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Abstract

We propose a novel DEA ranking based on a robust optimization viewpoint:
the higher ranking for those DMU’s that remain efficient even for larger simulta-
neous and independent variations of all data and vice versa. This ranking can be
computed by solving generalized linear fractional programming problems, but we
also present a tight linear programming approximation that preserves the order of
rankings. We show many remarkable properties of our approach: It preserves the
order of rankings compared to the classical approach, and it is unit invariant. It
is naturally normalized, so it can be used as universal ranking of DMU’s of unre-
lated models. It gives ranking not only for inefficient, but also for efficient decision
making units. It can also be easily extended to generalized or alternative models,
for instance to deal with interval data. We present several examples confirming
the desirable properties of the method.

Keywords: Data envelopment analysis, robustness, interval analysis, linear pro-
gramming.

1 Introduction

Data envelopment analysis (DEA) [8, 37] is a method for evaluating the performance of
a group of decision making units (DMU). The basic DEA model measures the DMU’s
such that it finds the most convenient weights of inputs and outputs factors such
that the relative efficiency is maximal. Here, the relative efficiency is expressed as the
weighted sum of outputs divided by the weighted sum of inputs . The classical CCR
model [4] for ranking the decision making unit 0 (denoted by DMU0) can be formulated
as a linear program

max yT0 u subject to xT0 v ≤ 1, Y u−Xv ≤ 0, u, v ≥ 0, (1)

where

• x0 ∈ R
n1 is the input nonnegative vector for DMU0,

• y0 ∈ R
n2 is the output nonnegative vector for DMU0,
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• X ∈ R
m×n1 is the input nonnegative matrix for the other DMU’s, in particular,

the ith row of X is the input vector for the ith DMU,

• Y ∈ R
m×n2 is the output nonnegative matrix for the other DMU’s, in particular,

the ith row of Y is the output vector for the ith DMU,

• u and v are vectors of variables representing output and input weights, respec-
tively.

We will consider this model even though other models exist [8] as well as more
economic compact formulations [21]. However, we will show (Section 3.7) that our
approach is easily extended to alternative models.

The aim of this paper is to bring a new efficiency ranking based on a robustness
point of view. This ranking could be used not only for comparing individual DMU’s (as
the classical DEA method), but also for measuring stability and distances to efficiency
or inefficiency.

There were already presented several robust optimization methods for DEA; see
[1, 15, 22, 24, 31, 32, 34] and see also related sensitivity and stability developments
in [7, 30]. Sensitivity analysis in DEA was primarily focused on perturbation of one
DMU. In particular, a linear programming method to compute Chebyshev and 1-norm
stability radius is proposed in [5] for an additive model and in [6] for a ratio (CCR)
model.

The above results mostly utilize robust optimization approach to deal with im-
precise data, or study sensitivity w.r.t. data variations. Our approach is substantially
different – we employ the robustness idea to propose a new ranking for DEA, which
may or may not contain uncertain data, such that it measures relative efficiencies and
their robustness in one. Similar idea was also discussed in [28], but data of only one
DMU were considered. In contrast, we employ simultaneously all data together. An-
other ranking of DMU’s based on robustness was proposed in [29], but their motivation
came up from game theory, and the ranking has another interpretation.

2 Robust approach

The underlying idea of the robust approach is to determine the largest allowable vari-
ations of all input and output data such that DMU0 remains efficient (for efficient
DMU’s) or the smallest possible variation of the input and output data such that
DMU0 becomes efficient (for inefficient DMU’s). The corresponding coefficient of vari-
ations gives us a new ranking based on a robustness viewpoint. In other words, it
can we viewed as a distance to the nearest inefficient point (for efficient DMU’s) and
vice verse. We choose a Chebyshev-like norm because it has a very simple and use-
ful interpretation; this is analogous to the interpretation of the tolerance approach to
sensitivity analysis in linear programming developed by Wendell [35, 36].

Formally, define the new ranking r as follows. We use the relative δ-neighborhood
of the data

Oδ(x0, y0,X, Y ) = {(x′0, y′0,X ′, Y ′); |x′ij − xij | ≤ δxij , |y′ik − yik| ≤ δyik, ∀i = 0, 1, . . . ,m, ∀j, k}.

