speed
estimation. But the problem has also unique con-
straints and opportunities that follow from servicing
a fixed route with fixed stop points. The improve-
ment in computational power in recent decades has
gradually allowed more complex link travel time mod-
els with increased precision.

Early approaches for bus travel time prediction
rely on historical average models (Dailey & Wall,
1999; Sun et al., 2007), and linear regression (Patnaik,
Chien, & Bladikas, 2004). Recent research presents
this type of models only for comparison purposes,
and in all cases, these are outperformed by the pro-
posed alternatives (Jeong & Rilett, 2005; Shalaby &
Farhan, 2004). The major disadvantage of histori-
cal average models is that they will only slowly con-
verge to changes in the travel time, which of course
is undesired with short, but highly impacting, exter-
nal influences (e.g. a traffic incident or a large event).
However, their simplicity, both with respect to com-
putational cost and need of input data, has made
them widely used in the industry. In rural areas,

where traffic patterns are quite static, they can actu-
ally perform reasonably.

By their capabilities of maintaining state between
predictions, Kalman filters (KF) have been the topic
of several studies either as an independent model
(Chen & Chien, 2001; Shalaby & Farhan, 2004), or
in combination with other models (Bai, Peng, Lu,
& Sun, 2015; Yu, Yang, Chen, & Yu, 2010). In all
cases, the applied filters are traditional linear KFs,
and applied independently to each link. Because of
the linearity, these models are computationally still
quite cheap, but likewise, their disadvantage is that
they are very limited in capturing and forecasting the
complex non-linear dynamics of travel and dwell time
in a metropolitan bus system. For example, the KF’s
state is only directly accessible for the leading time-
step and thus is not capable of finding long-distance
patterns spanning over several links and/or over sev-
eral time-steps. In order to overcome this, KFs can
be generalized to extended Kalman filters (EKFs), al-
lowing nonlinearities, but they still do not consider
multiple links simultaneously. Making EKFs output
travel times for all links simultaneously, with possible
nonlinear interactions between them, would dramat-
ically increase the computational cost.

The above analysis is substantiated by Lin, Yang,
Zou, and Jia (2013) and Kumar, Kumar, Vanajakshi,
and Subramanian (2014) who find artificial neural
networks (ANN) to outperform independent Kalman
filter models. However, the computational challenges
of fully connected ANNs are also limiting the number
of neurons of the network, and thus the complexity
of the patterns it can learn to recognize. This has
sparked the interest in studying composite or hybrid
models. Bai et al. (2015) use a two-stage approach
by combining an offline ANN model with an adapt-
able/online Kalman filter to yield a dynamic model.
The advantage is the balance between computational
complexity and the ability to adapt to smaller devia-
tions quickly. The model is able to adapt to temporal
variations in the current travel time on a journey, but
it is still not able to recognize long distance patterns.
The model proposed in this work uses long short-
term memory cells (LSTM), a apecial form of recur-
rent neural network (RNN) cells. Ma, Tao, Wang,
Yu, and Wang (2015) use LSTM cells for highway
speed prediction, and find it to significantly outper-
form KFs. Our proposal differs from existing research
in bus link travel time prediction by combining the
capability for maintaining state-space over multiple

3



time-steps, while allowing the deep neural network
to be efficiently trained.

Some recent research recognizes that several routes
can benefit from each other’s predictions if they share
some partial route segment, e.g. (Bai et al., 2015; Gal,
Mandelbaum, Schnitzler, Senderovich, & Weidlich,
2017; Yu, Lam, & Tam, 2011). However, none of
these approaches consider cross-temporal correlations
between different route segments, and they only use a
small window for correlation with upstream links (e.g.
max. 3 links). Likewise, Duan, Lv, and Wang (2016)
propose the use of an LSTM model for general high-
way travel time prediction, and to predict multiple
time-steps ahead, but only for a single link at a time,
i.e. cross link (spatial) correlations are lost. Another
non-public transport study estimates travel times on
road segments (Tang, Chen, & Khattak, 2018), and
actually incorporates the spatial correlation, but the
temporal aspect is very coarse and does not predict
multiple time-steps ahead. In contrast, the combi-
nation of both LSTM cells and convolutional filters
for bus travel time prediction, proposed in this pa-
per, allows the learned patterns to generalize beyond
a single link and time, i.e. multi-output and multi-
time-step. Furthermore, this reduces the computa-
tional complexity by orders of magnitude compared
to fully connected ANNs capable of capturing similar
complex patterns.

We can identify the following strengths of the pro-
posed system compared to existing approaches:

i) Unlike previous contributions in bus arrival
prediction, it has the ability to learn spatio-
temporal correlations as a coherent structure.
The learned patterns can generalize over time
and network links since the convolutional filters
are shared.

ii) We predict multiple time-steps ahead using a re-
current structure and an encoder-decoder archi-
tecture that allows the time-steps ahead to fol-
low more complex patterns compared to existing
approaches that just use a fully connected ANN
layer as the final layer to split the prediction into
multiple output time-steps.

iii) The input data needed for the method is easily
obtained from the raw GPS traces that the AVL
systems output, given the relatively fixed road
network and location of bus stop points and sta-
tions.

In contrast, the following possible weakness should

also be considered:

i) The computational complexity of the training
is still a concern. Even though the computa-
tional complexity is reduced greatly with convo-
lutional filters compared to pure ANN models,
it is still time-consuming to train the proposed
model. That said, we have successfully trained
models for complete routes using commodity-
grade hardware within reasonable time. With
our test setup we could do retraining on a daily
basis without computational complications. The
training can easily be distributed across multi-
ple computational instances, so we argue that
the scalability issue can be overcome.

