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Abstract

Learning visual representations plays an important role in computer vision and machine learning applications. It facilitates a model
to understand and perform high-level tasks intelligently. A common approach for learning visual representations is supervised
one which requires a huge amount of human annotations to train the model. This paper presents a self-supervised approach
which learns visual representations from input images without human annotations. We learn the correct arrangement of object
proposals to represent an image using a convolutional neural network (CNN) without any manual annotations. We hypothesize
that the network trained for solving this problem requires the embedding of semantic visual representations. Unlike existing
approaches that use uniformly sampled patches, we relate object proposals that contain prominent objects and object parts. More
specifically, we discover the representation that considers overlap, inclusion, and exclusion relationship of proposals as well as
their relative position. This allows focusing on potential objects and parts rather than on clutter. We demonstrate that our model
outperforms existing self-supervised learning methods and can be used as a generic feature extractor by applying it to object
detection, classification, action recognition, image retrieval, and semantic matching tasks.
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1. Introduction

Recently, convolutional neural networks (CNN) have been
applied to a variety of tasks, including object and action recog-
nition (Donahue et al., 2014; Simonyan & Zisserman, 2014;
Gkioxari et al., 2015; Nweke et al., 2018; Aghamaleki & Ba-
harlou, 2018), detection (Girshick et al., 2014; Girshick, 2015;
Ohn-Bar & Trivedi, 2017), semantic segmentation (Simonyan
& Zisserman, 2014; Shelhamer et al., 2017), tracking (Li et al.,
2016), and visual correspondence (Zbontar & LeCun, 2016),
and have produced satisfactory results. They typically use su-
pervised learning approaches that require a huge amount of an-
notated images (Donahue et al., 2014; Girshick et al., 2014; Gir-
shick, 2015; Zbontar & LeCun, 2016), e.g., object-level bound-
ing boxes for object detection. Contrary to the aforementioned
approach, unsupervised learning does not require manual anno-
tations for the purposes of learning abstract features (e.g., se-
mantic objects) while showing low performance (Bengio et al.,
2013; Hinton, 2007; Hinton & Salakhutdinov, 2006; Kingma &
Welling, 2013).
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A recurring theme in unsupervised learning is the use of
self- (or meta-) supervision (Pathak et al., 2016; Larsson et al.,
2016; Zhang et al., 2016; Doersch et al., 2015; Gao et al., 2016;
Misra et al., 2016; Wang & Gupta, 2015). This refers to a
network trained for a pretext (or proxy) task, which is not of
direct interest, but significantly relates to the final high-level
task, e.g., object detection, classification, and action recogni-
tion (Girshick, 2015; Simonyan & Zisserman, 2014; Sun et al.,
2017; Gkioxari et al., 2015). Automatic image colorization (Lars-
son et al., 2016; Zhang et al., 2016) is a typical example of
a pretext task; naturally colorizing grey images requires prior
knowledge of natural image appearance. Other pretext tasks
include spatially arranging patches from a static image (Doer-
sch et al., 2015; Noroozi & Favaro, 2016), reconstructing tem-
poral ordering from shuffled video frames (Misra et al., 2016;
Lee et al., 2017), metric learning with object-like regions (Gao
et al., 2016; Wang & Gupta, 2015), reconstructing different do-
main images (Zhang et al., 2017), and image inpainting (Pathak
et al., 2016). The main issue in self-supervised learning is de-
signing the pretext task which is difficult to solve without an un-
derstanding of image semantics such as object and object parts.

In this paper, we propose an Object-CEntric Arranging Net-
work, called OCEAN, for self-supervised visual representations
learning, that learns semantic features without any manual an-
notation. Motivated by Doersch et al. (2015) and Noroozi &
Favaro (2016), we design a pretext task as rearranging patches
from an input image. The key difference from previous work
is the use of object proposals as arranging primitives instead of
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Figure 1: Uniform patches may include clutter, unless objects span entire im-
ages, which contains less meaningful information for a patch rearranging task.
In contrast, object proposals capture the underlying image structure, giving
object-like patches including objects and parts. We propose a CNN model that
reconstructs the original image from object proposals. This learns geometric
relationships (relative position, overlap, inclusion, and exclusion) between pro-
posals, enabling the learned net embeds semantic visual representations.

uniformly (or regularly) sampled patches (Fig. 1). Object pro-
posal methods generate object-like regions (e.g., object parts)
effectively at various scales with a high recall (Uijlings et al.,
2013; Manen et al., 2013; Krähenbühl & Koltun, 2014; Zitnick
& Dollár, 2014). Instead of using uniformly sampled patches
(Doersch et al., 2015; Noroozi & Favaro, 2016) that may in-
clude clutter (Fig. 1), the proposed rearranging task focuses on
potential objects and object parts by employing generic object
proposals. We demonstrate that with OCEAN we can achieve
significantly higher performance.

The overview of our method is shown in Fig. 2. Experimen-
tal results show that our method yields competitive results com-
pared to existing self-supervised learning approaches in various
tasks including object and action detection, classification, im-
age retrieval, and semantic correspondence.

Contributions: The major contributions of this paper are sum-
marized as follows.

• We design a novel pretext task for self-supervised learning,
according to which, geometric relationships (relative over-
lap, inclusion, and exclusion) between proposals are learnt
effectively.