If DMU0 is efficient, then its ranking is defined as r = 1 + δ∗, where

δ∗ = max δ subject to DMU0 is efficient for all data (x′0, y
′

0,X
′, Y ′) ∈ Oδ(x0, y0,X, Y ).
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If DMU0 is inefficient, then its ranking is defined as r = 1 + δ∗, where

δ∗ = −min δ subject to DMU0 is efficient for some data (x′0, y
′

0,X
′, Y ′) ∈ Oδ(x0, y0,X, Y ).

Notice that in the above optimization problems, the maximum or minimum value
needn’t be attained. It that case, we use supremum or infimum instead.

This ranking can be computed by only one optimization problem.

Theorem 1. We have

δ∗ = max δ subject to (1− δ)yT0 u ≥ 1, (1 + δ)xT0 v ≤ 1, (2a)

(1 + δ)Y u− (1− δ)Xv ≤ 0, u, v ≥ 0. (2b)

Proof. If DMU0 is efficient for all data (x′0, y
′

0,X
′, Y ′) ∈ Oδ(x0, y0,X, Y ), then it is also

efficient for x′0 := (1+ δ)x0, y
′

0 := (1− δ)y0, X
′ := (1− δ)X and Y ′ := (1+ δ)Y . Hence

the problem (2) is feasible. Conversely, if (2) is feasible, then DMU0 is efficient for
x′0 := (1+ δ)x0, y

′

0 := (1− δ)y0, X
′ := (1− δ)X and Y ′ := (1+ δ)Y . Obviously, DMU0

is efficient for any x′0 ≤ (1 + δ)x0, y
′

0 ≥ (1 − δ)y0, X
′ ≥ (1 − δ)X and Y ′ ≤ (1 + δ)Y .

Therefore, DMU0 is efficient for all δ-perturbation of data.

Suppose now that DMU0 is inefficient. If DMU0 becomes efficient for some δ′-
perturbation (x′0, y

′

0,X
′, Y ′) ∈ Oδ′(x0, y0,X, Y ), then (1− δ′)x0 ≤ x′0, (1 + δ′)y0 ≥ y′0,

(1+ δ′)X ≥ X ′ and (1− δ′)Y ≤ Y ′, and hence δ := −δ′ is feasible in (2). This gives us
the lower bound δ∗ ≥ −δ′. If DMU0 is efficient for no δ′-perturbation (x′0, y

′

0,X
′, Y ′) ∈

Oδ′(x0, y0,X, Y ), then (2) cannot be feasible for δ := −δ′, whence δ∗ ≤ −δ′.

The optimization problem (2) is a nonlinear programming problem, but it can
be solved effectively in polynomial time by a suitable interior point method. This is
because the problem belongs to the class of generalized linear fractional programming
problems, which have the form of

min λ subject to Ax ≤ λBx, Cx ≤ c, x ≥ 0,

where Bx ≥ 0 holds for all x satisfying Cx ≤ c, x ≥ 0. Such problems are solvable
in polynomial time; see [13, 26]. This class is called generalized linear fractional linear
programming because the problem can be equivalently expressed as

min

(

max
i

(Ax)i
(Bx)i

)

subject to Cx ≤ c, x ≥ 0.

The classical DEA ranking is computed by means of linear programming by solving
(1). Even though (2) is effectively solvable, it is desirable to have a linear programming
model, too, in order that the computing techniques and model class are the same. That
is why we now focus on a linear programming approximation of (2).

Substituting ũ := u/(1 − δ) and ṽ := v/(1 + δ) in (2), we obtain

δ∗ = max δ subject to yT0 ũ ≥ (1− δ)−2, xT0 ṽ ≤ (1 + δ)−2, (3a)

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0. (3b)

Using the linear approximation of the nonlinear terms around δ = 0 as follows

(1− δ)−2 ≈ 1 + 2δ, (1 + δ)−2 ≈ 1− 2δ,

3



we arrive at the linear programming approximation

max δ subject to yT0 ũ ≥ 1 + 2δ, xT0 ṽ ≤ 1− 2δ, (4a)

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0. (4b)

Rescaling the coefficient δ by the factor 1/2, we get

δ∗ =
1

2
max δ subject to yT0 ũ ≥ 1 + δ, xT0 ṽ ≤ 1− δ, (5a)

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0. (5b)

The resulting ranking. To avoid the division by 2 in (6) and for better scalability,
we propose the following DEA ranking. DMU0 has the ranking r = 1+ δ∗, where δ∗ is
the optimal solution of the linear program

δ∗ = max δ subject to yT0 ũ ≥ 1 + δ, xT0 ṽ ≤ 1− δ, (6a)

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0. (6b)

We will also consider for comparison the precise nonlinear model from Theorem 1

δ∗ = 2max δ subject to (1− δ)yT0 u ≥ 1, (1 + δ)xT0 v ≤ 1, (7a)

(1 + δ)Y u− (1− δ)Xv ≤ 0, u, v ≥ 0. (7b)

2.1 Fixed data

Sometimes it happens that certain part of data is inherently fixed and thus variation
of all data is not meaningful (cf. Example 1). Nevertheless, our approach is easily
adapted for this case. The decision on efficiency of DMU’s remains the same, only the
value of the ranking will be changed – increased for efficient DMU’s and decreased for
inefficient ones. For illustration suppose that the input data X are fixed.