3. Convolutional LSTM neural networks

A long short-term memory (LSTM) neural network
is a special type of Recurrent Neural Network (RNN)
which has been proven robust for capturing long-term
dependencies (F. A. Gers et al., 2000; Hochreiter &
Schmidhuber, 1997). The important feature of an
LSTM network is its capability to maintain a cell
state, ct, from previous observations across sequences
of input (e.g. time), but also to eliminate informa-
tion considered irrelevant. To allow this mechanism,
the maintenance of information is controlled by three
gates: input gate, forget gate, and output gate. Each
gate yields a state variable at time t, respectively it,
ft, and ot, along with the cell output, ht, cf. eq. (1),
where ◦ denotes the element-wise product.

it = σ
(
Wixt + Riht−1 + Ui ◦ ct−1 + bi

)
ft = σ

(
Wfxt + Rfht−1 + Uf ◦ ct−1 + bf

)
ct = ft ◦ ct−1 + it ◦ tanh (Wcxt + Rcht−1 + bc)

ot = σ (Woxt + Roht−1 + Uo ◦ ct + bo)

ht = ot ◦ tanh (ct)
(1)

Figure 2 illustrates the inner structure of an LSTM
cell with peephole as proposed by F. Gers and
Schmidhuber (2000). It has especially grown pop-
ular for predicting time series using methods evolved
from F. A. Gers, Eck, and Schmidhuber (2001), where
fixed-length windows of time-series are generated and
feed into an LSTM network. Multiple LSTMs can

4



be stacked such that more complex patterns of se-
quential information (e.g. temporal patterns) can be
learned.

 

σ
U R W

σ
U R W

tanh
R W

tanh

σ
U R W

◦

ht-1

ct-1 ct

ht

ht

xt

ft it ct
~ ot

+◦

◦

Figure 2: Structure of LSTM cell with peephole.

Convolutional Neural Networks (CNNs), on the
other hand, have been widely used for capturing spa-
tial relationships, e.g. the importance of neighboring
pixels in an image. As opposed to fully connected
layers, where each unit i in the layer has a dedicated
scalar weight wij for all input values xj , convolu-
tional units are only locally connected and reuse the
same weights to produce several outputs. Instead of
considering the entire input-vector, only a fixed-size
window, or convolution, around each input is consid-
ered. The weights are therefore referred to as the
filters or kernels of the layer. Figure 3 illustrates a
single convolutional filter of size 3 being applied to
one-dimensional data.

w

w

w

Figure 3: Application of convolutional filter onto 1D data.

Special care needs to be taken at the boundaries,
i.e. where the convolutional filter will exceed the in-
put. To avoid that the size of the output decreases,
an approach is to pad the input, e.g. with zeros. This
ensures that the output shape of each convolutional
unit will always be identical to the input shape, which
is often desirable. One of the key benefits of convo-
lutional networks is that the number of weights that
needs to be learned is considerably reduced compared
to fully connected networks, and also that learned
patterns can be transferred across space. I.e., the

convolutional filters become feature detectors that,
in our case, can detect spatial patterns across links,
e.g. congestion forming, etc.

Shi et al. (2015) introduced the novel combina-
tion of convolutional and LSTM layers into a single
structure, the Convolutional LSTM, or simply Conv-
LSTM. Specifically, the method applies convolutional
filters in the input-to-state and state-to-state transi-
tions of the LSTM cf. eq. (2), where ∗ denotes the
convolution operator.

it = σ
(
Wi ∗ xt + Ri ∗ ht−1 + Ui ◦ ct−1 + bi

)
ft = σ

(
Wf ∗ xt + Rf ∗ ht−1 + Uf ◦ ct−1 + bf

)
ct = ft ◦ ct−1 + it ◦ tanh (Wc ∗ xt + Rc ∗ ht−1 + bc)

ot = σ (Wo ∗ xt + Ro ∗ ht−1 + Uo ◦ ct + bo)

ht = ot ◦ tanh (ct)
(2)

As with traditional CNN layers, the output dimen-
sionality of a ConvLSTM layer is determined by the
number of filters applied. However, ConvLSTMs re-
quire a total of eight filters for each desired output,
i.e. four input-to-state filters (Wi, Wf , Wc, and Wo)
and four state-to-state filters (Ri, Rf , Rc, and Ro).
Still, it is important to emphasize that the application
of convolutional filters to the LSTM model greatly
reduces the number of parameters/weights that need
to be learned, compared to a pure LSTM approach.
This allows for even deeper networks.

4. Multi-output model

In this section, we present the multi-output, multi-
time-step model for bus travel time prediction that
uses the ConvLSTM layer introduced in the previous
section.

4.1. Network topology

Figure 4 shows the overall network topology, where
blue boxes illustrate input-to-state convolutions and
yellow boxes state-to-state convolutions. The net-
work uses a sequence encoder/decoder technique,
which is an extension of the encoder/decoder pre-
sented by Shi et al. (2015). The encoder block con-
sists of two ConvLSTM layers, where the resultant
sequence (last k values of the sequence) is fed into a
decoder, or prediction block. The decoder block also
consists of two ConvLSTM layers, and a fully con-
nected (FC) layer. The proposed architecture allows

5



LSTM LSTM LSTM

Input-to-state Conv

LSTM LSTM LSTM

LSTM LSTM

LSTM LSTM

w input samples

ConvLSTM1

ConvLSTM2

ConvLSTM3

ConvLSTM4

predictions
k time steps ahead

D
ecoding B

lock
En

co
di

ng
 B

lo
ck

FC

Figure 4: Convolutional LSTM network topology.

unequal w and k, e.g. it predicts the next 3 time-steps
based on a window size of 20 previous time-steps.

Therefore, convolutional filters are applied to each
input, at each time-step, to the respective LSTM cell
and also between LSTM cells in the state-transition.
Since the time-steps are one-dimensional (i.e. link
travel times across links), the filters are also one-
dimensional. In each of the two blocks, the Conv-
LSTMs are arranged with filter sizes of respectively
10×1 and 5×1 for each of the layers in the block. This
size is used both for the input-to-state and state-to-
state convolutional filters. Lastly, each ConvLSTM
layer has 64 outputs, yielding a total need of 512 con-
volutional filters.

In order to avoid over-fitting during training
Dropout (Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014) is used between the Conv-
LSTM layers, and Batch Normalization (Ioffe &
Szegedy, 2015) is also performed before each Conv-
LSTM layer to ensure reasonable inputs for the ac-
tivations and speed-up learning. The dropout proba-
bility is adjusted to 20%, 10%, and 10%, respectively.

