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Abstract

The process of determining relevant landmarks within a certain region is a challenging

task, mainly due to its subjective nature. Many of the current lines of work include

the use of density-based clustering algorithms as the base tool for such a task, as they

permit the generation of clusters of different shapes and sizes. However, there are

still important challenges, such as the variability in scale and density. In this paper,

we present two novel density-based clustering algorithms that can be applied to solve

this: K-DBSCAN, a clustering algorithm based on Gaussian Kernels used to detect

individual inhabited cores within regions; and V-DBSCAN, a hierarchical algorithm

suitable for sample spaces with variable density, which is used to attempt the discovery

of relevant landmarks in cities or regions. The obtained results are outstanding, since

the system properly identifies most of the main touristic attractions within a certain

region under analysis. A comparison with respect to the state-of-the-art show that

the presented method clearly outperforms the current methods devoted to solve this

problem.
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1. Introduction

The main goal of automatic landmark detection is to determine, within a certain

distribution, concealed regions or points that are particularly relevant, given a specific

criterion. Landmark detection is a particularly challenging task, often due to the dif-

ficulty of determining relevant characteristics that support the identification of a land-5

mark. A usual property to identify landmarks is their popularity, meaning that if an

event, area or attribute within a sample space is recurrent, it should be considered as a

landmark.

Clustering-based approaches are often taken to address the automatic discovery

of landmarks in various fields (Bernard et al., 2013; El-Feghi et al., 2004). Particu-10

larly, real-world landmark discovery applications often focus on spatial datasets (Elias,

2003). Within this context, the discovery of touristic landmarks is a field worth study-

ing. Expert tools to support the tourist industry have been previously developed, e.g.,

an application to detect unexpected behavior and prevent or mitigate undesired situa-

tions within cities (Cerezo-Costas et al., 2018) or a personalized route-planner based15

on social-media data (Cenamor et al., 2017). Nonetheless, the discovery of relevant

landmarks is a particularly recurrent topic among the state-of-the-art (Cao et al., 2010;

Tang and Meng, 2006; Feng et al., 2015). The angle of the approach, however, is

immensely variable.

In some works, textual contributions such as geo-located tweets have been used20

as part of a place-relevance detector (Frias-Martinez et al., 2012); in others, user-

generated images are employed and their visual properties can be used to discrimi-

nate between landmarks (Papadopoulos et al., 2011). In this sense, the most common

approach relies on geo-located images (Zheng et al., 2009; Lee et al., 2014), as they

provide both location and visual information, which notably boosts the performance25

of the detection process. In some cases, additional meta-data attached to the source

images can be also used to refine the process (Kisilevich et al., 2010).

Although the use of images and geo-located content provides powerful cues for

landmark discovery, it also introduces some challenges. One example of this is that the

spatial areas associated to real-world landmarks (e.g., parks, buildings) have arbitrary30
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shapes and, therefore, are not easy to model with traditional centroid-based clustering

over GPS-coordinates. To cope with this issue, spectral and density-based clustering

have been employed (Ji et al., 2011; Zhou et al., 2015) and showed decent results.

However, mainly due to the fact that most approaches focus on presenting solutions for

large cities or individual conurbations, there is a particular problem that has not been35

properly solved yet: scale and density variability along the sample set. This problem

is frequently encountered when the area of analysis is a region that consists of several

non-connected inhabited cores (e.g., a coastal area composed of several villages). Hi-

erarchical approaches can become a decent solution for the problem of scale (McInnes

et al., 2017), whereas variations in density have been also considered and modeled in40

some previous works (Kisilevich et al., 2010). However, as we will demonstrate in the

experimental section, neither of them provide appropriate results in a generic scenario.

In this work, we present two novel density-based clustering algorithms (K-DBSCAN

and V-DBSCAN) that have a direct applicability on the task of automatic landmark de-

tection. We will prove that the combination of these two algorithms adapts to both45

urban and rural areas, whether they consist of a single dense conurbation or of several

non-connected inhabited cores. We take ideas from previous approaches and develop

a new clustering scheme to address the problem of varying density along the sample

space. Particularly, we make several assumptions regarding the radial distribution of

human inhabited areas, and carry out a granularity analysis of the area, which proves50

to be very efficient dividing a large region into different towns or villages.

Summarizing, the main novel contributions of this research are the following:

1. A Kernel-based variation of DBSCAN (K-DBSCAN), which aims at identifying

arbitrarily-shaped groups of points within a significantly sparse sample-space,

without previous knowledge of the amount of resulting clusters. This algorithm55

will be applied to the discovery of non-connected human settled areas (towns,

villages) within a region of analysis.

2. A multi-scale variation of DBSCAN that takes into account the variations in

density when moving away from the centroid of the data (V-DBSCAN). This

algorithm will be used for the discovery of relevant landmarks within a connected60
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region, considering user-provided, geodesic and text-based information.

3. A novel public dataset, made from user-generated contents, which contains six

heterogeneous locations, from single conurbations to larger regions with non-

connected cores.

The remainder of this document is structured as follows: in Section 2, the problem65

addressed is stated and the related state-of-the-art is briefly reviewed. In Section 3, the

proposed novel algorithms are explained in detail. In Section 4, the direct application of

the algorithms is defined, including the data gathering and pre-processing techniques

used. In Section 5, the experiments to prove its applicability are described, and the

obtained results are discussed. Finally, the conclusions and future lines of work are70

posed in Section 6.

2. Related work

The object of our research is the following: given an initial set of data points dis-

tributed with variable density along the sample space, group them into different clusters

-representing the most relevant landmarks- allowing for arbitrary shapes and sizes. A75

common example of data whose density varies throughout a sample space is geograph-

ical data.

This section first describes and justifies the sources considered to analyze the prob-

lem. Then, it discusses the most employed techniques to tackle landmark discovery.

2.1. Source analysis80

First, it is important to clarify the type of landmarks to be discovered (touristic at-

tractions, trending restaurants, events, etc.) as this will heavily impact the source of the

data to analyze. A relevant source to provide geo-located content is Twitter 1, which is

often used as base for event exploration (Feng et al., 2015; Becker et al., 2011). It has

also been used to determine specific locations, like pinpointing user’s homes (Lin and85

Cromley, 2018). However, the research in Frias-Martinez et al. (2012) regarding the

1https://twitter.com/
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discovery of relevant physical landmarks showed that among the resulting predicted

landmarks, points unrelated to tourism (like crowded train stations or commercial ar-

eas) were also discovered. Other sources, like Foursquare 2 and Instagram 3, have

similar problems, since users also tend to publish their content related to places with90

no touristic interest (Noulas et al., 2011; Jayarajah and Misra, 2016). Additionally,

these last two have very restricted API usage. In this context, when it comes to the

discovery of touristic landmarks, Flickr 4 is a much more appropriate source. Flickr is

a web platform that stores user-generated multimedia content. In addition, users enrich

their contents with useful meta-data (geo-location, descriptive tags, user identification,95

etc.). This information can be used to retrieve relevant touristic landmarks from certain

regions (Kennedy et al., 2007; Ji et al., 2011).

2.2. Clustering methods for Landmark Discovery

The detection of landmarks by clustering geographical data is a recurrent research

topic (Cao et al., 2010; Tang and Meng, 2006). Several clustering algorithms have been100

considered in the literature for this purpose, some of them being better tailored to the

task.