The model is directly adapted to this form, and the precise nonlinear model (7) is
modified as

δ∗ = 2max δ subject to (1− δ)yT0 u ≥ 1, xT0 v ≤ 1,

(1 + δ)Y u−Xv ≤ 0, u, v ≥ 0.

This model has again a form of generalized linear fractional linear programming, and
therefore efficiently solvable.

An approximate linear model can be derived as follows. Substitute ũ := u and
ṽ := v/(1 + δ) to obtain

2max δ subject to yT0 ũ ≥ (1− δ)−1, xT0 ṽ ≤ (1 + δ)−1,

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0.

Linearizing nonlinear terms around zero, we get a linear model

2max δ subject to yT0 ũ ≥ 1 + δ, xT0 ṽ ≤ 1− δ,

Y ũ−Xṽ ≤ 0, ũ, ṽ ≥ 0.

This is exactly the double of the optimal value of (6).
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3 Properties of the robust approach ranking

The proposed ranking and the model (6) have many interesting and desirable prop-
erties. Besides the fact that it is based on how DMU’s are robustly stable in their
(in)efficiency, we further have the following properties. Notice that as for the classical
DEA ranking (the so called Units Invariance Theorem [8]), r is invariant to scaling
the units of input and output data. Since r can be larger than 1, it is related to the
notion of the so called super-efficiency pioneered by Andersen and Petersen [2]. Their
approach is, however, not units invariant [8].

3.1 Basic properties

The following theorem states some basic properties of the proposed ranking based on
(6). Notice that for the nonlinear model (7) we have r ∈ [−1, 3], but the conditions (2)
and (3) of Proposition 1 hold as well.

Proposition 1. We have

(1) r ∈ [0, 2],

(2) r ≥ 1 if and only if DMU0 is efficient,

(3) r < 1 if and only if DMU0 is inefficient.

Proof.

(1) We have r ≥ 0 since δ = −1, ũ = 0 and ṽ = 0 is feasible for (6). We have r ≤ 2
since δ > 1 cannot be feasible for (6) due to the constraint xT0 ṽ ≤ 1 − δ, which
would turn to xT0 ṽ < 0.

(2) If DMU0 is efficient, then δ = 0 is feasible for (6), and hence r ≥ 1.

If DMU0 is inefficient, then the linear system

yT0 u ≥ 1, xT0 v ≤ 1, Y u−Xv ≤ 0, u, v ≥ 0 (8)

is infeasible. We claim that

yT0 u ≥ 1 + ε, xT0 v ≤ 1− ε, Y u−Xv ≤ 0, u, v ≥ 0 (9)

it remains infeasible for some sufficiently small ε > 0; this gives r < 1. The claim
is not hard to see since if it is not the case, then for any ε > 0 the system (8) has
a solution uε, vε. The convex polyhedron described by (9) is inclusion monotonic
with respect to ε > 0. Thus, we can restrict to a bounded region, and as ε → 0,
the sequence of points uε, vε has an accumulation point u, v, which solves (8); a
contradiction.

(3) It follows from the previous point.
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3.2 Robustness interpretation

We see that the novel ranking does not change (in)efficiency of the classical ranking.
Moreover, we can use r as the measure of inefficiency and efficiency. For efficiency in
particular, such a measure was not much studied and the efficient DMU’s were just
ranked by the value of 1. However, the novel ranking r is more delicate and says how
much the efficient DMU’s are close to inefficiency. More specifically, if r = 1 + δ∗ ≥ 1,
then DMU0 is efficient for any variation of the data up to 50δ∗% of their nominal
values; moreover, all data coefficients may vary simultaneously and independently to
each other.

Example 1. Suppose that the outputs of three DMU’s A, B and C are

A : (2, 4), B : (3, 3), C : (4, 2).