• We demonstrate the advantage of our model over other self-
supervised learning methods by applying it to object detec-
tion, classification, and action recognition, which gives a mean
average precision (mAP) of 48.6%, PASCAL VOC 2007 de-
tection and classification dataset, and 50.3% in the PASCAL
VOC 2012 action classification dataset, respectively.

• To verify that our model can be used as a generic feature
extractor, we further apply it to other computer vision tasks
including image retrieval and semantic correspondence.
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Figure 2: Overview of our approach. We train a CNN with object proposals as
inputs to predict geometric relationships (relative position, overlapping, inclu-
sion, and exclusion) between a pair of object proposals.

2. Related Works

Unsupervised learning encompasses a broad range of top-
ics (Bengio et al., 2013). In the remainder of this section, we
briefly describe representative works which are related to ours.

2.1. Unsupervised feature learning
Representative unsupervised learning methods include vari-

ational autoencoders (VAE) (Kingma & Welling, 2013; Kingma
et al., 2014) and Boltzmann machines (Hinton, 2007; Fischer
& Igel, 2014). These approaches attempt to learn generative
models that capture the probabilistic distribution that is associ-
ated with the input latent variables of datasets. Recently, gen-
erative adversarial networks (GANs) (Goodfellow et al., 2014)
have been introduced and, according to this approach, genera-
tive nets compete against discriminative ones to generate real-
istic high-resolution images. GANs can also be used for un-
supervised visual representations learning by adding image en-
coders in a training stage (Donahue et al., 2016). However,
unsupervised approaches in feature learning are still remaining
challenging problem in terms of training neural networks for
high-level tasks. They fail to encode the visual semantics for
object detection and classification.

2.2. Self-supervised learning
Self-supervised and unsupervised learning are similar in that

they do not require manual annotations. The difference be-
tween these two approaches is that self-supervised learning uses
alternate forms of supervision that can be imposed algorith-
mically. These approaches try to solve pretext tasks where
ground truths are freely available. Although the outputs of
these tasks may not be of direct interest, an ability to answer
pretext questions indicates that learned models implicitly em-
bed semantic visual representations, and thus can be used to
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solve high-level vision problems such as object detection and
classification. Doersch et al. design a novel pretext task with
the goal of arranging shuffled pairs of patches from an input
image to proper locations (Doersch et al., 2015). That is, the
network estimates the relative location of a target patch from
a reference patch. Noroozi and Favaro extend the idea of Do-
ersch et al. (2015) by training a network to spatially arrange
nine patches with random permutation, enabling the network
to learn feature more effectively (Noroozi & Favaro, 2016).
Pathak et al. propose a network for image inpainting that fills
missing regions in an input image (Pathak et al., 2016). They
assume that the network should learn semantic features to per-
form such a pretext task, meaning that the trained network can
be used to extract generic features. Under a similar assump-
tion, Zhang et al. (Zhang et al., 2016) and Larsson et al. (Lars-
son et al., 2016) propose networks to colorize grayscale im-
ages. To generalize colorization as a domain transfer approach,
Zhang et al. further present the prediction of one subset of the
data channels from another (Zhang et al., 2017). Addition-
ally, temporal relationships between frames can be employed
to self-supervised learning. Jayaraman and Grauman present
egomotion constraints from video to learning visual represen-
tations (Jayaraman & Grauman, 2015). Misra et al. propose
the network to verify the temporal order of video sequences,
and Lee et al. generalized this approach by extending problems
by employing multiple-tuple of frames. Different from previ-
ous approaches that use video sequences, Pathak et al. learn
to segment object which is provided by unsupervised motion
segmentation from video (Pathak et al., 2017).

Our work is closely related to patch arrangement tasks (Do-
ersch et al., 2015; Noroozi & Favaro, 2016). As illustrated in
Fig. 1 (lower-left), previous methods use uniformly sampled
patches that often contain distracting parts (e.g., background
clutter and homogeneous regions) unless objects span the entire
image. The uniformly sampled patches make it difficult for the
network to learn semantic visual representations. Unlike these
methods, we use object proposals that contain objects or parts
as inputs to our arrangement task to learn a set of non-uniform
patches which represent the object rather than background clut-
ter. Semantic information is captured more effectively in this
way by learning geometric relationships (including relative po-
sition, overlapping, inclusion, and exclusion) between object
proposals as illustrated in Fig. 2.

3. Object-centric arranging network

3.1. Object proposals for visual representation

Object proposal methods extract several object candidates
with high recall in a class-agnostic manner (Uijlings et al., 2013;
Manen et al., 2013; Krähenbühl & Koltun, 2014; Zitnick &
Dollár, 2014). In object detection (Girshick, 2015; Girshick
et al., 2014; He et al., 2015; Cai et al., 2017; Xu et al., 2017), the
practice of using object proposals exhibits an advantage over
the traditional sliding window approach: the search space and
false alarms due to background clutter. This indicates that vi-
sual representations can be effectively captured by using ob-

Table 1: Network configurations of OCEAN. Here, ‘concat’ denotes a concate-
nation layer which couples two feature vectors together.

Layer Filter (stride)

conv1+relu+norm+pool 96 × 3 × 11 × 11, (4)
conv2+relu+norm+pool 256 × 48 × 5 × 5, (2)

conv3+relu 384 × 256 × 3 × 3, (1)
conv4+relu 384 × 192 × 3 × 3, (1)
conv5+relu 256 × 192 × 3 × 3, (1)
ROI pooling -

FC6+relu 4096 × 256 × 6 × 6, (1)
concat -

FC7+relu 4096 × 8192 × 1 × 1, (1)
FC8 16 × 4096 × 1 × 1, (1)

ject proposals as primitive units for further applications. More-
over, in this work we show that we can generate object pro-
posals without any supervision. Thanks to these properties, ob-
ject proposals have been used in various computer vision tasks,
including visual tracking (Zhu et al., 2016), action recogni-
tion (Gkioxari et al., 2015), and semantic correspondence (Ham
et al., 2016).