A classic partitioning algorithm such as Mean-Shift (Comaniciu and Meer, 2002)

has been previously employed in Cao et al. (2010) to attempt the discovery of rel-

evant touristic landmarks in a worldwide dataset. However, the scenario considered105

in the mentioned research is far too generic and, as we will show in our experiments,

Mean-Shift fails to adapt to more realistic datasets. Another classic algorithm, k-means

(MacQueen et al., 1967), performs reasonably well working with spatial data when the

number of output clusters is known (Wagstaff et al., 2001). Unfortunately, a method

for determining this parameter a priori is not trivial in our scenario, as the number of110

landmarks strongly depends on the area of analysis. Furthermore, focusing on the use

of GPS coordinates, we must take into account that the shape of a cluster represent-

ing a landmark might be irregular, which prevents the use of centroid-based clustering

2https://foursquare.com/
3https://www.instagram.com
4https://www.flickr.com/

5



techniques. Instead, spectral clustering and density-based clustering approaches have

often been taken to detect touristic landmarks, as they both allow the formation of115

arbitrarily-shaped clusters.

The main benefit of Spectral Clustering is often dimensionality reduction (Ji et al.,

2011). However, in the application addressed in this paper the spatial features are

always going to be incredibly relevant among the different types of meta-data. As a

result, if a dimensionality reduction is attempted, we run the risk of eventually reducing120

the problem to spatial clustering without any other meta-data for support. Nonetheless,

in Yang et al. (2011), landmark detection is attempted using a hierarchical algorithm

based on binary trees divided with spectral clustering, but the proposed system yields

unacceptable recall values, and non-automatable assumptions (such as dismissing all

resulting clusters that do not fall near a labeled landmark) must be made in order to125

achieve and assess landmark detection.

On the other hand, density-based algorithms have been applied to this particular

task. Methods like the seminal DBSCAN algorithm (Ester et al., 1996), which packs

together points with respect to their vicinity, fit well with our assumptions. The original

DBSCAN has been used on the particular task of landmark detection (Tang and Meng,130

2006) and, additionally, several extensions of the algorithm have been proposed to deal

with particular aspects of the problem: P-DBSCAN proposes the use of the number of

users in a vicinity of a potential core point instead of simply considering the number

of adjacent points (Kisilevich et al., 2010), thus limiting the influence of users upload-

ing many pictures into the same location. The aforementioned work also includes a135

modification of the DBSCAN expansion function that handles the change of density

within the sample space (Adaptive Density). Although these extensions adapt well to

the problem of landmark detection, we will prove in this paper that they are not robust

enough to perform landmark discovery on diverse geographical areas. Another recent

algorithm is H-DBSCAN (McInnes et al., 2017), which addresses the varying density140

of a sample space using different values for the scale parameter, seeking a stable solu-

tion. However, the approach of the algorithm is quite generic, as it was not conceived to

solve this particular problem, but to perform clustering within an n-dimensional sample

space. In our context, H-DBSCAN can be applied over the GPS coordinates of photos
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Figure 1: Results produced by DBSCAN for different values of ε (decreasing from left to right) applied to
an artificial set of points.

to discover landmarks of interest. However, GPS coordinates are not sufficient to solve145

the problem by themselves. Our proposal here is to consider both the spatial features

and the user-provided information in the samples, along with a crucial assumption of

density variation, thereby solving this issue.

In conclusion, we have seen that there have been many attempts to solve this task

using only geodesic coordinates, but without the support of additional sample meta-150

data (user information, descriptive tags) the systems fall short. Additionally, even for

the cases where additional meta-data is considered, we will prove that the algorithms

discussed in this paper are better suited for the problem at hand, outperforming all the

methods currently being used for landmark detection.

3. Proposed algorithms155

In this section, two novel algorithms for density-based clustering are presented:

K-DBSCAN and V-DBSCAN. They are both variations of the well-known DBSCAN

algorithm, particularly exploiting a crucial parameter: the ε distance. Conceptually,

this parameter is used to determine at which scale the clustering is performed (see

Fig. 1).160

The first algorithm, K-DBSCAN, estimates the underlying density distribution of a

given sample space in order to identify relevant peaks to which all the points will be
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Figure 2: Kernel Density Estimation for an artificial set of points from 3 Normal distributions (a) with two
bandwidth factors h = 0.2 (b) and h = 0.8 (c).

assigned based on density-reachability. On the other hand, V-DBSCAN takes advantage

on the assumption of a gradual density drop when moving away from the centroid of

the dataset, following a divisive approach to find arbitrarily-shaped clusters.165

3.1. K-DBSCAN: Kernel-Density-Based Spatial Clustering of Applications with Noise

This algorithm groups sets of data in different clusters according to the density

in the sample space. However, unlike many density-based clustering approaches, K-

DBSCAN attempts to determine the number of resulting clusters prior to the clustering

step. This is done by estimating the underlying distribution in the sample space and170

selecting its peaks.

The first step of K-DBSCAN is a Kernel Density Estimation (KDE) with Gaussian

kernels (Scott, 2015) to estimate the underlying distribution fKDE(p) for the input

vector p = {p1, p2, ..., pN}. At this point, the first of two specific parameters of this

algorithm is specified: the bandwidth factor of the Gaussian kernels h, which is used to175

scale the covariance matrix of the data. This parameter impacts the scale of the analysis,

since increasing the bandwidth factor will result in larger, less numerous convex areas

of the estimated distribution (see Fig. 2).

The next step is to obtain the number of output clusters. To this end, all local

maxima (stored in vector p∗ = {p∗1, p∗2, ..., p∗M∗ ) are analyzed to check their validity as180

a cluster centroid. This is done through a measure of topographic prominence (Llobera,

2001). The topographic prominence tp of a peak is given by the vertical distance

between the peak and its key col. The key col of a peak is the highest possible point
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to which we have to descend in order to climb again from it to a higher point of the

distribution. This feature is useful to determine the independence of a peak.185

We therefore analyze local maxima in the KDE distribution, and use prominence

to decide which of them must be considered independent cluster centroids. In order to

provide a generic criterion for this decision and given that the range of potential values

of prominence strongly depends on the data distribution, we compute a normalized

topographic prominence as follows: given a local maximum found in location p∗i ∈ p∗,190

the normalized topographic prominence ntp(p∗i ) is:

ntp(p∗i ) =
tp(p∗i )

fKDE(p∗i )
(1)

At this point, we have a notion of the relevance (given by its prominence) of each

local maxima, and we now need to decide which are kept as cluster centroids. For this,

the value ntp(p∗i ) is compared to a lower bound t, and all p∗i ∈ p∗ that do not satisfy this

threshold are discarded (for being too dependent on another maxima), yielding cluster195

centroid vector c = {c1, c2, ..., cM}. This threshold t is the second of the two specific

parameters of the algorithm, and it will impact the algorithm’s sensitivity to crowded

areas with variable internal density. In other words, it determines how close should two

intertwined groups of points be to be considered as part of the same group. This can

be appreciated in Fig. 2, where one could consider 3 groups of points determined by200

each of the 3 normal distributions (low value of t) or 2 groups determined by joining

the two distributions on the left (high value of t).