1

2

3

4

1 2 3 4 5 y1

y2

A

B

C

According to the classical methods, all are considered as efficient with ranking 1.
However, a slight change of the outputs of B can change it and make B inefficient.
Our robust approach reflects it and ranks the DMU’s by 1.1429, 1 and 1.1429. This
means that B is on the border between efficiency and inefficiency, but still considered
as efficient, while A and C are more stable in their efficiency. They remain efficient for
any perturbation of the data values up to 7.14%.

In this example, however, the input data are fixed to be constantly one. Therefore,
it is suitable to utilize the methods from Section 2.1. Both the nonlinear model and its
linear approximation yield the same rankings 1.2857, 1, 1.2857, respectively. This says
that the output data may simultaneously and independently vary within 1

7 of their
nominal values and A,C remain efficient.

The above proposition also says that the ranking r lies in the interval [0, 2]. In
contrast to the classical DEA ranking, the novel ranking is thus naturally normalized.
In means that it can be used not only for comparing DMU’s in one model, but for
comparing DMU’s from different, even unrelated models. Thus, r gives as a universal
ranking.

Example 2. Suppose that we have a ranking of banks like

1.0062, 0.986, 1.0397, 1.024, 0.97263, 1.0009, 1.0438, 0.96441,

and suppose that we have a ranking of hospitals like

1.21, 0.65338, 1.3254, 0.6799, 1.0382, 0.60379, 0.89957, 1.2454.
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In the first case, all the banks have very similar ranking. Even though some are con-
sidered as efficient and some as inefficient, there is no substantial difference in their
performance. On the other hand, performance of particular hospitals differs a lot.
There are some considerably efficient and some highly inefficient. This example thus
shows the universal feature of our approach to ranking. Notice that the classical DEA
ranking cannot provide such an apparent conclusion.

3.3 Order comparison

Proposition 2. The DMU list sorted by (6) is the same as the DMU list sorted by
the classical DEA ranking.

Proof. Substituting û := ũ/(1 − δ) and v̂ := ṽ/(1− δ), the problem (6) yields

max δ subject to yT0 û ≥ 1 + δ

1− δ
, xT0 v̂ ≤ 1,

Y û−Xv̂ ≤ 0, û, v̂ ≥ 0.

The classical DEA ranking can be formulated as

max α subject to yT0 u ≥ α, xT0 v ≤ 1, Y u−Xv ≤ 0, u, v ≥ 0.

Since the function (1 + δ)/(1 − δ) is increasing on δ ∈ [−1, 1), both rankings are sorted
in the same way.

This observation shows the favourable property that new ranking does not reverse
the order between DMU’s based on the classical approach. The ranking values itself
are of course different in general.

The following observation shows the same property for the original robust ranking
approach based on the generalized linear fractional program (7). Therefore the linear
programming approximation (6) is tight and preserves the order of rankings produced
by (6).

Proposition 3. The DMU list sorted by (7) is the same as the DMU list sorted by
the classical DEA ranking.

Proof. Rewrite (7) to (3), and then use substitution û := ũ(1+ δ)2 and v̂ := ṽ(1+ δ)2.
We get

max δ subject to yT0 û ≥ (1 + δ)2

(1− δ)2
, xT0 v̂ ≤ 1,

Y û−Xv̂ ≤ 0, û, v̂ ≥ 0.

Again, the function (1 + δ)2(1− δ)−2 is increasing on δ ∈ [−1, 1), so both rankings are
sorted in the same way.

Proposition 4. Denote by r, r(6) and r(7) the classical CCR and the ranking computed
by (6) and (7), respectively.

(1) If DMU0 is efficient, then r ≤ r(6) ≤ r(7).

7



(2) Let DMU0 be inefficient. Then r(7) ≤ r(6) and r ≤ r(6). Moreover, r ≤ r(7)

provided r(7) ≥ 3− 2
√
2 ≈ 0.1716.

Proof. Let DMU0 be efficient. Then r = 1 ≤ r(6), so it remains to prove r(6) ≤ r(7).
Let ũ, ṽ, δ be an optimal solution to (4). Define u := α

1+δ
ũ and v := α

1−δ
ṽ, where α > 0

is a parameter. Then u, v, δ satisfy (7b) and

(1 + δ)yT0 u ≥ α(1 + 2δ), (1− δ)xT0 v ≤ α(1− 2δ).