Each of the ConvLSTM layers uses linear activa-
tion functions, and the output from the last layer in
the decoder block is fed into a fully connected (FC)
layer using the ReLU activation function, which also
ensures that only positive travel times are predicted.

4.2. Data preparation

We expect link travel times from AVL systems to
be available in a tabular form, where each link travel
time measurement has a timestamp, and a reference
to the link as illustrated in Table 1. This output is

standard for most AVL systems used in public trans-
port systems, thus allowing the proposed system to
generalize to other regions.

Timestamp Linkref. Link travel time (s)

2017-10-10 00:20:02 29848:1254 63

2017-10-10 00:21:07 1254:1255 65

2017-10-10 00:21:51 1255:10115 44
...

...
...

Table 1: Example of raw travel time measurements.

For the ConvLSTM model to be able to capture
the desired spatio–temporal patterns, the input data
must be arranged in a suitable manner, i.e. in N sam-
ples, each with a window of the w lagging time-steps
t−w+ 1, . . . , t, and each time-step with u link travel
times 1, . . . , u, as illustrated in Figure 5.

As for the output, it consists of N predictions
for each of the k time-steps ahead, t + 1, . . . , t + k.
Thus the input is a 4D-tensor, X with dimensional-
ity N × w × u × 1, and the output, Y, a 4D-tensor
with dimensionality N ×k×u×1. In both cases, the
last one refers to the single link travel time for each
time-step/link combination. It is emphasized that
each prediction consists of travel time predictions for
all links for the next k time-steps, i.e. multi-output,
multi-time-step-ahead prediction.

The N samples are sampled at a fixed time resolu-
tion since we need a shared time reference across all
links. Section 5 elaborates on some of the considera-
tions for choosing an adequate resolution.

6



tt-w-1

Time

L
in

ks

N samples

ln1

lnu

t+kt+1

Time

N predictions

ln1

lnu

Figure 5: Shapes of the input and output data.

4.3. Detrending

Urban bus travel times vary throughout the day,
and the day of the week due to recurring congestion.
In order to reduce the need for the deep neural net-
work to learn this recurring variation, the travel times
for link ln ∈ {1, . . . , u}, at time-step t, xln,t, are nor-
malized to focus on deviations from the normal and
expected pattern. Travel times are centered with the
mean for each link, at the time of day, and day of
week, x̄ln,dow ,tod , and scaled with the standard devia-
tion for each link, σln :

x′ln,t =
xln,t − x̄ln,dow ,tod

σln
(3)

A similar normalization is applied to the predicted
travel times, yln,t, but only using the historical mean
and standard deviation, since the true mean and stan-
dard deviation are obviously unavailable in real-time
prediction scenarios.

When calculating the mean and standard devia-
tion, it can be beneficial to exclude extreme out-
liers, since both mean and standard deviations are
highly sensitive to such measurements. A suggested
method is to apply absolute deviation around the me-
dian (MAD; see Olewuezi (2011)) when calculating
x̄ln,dow ,tod and σln .

4.4. Implementation and training

The proposed network model was implemented in
Python using the Keras Framework (Chollet & Oth-
ers, 2015), and trained using the RMSprop algorithm
(Hinton & Tieleman, 2017). The source code for the
proposed method is publicly available at GitHub: Pe-
tersen, Rodrigues, and Pereira (2017).

During training, the variables x̄ln,dow ,tod and σln
should be calculated solely based on the training set,
to emulate the real-world application.

5. Experiments

For the purpose of evaluation, the proposed
method is applied to a dataset from Copenhagen’s

public transport authority, Movia. The dataset con-
sists of 1,2M travel time observations for the “4A”
bus line in the period May to October 2017. The
data points were collected using the real-time AVL
system installed in every vehicle servicing the line.

Figure 6: Geography of the 4A bus line in Copenhagen.

The geography of the route is shown in Figure 6.
As the line circles Central Copenhagen, it is highly
sensitive to congestion to/from the city since it in-
tersects with several large corridors along its route.
Southeast of the city center, the line splits into dif-
ferent destination patterns (gray), therefore only the
first 32 links are considered for the purposes of this
experiment (red).

5.1. Time resolution

In order to allow predictions for fixed time-steps
ahead, the data is aggregated at a fixed time res-
olution. The choice of time resolution is a hyper-
parameter for the proposed system, and should be
tuned for the specific dataset. Figure 7 shows ex-
amples of travel time for a single link over a single
day at various time resolutions. The black dots are
actual measurements, and the lines the aggregated
mean link travel time at the given resolution. Sev-
eral considerations should be made when choosing the
time resolution:

• The expected frequency of the line, since a choice

7



06:00 10:00 14:00 18:00 22:00

100

200

300

400

500

(a) 5 min

06:00 10:00 14:00 18:00 22:00

100

200

300

400

500

(b) 15 min

06:00 10:00 14:00 18:00 22:00

100

200

300

400

500

(c) 30 min

Figure 7: Examples of travel time for a single link over a single day, at various time resolutions.

far from this will lead to either 1) sparse mea-
surements, and low probability of actually us-
ing a prediction, because no service runs in the
predicted time step; or 2) an overly smooth time-
series, with too much detail about variability be-
ing lost. Thus it is a balance between capturing
the details and still having a reasonable number
of measurements of each time-step to avoid over-
fitting.

• The computational cost of training the system,
since smaller time-steps will require further iter-
ations over the training data and larger values of
w and k to include the same lagging time win-
dow, and time horizon for predictions.

Figure 8 shows how the choice of resolution influ-
ences the training time of our proposed deep neural
network architecture on commodity hardware (blue).
It also shows how the portion of time-steps with miss-
ing values (yellow) also increases as more fine-grained
resolutions are considered. For instance, using a 2-
minute resolution will cause 89% of all time steps to
not include any measurements.