Once the cluster centroids c are identified, each data sample pi ∈ p must be as-

signed to a centroid. This assignment is not trivial, and cannot be done by simple

proximity since this would alter the nature of the problem, where we are dealing with205

arbitrary cluster shapes. In fact, in order to preserve the essence of the data distribu-

tion, assignments must be done according to a density-based clustering algorithm. To

this end, a modified version of DBSCAN is used to iteratively assign all samples to the

correct centroid, i.e., the one that lies at a given local maximum ci ∈ c for which the

path from p to ci is a monotonously increasing function.210

In order to provide a more precise and formal description of K-DBSCAN, a pseudo-
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Algorithm 1 Assignment phase of algorithm K-DBSCAN.
Input: A set of points p, a sub-set of M cluster centroids c, initial parameters
(ε0,MinPts), neighborhood radius update factor (ηε).
Output: Set of clusters C

1: function ASSIGN(p, c, ε0, MinPts, ηε)
2: for i from 0 to M -1 do
3: Ci = create-empty-cluster(i)
4: Ci = combine-unique(Ci,ci)
5: end for
6: i = 0

7: ε = ε0

8: k = 0

9: while points unclassified > MinPts− 1 do
10: Ci = expand-cluster(Ci, p, ε, MinPts)
11: i = i+ 1

12: if i ≥M then
13: i = 0

14: k = k + 1

15: ε=update(ε,ηε,k) // see eq. (2)
16: end if
17: end while
18: if points unclassified > 0 then
19: C = assign(p, c, ε0, MinPts− 1, ηε)
20: end if
21: return C
22: end function

code containing its assignment phase is provided in Alg. 1.

The assignment phase starts considering a set p ofN points, in which a subset ofM

centroid clusters c has been previously identified. At the beginning, a set of M clusters

is created, each one containing one centroid ci ∈ c (lines 2-4 in Alg. 1), and an initial215

value ε0 is set. Let us note that the instruction combine-unique, which is used here to

add a point to the current cluster, will be used along the algorithm to merge two sets of

elements avoiding repetition. After this initialization, the algorithm operates iteratively

until the stopping condition (discussed later) is met.
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Algorithm 2 Expand-Cluster function.
Input: A set of points p, a cluster C to be expanded and parameters (ε,MinPts).
Output: Expanded cluster C

1: function EXPAND-CLUSTER(C, p, ε, MinPts)
2: Q = C

3: while Q is not empty do
4: p = extract-from-queue(Q)
5: H = obtain-neighborhood(p, p, ε)
6: H = remove-classified-points(H)
7: if size(H) > MinPts then
8: C = combine-unique(C,H)
9: Q = combine-unique(Q,H)

10: end if
11: end while
12: return C
13: end function

At each iteration k, DBSCAN’s expansion function (defined in Alg. 2) is applied220

to each cluster (line 10 in Alg. 1) using the current value of ε and a fixed value of

MinPts. Clusters are expanded by annexing unclassified points in the neighborhood

of the core-points (represented by set Q in Alg. 2). Additionally, if some point p′ in

the neighborhood H is a core-point itself, it is added to the cluster as well, and its

neighborhood H ′ is subsequently considered to be potentially included as well. This225

expansion continues until no new core-points can be reached from the current core-

points in the cluster.

At the end of every iteration k of the assignment phase, ε is updated following the

next recursive equation:

ε(k) = ε(k−1) · (1 + ηε) (2)

where ηε is the neighborhood radius update factor, which governs how the scale pa-

rameter ε grows at each iteration.

DBSCAN’s MinPts parameter establishes the number of points inside the ε dis-230

tance to consider a core-point. In other words, for a fixed ε, it influences the expansion

rate and the stopping condition. As the assignment phase of K-DBSCAN will want to

11



iteratively traverse the database until all points are assigned, MinPts needs to be just

small enough so that the algorithm does not fall into an endless loop. And even in that

case, the maximum amount of unclassified points left is MinPts − 1. Therefore, we235

set the default value MinPts = 4 (established in Ester et al. (1996)) and iterate until

all samples but the last MinPts− 1 are assigned. This defines the stopping condition,

and then we can assign all remaining samples by recursively calling our assignment

function decreasing MinPts (lines 18-20).

Two other initial parameters have been mentioned in this assignment phase: ε0 and240

ηε. However, these only control the scale space, and both their values should ideally

be as low as possible. This is further discussed in Section 5.2.2.

The output of K-DBSCAN is, therefore, the set of clusters resulting after the as-

signment of all samples has been completed. As it will be later shown in Section 4, K-

DBSCAN is effective to discriminate large groups of points presented in sparse sample245

spaces, especially when those groups have arbitrary shapes and sizes and have internal

density variations, but are overall similar regarding volume of points.

3.2. V-DBSCAN: Variable-Density-Based Spatial Clustering of Applications with Noise

This algorithm is a hierarchical modification of the DBSCAN algorithm. V-DBSCAN

is designed to take advantage of sample spaces with varying density and, more specif-250

ically, datasets where density decreases when moving away from a global maximum,

which we call density centroid.

In order to provide a better understanding of the algorithm, a pseudo-code version

of V-DBSCAN is provided in Alg. 3 (let us note that, in the provided pseudo-code, we

denote |C| as the cardinality of a set or collection C).255

V-DBSCAN is an iterative divisive clustering algorithm that, at each new iteration,

works at a finer resolution, subdividing several clusters into smaller ones. At each level,

the variable ε defines the neighborhood radius of DBSCAN and therefore determines

the scale or resolution of the process. For the first layer, an initial value (ε0) is specified,

which will be then updated in the following levels. Opposite to K-DBSCAN, we want260

to start the algorithm with a large enough value ε0, that avoids splitting large clusters in

the first iteration. Hence, as it happened in K-DBSCAN, it is known that its ideal value
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is as high as possible (see Section 5.2.2).

The goal of V-DBSCAN is to assign each data point pi in a set p to a collection

of clusters C = {C0, C1, C2, ..., CD}. For initialization purposes, a single cluster C0265

is created, which contains all samples in our set p. At each level of the algorithm,

we operate independently over each cluster Ci: considering the subset of data samples

belonging to each cluster, we perform DBSCAN (its pseudo-code is included in Alg. 4)

using the current value of ε and a fixed value ofMinPts (the default valueMinPts =

4 established in Ester et al. (1996) works for most databases). As a result, each cluster270

Ci is subdivided into a new set of sub-clusters S and the next step is to decide which

of the new sub-clusters are relevant. To this end, we first sort the set of sub-clusters by

their relevance (line 11 in Alg. 3), which can be simply measured by their cardinality

|Ci|. Then, we compare each sub-cluster Sj with its complement S{
j , which contains

the remaining points in S, to decide whether Sj should be considered an independent275

cluster or not (line 14). The comparison is made according to a Subdivision Criterion

that considers the internal properties of clusters Sj and S{
j (it will be described in depth

in Section 3.2.1). If the sub-cluster Sj is found to be different enough from S{
j , their

samples are removed from the original cluster Ci, and the cluster Sj is added to the

collection C.280

Once this process is repeated for all the clusters present in the set C, we check if at

least one sub-division has been performed or, instead, the set C has remained unaltered

(line 20). In the latter case the variable that controls the number of static levels is

increased. Before starting the next iteration, the neighborhood radius ε is updated (line

25) according to eq. (3), leading to a finer resolution analysis.