In order to fulfill (1 + δ)xT0 v ≤ 1, we put α := 1−δ
(1+δ)(1−2δ) . The first of the above

inequalities then reads

(1 + δ)yT0 u ≥ (1− δ)(1 + 2δ)

(1 + δ)(1 − 2δ)
.

In order that (1− δ)yT0 u ≥ 1, it must hold

(1− δ)2

(1 + δ)2
1 + 2δ

1− 2δ
≥ 1.

Simple manipulation shows that this is true whenever δ ≥ 0, which is our case. Thus,
u, v, δ is feasible for (6).

Let DMU0 be inefficient. First we prove r(7) ≤ r(6). Let u, v, δ be an optimal solution
to (7). Define ũ := α(1 + δ)u and ṽ := α(1 − δ)v, where α > 0 is a parameter. Then
ũ, ṽ, δ satisfy (4b) and

(1− δ)yT0 ũ ≥ α(1 + δ), (1 + δ)xT0 ṽ ≤ α(1− δ).

In order to fulfill xT0 ṽ ≤ 1 − 2δ, we put α := (1−2δ)(1+δ)
1−δ

. The first of the above
inequalities then reads

(1− δ)yT0 ũ ≥ (1− 2δ)(1 + δ)2

1− δ
.

In order that yT0 ũ ≥ 1 + 2δ, it must hold

(1− 2δ)(1 + δ)2

(1− δ)2
≥ 1 + 2δ.

Manipulations as above show that this is true as long as δ ≤ 0, which is our case. Thus,
ũ, ṽ, δ is feasible for (4).

Now we prove r ≤ r(6). Let u, v be an optimal solution to the CCR model (1),
and define substitution δ := (yT0 u − 1)(yT0 u + 1)−1 < 0, ũ := (1 − δ)u, ṽ := (1 − δ)v.
Then δ, ũ, ṽ satisfies (6b) and the second inequality in (6a). By definition of δ, we have
yT0 u = (1+δ)(1−δ)−1, from which it follows that the first inequality in (6a) is satisfied
and yT0 ũ = 1 + δ ≤ r(6).

Eventually, we prove r ≤ r(7). Let ũ, ṽ be an optimal solution to the CCR model
(1), and define substitution u := αũ, v := βṽ, where α, β > 0 are parameters to be
specified. In order that v satisfies the second inequality in (7a), we put β := (1+ δ)−1.
In order that the first inequality in (7b) is a multiple of the inequality Y ũ−Xṽ ≤ 0,
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we consider the equation (1 + δ)α = (1 − δ)β, from which α = (1 − δ)(1 + δ)−2. In
order that the first inequality in (7a) holds as equation, we have the constraint

(1− δ)yT0 αũ = 1,

or
(1− δ)2(1 + δ)−2yT0 ũ = 1,

giving raise to the value of δ < 1. Now, r ≤ r(7) holds true when r = yT0 ũ ≤ 1 + 2δ
(herein, 2δ is the objective value of (7)), which equivalently reads

(1− δ)−2(1 + δ)2 ≤ 1 + 2δ,

from which δ ∈ [1 −
√
2, 0]. Therefore the condition holds true provided δ ≥ 1 −

√
2,

or one of r, r(7) is at least 3− 2
√
2.

The proposed robust approach ranking is suitable for diverse kinds of generaliza-
tions of the standard DEA model.

3.4 Interval data

Our approach is suitable to deal with interval data, too. Suppose we are given interval
data [x0, x0], [y0, y0], [X,X ] and [Y , Y ], covering the not exactly known data x0, y0, X
and Y , respectively. The traditional approach to deal with interval data is to determine
the best case and worst case rankings [9, 10, 11, 20, 23, 25]; the same idea is used in
other interval-valued linear programming models [12, 17, 18]. The best case happens
in the setting x0 := x0, y0 := y0, X := X and Y := Y , and the worst case happens
for x0 := x0, y0 := y

0
, X := X and Y := Y . Thus, it is sufficient to solve (6) twice for

both settings, and we get the efficiency range [r, r] of all possible rankings. The value
of r ≥ 1 means that DMU0 is always efficient, whereas r < 1 means that DMU0 is
efficient for no possible realization of interval data.

3.5 Additional DMU

Let us now consider the situation when there is an additional DMU with input data
vector xa and output data vector ya, and the question now states: How the current
ranking will change? Obviously, the additional DMU means a novel constraint in the
optimization formulation, so the ranking cannot increase; it can only remain the same
or decrease. For both the classical and novel rankings, the set of the additional data that
are unfavourable in the sense that DMU0 leaves off efficiency, has a nice geometrical
form.