5 10 15 20 25 30
Resolution (min)

0

20

40

60

80

100

120

Tr
ai

ni
ng

 ti
m

e 
(m

in
)

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

in
g 

va
lu

e 
ra

tio

Figure 8: Choice of resolution influence on training time and
missing values.

For this experiment, the AVL data was aggregated

into 15-minute intervals and normalized as described
in Section 4. This resolution was chosen based on
the above-mentioned considerations. The “4A” bus
line had a measured mean headway (the time between
two vehicles during daytime) of 7.5 minutes between
06:00 and 22:00, and thus there is a reasonably high
probability that 15-minute time-steps will include 1-2
measurements. Indeed, the average number of mea-
surements in each time step was 1.7 for the training
set.

Given the time resolution, we set the fixed window
size, w = 32, equivalent to 8 hours, to allow patterns
in the morning peak to affect patterns in the after-
noon peak. We set k = 3 to allow predictions of up
to 45 minutes into the future.

5.2. Evaluation

The evaluation of the proposed model and all the
considered baselines is based on the following statis-
tics: mean absolute error (MAE), root mean square
error (RMSE), and mean absolute percentage error
(MAPE), as formalized in eqs. (4) to (6), where Yi

is the true link travel times for sample i and Ŷi is
the predicted travel times. Since the multi-output,
multi-time-step model predicts link travel times for
all u links for the next k time-steps, Yi and Ŷi have
the same dimensionality: w × u× 1.

MAE(Y, Ŷ) =

∑N
i=1

∣∣∣Yi − Ŷi

∣∣∣
N

(4)

RMSE(Y, Ŷ) =

√√√√∑N
i=1

(
Yi − Ŷi

)2
N

(5)

MAPE(Y, Ŷ) =
1

N

N∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ (6)

8



Model Time ahead RMSE (min) MAE (min) MAPE (%)

Historical average 4.35 3.23 6.51 %

Current model t + 1 (15 min) 4.92 3.90 8.05 %
t + 2 (30 min) 4.91 3.46 6.82 %
t + 3 (45 min) 5.47 4.15 8.68 %

Pure LSTM t + 1 (15 min) 3.48 2.48 5.02 %
t + 2 (30 min) 3.56 2.51 5.08 %
t + 3 (45 min) 3.68 2.62 5.34 %

Google Traffic t + 1 (15 min) 3.67 2.96 6.32 %

ConvLSTM t + 1 (15 min) 2.66 1.99 4.19 %
t + 2 (30 min) 2.89 2.11 4.44 %
t + 3 (45 min) 3.11 2.27 4.75 %

Table 2: Results of the proposed and the baseline models

To allow a clear comparison, we reduce Yi and Ŷi

by summing over all links:

Y′i =

u∑
ln=1

Yi,ln Ŷ′i =

u∑
ln=1

Ŷi,ln (7)

This is equivalent to predicting the total travel time
of all 32 links, and follows the initial approach for ar-
rival/departure time prediction by accumulating link
travel times.

The output of each of the evaluation functions is
thus simply a vector of size k, i.e. the evaluation of
the different time-steps for all links accumulated.

The model is trained on the prepared data using
a sliding window approach in order to simulate real-
world conditions, in which real-time travel time mea-
surements arrive as a continuous data stream. We use
23 weeks of data for training, and one week of data
for testing. The window is advanced for 1 week at a
time for a total of 4 test weeks. The trained models
are available, alongside the source code, at (Petersen
et al., 2017) and include a test dataset (4 weeks). For
replicating our results, the full dataset used in this
experiment is available from Movia upon request.

6. Results and discussion

The performance of our proposed model for link
travel time prediction, based on ConvLSTM, is com-
pared against several baseline models and services:

1. a näıve historical average model, i.e. equiva-
lent to just predicting the normalized value,
x̄ln,dow ,tod ;

2. the traffic prediction model currently deployed
by Movia;

3. a pure LSTM model for link travel time predic-
tion, i.e. without applying convolutional filters in
state transitions;

4. travel time predictions from Google Traffic (part
of Google Maps).

Table 2 shows the overall performance of the pro-
posed model and the baseline methods. Predictions
are limited to daytime, i.e. between 06:00 and 22:00,
and are accumulated downstream on a journey level
to simulate the use for real-time bus arrival/departure
time prediction, cf. eq. (7).

Before going into a direct comparison, it is impor-
tant to understand some aspects of the baseline mod-
els, and how measurements were collected.

6.1. Historical average

The performance of the historical average is in-
dependent with respect to the number of time-steps
ahead in time it predicts, as it just represents a weekly
cycle of mean link travel times.

6.2. Current model

Measurements from the currently deployed bus pre-
diction model were collected at a 5-minute frequency
using a non-publicly accessible endpoint at the trans-
port authority. The model is based on a historical
average model, but also has a rule-based mechanism
on top that can override or adjust the historical link
travel times. For instance, it will, to some extent,
assume that a delayed vehicle will recover from its
delay by traversing links a bit faster. Of course, such
an assumption can be problematic in an urban area
with many external traffic effects.

9



6.3. Pure LSTM

The pure LSTM model for link travel time predic-
tion is similar to the model proposed by Duan et al.
(2016). The model was trained on the exact same
dataset as the ConvLSTM model and has a similar
architecture, but without the convolutional filters.

6.4. Google Traffic

Measurements from the Google Traffic model were
collected using the Google Maps Distance Matrix
API (Google Developers, 2017). Google uses crowd-
sourced road congestion data collected from smart-
phones with the Google Maps App installed (Barth,
2009). While the exact model powering the service is
not publicly described in detail, the documentation
states that “the returned duration in traffic should be
the best estimate of travel time given what is known
about both historical traffic conditions and live traf-
fic”. Furthermore, it states that “live traffic becomes
more important the closer the departure time is to
now” (Google Developers, 2017).

Because there is a limit to the number of requests
that one can freely make to the API over a 24-hour
period, it has only been possible to collect link travel
times for the t + 1 time-step (i.e., next 15 minutes).
Travel times for each link were collected at a 15-
minute interval between 06:00 and 22:00.