ε(k) = ε(k−1) · (1− ηε) (3)

Again, analogously to K-DBSCAN, the initial parameter ηε would ideally be as low as

possible (see Section 5.2.2).

The algorithm continues operating until the stopping condition is met. This happens

when a sufficient number of iterations (scale levels) have not produced modifications

in the results. In other words, convergence is attained.285
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3.2.1. Subdivision criterion

Similar to the criterion employed in Forsyth and Ponce (2002) for Agglomerative

Clustering, in order to decide if a sub-cluster Sj within a cluster Ci is independent

enough to be separated, we compare the distance between Sj and its complement sub-

cluster S{
j with their respective internal distances:290

Dist(Sj , S
{
j ) ≶MInt(Sj , S

{
j ) (4)

The distance between the two clustersDist(Sj , S
{
j ) is simply computed as the min-

imum distance between both sets of points, i.e., the distance between the two closest

points from both sets:

Dist(Sj , S
{
j ) = min

p∈Sj ,q∈S{
j

dc(p, q) (5)

On the other hand, the minimum internal distance of the sub-clusters is computed

as:

MInt(Sj , S
{
j ) = min(int(Sj) + τ(Sj), int(S

{
j ) + τ(S{

j )) (6)

where int(C) and τ(C) are, respectively, the internal distance and the regularization

term for cluster C.

First, we have computed the internal distance int(C) of a cluster C as the maximum

value among the average distances of the K nearest neighbors of each point in the

cluster.

int(C) = max
pi∈C

1

K

K∑
k=1

d(pi, p
i
k) (7)

where pik is the k-nearest neighbor of the point pi. In other words, we take the worst

possible case representing the sparsity of the cluster. For the sake of simplicity, we set

the number of nearest neighbors K =MinPts used for DBSCAN.295

Finally, a regularization term τ(C) is added to the internal distance to model our

assumptions regarding the problem. Specifically, with this term we attempt to com-

pensate two facts: 1) small clusters show low internal distances, which favors the

generation of excessively small sub-clusters that we want to avoid; and 2) we want

14



to favor larger and sparse clusters in those regions within the sample space that are far

away from the density centroid. To cope with both requirements, we have defined the

following regularization term:

τ(C) =
κ · I(C)
sC

(8)

where κ is the parameter that controls regularization; sC is the ratio between the car-

dinality of the cluster |C| and the cardinality of the sample space |p| (the size of the

dataset), which penalizes small clusters; and I(C) is a measure of the isolation of the

cluster, which will be higher for clusters located far from the density centroid. Specifi-

cally, I(C) is defined as follows:

I(C) = dist(mC ,mC{) (9)

i.e., as the distance between the mass-center of the cluster and that of its complement.

Conceptually, the isolation of a cluster represents how distant it is from the main ag-

glomeration of points within a sample space (density centroid).

The most relevant parameter of this algorithm is, hence, the regularization parame-

ter κ, which will determine the flexibility of the Subdivision Criterion. In other words,300

it will establish how prone are clusters to be separated at each level. It should also be

noticed that the regularization factor is useful to enforce algorithm convergence, since,

given that clusters are smaller in new iterations, it hinders subsequent divisions.

To conclude, the output of V-DBSCAN is a set of D clusters that effectively de-

scribe a sample space with variable density. The key concepts to its novelty are (a)305

its hierarchical structure based on divisive clustering, by which we are able to cap-

ture different scales within a variable-density sample space; and (b) the introduction of

the isolation concept, which makes V-DBSCAN effective against distributions with a

radially-decreasing density.
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4. Application: Touristic Landmark Detection310

In this section, we propose touristic landmark detection as a direct application for

the novel algorithms explained in Section 3. Our proposal for landmark discovery

is enclosed in a large-scale project, and will become a processing block of a system

devoted to automatically generate travel guides. Once the landmarks are identified,

multimedia content (text, images, video) must be retrieved and included in the guide.315

To this end, we can use publicly available user-generated contents from social networks

and multimedia platforms.

The work presented here focuses on the automatic discovery of landmarks, defined

by their GPS coordinates and other user-provided information. With this goal in mind,

we can identify three levels of hierarchy in our analysis, which will be referred to320

throughout this document: a) region, which defines the geographical area under analy-

sis, i.e., the complete sample space p; b) Place-of-Interest (PoI), which consists on each

independent conurbation present within a region (for instance, each of the villages in a

coastal area); and c) landmark, which represents each monument, park or other type of

relevant element within any given PoI.325

The system is divided into three main blocks, as displayed in Fig. 3: (1) the data

gathering block, which will access Flickr to obtain the necessary data from a certain

region; (2) the data pre-processing block, which will prepare the raw data for our clus-

tering analysis; and (3) the landmark discovery block, which will make use of the novel

algorithms discussed in Section 3 to discover the most relevant touristic places within330

the analyzed region. Each of the blocks considered will be discussed in-depth in the

following subsections.

4.1. Data gathering

Given an area of interest, we aim to gather a dataset of user-generated contents, that

will be used to automatically discover the main landmarks within the area. Working335

with user-generated content fits well with our definition of landmark, which is based

on the popularity of a place. In addition, as the system is supposed to work in any

area provided as a query, we need to automatically generate the corresponding dataset,
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Figure 3: Pipeline of the complete system. It is divided in three main blocks: data gathering, which accesses
the online platform to conform the dataset (Section 4.1); data pre-processing, which removes inherent noise
(Section 4.2.1) and generates the bag-of-words model signatures (Section 4.2.2); and landmark discovery,
which performs PoI and landmark detection through hierarchical density-based clustering (Sections 4.3.1
and 4.3.2, respectively).

associated to the area, which contains the images’ geo-location and associated text

(tags, descriptions, titles, etc.). As it was discussed in Section 2, we found the ideal340

platform for our purposes is Flickr. The Flickr API allows for downloading images

while specifying constraints for their meta-data in the query, which is very useful to

generate an appropriate dataset.

In the experiments shown in this paper, a circular query area is defined specifying

the GPS coordinates of its center (latitude and longitude), and a radius (in km). How-345

ever, our system could be easily adapted to work with arbitrarily-shaped areas defined

by irregular masks. Once the query is defined, we retrieve from Flickr all the images

that have been geo-located in that area since 2005 (along with the identification of

the users that uploaded them). Moreover, if available, a list of user-generated tags is

obtained for each image.350

4.2. Data pre-processing

This module of the system is in charge of preparing the data for the subsequent clus-

tering stage. It performs two independent tasks: a) Noise Removal and b) Generation

of Textual Signatures.

4.2.1. Noise Removal355

One of the main problems with user-generated images is the noise inherent to their

annotations. Our analysis revealed two main causes:
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• Incorrect tagging: some users upload their pictures from a trip in a single session

with a unique geo-location (regardless of the exact place associated with each

photo). Additionally, it is not uncommon for a user to upload numerous images360

of a single monument or event sharing the same descriptive tags. This causes

an artificial density of points at some places. To overcome this issue, we only

allow unique samples at each exact GPS location, meaning that one location

can present multiple samples if and only if the user that posted them or the tags

attached to them are different.365

• Non-relevant content: although less often than in other platforms, such as Twitter

or Instagram, retrieved pictures may show contents related to personal events

(weddings, birthday parties) therefore not being relevant for touristic purposes.