Proposition 5. Suppose DMU0 is efficient. For both models (1) and (6), the set of
all values xa ∈ R

n1 and ya ∈ R
n1 causing DMU0 to be inefficient forms a convex set

the closure of which is a convex polyhedron.

Proof. On account of Proposition 1, it is sufficient prove it for the model (1) only.
DMU0 is inefficient iff the linear system of inequalities

yT0 u ≥ 1 xT0 v ≤ 1, Y u−Xv ≤ 0, u, v ≥ 0, (10)

9



is infeasible. Let K be the convex cone generated by the constraints

yT0 u ≥ 1 xT0 v ≤ 1, Y u−Xv ≤ 0, u, v ≥ 0,

that is, the smallest convex cone containing the points described by these constraints.
Its closure is a convex polyhedral cone, but this cone itself needn’t be closed since (10)
needn’t be bounded. Then DMU0 in the model with the additional DMU is inefficient
iff the linear program

min yTa u− xTa v subject to (uT , vT ) ∈ K
has the unique minimizer at the origin. Denoting h1, . . . , hp the extremal directions of
K, we can reformulate it as

(uT , vT )hi < 0 or (uT , vT )hi ≤ 0, i = 1, . . . , p,

where the strict inequality is when hi ∈ K and the non-strict inequality is when hi lies
in the closure of K only. This characterizes the convex set the closure of which is a
convex polyhedral cone.

Notice that linear programming problems depending on some parameters are thor-
oughly investigated in [14, 27].

3.6 Additional inputs or outputs

How will the ranking be affected by the situation when the decision maker gives an
additional input or output [33]? Apparently, the efficiencies cannot worsen, so they
remain the same or increase. The set of the additional data that are favourable in the
sense that an inefficient DMU0 becomes efficient, has again a nice geometrical form.
Consider the situation one output vector (yb, yc) is added.

Proposition 6. Suppose DMU0 is inefficient. For both models (1) and (6), the set of
all values (yb, yc) ∈ R

1+m causing DMU0 to be efficient forms a convex set the closure
of which is a convex polyhedron.

Proof. DMU0 is efficient in the extended model iff the linear system of inequalities

ybu0 + yT0 u ≥ 1, xT0 v ≤ 1, ycu0 + Y u−Xv ≤ 0, u, v ≥ 0

is feasible. By the Farkas lemma, the dual system

−ybz1 + yTc z3 ≥ 0, −y0z1 + Y T z3 ≥ 0, x0z2 −XT z3 ≥ 0, −z1 + z2 ≤ −1, z1, z2, z3 ≥ 0

is equivalently infeasible. Let K be the convex cone generated by the constraints

−y0z1 + Y T z3 ≥ 0, x0z2 −XT z3 ≥ 0, −z1 + z2 ≤ −1, z1, z2, z3 ≥ 0.

Then DMU0 is efficient iff the linear program

max −ybz1 + yTc z3 subject to (z1, z2, z
T
3 ) ∈ K

has the unique maximizer at the origin. Denoting h1, . . . , hp the extremal directions of
K, we can reformulate it as

(uT , vT )hi < 0 or (uT , vT )hi ≤ 0, i = 1, . . . , p,

where the strict inequality is when hi ∈ K and the non-strict inequality is when hi lies
in the closure of K only.
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3.7 BCC model

Our robust approach to DMU ranking is suitable for employing various alternative
models to CCR, and the evaluation technique is easily adapted. For illustration, con-
sider the BCC model originally proposed by Banker et al. [3]; see also [8, 37]. The
ranking of the test unit is computed by the linear program

max yT0 u− v0 subject to xT0 v ≤ 1, Y u−Xv − 1v0 ≤ 0, u, v ≥ 0, (11)

where v0 is an additional free variable and 1 is a vector of ones with convenient dimen-
sion.

Proceeding similarly as for the CCR model, we arrive at the following robust BCC
model. The ranking of DMU0 is r = 1 + δ∗, where

δ∗ = 2max δ subject to (1− δ)yT0 u− v0 ≥ 1, (1 + δ)xT0 v ≤ 1, (12a)

(1 + δ)Y u− (1− δ)Xv − 1v0 ≤ 0, u, v ≥ 0. (12b)

Again, this model belongs to the family of generalized linear fractional linear program-
ming problems, and thus can be solved in polynomial time. Nevertheless, finding a
linear programming approximation is still a useful issue.