Recently, object proposals have been used to learn visual
representations in video sequences (Gao et al., 2016). Nearby
object proposals are sampled from consecutive frames. The net-
work then performs metric learning, so that these proposals are
closely embedded in feature space. Our method also uses ob-
ject proposals for self-supervised learning in images or video,
but solves a different pretext task within static images.

We assume that classifying geometric relationships between
object proposals requires knowledge of semantic visual repre-
sentations such as objects and their spatial layout, geometry,
parts, and even categories. The framework of the proposed
method and the network architectures are shown in Fig. 3 and
Table 1, respectively.

3.2. Network architecture
3.2.1. Convolutional and region-of-interest (ROI) pooling lay-

ers
We use a network similar to the AlexNet as our base feature

extractor in order to ensure a fair comparison to other meth-
ods (Pathak et al., 2016; Doersch et al., 2015; Wang & Gupta,
2015). The convolutional layers can be replaced by other net-
works without loss of generality. We add an ROI pooling layer
on top of the convolutional ones to extract features of object
proposals that may have different sizes (Girshick, 2015). It gen-
erates the same size of feature vectors for all proposals. This
ROI pooling layer enables the efficient computation of feature
vectors, and this results in reduced training time.

3.2.2. Fully-connected layers and pairwise classification
Each output of the ROI pooling layer goes through the fully-

connected layer, FC6. Two FC6 outputs, where each output is
associated to two proposals, are concatenated subsequently1.

1When nine object proposals are used as inputs, 9×8 = 72 pairs of proposal
can be generated to train our network.
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Figure 3: Our framework for self-supervised visual learning. Feature vectors of input object proposals are extracted from convolutional layers followed by region-
of-interest (ROI) pooling and fully-connected (FC) layers. We select a pair of FC6 outputs, and then concatenate (+) them. Through two fully-connected layers (FC7
and FC8) and a softmax layer, we classify the geometric relationship between a pair of proposals (relative position, overlap, inclusion, and exclusion). We train all
convolutional and FC layers from scratch. More detailed network configuration is shown in Table 1.

Table 2: Transfer learning of AlexNet to our pretext task by changing the number of initialization steps. Here, ‘Alex (> i)’ denotes the weights up to convi are
copied from the pre-trained AlexNet (Krizhevsky et al., 2012), while rest of the layers are initialized to random gaussian values. ‘Alex (> 0)’ denotes the model is
trained from scratch.

Pairwise classification (%)

Baseline ILSVRC 2012 (1.2M) ILSVRC 2012 (100K)

Alex (Random) Alex (> 0) Alex (> 0) Alex (> 1) Alex (> 2) Alex (> 3) Alex (> 4) Alex (> 5)

Score (%) 3.8 83.3 68.5 68.3 67.5 66.3 65.8 58.8

(a) (b)

(c) (d)

Figure 4: Proposals selection. (a) An input image, (b) extracted object propos-
als, (c) randomly selected proposals, and (d) proposals used to training. Object
proposals might be frequently generated from similar regions due to their char-
acteristics of the repeatability. This might distract input proposals to imply
object and their parts in the image.

Given two proposals, we consider one as a reference proposal
and the other as a target. The concatenated feature vectors are

passed to the subsequent fully-connected layers (FC7 and FC8)
and the following softmax layer in order to predict geometric
relationships between two proposals. To this end, we consider
this problem as a classification task. Given a reference pro-
posal, we set the relative positions of a target proposal to the
values top, left, right, bottom. We also consider overlap, ref-
erence inclusion, target inclusion, exclusion relationships be-
tween proposals, where reference (resp. target) inclusion indi-
cates that the reference (resp. target) proposal spatially belongs
to the target (resp. reference) proposal.

There are a few differences between our approach and ex-
isting methods (Doersch et al., 2015; Noroozi & Favaro, 2016).
Note that existing methods use non-overlapping patches as in-
puts to prevent the CNN from simply learning discriminative
low-level features. Our approach allows the overlapping and
even inclusion cases as pretext tasks. Since OCEAN gener-
ates feature vectors of fixed size from inputs of various size
by means of the ROI pooling architecture, the trivial shortcuts
of Doersch et al. (2015); Noroozi & Favaro (2016) can be alle-
viated. We show that the proposed method is free of the trivial
shortcuts in section 4.2, where it is demonstrated that high-level
information is learned by the CNN within the pretext task.

3.3. Object proposal selection
Unsupervised learning from object proposals requires pro-

posal selection due to the potentially large set of candidates as
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Figure 5: Top response images from PASCAL VOC 2007 for 12 channels of the conv5 outputs of OCEAN. Each channel seems to gather semantically meaningful
category, without using human annotations in learning. Results in channels 134 and 229 fail to capture high level semantics, rather showing to fire on color features.

shown in Fig. 4(b). Simply choosing random object propos-
als may be insufficient to describe objects and their parts in
an image, since many object proposals are generated from the
background as shown in Fig. 4(c). We perform object proposal
selection.