To tackle this, a list of stop-words was employed to avoid generic non-relevant

content in the final database.370

Hence, the output of this module is a final set of samples p = {p1, p2, ..., pN}, each

of them associated with an image in Flickr, and composed of two features, namely: a)

GPS coordinates of the picture; and b) a list of textual tags associated with it. This

collection of samples is then fed to the next sub-module in order to generate the tag

signature of each image.375

4.2.2. Tag Signature Generation

Unfortunately, geodesic data is often not enough to discriminate between neighbor-

ing landmarks, specially when the distance between them is small compared to their

sizes. In these cases, additional information like image meta-data is necessary to in-

crease the dimensionality of the representation and enhance the discrimination.380

Since the tags are often scarce, unstructured and noisy, we have built a Bag-of-

Words (BoW) model, in which the set of tags for each image is transformed into a fixed-

length signature vector using a tf-idf (Gerard and Michael, 1983) approach. It is worth

mentioning that alternative techniques, such as the more advanced word2vec (Mikolov

et al., 2013), were also tested to obtain vector representations of the tag space. The385

results, however, did not show any improvement over BoW for this scenario.
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This data pre-processing stage ends up with a set of input features, each one com-

posed of a GPS coordinate vector g and a textual (based on the descriptive tags) signa-

ture vector t, as illustrated in Fig. 3.

4.3. Landmark Discovery390

Landmark Discovery constitutes the main task of our system. This section will de-

scribe the two modules in charge of performing this operation. The first one, called

PoI Detection, aims to identify non-connected settled areas within the region of anal-

ysis, allowing the subsequent module to operate independently in each location. To

this end, the algorithm K-DBSCAN described in Section 3.1 will be employed. The395

second module, Landmark Detection, consists on a multi-scale analysis of each iden-

tified location using the algorithm V-DBSCAN (discussed in Section 3.2), which will

ultimately identify each independent touristic landmark.

V-DBSCAN takes advantage of the following assumption, which is true for most ur-

ban areas, towns, and villages: gradual residential, commercial or industrial growth ac-400

cumulates infrastructure around a center and, furthermore, more compact and densely-

distributed clusters tend to be near that center (e.g., squares, churches, buildings),

whereas larger and sparsely-distributed locations (parks, zoos, stadiums, etc.) are more

often located in the outskirts. Nonetheless, we have seen that, for this assumption to be

valid, we need to previously separate each PoI using K-DBSCAN.405

Fig. 4 displays an example of a region that is clearly a single conurbation (Valencia)

and one that contains several isolated villages (coastal area of Euskadi).

4.3.1. Place-of-Interest Detection Module

The input to this module is a feature vector containing geodesic coordinates for

each sample, along with the tag signature computed in the previous module (see Sec-410

tion 4.2.2). For now, however, we ignore the tag signature and simply work with the

geodesic coordinates. The K-DBSCAN algorithm is applied to these set of coordinates

yielding N clusters as the module’s output, each one representing an individual PoI.
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Figure 4: Example of a region with multiple PoIs (a) and a single PoI (b). Both locations are displayed at
the same scale.

4.3.2. Landmark Detection Module

This second module aims to discover, within each detected PoI, its most prominent415

landmarks. To this end, it makes use of V-DBSCAN. Due to the aforementioned rea-

sons, in V-DBSCAN we concurrently use geodesic coordinates and tag signatures to

describe the data samples. Consequently, the distance between two points dc(p1, p2)

is computed as a weighted linear combination of two independent distances (both nor-

malized between 0 and 1), one regarding each considered feature:420

dc(p1, p2) = γ · d̂g(p1, p2) + (1− γ) · dt(p1, p2) (10)

where d̂g(p1, p2) stands for a normalized version of the geodesic distance; dt(p1, p2) is

the distance between the two textual signatures, and γ ∈ [0, 1] is a weighting parameter

that will be discussed later.

The normalized geodesic distance is computed as follows:

d̂g(p1, p2) = min

(
dg(p1, p2)

fd
, 1

)
(11)

where d̂g(p1, p2) is the geodesic distance separating p1 and p2, fd is a scaling factor,

and the distance is clipped to a maximum of 1. The normalized distance is not sensitive425

to fd, since it has been set to a large enough value (1 km in our experiments) to assume

that two samples at a distance of fd are not adjacent neighbors within the same cluster.
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Furthermore, the distance between textual signatures dt is computed using cosine

similarity:

dt(p1, p2) = 1− tT1 t2
||t1||2||t2||2

(12)

where vectors t1, t2 are the tf-idf textual signatures of points p1 and p2.

The rationale behind this combined distance is the following: in general, geodesic

coordinates successfully discriminate most of the landmarks within a PoI. However,430

it was observed that they are insufficient when analyzing high density areas, where

landmarks are located extremely close to each other (buildings within the same square,

neighboring monuments, etc.). This problem is particularly relevant when the size of a

particular landmark is big compared to its distance to neighboring monuments (e.g., the

size of a museum or a park located in the center of a city might be quite larger than their435

distance to neighboring landmarks). Hence, in these scenarios it is useful to increase

the dimensionality of the descriptors in order to attain a better discrimination. In order

to weight the relative influence of each feature (geodesic or textual), we have set the

value of γ = 0.999. Although it might seem that this value neglects the influence of

the textual distance, let us note that geodesic distances, despite being bounded in [0,1]440

interval, are in general small, specially in the last iterations. In those cases, the textual

distance becomes relevant.

Another aspect of this module that is worth mentioning is that the relevance concept

used to sort the sub-clusters in V-DBSCAN (see Section 3.2) is here defined as the

number of users that take part in the cluster, rather than just their cardinalities. This445

introduces a more appropriate concept of cluster relevance.

The output of this last module is a set of the most prominent landmarks within each

PoI, each of them represented by a single cluster. Fig. 5 shows a result of the complete

system. As desired, the algorithm is able to properly detect compact clusters within

crowded areas of the center of the city, and keep larger and less dense clusters in the450

outskirts. The performance of the system will be thoroughly assessed in Section 5.
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Figure 5: V-DBSCAN results in urban regions. At the bottom, Valencia; at the top, Getafe. The left side
represents centric zones, while the right hand side represents places in the outskirts. Data belonging to
different clusters is represented by different colors.

5. Experiments and results

5.1. Evaluation Metrics

Clustering techniques are usually non-supervised and, thus, their evaluation be-

comes a challenging task. For this work, intrinsic statistical metrics and indexes were455

discarded as they did not correlate well with our goals. On the other hand, extrinsic

metrics require a set of ground-truth (GT) annotations to establish comparisons with

the system output. Getting accurate labels for each data sample is impractical in our

scenario, since we are dealing with thousands of images for each location under anal-

ysis. Nevertheless, as the goal of our work is to detect landmarks, we can assess our460

approach from an Information Retrieval perspective, comparing the discovered loca-

tions with a GT list of GPS coordinates associated with the main landmarks of the
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City (lat,lon) #GT N D

Tapia (43.567, -6.951) 22 2003 223
Getafe (40.301, -3.722) 24 3884 806
Jerez (36.684, -6.137) 53 11467 832

V alencia (39.469, -0.377) 57 112587 744
Guadalaj. (41.079, -3.202) 24 2208 474
Euskadi (43.284, -2.309) 56 21077 1011

Table 1: Characteristics of the databases after preprocessing. Respectively: city; latitude and longitude of the
approximate center in decimal degrees; length of GT-location list; number of samples; length of dictionary
(number of words).

region. This list is much simpler and faster to obtain, and avoids labeling every data

sample. However, it requires to perform an alignment process between an automat-

ically generated set of clusters C (groups of data samples), and a ground-truth GPS465

location vector GT . In our case, we consider that Ci ∈ C and GTj ∈ GT are aligned

if the minimum geodesic distance between GTj and the points in Ci is lower than a

very restrictive threshold THd = 50m.