Substitute ũ := u/(1− δ), ṽ := v/(1 + δ) and ṽ0 := v0/(1− δ2). We get

2max δ subject to yT0 ũ− 1 + δ

1− δ
ṽ0 ≥ (1− δ)−2, xT0 ṽ ≤ (1 + δ)−2, (13a)

Y ũ−Xṽ − 1ṽ0 ≤ 0, ũ, ṽ ≥ 0. (13b)

Linearizing the nonlinear terms as follows

(1− δ)−2 ≈ 1 + 2δ, (1 + δ)−2 ≈ 1− 2δ,
1 + δ

1− δ
ṽ0 ≈ ṽ0,

and rescaling δ, we arrive at a linear programming model

δ∗ = max δ subject to yT0 ũ− ṽ0 ≥ 1 + δ, xT0 ṽ ≤ 1− δ, (14a)

Y ũ−Xṽ − 1ṽ0 ≤ 0, ũ, ṽ ≥ 0. (14b)

Now, we state some basic properties. Similarly as in Section 3.1, we derive the
following.

Proposition 7. For both the nonlinear model (12) and linear model (14) we have

(1) r ≥ 1 if and only if DMU0 is efficient,

(2) r < 1 if and only if DMU0 is inefficient.

Proposition 8. For the nonlinear model (12) we have r ∈ [−1, 3], and for the linear
model (14) we have r ∈ [0, 2].

Proposition 9. The order of DMU’s sorted by (12) and (14) is the same as the DMU
list sorted by the classical BCC model.
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Proof. Starting from (13), the model equivalently reads

max δ subject to
1

(1 + δ)2
yT0 û− 1

1− δ2
v̂0 ≥

1

(1− δ)2
, xT0 v̂ ≤ 1,

Y û−Xv̂ − 1v̂0 ≤ 0, û, v̂, v̂0 ≥ 0,

using substitution û := ũ(1 + δ)2, v̂ := ṽ(1 + δ)2 and v̂0 := ṽ0(1 + δ)2. Rewrite the
problem as

max δ subject to
1− δ

1 + δ
yT0 û− v̂0 ≥

1 + δ

1− δ
, xT0 v̂ ≤ 1, (15a)

Y û−Xv̂ − 1v̂0 ≤ 0, û, v̂, v̂0 ≥ 0. (15b)

Notice that the BCC model (11) is equivalent to

max α subject to yT0 u− v0 ≥ α, xT0 v ≤ 1, Y u−Xv − 1v0 ≤ 0, u, v ≥ 0.

Now, the statement follows from the fact that function (1+δ)(1−δ)−1 is increasing on
δ ∈ [−1, 1) and the function (1− δ)(1+ δ)−1 is decreasing on δ ∈ (−1, 1]. The former is
the right-hand side in (15a), and the latter is the coefficient by the non-negative term
yT0 û therein.

For (14) the proof is analogous.

4 Examples

Rather than a case study, we present several illustrative examples. They show the
particular properties of the proposed ranking as discussed above.

Example 3. Consider the example from [8, Table 1.5]. The data displayed in Table 1
record two inputs (doctors and nurses) and two outputs (outpatients and inpatients) for
12 hospitals. The last three columns show the classical efficiency and the novel efficiency
based on the robust approach by using the linear programming approximation or the
generalized linear fractional programming formulation, respectively

The computed results confirm that the linear programming model (6) is indeed
a very good approximation of (7) with the highest error 0.2% and the average error
0.025%. Therefore we can utilize it for computing the efficiencies instead.

We also see satisfaction of the properties of Propositions 2 and 3 that the classical
method yields the same order of efficiencies as our approach. Moreover, we can interpret
the efficiencies based on their robustness aspect. Thus we can claim that hospital A
is very efficient since it remains efficient even for rather large variations of data – all
data can arbitrarily and independently perturb up to 8.54% of their nominal values
while preserving efficiency. In contrast, hospital D is only little efficient and close to
inefficiency – only 0.4% variations are admissible and higher variations of data may
result in inefficiency. From the other side, hospitals E and H are quite inefficient as
they remain inefficient for any perturbation of data up to about 6%, but hospitals I,
K and L are nearly efficient – they can achieve efficiency by a suitable 1.15%-variation
of data.
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Table 1: (Example 3) DEA with hospital data and resulting efficiencies.