Object proposals are initially extracted by the SelectiveSearch
(SS) algorithm (Uijlings et al., 2013). We then discard object
proposals larger than 70% and smaller than 5% of the image
area, which might distract the CNN from learning the object se-
mantics. A greedy non-maximum suppression is then adopted
to reduce the region candidates which are heavily overlapped,
with the threshold of intersection-over-union (IoU) set to 0.4.
Finally, we randomly select a pre-defined number of object pro-
posals.

3.4. Implementation details

We use VLFeat MatConvNet toolbox (Vedaldi & Lenc,
2015), and train OCEAN with the ILSVRC2012 training set
which contains about 1.3M images with annotations (Deng et al.,
2009). We use Adam to ensure an efficient stochastic opti-
mization (Kingma & Ba, 2014). In the experimental trials,
we use the same size of weights for layers conv1 to conv5 in
AlexNet (Krizhevsky et al., 2012) and nine object proposals are
randomly selected among the processed proposal set for every

iteration. Experiments were performed with a 12GB NVIDIA
Titan GPU and i7-5820K CPU. The model training takes about
two to four weeks.

4. Experimental results

In this section, we validate the effectiveness of OCEAN ap-
proach through various experiments: First, we verify that the
designed pretext task facilitates the learning of high-level se-
mantics (Section 4.1). Secondly, we perform an ablation study
to quantify the contributions of individual OCEAN components
to the overall system performance (Section 4.2). Finally, we
present the transfer learning on PASCAL VOC tasks and com-
pare the proposed approach to other state-of-the-art methods
(Section 4.3).

4.1. Model Analysis

4.1.1. Fine-tuning AlexNet to the pretext task
In self-supervised learning, it is important to show that the

designed pretext task requires high-level semantics. To verify
that our pretext task, called pairwise classification, is related
to semantic classification, we follow the experimental protocol
of Noroozi & Favaro (2016). We copied the weights of the
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convolutional layers from the AlexNet that was trained for im-
age classification using the ImageNet dataset (Krizhevsky et al.,
2012). Specifically, to train our network, the weights for i–th
convolutional layers (conv< i >, (i = 1, 2, ..., 5)) are copied
from the AlexNet while the remaining layers are initialized to
random gaussian values where the mean and the standard devi-
ation are set to 0 and 0.01, respectively. We trained our model
with the use of the 100k images of the ILSVRC 2012 dataset,
and measure the classification accuracy on PASCAL VOC 2007
test set by computing the hit ratio. As shown in Table 2, the
results up to ‘Alex (> 4)’ show similar classification perfor-
mance. This demonstrates that the proposed pretext task is re-
lated to image classification that requires semantic features. It
is worth noting that there is a significant drop when the weights
of layers conv1 to conv5 are transferred from the AlexNet. This
is probably due to the fact that the weights of layer conv5 in the
AlexNet may specialize in an image classification task (Noroozi
& Favaro, 2016; Nguyen et al., 2015). For the baseline result,
we have performed the experiment on AlexNet using randomly
initialized parameters. It scores 3.8% in the pairwise classifica-
tion of our pretext text since semantics are not learned.

4.1.2. Filter responses
In order to gain a better understanding of the internal visual

representations of the OCEAN approach, we obtained highly
firing images of each filter in the conv5 layer. To this end, using
PASCAL VOC 2012 as a test set, we compute the magnitude of
the image neuron response for units in the conv5 layer. The
images are then ranked based on firing scores and select the top
five ones as shown in Fig. 5. We can see that the filters of our
conv5 layers often capture semantically meaningful categories,
without any manual annotation during the training phase. For
example, channel 2 fires on airplane and channel 51 fires on
car. This demonstrates that OCEAN learns semantic features
by learning to arrange object proposals.

4.1.3. Network dissection
We applied network dissection to OCEAN to further inter-

pret the deep visual representations and quantify their inter-
pretability (Bau et al., 2017). We assessed the interpretability
of OCEAN using the Broden dataset2, which consists of vari-
ous visual concepts such as scene, object, part, material,
texture, and color (Bau et al., 2017). Note that all of these
models use the AlexNet architecture and are tested at conv5.
Fig. 6(a) demonstrates the result of network dissection across
different models of self-supervised learning: Tracking (Wang &
Gupta, 2015), Objectcentric (Gao et al., 2016), Audio (Owens
et al., 2016), Moving (Agrawal et al., 2015), Colorization (Zhang
et al., 2016), Puzzle (Noroozi & Favaro, 2016), Crosschan-
nel (Zhang et al., 2017), Egomotion (Jayaraman & Grauman,
2015), Context (Doersch et al., 2015), and Frameorder (Misra
et al., 2016). Note that the threshold of unique detectors is set to
0.04 in Fig. 6. Here, Tracking (Wang & Gupta, 2015) shows the

2http://netdissect.csail.mit.edu

Table 3: Pairwise classification (in percentage) on different CNN architectures.

# training data Context OCEAN

50k 30.1 65.5
250k 50.6 70.1

highest number of unique detectors3. Interestingly, many part

detectors emerge in OCEAN, which corresponds to our pretext
task: OCEAN is trained to associate object parts considering
their spatial relationships. It is thus demonstrated that the pro-
posed pretext task commonly requires object parts to solve the
problem.