Once the alignment between the automatically generated clustersC and the ground-

truth vector GT is defined, we can evaluate the performance of the system using Aver-470

age Precision (AP), a well-established metric in Information Retrieval (Manning et al.,

2008).

5.2. Dataset and Experimental Setup

5.2.1. Dataset

We made our dataset publicly available 5. It consists of six different regions of475

interest, all located in Spain. For the sake of generality, we have considered four di-

verse single-PoI regions, including a small village, Tapia de Casariego (Asturias), two

medium-sized cities, Jerez de la Frontera (Andalucia) and Getafe (Madrid), and a large

city, Valencia (Comunitat Valenciana). In addition, we also included two multi-PoI re-

gions corresponding to famous touristic areas: Guadalajara (region including various480

villages with Black Architecture), and Euskadi (region between rivers Lea and Oria,

5https://github.com/plasavall/LanDete
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with several coastal touristic villages). For each location, the data gathering module

(see Section 4.1) was used to retrieve images and their corresponding meta-data (GPS

coordinates, tags), and we asked local tourist information centers to generate a list of

landmarks and places of interest in the area. The details are displayed in Table 1.485

5.2.2. Parameter validation

We have compared our approach with other solutions found in the literature tackling

the automatic discovery of landmarks or the clustering of data (see Section 5.3). As

all the approaches have several parameters with an important impact on the results,

we have followed a process that ensures a fair comparison between algorithms. When490

possible, we have set their values to those proposed by the authors in the corresponding

papers. In the case of clustering approaches not used for landmark discovery, we have

followed a cross-validation strategy on a subset of the data.

With respect to the proposed algorithms (K-DBSCAN and V-DBSCAN), throughout

this document we have distinguished between two different types of parameter: scale-495

space and algorithm-specific parameters.

Scale-space parameters. Parameters ε0, ηε and (just for V-DBSCAN)L define together

the scale space. ε0 represents the initial scale, L is the number of levels the algorithm

results’ are allowed to remain unchanged, and ηε determines the scale relation between

consecutive levels. Hence, they define both the limits and the degree of discretization500

of the scale space. It is clear that considering large ranges and fine discretization will

provide a better performance at the expense of an increase on the complexity. Never-

theless, the algorithms’ behavior with respect to these parameters is quite stable, and a

set of optimal values was found, providing a good trade-off between performance and

complexity.505

For K-DBSCAN, values of ε0 = 200 m and ηε = 0.1 were set. Regarding V-

DBSCAN, it is worth mentioning that, unlike the case of K-DBSCAN, ε is no longer

a spatial magnitude, as we are using the aforementioned combined distance metric

dc(p1, p2). The value of this parameter was set to ε0 = 0.2. Additionally, we set

ηε = 0.1 and L = 8.510
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Algorithm-specific parameters. There are two specific parameters in K-DBSCAN: the

bandwidth factor of the kernels h, and the prominence lower bound t. Regarding the

former, it is obvious that we need to adjust it large enough so that the resulting dis-

tribution presents isolated maxima in the center of each PoI. On the other hand, the

latter controls which maxima are discarded and, hence, not considered as valid density515

centroids. This second parameter is harder to adjust, since we have no prior informa-

tion on about the distribution. A cross-validation strategy was followed to adjust these

parameters, yielding values of h = 0.35 and t = 0.4, which provided the more stable

results in terms of AP.

The only specific parameter for V-DBSCAN is the regularization parameter κ. As520

it was explained, the regularization factor avoids the proliferation of excessively small

clusters and helps the algorithm to attain convergence. After validation, we set κ =

1.7 · 10−3. This low value makes sense, since sC (which represents the size of the

cluster) takes low values due to its normalization.

5.3. Results525

In this section, we present the results of the complete system, compared with sev-

eral methods in the literature for the task of automatic landmark detection. Further-

more, a comparison between the application of our approach with and without the PoI

Detection Module has also been made. To this end, each region will be analyzed as if

it contained a single PoI. This will show the influence of K-DBSCAN in those regions530

with more than one PoI.

Finally, we provide an assessment of the usability of our method to generate auto-

matic travel guides.

5.3.1. Results for Landmark Discovery

In this section, we compare the performance of our approach with various alterna-535

tives found in the literature: some of them, despite being generic solutions for cluster-

ing data, have been previously used in our scenario to cluster geo-spatial data: k-means

is used in Wagstaff et al. (2001) to detect road lanes from GPS data, while in Tang and

Meng (2006) and Cao et al. (2010), DBSCAN and Mean-Shift are used, respectively,
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to find meaningful locations based on GPS data (see Section 2). Other algorithms540

have been particularly designed to deal with variable-density sample populations (H-

DBSCAN (McInnes et al., 2017), Hierarch. Agglom. (Rasmussen, 1992)). Finally,

some algorithms were specifically proposed to tackle the task of landmark discovery

(P-DBSCAN and P-DBSCAN with adaptive density (Kisilevich et al., 2010)).

The results obtained for the six considered locations are displayed in Table 2, which545

shows the performance in terms of AP. It is worth mentioning that, for k-means, which

is non-deterministic, the performance was obtained as the average of 40 executions of

the algorithm (the standard deviation is also displayed in this case). Table 2.a shows

the results obtained in the regions with a single PoI, whereas Table 2.b shows those

containing multiple PoI. Two versions of our approach are included, with and without550

the PoI Detection Module, i.e., using both of the proposed algorithms (K-DBSCAN and

V-DBSCAN) and using just V-DBSCAN.

In addition, Fig. 6 shows the output of the different algorithms for the center of

Jerez de la Frontera, providing supplementary visual support to our analysis of the

results.555

At first glance, one can clearly notice that our proposal outperforms the algorithms

found in the literature.

With respect to generic solutions previously used to cluster geo-spatial data, it is

clear that, since they do not consider the concepts of density and scale variations, a

common set of valid parameters for every case does not exist. Therefore, they fail to560

address the task of landmark discovery. However, Mean-Shift and k-means perform

significantly better than DBSCAN. This is due to the fact that they do not consider

the concept of noise, and therefore assign every data sample to a cluster, allowing

more potential alignments. One could argue that this is not the objective we have

in mind, as the output of this procedure will be closer to district separation than to565

landmark discovery. In other words, they divide the sample space into Voronoi-cells,

rather than detecting relevant independent locations within an enclosed space. This can

be appreciated in Fig. 6.