Another important aspect is that the Google Traf-
fic model is primarily designed for estimating car
travel times, and therefore it can be biased and not
ideal for estimating the bus travel times used in our
experiments. Since we only consider link travel times
and collect data for each link individually, the bus
dwell time will not be an issue, as it is not included
in either measurement.

6.5. Comparison

We compare the performance of the proposed
ConvLSTM model for bus link travel time prediction
against the baseline models mentioned above. The
overall results from Table 2 show that the ConvLSTM
model outperforms all the other methods. The cur-
rent model performs the worst, even compared to the
historical average model, on which it is based on.
This is most likely due to the rule-based enforcement
put on top of the historical average.

Although the difference in performance might seem
small, it should be emphasized that the evaluation
measurements are averaging their errors, and thus the
increased accuracy can be much higher on individual

journeys, especially if they experience very irregular
travel times. To investigate this, we focus our anal-
ysis on periods when the transport system is most
vulnerable, and even small changes in regularity can
propagate, since recovery is not an option, i.e. during
morning and afternoon peaks.

Model RMSE MAE MAPE

Historical Average 6.40 5.57 10.62 %

Current Model 6.69 5.88 11.22 %

Pure LSTM 3.80 3.16 6.01 %

Google Traffic 5.25 4.62 9.17 %

ConvLSTM 2.64 2.09 4.04 %

Table 3: Results: Morning peak (7h–9h)

Model RMSE MAE MAPE

Historical Average 5.90 4.65 8.28 %

Current Model 6.28 5.20 9.37 %

Pure LSTM 5.26 3.97 7.08 %

Google Traffic 4.16 3.34 6.21 %

ConvLSTM 3.79 3.02 5.61 %

Table 4: Results: Afternoon peak (14h–18h)

Tables 3 and 4 show the evaluation results for
morning peaks (weekdays, 7h–9h) and afternoon peaks
(weekdays, 14h–18h), respectively, for the time-step
t+ 1.

The peak hour evaluation shows that the Conv-
LSTM model increases its performance over the base-
line models when the transport network is put under
stress. In the morning peak, the ConvLSTM model
does not degrade in performance compared to the
overall daytime results, whereas all the baseline mod-
els experience a decrease in performance of up to sev-
eral minutes according to both RMSE and MAE, and
an increase in MAPE of roughly one third.

Similarly, the afternoon peak evaluation shows im-
provements with respect to the baseline models, even
though the ConvLSTM model also decreases its per-
formance when compared to the overall results. How-
ever, in this case, the difference in performance with
the baseline methods is not as significant as in the
morning peak. We can also observe that the Google
Traffic model performs rather well in the afternoon
peak, which reduces the gap in error to less than a
minute to the proposed ConvLSTM-based approach.

To obtain a more detailed view of how the differ-
ent models perform at the micro-level (i.e. the specific

10



06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time

35

40

45

50

55

60

65

Li
nk

 T
ra

ve
l T

im
e 

(m
in

)

Ground Truth
Historical Average
Current Model
Pure LSTM
Google Traffic
ConvLSTM

Figure 9: Accumulated link travel time over a single day (a Thursday) in the test set.

06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time

35

40

45

50

55

60

65

Li
nk

 T
ra

ve
l T

im
e 

(m
in

)

Ground Truth
Historical Average
Current Model
Pure LSTM
Google Traffic
ConvLSTM

Figure 10: Accumulated link travel time over a single day (a Friday) in the test set.

11



journey), we can inspect a single day of predictions.
A random weekday from the test dataset is plotted
in Figure 9 which shows the accumulated travel time
of all 32 links and the predicted travel time at time-
step t+1, both for the proposed model and the base-
line model.

On this particular day (a Thursday), the peak hour
traffic was worse than normal, which leads both the
historical average model and the current model to
underestimate travel time in the peak periods. Please
recall that the current model is based on the historical
average model. Therefore, it is not surprising that
they perform similarly. There is also a small peak
in travel time in the afternoon, which none of the
historical average models is able to predict.

On the other hand, both the Google Traffic model
and the proposed ConvLSTM model get much closer
to the ground truth in the peak hours. The Google
Traffic model seems to predict more accurately than
the ConvLSTM model in the afternoon peak, whereas
the opposite occurs in the morning peak. However,
both models are able to detect the irregular peak in
the afternoon and adjust to it, at least to some degree.

Figure 10 shows another example day - a Friday.
Here the difference between the proposed model and
the historical average and current model baselines is
slightly less significant, simply because the day to a
larger degree follows the average pattern for a “nor-
mal” Friday (especially around the afternoon peak).
Nonetheless, the proposed model still performs the
best, and this also supports our claim that the pro-
posed model is strongest when the traffic pattern de-
viates from the normal pattern, i.e. when the trans-
port network is under stress.

Finally, we compare the computational complexity
of training the different models. Obviously, we cannot
include metrics for the Google Traffic, as the model
is not public. Likewise, it is not sensible to com-
pare with the Current Model, since it is “trained” on
a dataset of different size and on hardware using in
production at the transport authority. But, since we
know it is essentially an historical average approach,
we can expect a similar computational complexity.
The historical average can be calculated within sec-
onds for the full 23-week training dataset. The train-
ing of the Pure LSTM and ConvLSTM model can be
achieved in both cases, for the full 23-week training
dataset and the full 32-links, in less than 20 minutes
on commodity hardware (8 cores, 64 GB RAM, GTX
1070 GPU). This might indicate why the historical

average models are still popular in the industrial sys-
tems, but we, however, argue that the more complex
models are indeed scalable and the improved accuracy
desirable, even though it is more computationally ex-
pensive.