Fig. 6(b) shows the interpretability of all five convolutional
layers; ‘ours< i >’ symbolizes the i–th convolutional layer of
OCEAN. It is shown that OCEAN learns various semantics in
all five convolutional layers and that it specifically captures ob-
ject parts in an effective way. Fig. 7 presents visual detectors
identified by OCEAN with high scores. It is observed that color
and texture concepts are prevalent at lower layers ours1 and
ours2 while more part detectors emerge in higher layers. Al-
though ours2 in Fig. 6 shows high interpretability in parts, the
highly activated part region shows texture-like regions as shown
in the first image in Fig. 7(b). From Fig. 6 and Fig. 7, it is seen
that OCEAN learns semantics through all convolutional layers
with higher layers representing higher-level semantic concepts.

4.2. Analysis of the framework components

We analyzed three components of our framework: learning
from non-overlapping patches, the effect of using object pro-
posals instead of uniform patches, and proposals selection. To
this end, the proposed pretext task, i.e., pairwise classification,
was performed with alternative component configurations.

4.2.1. Non-overlapping patches
We tested the OCEAN framework without the ROI pooling

layer, which is an architecture similar to that of Context (Do-
ersch et al., 2015). Inputs are directly extracted from an image
with respect to the size of object proposals and resized to the
same size by means of interpolation. We used 50k and 250k
images for training. Interestingly, for a training set of size 50k,
the pairwise classification (Table 3) accuracy rate of Context
and OCEAN is 30.1% and 65.5%, respectively. This can be
an effect of the ROI pooling layer in the OCEAN framework,
which generates features of the same size from conv5 layers re-
gardless of the size of object proposals. Based on the results,
we observe that OCEAN handles trivial shortcuts better than
the baseline architecture (Doersch et al., 2015), since the pair-
wise classification requires high-level semantics in order to at-
tain high accuracy as described in section 4.1.
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Figure 6: Network dissection. (a) Semantic detectors emerge across different models of self-supervised learning. (b) Interpretability of all five convolutional layers
of OCEAN. Many of part detectors emerge in OCEAN, demonstrating that our pretext task requires object parts to solve the geometric relationships between object
proposals.

Table 4: Pairwise classification (in percentage) by changing training input
patches.

# training data Patches Object proposals

50k 35.4 66.0
250k 60.6 70.8

Table 5: Comparison of the mean of AP (in percentage) and standard deviation
(in brackets) between the ground-truth box and the input proposals set.

# proposals No-filtering Filtering

5 44.3 (0.287) 53.4 (0.283)
7 44.7 (0.285) 54.0 (0.279)
9 52.7 (0.283) 62.4 (0.273)

11 57.9 (0.277) 70.1 (0.243)
13 61.7 (0.267) 76.5 (0.215)

4.2.2. Object proposals vs. regular grid of patches
We tested OCEAN with nine regular patches that were ran-

domly generated. To this end, we used 50k and 250k training
images. For the pretext task, the results (pairwise classification
in Table 4) of OCEAN with regular patches and object pro-
posals were found to be 35.4% and 66.0%, respectively. This
clearly demonstrates that object proposals are much more ef-
fective than naively using regular patches.

4.2.3. Handling object proposals
To verify the importance of selecting object proposals, we

present illustrative results of a statistical analysis pertaining to

3As described in Bau et al. (2017), the interpretability does not always guar-
antee the discriminative power of the CNN models but a different quality that
must be measured.

Table 6: Comparison of the pairwise classification scores (in percentage) with
and without filtering object proposals.

# training data No-filtering Filtering

50k 63.5 65.5
100k 65.0 68.5
250k 70.6 72.1

object proposal selection. Proposal selection is required due
to the potentially large set of candidates, amounts to hundreds
and thousands per image (Uijlings et al., 2013). Table 5 com-
pares the effect of handling object proposals. The experiments
are performed using the ground-truth boxes in the ILSVRC
2012 dataset. In order to estimate how much of the ground-
truth region is covered by the set of input proposals, the aver-
age precision (AP) between the ground-truth box and the vary-
ing numbers of input proposals is computed. This is impor-
tant to OCEAN because higher AP indicates that potential ob-
jects can be exploited as inputs more frequently during the self-
supervised learning, enabling representations of high-level se-
mantics.

Table 5 shows that input proposals commonly score higher
APs when object proposals are filtered, which demonstrates that
input proposals (with filtering) commonly cover a larger object
region. Illustrative results in Fig. 8 also demonstrate the effec-
tiveness of object proposal selection. Due to the characteristics
of the object proposals, inputs can be extracted from similar re-
gions (puppies in Fig. 8(a)) which can be a distraction for the
CNN in their attempt to capture the potential objects effectively.
It is also prone to generate less meaningful inputs (a top left fig-
ure in Fig. 8(a)) which do not cover the object region effectively.

We further compare our classification task with and without
using a proposal selection strategy as described in section 3.3.
In both cases, we train CNN with 50k, 100k, and 250k im-
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(a) ours1: color-r, color-g (b) ours2: texture-h, texture-v

(c) ours3: texture-banded, crosswalk(part) (d) ours4: texture, sky

(e) ours5: dog, cat, head(part)

Figure 7: Highly ranked concepts in the five convolutional layers in OCEAN. Two examples of units in each layer are shown with identified semantics. The
segmentation generated by each unit is shown on the five Broden images with the highest activation.