In contrast, Hierarchical Agglomerative clustering and H-DBSCAN take density

variations into consideration. The former is particularly tricky to adjust, as the pre-570
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Figure 6: Visual comparison between clustering algorithms in a central area of Jerez de la Frontera. Note
that, for each cluster, a maximum of 1000 points are displayed.

sented problem does not provide a general way to set the number of output clusters

a priori. In this context, a similar issue occurs with k-means and, in fact, the results

obtained by these two algorithms are quite similar for the six scenarios. H-DBSCAN,

on the other hand, produces a set of clearly defined, heavily discriminated clusters

(see Fig. 6.h), which results in a conceptual improvement with respect to the previous575

algorithms. However, approaches addressing this particular problem were not found

in the literature at the time this research was performed. Hence, the algorithm works

exclusively with spatial coordinates, yielding average numerical performances.

Finally, there are two algorithms specifically proposed for landmark detection. Al-

though P-DBSCAN takes into account additional information other than the spatial580

coordinates, i.e., the user who posted the picture (see Section 2), it does not consider

variations of density, so its performance is generally poor. Indeed, its Adaptive Den-
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Algorithm Tapia Getafe Jerez Valencia Average
DBSCAN (1996) 0.25 0.30 0.29 0.38 0.30
k-means (1967) 0.55 (0.05) 0.70 (0.04) 0.35 (0.02) 0.58 (0.03) 0.54
Mean-Shift (2002) 0.50 0.72 0.40 0.53 0.53
Hierarch. Agglom. (1992) 0.44 0.72 0.37 0.54 0.51
H-DBSCAN (2017) 0.40 0.71 0.42 0.53 0.51
P-DBSCAN (2010) 0.23 0.52 0.16 0.15 0.26
P-DBSCAN Addt (2010) 0.31 0.65 0.37 0.56 0.47
V-DBSCAN 0.53 0.73 0.54 0.61 0.60
K+V-DBSCAN 0.53 0.73 0.54 0.61 0.60

(a) Single-PoI regions.

Algorithm Guadalaj. Euskadi Average
DBSCAN (1996) 0.09 0.15 0.12
k-means (1967) 0.67 (0.03) 0.54 (0.02) 0.60
Mean-Shift (2002) 0.62 0.43 0.52
Hierarch. Agglom. (1992) 0.67 0.55 0.61
H-DBSCAN (2017) 0.63 0.51 0.57
P-DBSCAN (2010) 0.55 0.50 0.52
P-DBSCAN Addt (2010) 0.45 0.37 0.41
V-DBSCAN 0.67 0.59 0.63
K+V-DBSCAN 0.75 0.77 0.76

(b) Multi-PoI regions.

Table 2: Performance, expressed as Average Precision (standard deviation, when non-deterministic), of the
different algorithms in the proposed locations. The 7 methods in the literature are divided according to their
approach for landmark discovery. Under the double separation line, the results for our proposed system with
(K+V-DBSCAN) and without (V-DBSCAN) the PoI Detection Module are displayed.

sity modification provides better results in single-PoI regions, but fails to adapt to areas

with more complex density distributions (multi-PoI regions).

Regarding our proposal, the developed system was tested in all locations with and585

without the PoI Detection Module. We can clearly see the impact that K-DBSCAN

has on the results looking at the single-PoI cases, with an average improvement of

6% with respect to the second best approach. In addition, when considering multi-PoI

regions, the results improve by an additional 13% when we combine K-DBSCAN and

V-DBSCAN (K+V-DBSCAN).590

The visual comparison in Fig. 6 shows that our system produces an outcome that

is closer to our idea of landmark: a well defined, limited area associated with a mon-

ument, area or building of interest. In this sense, the algorithm in the literature that

comes closer to achieve this is H-DBSCAN, but it performs notably worse than our

proposal. From our point of view, the main reasons that support this particular result595
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are: (a) the introduction of the isolation concept in V-DBSCAN, which takes advantage

of the assumption made in Section 4.3 regarding the radial distribution of settled areas;

and (b) the use of additional meta-data, which improves the discriminant capability in

the central areas of the cities, where GPS coordinates are not enough to separate close

landmarks. Hence, including descriptive tags leads to results with better-shaped, more600

accurate clusters.

Finally, it is also relevant to discuss why, for every algorithm, performance is so

location-dependent. From our point of view, this is likely due to the nature of the

different GT lists. Even though the criteria for developing the GT was the same for

all regions, in practice it is impossible to achieve analogous GT lists, since they had605

been generated by different experts, each one being a touristic expert of the region

under analysis. Additionally, the six locations are very diverse in their nature, not

only in terms of population, but also shape, total area, population density, touristic

appeal, etc. On the one hand, we have four single-PoI regions of increasing population

and density (Tapia, Getafe, Jerez and Valencia). On the other, we have two multi-610

PoI regions (Guadalajara and Euskadi) that are also very different population-wise.

However, the fact that K+V-DBSCAN outperforms the rest of the algorithms in every

location gives a pretty good idea of the good scalability and flexibility of our system.

To summarize, we have seen that the developed algorithms (K-DBSCAN and V-

DBSCAN) not only constitute novel contributions to the field of density-based cluster-615

ing, but they also have a proven direct applicability in scenarios with variable density

data distributions, such as Touristic Landmark Detection. V-DBSCAN exploits data

distributions where density gradually decreases from the data center of mass. Hence,

it is very useful when applied to geodesic data points belonging to a connected region

(cities, villages, etc.). In addition, the inclusion of a bag-of-words model that influences620

point-to-point-distance helps discriminating different entities within the crowded ar-

eas. Lastly, when combined with K-DBSCAN, V-DBSCAN can still be used to analyze

data distributions with several high-density groups of points of similar sizes, separated

by potentially large low-density areas. In our application scenario, this would be the

case for regions that contain several towns or villages separated by long distances.625

By including a specific step for PoI-Detection (K-DBSCAN), we are able to separate
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large groups of points, therefore preventing the centroid of the data to be shifted to

a non-relevant place (e.g., an isolated sample between two villages). Consequently,

V-DBSCAN can be used independently over each detected group.

5.3.2. Assessment for automatic generation of travel guides630

A very direct application of our landmark detection system is the automatic gen-

eration of travel guides. To this end, we need to produce the greatest possible number

of relevant landmarks, keeping a large enough accuracy and avoiding false detections

related to non-touristic places. In Fig. 7 we analyze the precision of our system when

we increase the number of detected landmarks. In other words, it displays how the635

accuracy of the system behaves when we consider just the top K relevant clusters. It

is worth mentioning that the predicted clusters are sorted by relevance, i.e., by popu-

larity. For this experiment, our goal would be providing a precision as close to 1 as

possible for the largest possible K. Indeed, we can see that, for the majority of the

scenarios, K+V-DBSCAN provided the most robust result. In the case of Valencia, for640

instance, the precision did not drop until the 25th cluster was analyzed, while the pre-

cision for the second best algorithm (for this scenario: DBSCAN) dropped at the 11th

predicted cluster. The only exception to this behavior is Getafe, where Mean-Shift and

H-DBSCAN held perfect precision for two more clusters than our system. Nonetheless,

their overall performance was still slightly lower than ours considering this particular645

scenario and, what is more, this difference is heightened when we consider the other

five regions.

This proves that our system provides more relevant touristic recommendations than

the compared approaches. For most of the scenarios presented, our system is able to

present at least 10 relevant landmarks per location, with no false alarms. The only650

exception to this is Tapia de Casariego (where only the top-6 predicted clusters had

perfect precision), and even in this case the accuracy at the 10th cluster is quite decent

(0.8).