7. Conclusion

This paper proposed a multi-output, multi-time-
step system for bus travel time prediction. The pro-
posed system uses a deep neural network model con-
sisting of convolutional and long short-term memory
(LSTM) layers, that is able to capture the non-static
spatio-temporal correlations of variability in urban
bus travel times. This allows the model to generalize
patterns learned in predictions across space and time.
Also, our approach for multi-time-step prediction us-
ing an encoder/decoder architecture is, to the best
of our knowledge, new in the context of bus travel
time prediction. The proposed approach allows accu-
rate predictions further into the future compared to
traditional approaches where subsequent time-steps
are predicted independently. Our empirical results
demonstrate that the proposed model outperforms
other popular and recent methods from the state-of-
the-art. This includes Google’s Traffic model based
on crowd-sourced live traffic data, and the current
model deployed by Movia, the public transport au-
thority in the Greater Copenhagen Area. The in-
creased accuracy when compared to the baseline ap-
proaches is even more significant in the peak hours,
where the urban bus transport network is under
stress. The data required for the proposed system
is simply the standard output that most AVL sys-
tems used in the public transport industry produce.
We are aware that public transport agencies in Sin-
gapore, London, New York, Stockholm, Oslo, and
Helsinki all have deployed AVL systems that fulfill
this requirement, and thus the proposed system in-
deed generalizes trivially across different cities in dif-
ferent countries.

Although the proposed method is more compu-
tationally expensive than simple historical average
models, given the state of modern computational
hardware, it is indeed scalable to be applied to an ur-
ban bus network for independent routes. Even with
commodity hardware, we are able to retrain the route
used in this experiment in less than 20 minutes, and
we can thus easily retrain the model on a daily basis.
Given the results of our proposed model, we are cur-

12



rently actively pursuing deployment of the model in
the Greater Copenhagen region, in close collaboration
with the transport authority - Movia. We do however
consider this route-independent approach a limitation
of the current system, and below we provide some re-
search opportunities to extend the proposed system
by handling correlations between different routes.

7.1. Future work

As future work, we would like to extend the pre-
sented systems in the following directions:

i) The integration of our proposed system to differ-
ent control strategies for enhancing the regular-
ity and reliability of the bus service, e.g. as sug-
gested by Lo and Chang (2012). This would cre-
ate a possible feedback loop from the predicted
travel times that could possibly affct the travel
times on a short-term basis. This is a non-trivial
task, since it requires either simulation, which
is complex for urban public transport networks
in the detail needed here, or integration directly
into currently running services, which is organi-
zationally and technically challenging.

ii) In order for the prediction accuracy to be in-
creased further, it would be interesting to include
more contextual features in the input data and
not only the observed travel times. This could
include features from the road network that the
link consists of, e.g. whether intersections on
the link are regulated by a traffic signal or not.
In order to achieve this, map matching of at
least the link geometry to the road network is
necessary. However, this should be easily over-
come, and many interesting crowd-sourced data
are freely available (e.g. Open Street Map). Ad-
ditional data sources such as weather conditions
have shown to impact bus travel time (Chen, Liu,
Xia, & Chien, 2004) and could also be included.
More rare, but highly impacting deviations, such
as traffic incidents, service-outage, holidays and
large events, could also be considered in this re-
search direction.

iii) Currently, the model only uses convolutions over
a single bus route, i.e. 1D-convolutions. We be-
lieve that it would be interesting to see the effect
on the accuracy of the system if this was gen-
eralized to a network of bus routes. This would
require extending the convolutions into a multi-
dimensional space. Popular approaches used tra-
ditionally in conjunction with convolutions, such

as overlaying the geographical map with a 2D-
grid, have not shown good results. The chal-
lenge seems to be that bus networks are relatively
sparse, and that travel times do not aggregate
well in cells, e.g. compared to travel demand.
Recent state-of-the-art proposes graph convolu-
tional neural networks (Li, Yu, Shahabi, & Liu,
2017), i.e. where the convolutions are done over
graph structures. We plan to pursue this ap-
proach - with the complications and development
needed - to adapt the method to bus networks
and the bus travel time prediction problem.

iv) A final direction we have identified is to include
the proposed system in an ensemble/multi-model
approach. In this case, the proposed model can
be included and used as a sub-model for the
ensemble. The challenge here is the coordina-
tion between the different sub-models that can
be seen as autonomous agents in an expert and
intelligent system context. Especially, how to
solve disagreements. Different approaches have
been proposed by Weng, Lu, Wang, Megahed,
and Martinez (2018), and we expect to explore
these approaches in our research.

References

Altinkaya, M., & Zontul, M. (2013). Urban Bus Arrival Time
Prediction: A Review of Computational Models. Int. J.
Recent Technol. Eng., 2 (4), 164–169.

Bai, C., Peng, Z. R., Lu, Q. C., & Sun, J. (2015). Dynamic
Bus Travel Time Prediction Models on Road with Mul-
tiple Bus Routes. Comput. Intell. Neurosci., 2015 . doi:
doi:10.1155/2015/432389

Barth, D. (2009). The Bright Side of Sitting in Traffic: Crowd-
sourcing Road Congestion Data. Retrieved 2017-11-
06, from https://googleblog.blogspot.dk/2009/08/

bright-side-of-sitting-in-traffic.html

Cats, O., Koutsopoulos, H., Burghout, W., & Toledo,
T. (2011). Effect of Real-Time Transit Informa-
tion on Dynamic Path Choice of Passengers. Transp.
Res. Rec. J. Transp. Res. Board , 2217 , 46–54. Re-
trieved from http://trrjournalonline.trb.org/doi/

10.3141/2217-06 doi: doi:10.3141/2217-06
Chen, M., & Chien, S. (2001). Dynamic Freeway Travel-Time

Prediction with Probe Vehicle Data: Link Based Versus
Path Based. Transp. Res. Rec., 1768 (1), 157–161. doi:
doi:10.3141/1768-19

Chen, M., Liu, X., Xia, J., & Chien, S. I. (2004,
sep). A Dynamic Bus-Arrival Time Prediction Model
Based on APC Data. Comput. Civ. Infrastruct.
Eng., 19 (5), 364–376. Retrieved from http://doi

.wiley.com/10.1111/j.1467-8667.2004.00363.x doi:
doi:10.1111/j.1467-8667.2004.00363.x

Chollet, F., & Others. (2015). Keras. GitHub. Retrieved from
https://github.com/fchollet/keras