(a) Inputs without proposals selection

(b) Inputs with proposals selection

Figure 8: Proposals selection. (a) Randomly selected proposals and (b) pro-
posals used to training. Object proposals are frequently generated from similar
regions due to their characteristics of the repeatability. This might distract input
proposals to imply object and their parts.

ages sampled from the ILSVRC 2012 train dataset. For test-
ing the classification performance, we use the PASCAL VOC
2007 test set. Table 6 shows that enhanced performance can
be achieved by filtering object proposals according to the pro-
posed approach. This confirms that the selection of appropriate
proposals is critical to learning various types of geometric rela-
tionships.

We have presented the analysis of the proposed model by
changing configurations. The results from section 4.2.1. and
4.2.2. demonstrate that the proposed model outperforms previ-
ous approaches which employ regular size and non-overlapping
patches (Doersch et al., 2015; Noroozi & Favaro, 2016). This
shows that the proposed model with the object proposals and
ROI pooling generates less clutter and provides effective learn-
ing rather than simply using non-overlapping regular patches.
Although the proposed approach requires an additional off-line
process to generate object proposals, it helps better understand-
ing of images for learning the high degree of visual representa-
tions.

4.3. Transfer learning on PASCAL VOC tasks

We compared ours with other self-supervised learning meth-
ods (Agrawal et al., 2015; Wang & Gupta, 2015; Doersch et al.,
2015; Pathak et al., 2016; Noroozi & Favaro, 2016; Zhang et al.,
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Table 7: Fine-tuning pre-trained models on PASCAL VOC dataset. Average precisions (APs) are evaluated for each task.

PASCAL VOC 2007 PASCAL VOC 2012

Method Pre-training Supervision Classification Detection Action Detection
Supervised learning
AlexNet 3 days 1000 class labels 78.2 56.8 70.6 56.5

Unsupervised learning
Tracking (Wang & Gupta, 2015) 1 week motion 58.4 44.0 52.2 43.5
Moving (Agrawal et al., 2015) - motion 52.9 41.8 47.2 37.4
Motionseg (Pathak et al., 2017) - motion 56.5 44.5 - 48.6
OPN (Lee et al., 2017) 3days motion 63.8 46.9 - -
Colorization (Zhang et al., 2016) - color 65.9 46.9 - 44.5
Crosschannel (Zhang et al., 2017) - reconstruction 67.1 46.7 - 43.8
Inpainting (Pathak et al., 2016) 14 hours context 56.5 44.5 30.9 39.1
Context (Doersch et al., 2015) 4 weeks context 55.3 46.6 47.5 49.9
Puzzle4 (Noroozi & Favaro, 2016) 2.5 days context 68.6 51.8 30.7 49.0
OCEAN-2 2 weeks context 58.8 47.5 54.7 49.5
OCEAN-4 4 weeks context 60.0 48.6 56.9 50.3

2016, 2017; Lee et al., 2017; Pathak et al., 2017) by fine-tuning
the pre-trained models to the PASCAL VOC 2007 and VOC
2012 datasets. We evaluated OCEAN in the object detection (Gir-
shick, 2015), classification (Krähenbühl et al., 2015), and action
recognition tasks (Gkioxari et al., 2015). AlexNet (Krizhevsky
et al., 2012) is a base model for all methods, while there exist
slight differences regarding the use of batch normalization (Do-
ersch et al., 2015) and the size of the stride (Noroozi & Favaro,
2016). We copy the weights of conv1 to conv5 layers of our
pre-trained model and initialize subsequent layers for each task
with Gaussian random weights that have a mean of 0.1 and a
standard deviation equal to 0.001.

4.3.1. Object detection
We compared our approach with the framework of Fast-

RCNN (Girshick, 2015) for object detection using the PAS-
CAL VOC 2007 and 2012 datasets. In the testing, the average
of the object detection time on the PASCAL VOC datasets is
recorded to 0.22s per image. Following the published guide-
lines in Pathak et al. (2016); Doersch et al. (2015); Noroozi
& Favaro (2016); Wang & Gupta (2015), we perform the fine-
tuning on trainval and train sets in VOC 2007 and VOC
2012, respectively, and test the performance on the test and
val sets, respectively. We use the multi-scale strategy for train-
ing and testing as described in Girshick (2015).

4.3.2. Image classification
We experimented with image classification on PASCAL VOC

2007 (object categories). We follow the baseline of Krähenbühl
et al. (2015), using random crops during training and average
scores from 10 crops during testing. Training and testing are
performed on trainval and test sets, respectively. The aver-
age of processing time in action recognition is recorded to 0.08s
per image.

4.3.3. Action recognition
We experimented with the action-specific framework, R*

CNN (Gkioxari et al., 2015). All the pre-trained models were
fine-tuned on PASCAL VOC Action 2012 dataset (Everingham
et al., 2010). Training and testing are performed on train

and val sets, respectively. The average of processing time in
action recognition is recorded to 0.46s per image.

4.3.4. Performance analysis
Table 7 summarizes the fine-tuning results in object detec-

tion and classification. Results from other methods were taken
from Pathak et al. (2016); Noroozi & Favaro (2016); Pathak
et al. (2017); Lee et al. (2017). All models have a CNN archi-
tecture similar to AlexNet, but differ in minor details such as
the presence of batch normalization layers, stride, or the pres-
ence of grouped convolutions. Note that Noroozi et al. (Noroozi
& Favaro, 2016) use a different size of the network, changing
stride 4 to 2 in conv1 layers, and produce better results but this
is not a fair comparison to other methods.