In order to further support the argument of this system’s direct applicability as a

travel guide generator, we established a comparison with the well-known touristic web655
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Figure 7: Variation of the precision when providing up to K = 1, 2, ..., G clusters as the output of the
system, where G is the length of the GT location list.

platform TripAdvisor 6. Table 3 shows the number of relevant landmarks that were

returned by TripAdvisor when a certain region was analyzed. For the sake of simplicity,

only single-PoI regions where considered for this comparison. Additionally, it is worth

mentioning that shops, restaurants and bars were not considered as landmarks when

developing the GT lists (unless the building itself had some architectonic or cultural660

relevance). Note that we obtain more results from TripAdvisor for mainstream touristic

destinations (Jerez, Valencia), but even in those cases the number of relevant landmarks

is less than half the amount of ground-truth locations considered for this research (see

Table 1). Therefore, we can infer that TripAdvisor is often insufficient to provide a

6https://www.tripadvisor.es
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Region Nt Prec(Nt) Prec(1.1Nt) Prec(1.2Nt) Prec(1.5Nt)
Tapia 4 1.0 1.0 1.0 1.0
Getafe 9 1.0 1.0 1.0 0.923
Jerez 18 0.888 0.895 0.857 0.741
Valencia 25 1.0 0.926 0.866 0.784

Table 3: Number of landmarks provided by TripAdvisor (Nt) for each region with a single urban core and
the precision of our system when providing the same Nt clusters, as well as when providing 10%, 20% and
50% more than TripAdvisor.

significant landmark list (this is particularly remarkable for less mainstream places). In665

the remaining columns of Table 3, we can observe the precision of our system when

we attempt to provide the same amount of clusters than TripAdvisor, and also when

we produce 10%, 20% and 50% more than them. One can observe that we are able

to generate up to 20% more landmarks than TripAdvisor with total certainty of their

relevance for the case of Tapia and Getafe and maintaining the accuracy over 0.85 for670

the largest cities. This proves that our system can be a very powerful tool when it

is used as a travel guide generator, especially for less visited or less developed areas,

where travel guides might not be available.

6. Conclusions and further work

The main goal of this work was to find clustering algorithms able to adapt to data675

distributions with complex density variations. In this paper, we proposed two novel

density-based clustering algorithms: 1) K-DBSCAN is designed to identify, from the

underlying distributions of the data, clusters of points with high intra-cluster density

variations that may be separated by sparse areas; and 2) V-DBSCAN is designed to

exploit data distributions where density decreases radially from a center of mass.680

We have presented automatic touristic landmark discovery as a direct application

for these two methods. Finding touristic landmarks is a daring endeavor. Not only

because of the subjective nature of the task, but also because of the challenge of data

gathering and meta-data analysis. Nonetheless, understanding how and why people

visit different places might help build more sustainable tourism models in popular685

destinations, as well as attract interest in less popular ones. Furthermore, manually
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crafting travel guides is a tedious process that hinders the availability of guides in less

mainstream destinations. This particular scenario raises the need for automatic tools to

generate valuable content. To tackle this problem, we have made use of Flickr, a public

web platform that stores user-generated multimedia content. The development of this690

research resulted in the generation of a dataset containing all the studied regions, which

has been made publicly available.

Taking all the above into account, we have assessed our algorithms in a real scenario

(a dataset obtained from Flickr). First, K-DBSCAN was used to discriminate indepen-

dent conurbations (Places of Interest) within a certain region. After that, we applied695

V-DBSCAN to each resulting conurbation to provide an estimation of the landmark dis-

tribution within the region. The obtained results prove that this approach outperforms

the current methods in the literature regarding landmark detection (6% increase over

second best for individual cities or towns). This improvement is particularly significant

when analyzing regions with multiple conurbations (15% increase over second best700

method in the literature).

It is worth mentioning that the output of the system presented here is designed

to be the input to another system, yet to be fully developed, which will attempt to

find, from the clusters provided by our Landmark Detector, the most iconic image,

i.e., the view that best represents the corresponding place. This gives us plenty of705

open research lines to pursue. Nonetheless, there are still a few lines of work that

could be explored regarding the research performed for this paper. For example, one

would be to explore the inclusion of the visual analysis in the clustering procedure,

in the same way that we have included a textual analysis through the bag-of-words

model. However, image processing techniques are often extremely power-consuming,710

so this should be done only if an exceptionally robust input for the next stage of the

project was required. Additionally, some sub-modules of the methods could be used

for alternative tasks. Particularly, K-DBSCAN’s assignment phase could be applied

to any problem that required density-based clustering but in which there exists prior

information regarding the nature of the resulting clusters, e.g., clustering refinement.715

33



Acknowledgements

This work has been partially supported by the National Grants RTC-2016-5305-7

and TEC-2017-84395-P of the Spanish Ministry of Economy and Competitiveness.

References

Becker, H., Naaman, M., and Gravano, L. (2011). Beyond trending topics: Real-world720

event identification on twitter. Icwsm, 11(2011):438–441.

Bernard, E., Naveau, P., Vrac, M., and Mestre, O. (2013). Clustering of maxima: Spa-

tial dependencies among heavy rainfall in france. Journal of Climate, 26(20):7929–

7937.

Cao, L., Luo, J., Gallagher, A. C., Jin, X., Han, J., and Huang, T. S. (2010). A world-725

wide tourism recommendation system based on geotaggedweb photos. In ICASSP,

pages 2274–2277. Citeseer.
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Algorithm 3 V-DBSCAN Algorithm, including DBSCAN clustering function.
Input: A set of points p, initial neighborhood radius (ε0), neighborhood radius update
factor (ηε), correction factor (κ), unchanged levels threshold (L).
Output: Set of clusters C (predicted landmarks).

1: function V-DBSCAN(p, ε0, ηε)
2: C0 = create-empty-cluster(0)
3: C0 = combine-unique(p,C0)
4: ε = ε0

5: C = create-set{C0}
6: unchanged = 0

7: while unchanged < L do
8: Cold = C

9: for i from 0 to |C| − 1 do
10: S = dbscan(Ci, ε)
11: S = sort-by-relevance(S)
12: for j from 0 to |S| − 1 do
13: S{

j = remove-points-from-cluster(Sj , Ci)
14: if Dist(Sj , S

{
j ) > MInt(Sj , S

{
j ) then

15: C = add-cluster-to-set(Sj , C)
16: S = remove-cluster-from-set(Sj , S)
17: end if
18: end for
19: end for
20: if Cold == C then
21: unchanged = unchanged+ 1

22: else
23: unchanged = 0

24: end if
25: ε = update(ε,ηε) // see eq. (3)
26: end while
27: return C
28: end function
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Algorithm 4 DBSCAN clustering function.
Input: A set of points D and parameters (ε,MinPts).
Output: Set of clusters C

1: function DBSCAN(D, ε, MinPts)
2: i = 0

3: while points unclassified > 0 do
4: p = get-next-unclassified-point(D)
5: Ci = create-empty-cluster(i)
6: Ci = combine-unique(Ci,p)
7: Ci = expand-cluster(Ci,D, ε, MinPts)
8: if |Ci| == 1 then
9: classify-as-noise(Ci)

10: else
11: i = i+ 1

12: end if
13: end while
14: return C
15: end function
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