DMU doctors nurses outpatients inpatients classical eff. new eff. by (6) new eff. by (7)

A 20 151 100 90 1 1.1696 1.1708
B 19 131 150 50 1 1.0843 1.0845
C 25 160 160 55 0.8827 0.9377 0.9376
D 27 168 180 72 1 1.0079 1.0079
E 22 158 94 66 0.7635 0.8659 0.8653
F 55 255 230 90 0.8348 0.9100 0.9097
G 33 235 220 88 0.9020 0.9485 0.9484
H 31 206 152 80 0.7963 0.8866 0.8863
I 30 244 190 100 0.9604 0.9798 0.9798
J 50 268 250 100 0.8707 0.9309 0.9307
K 53 306 260 147 0.9551 0.9770 0.9770
L 38 284 250 120 0.9582 0.9787 0.9787

Table 2: (Example 4) DEA with interval data.

DMU X1 Y1 Y2 efficiency by [16] novel efficiency

A 1 [0.8, 1.2] [7.50, 8.50] [1, 1] [1.0169, 1.1148]
B 1 [1.8, 2.2] [2.50, 3.50] [0.4222, 0.6227] [0.5937, 0.7675]
C 1 [1.6, 2.4] [5.75, 6.25] [0.7297, 0.9167] [0.8437, 0.9566]
D 1 [2.5, 3.5] [2.75, 3.25] [ 0.5247, 0.7809] [0.6882, 0.8770]
E 1 [2.8, 3.2] [6.75, 7.25] [0.9646, 1] [0.9819, 1.1292]
F 1 [3.8, 4.2] [1.83, 2.17] [0.6131, 0.7806] [0.7601, 0.8768]
G 1 [3.4, 4.6] [4.50, 5.50] [0.7940, 1] [0.8852, 1.0643]
H 1 [4.7, 5.3] [1.50, 2.50] [0.6984, 0.9635] [0.8224, 0.9814]
I 1 [5.6, 6.4] [1.67, 2.33] [0.8229, 1] [0.9028, 1.0482]
J 1 [6.7, 7.3] [0.75, 1.25] [1, 1] [1.0229, 1.1318]

Example 4. Consider the example from [11, 16] with one-dimensional input and two-
dimensional interval output for 10 DMU’s. The data as well as the computed results
by [16] and by our approach are given in Table 2.

We see that DMU’s A and J are efficient for each realization, whereas B, C, D,
F, and H are inefficient for each realization; the others may or may not be efficient.
This conclusion is the same as observed in [16]. Nevertheless, in comparison to [16],
informative value of our ranking is higher. First, we measure the degree of efficiency
instead of ranking them by 1. Second, the ranking measures distance to (in)efficiency.
Thus we see, for example, B or F are far to efficiency while H is possibly closer. We
can also claim that E is either efficient or very close to efficiency for each realization.

Example 5. Consider Example 4.1 from [8] with one-dimensional input and output
for 8 DMU’s. The data as well as the computed results by the linear model (14) are
displayed in Table 3.
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Table 3: (Example 5) BCC model.

DMU input output classical BCC robust BCC

A 2 1 1 1.00
B 3 3 1 1.05
C 2 2 1 1.11
D 4 3 0.75 0.86
E 6 5 1 1.14
F 5 2 0.40 0.57
G 6 3 0.50 0.67
H 8 5 0.75 0.86

1

2

3

4

5

1 2 3 4 5 6 7 8 9 x

y

A

B

C

D

E

F

G

H

We see that the efficient units are the same for the classical BCC model and for our
robust counterpart. Nevertheless, our model provides more information. We see directly
that the unit A is not stable and arbitrarily small perturbation makes it inefficient. We
also see that the units C and E are the most stable ones and they stay efficient even
for more than 5% variation of data. On the other hand, DMU F is the most inefficient
and it remains inefficient for arbitrary perturbation of the data up to 21%.

5 Conclusion

We proposed a new DEA ranking that is based on robustness of DMU’s of their
(in)efficiency. This ranking has many attractive properties. As the classical DEA rank-
ing, it is computable by means of linear programming, it is invariant with respect to
scaling, and it gives a measure of efficiency as a distance to inefficiency and vice versa.
In addition, the novel approach is naturally normalized, so it is suitable as a universal
ranking technique of DMU’s of possibly completely different models. It is also suitable
for further generalization. We discussed models with interval data as an important
extension of the classical real-valued problems, and also an adaptation to the BCC
model.

We presented several examples that confirm interpretability of the novel efficiency
ranking as well as applicability for model with real or interval data. Attractivity of our
approach is confirmed by an early application by Holý & Šafr [19].
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