The Tracking (Wang & Gupta, 2015) shows comparable
performance to our approach in the classification task, but not
in object detection. Inpainting (Pathak et al., 2016) achieves the
fastest training time, but does not work well for all tasks. Con-
text (Doersch et al., 2015) exhibits competitive performance,
but it requires considerable training time. Context learns to
discover relative positions between non-overlapping patches.
These non-overlapping patches may include clutter, which is
not helpful for training. Overall, existing methods yield com-
petitive performance in a specific task. In contrast, OCEAN-2
and OCEAN-4 generally produce comparable results to other

4Note that Puzzle (Noroozi & Favaro, 2016) is performed under slightly
different convolutional architecture with a finer stride at conv1, preventing fair
comparisons.
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Table 8: Results of PASCAL VOC 2007 object detection using different object
proposals.

Methods mAP(%)

RP (Manen et al., 2013) 48.8
MCG (Arbeláez et al., 2014) 49.5

GOP (Krähenbühl & Koltun, 2014) 48.8
SS (Uijlings et al., 2013) 48.6

Table 9: PASCAL VOC 2012 object detection. (‘> i’: layers above convi are
fine-tuned; ‘> 0’: the entire net is fine-tuned.)

PASCAL VOC 2012 Detection (mAP(%))
(> 0) (> 1) (> 2) (> 3) (> 4) (> 5)

Inpainting 39.1 36.4 34.1 29.4 24.8 13.4
Context 47.5 48.8 44.4 44.3 42.1 33.2
Puzzle 49.0 50.0 48.9 47.7 45.8 37.1

Motionseg 48.6 48.2 48.3 47.0 45.8 40.3
OCEAN-4 49.4 50.3 47.6 43.3 39.4 31.0

Table 10: PASCAL VOC 2012 action classification. (‘> i’: layers above convi
are fine-tuned; ‘>0’: the entire net is fine-tuned.)

PASCAL VOC 2012 Action (mAP(%))
(> 0) (> 1) (> 2) (> 3) (> 4) (> 5)

Inpainting 30.9 31.7 32.3 27.7 40.2 29.2
Context 48.1 46.8 46.1 45.4 45.4 42.5
Puzzle 24.3 23.9 24.6 33.3 32.4 23.0

OCEAN-4 54.2 56.9 55.2 50.2 47.5 45.8

methods in object detection as well as in image classification.
Note that OCEAN-2 and OCEAN-4 denote the proposed ap-
proaches trained for 2 weeks and 4 weeks, respectively.

Since OCEAN might be biased to specific object proposals,
we have performed the additional experiments on the PASCAL
VOC 2007 detection task using three different proposals: Ran-
domizedPrim (RP) (Manen et al., 2013), Multiscale Combina-
torial Grouping (MCG) (Arbeláez et al., 2014), and Geodesic
Object Proposals (GOP) (Krähenbühl & Koltun, 2014). As
shown in Table 8, RP, MCG, GOP, and SelectiveSearch (SS)
achieve a mAP of 48.8, 49.5, 48.8, and 48.6, respectively. This
shows that the performance of fine-tuning results of the OCEAN
is not biased with respect to the object proposal methods.

4.3.5. Changing the number of fine-tuning layers
We have experimented on PASCAL VOC 2012 detection

and action recognition by changing fine-tuned layers as in Pathak
et al. (2017). In object detection shown in Table 9, configura-
tions labeled as ‘> 0’, ‘> 1’, and ‘> 2’, exhibit favorable perfor-
mance while others decrease with large degrees. Since OCEAN

captures object parts in high level convolutional layers, the de-
tection performance can decrease if the high level convolutional
layers are frozen. Contrary to the above, in action recognition
tasks reported in Table 10, high performance is preserved in
every case.

From the experiment on the PASCAL VOC dataset, we can
verify that OCEAN contains a high degree of semantics which
helps learning vision tasks such as object detection, classifica-
tion, and action recognition. Furthermore, noting that OCEAN
outperforms in the action recognition, we can analyze the re-
sults by taking the observations from Fig. 6(b). The semantics
in OCEAN adapt well to the R* CNN (Gkioxari et al., 2015)
which considers contextual information during training the net-
work. This resembles the idea of OCEAN which naturally con-
siders the relationship between objects and parts during training
the network.

5. Feature representations

In this section, we evaluate the generalization capability of
the OCEAN. We consider OCEAN as a generic feature descrip-
tor and apply it to other applications: image retrieval and se-
mantic correspondences (Ham et al., 2016).

5.1. Image retrieval

We analyze the learned visual representations by using an
image retrieval task of the PASCAL VOC 2007 dataset. Query
and test images are extracted from the PASCAL VOC 2007
trainval and test datasets, respectively, using the provided
ground-truth bounding boxes for each label. We extract conv5
features of the query and target images and measure their simi-
larity using the dot product of the conv5 outputs.