13

http://dx.doi.org/10.1155/2015/432389
https://googleblog.blogspot.dk/2009/08/bright-side-of-sitting-in-traffic.html
https://googleblog.blogspot.dk/2009/08/bright-side-of-sitting-in-traffic.html
http://trrjournalonline.trb.org/doi/10.3141/2217-06
http://trrjournalonline.trb.org/doi/10.3141/2217-06
http://dx.doi.org/10.3141/2217-06
http://dx.doi.org/10.3141/1768-19
http://doi.wiley.com/10.1111/j.1467-8667.2004.00363.x
http://doi.wiley.com/10.1111/j.1467-8667.2004.00363.x
http://dx.doi.org/10.1111/j.1467-8667.2004.00363.x
https://github.com/fchollet/keras


Dailey, D. J., & Wall, Z. (1999). An Algorithm for Predict-
ing the Arrival Time of Mass Transit. In Transp. res.
board 78th annu. meet. Washington DC.: Transpotation
Research Board. doi: doi:10.1.1.579.2083

Duan, Y., Lv, Y., & Wang, F.-Y. (2016). Travel Time
Prediction with LSTM Neural Network. 2016 IEEE
19th Int. Conf. Intell. Transp. Syst., 1053–1058. Re-
trieved from http://ieeexplore.ieee.org/document/

7795686/ doi: doi:10.1109/ITSC.2016.7795686
Fan, Y., Guthrie, A., & Levinson, D. (2016). Perception of

Waiting Time at Transit Stops and Stations (Tech. Rep.
No. 9). Minneapolis: Center for Transportation Studies,
University of Minnesota.

Gal, A., Mandelbaum, A., Schnitzler, F., Senderovich, A., &
Weidlich, M. (2017). Traveling Time Prediction in
Scheduled Transportation with Journey Segments. Inf.
Syst., 64 (C), 266–280. doi: doi:10.1016/j.is.2015.12.001

Gers, F., & Schmidhuber, J. (2000). Recurrent Nets that Time
and Count. In Proc. ieee-inns-enns int. jt. conf. neu-
ral networks. ijcnn 2000. neural comput. new challenges
perspect. new millenn. (pp. 189–194 vol.3). IEEE. doi:
doi:10.1109/IJCNN.2000.861302

Gers, F. A., Eck, D., & Schmidhuber, J. (2001). Ap-
plying LSTM to Time Series Predictable Through
Time-Window Approaches. In Lect. notes comput.
sci. (including subser. lect. notes artif. intell. lect.
notes bioinformatics) (Vol. 2130, pp. 669–676). doi:
doi:10.1007/3-540-44668-0 93

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000).
Learning to Forget: Continual Prediction with
LSTM. Neural Comput., 12 (10), 2451–2471. doi:
doi:10.1162/089976600300015015

Google Developers. (2017). Google Maps Distance Ma-
trix API. Retrieved 2017-11-06, from https://

developers.google.com/maps/documentation/

distance-matrix/

Hinton, G., & Tieleman, T. (2017). Lecture - Rmsprop:
Divide the Gradient by a Running Average of its Recent
Magnitude. Coursera. Retrieved 2017-11-06, from
https://www.coursera.org/learn/neural-networks/

lecture/YQHki/rmsprop-divide-the-gradient-by-a

-running-average-of-its-recent-magnitude

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Comput., 9 (8), 1735–80. doi:
doi:10.1162/neco.1997.9.8.1735

Ioffe, S., & Szegedy, C. (2015). Batch Normaliza-
tion: Accelerating Deep Network Training by Re-
ducing Internal Covariate Shift. Arxiv , 1–11. doi:
doi:10.1007/s13398-014-0173-7.2

Jeong, R., & Rilett, L. R. (2005). Prediction Model of Bus
Arrival Time for Real-Time Applications. Transp. Res.
Rec. J. Transp. Res. Board , 1927 (1927), 195–204. doi:
doi:10.3141/1927-23

Kumar, V., Kumar, B. A., Vanajakshi, L., & Subramanian,
S. C. (2014). Comparison of Model Based and Machine
Learning Approaches for Bus Arrival Time Prediction.
TRB 93rd Annu. Meet. Compend. Pap..

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Dif-
fusion Convolutional Recurrent Neural Network:
Data-Driven Traffic Forecasting. Retrieved
from http://arxiv.org/abs/1707.01926 doi:
doi:10.15662/IJAREEIE.2015.0501067

Lin, Y., Yang, X., Zou, N., & Jia, L. (2013). Real-Time
Bus Arrival Time Prediction: Case Study for Jinan,
China. J. Transp. Eng., 139 (11), 1133–1140. doi:
doi:10.1061/(ASCE)TE.1943-5436.0000589

Lo, S. C., & Chang, W. J. (2012). Design of real-time
fuzzy bus holding system for the mass rapid transit
transfer system. Expert Syst. Appl., 39 (2), 1718–1724.
Retrieved from http://dx.doi.org/10.1016/j.eswa

.2011.08.111 doi: doi:10.1016/j.eswa.2011.08.111
Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015). Long

short-term memory neural network for traffic speed pre-
diction using remote microwave sensor data. Transp.
Res. Part C Emerg. Technol., 54 , 187–197. Retrieved
from http://dx.doi.org/10.1016/j.trc.2015.03.014

doi: doi:10.1016/j.trc.2015.03.014
Olewuezi, N. (2011). Note on the Comparison of Some Outlier

Labeling Techniques. J. Math. Stat., 7 (4), 353–355. doi:
doi:10.3844/jmssp.2011.353.355

Patnaik, J., Chien, S., & Bladikas, A. (2004). Estimation of
Bus Arrival Times Using APC Data. J. Public Transp.,
7 (July 2017), 1–20. doi: doi:10.5038/2375-0901.7.1.1

Petersen, N. C., Rodrigues, F., & Pereira, F. C.
(2017). Multi-output Bus Travel Time Prediction
with Convolutional LSTM Neural Networks Source
Code. GitHub. Retrieved from https://github.com/

niklascp/bus-arrival-convlstm

Schweiger, C. (2003). TCRP Synthesis 48: Real-Time Bus
Arrival Information Systems.

Shalaby, A., & Farhan, A. (2004). Prediction model
of bus arrival and departure times using AVL
and APC data. J. Public Transp., 7 , 41–61. Re-
trieved from http://www.nctr.usf.edu/wp-content/

uploads/2010/03/JPT-7-1.pdf{#}page=46 doi:
doi:10.1.1.170.9999

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., Wong, W.-k., &
Woo, W.-c. (2015). Convolutional LSTM Network: A
Machine Learning Approach for Precipitation Nowcast-
ing. In Proc. 28th int. conf. neural inf. process. syst. -
vol. 1 (pp. 802–810). MIT Press.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
& Salakhutdinov, R. (2014). Dropout: A Sim-
ple Way to Prevent Neural Networks from Overfit-
ting. J. Mach. Learn. Res., 15 , 1929–1958. doi:
doi:10.1214/12-AOS1000

Sun, D., Luo, H., Fu, L., Liu, W., Liao, X., & Zhao, M. (2007).
Predicting Bus Arrival Time on the Basis of Global Posi-
tioning System Data. Transp. Res. Rec. J. Transp. Res.
Board , 2034 (2034), 62–72. doi: doi:10.3141/2034-08

Tang, K., Chen, S., & Khattak, A. J. (2018). Per-
sonalized travel time estimation for urban road
networks: A tensor-based context-aware ap-
proach. Expert Syst. Appl., 103 , 118–132. Re-
trieved from http://linkinghub.elsevier.com/

retrieve/pii/S0957417418301210 doi:
doi:10.1016/j.eswa.2018.02.033

Weng, B., Lu, L., Wang, X., Megahed, F. M., & Martinez,
W. (2018). Predicting short-term stock prices us-
ing ensemble methods and online data sources. Ex-
pert Syst. Appl., 112 , 258–273. Retrieved from
https://doi.org/10.1016/j.eswa.2018.06.016 doi:
doi:10.1016/j.eswa.2018.06.016

Williams, B. M., & Hoel, L. a. (2003). Modeling

14

http://dx.doi.org/10.1.1.579.2083
http://ieeexplore.ieee.org/document/7795686/
http://ieeexplore.ieee.org/document/7795686/
http://dx.doi.org/10.1109/ITSC.2016.7795686
http://dx.doi.org/10.1016/j.is.2015.12.001
http://dx.doi.org/10.1109/IJCNN.2000.861302
http://dx.doi.org/10.1007/3-540-44668-0_93
http://dx.doi.org/10.1162/089976600300015015
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://developers.google.com/maps/documentation/distance-matrix/
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
https://www.coursera.org/learn/neural-networks/lecture/YQHki/rmsprop-divide-the-gradient-by-a-running-average-of-its-recent-magnitude
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1007/s13398-014-0173-7.2
http://dx.doi.org/10.3141/1927-23
http://arxiv.org/abs/1707.01926
http://dx.doi.org/10.15662/IJAREEIE.2015.0501067
http://dx.doi.org/10.1061/(ASCE)TE.1943-5436.0000589
http://dx.doi.org/10.1016/j.eswa.2011.08.111
http://dx.doi.org/10.1016/j.eswa.2011.08.111
http://dx.doi.org/10.1016/j.eswa.2011.08.111
http://dx.doi.org/10.1016/j.trc.2015.03.014
http://dx.doi.org/10.1016/j.trc.2015.03.014
http://dx.doi.org/10.3844/jmssp.2011.353.355
http://dx.doi.org/10.5038/2375-0901.7.1.1
https://github.com/niklascp/bus-arrival-convlstm
https://github.com/niklascp/bus-arrival-convlstm
http://www.nctr.usf.edu/wp-content/uploads/2010/03/JPT-7-1.pdf{#}page=46
http://www.nctr.usf.edu/wp-content/uploads/2010/03/JPT-7-1.pdf{#}page=46
http://dx.doi.org/10.1.1.170.9999
http://dx.doi.org/10.1214/12-AOS1000
http://dx.doi.org/10.3141/2034-08
http://linkinghub.elsevier.com/retrieve/pii/S0957417418301210
http://linkinghub.elsevier.com/retrieve/pii/S0957417418301210
http://dx.doi.org/10.1016/j.eswa.2018.02.033
https://doi.org/10.1016/j.eswa.2018.06.016
http://dx.doi.org/10.1016/j.eswa.2018.06.016


and Forecasting Vehicular Traffic Flow as a Seasonal
ARIMA Process: Theoretical Basis and Empirical
Results. J. Transp. Eng., 129 (6), 664–672. doi:
doi:10.1061/(ASCE)0733-947X(2003)129:6(664)

Yu, B., Lam, W. H. K., & Tam, M. L. (2011). Bus Arrival Time
Prediction at Bus Stop with Multiple Routes. Transp.
Res. Part C Emerg. Technol., 19 (6), 1157–1170. doi:
doi:10.1016/j.trc.2011.01.003

Yu, B., Yang, Z.-Z., Chen, K., & Yu, B. (2010). Hybrid Model
for Prediction of Bus Arrival Times at Next Station. J.
Adv. Transp., 44 (3), 193–204. doi: doi:10.1002/atr.136

15

http://dx.doi.org/10.1061/(ASCE)0733-947X(2003)129:6(664)
http://dx.doi.org/10.1016/j.trc.2011.01.003
http://dx.doi.org/10.1002/atr.136

	1 Introduction
	1.1 Bus travel time prediction

	2 Related work
	3 Convolutional LSTM neural networks
	4 Multi-output model
	4.1 Network topology
	4.2 Data preparation
	4.3 Detrending
	4.4 Implementation and training

	5 Experiments
	5.1 Time resolution
	5.2 Evaluation

	6 Results and discussion
	6.1 Historical average
	6.2 Current model
	6.3 Pure LSTM
	6.4 Google Traffic
	6.5 Comparison

	7 Conclusion
	7.1 Future work