In order to obtain quantitative results, we measure the re-
trieval rate by counting the number of correct retrievals of the
top 20 retrieved images. The retrieval is regarded as being cor-
rect if the classes of the target and the query images are the
same. We considered three models: AlexNet trained with Ima-
geNet classification (Krizhevsky et al., 2012), AlexNet initial-
ized with random weights, and our proposed model. Noting that
all features from images are extracted offline, the runtime for
each model shows 3.7s on average. In experiments, we obtained
a retrieval rate of 67.2% for AlexNet which is a supervised pre-
trained model. Our pre-trained model yielded a retrieval rate
equal to 43.5%, which is higher than the 28.9% retrieval rate
of the AlexNet with random weights. Fig. 9 shows illustrative
results of top 5 retrievals for query images. It can be seen that
OCEAN estimates objects with similar shapes satisfactorily and
often captures the correct category while being trained without
any annotated class labels. OCEAN captures semantic features
from low-resolution images as shown in the examples of the
monitor and the airplane in Fig. 9(d). This demonstrates that
OCEAN has the capability of capturing semantic features from
inputs of various sizes.
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Figure 9: Image retrieval results. (top) Query images and (bottom) the top-5 retrieval results of (left) AlexNet trained with ImageNet labels, (middle) AlexNet
initialized with random variables, and (right) ours. The OCEAN captures high-level semantics while it is employed as the CNN-based feature descriptor.

(a) (b) (c) (d) (e)

Figure 10: Results of the semantic correspondence matching. (a-b) Source images are warped to the target images using dense correspondences estimated by Ham
et al. (2016), using conv5 features of (c) AlexNet trained with ImageNet labels, (d) AlexNet initialized with random variables, and (e) ours.

5.2. Semantic correspondences

We apply OCEAN to establish semantic correspondences.
Semantic correspondence methods are designed to handle im-
ages depicting different instances of the same object or scene
category. We use a proposal flow (PF) method (Ham et al.,
2016) that estimates correspondences by matching object pro-
posals. Experiments are performed based on the PF bench-
mark (Ham et al., 2016), which provides the evaluation metrics
and 10 object classes. We use two feature descriptors: out-
puts of conv4 and conv5 of AlexNet (Krizhevsky et al., 2012)
(Alex c4 and Alex c5) and ours (OCEAN c4 and OCEAN c5).
The output of conv5 with random weights (Rand) is also con-
sidered. The runtime for each AlexNet-like architecture shows
11.7s on average.

The matching precision and retrieval performance are mea-
sured by computing probability of correct region (PCR) and an

average of IoU of k-best matches (mIoU@k).
Fig. 10 presents illustrative results of the PF dataset. De-

spite the fact that it is trained in an unsupervised manner, the
OCEAN aligns semantically similar, but not identical, images
well. As shown in Fig. 11, OCEAN exhibits better performance
compared to the randomized CNN, a result which demonstrates
that semantic features are learnt from the pretext task. Although
OCEAN has inferior performance compared to AlexNet, a sim-
ilar performance trend is observed in both models; the conv4
features exhibit slightly better performance compared to the
conv5 features. Comprehensive performance evaluation and
comparison to state-of-the-art self-supervised learning methods
demonstrates that OCEAN can learn high-level visual semantic
representations without human annotation.
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Figure 11: Comparison of the semantic matching performance. PF bench-
mark (Ham et al., 2016) evaluation on (a) region matching precision (PCR
plots) and (b) match retrieval accuracy (mIoU@ k plots). (Best viewed in color.)

6. Conclusion and future work

We have presented OCEAN, a CNN framework for a self-
supervised learning of visual representations. We have em-
ployed the idea of a pretext task which is used for the pur-
poses of teaching the CNN to discover the geometric relation-
ships between a pair of object proposals. The OCEAN enables
CNN to identify potential objects and their parts during self-
supervised learning. In a series of experiments, we have per-
formed various ablation studies to verify that OCEAN learns
high-level semantics. The results have shown that OCEAN al-
leviates trivial shortcuts and learns high-level semantics from
object proposals. Furthermore, application of OCEAN to fine-
tuning on PASCAL VOC object detection, classification, and
action recognition tasks, demonstrates the competitive perfor-
mance compared to other unsupervised learning methods. Per-
formance evaluation has also shown that OCEAN can be used
as a generic feature extractor by applying it to image retrieval
and semantic matching.

While many approaches have commonly focused on train-
ing supervised manner, we have shown that OCEAN can ef-
fectively embed high degrees of semantic visual representa-
tions without human annotations. This is important in terms
of intelligent systems since many problems require large-scale
datasets to learn the features, such as action recognition for
wearable sensors (Nweke et al., 2018) and data classification in

the web (Aghamaleki & Baharlou, 2018). The self-supervised
approach can handle the impediment caused by the supervised
learning.

Future directions for this work can be described as follows:
- Multi-task self-supervised learning: We may improve the per-
formance of our methods further by designing a novel loss func-
tion which helps to improve the CNN in learning rich high-level
semantics and constructing a joint learning task. For example,
OCEAN does not currently consider the relative feature dis-
tance between object proposals; it reveals geometric relation-
ships between object proposals by means of softmax classifica-
tion. We believe that embedding a relative feature distance by
a triplet loss function (Wang & Gupta, 2015; Gao et al., 2016;
Lee et al., 2017) within a single image can achieve this with a
subsequent improvement in performance.
- Task-oriented self-supervised learning: We can design the
self-supervised learning for a specific computer vision appli-
cation. E.g., the proposed model shows good results in action
classification task since the feature from OCEAN is learned by
discovering the relationship between object proposals, which
is similar to the learning strategy in R* CNN (Gkioxari et al.,
2015). The study on self-supervised approach for the specific
application thus can be a good direction for further research.
- Learning visual representations from different dataset: Com-
monly the ImageNet dataset includes well-taken photos. How-
ever, in real world scenario, many photos may not be effective
for self-supervised learning, e.g., only small objects with back-
ground region. This can be another challenging issue to learn
meaningful semantics from images.
- Application to intelligent systems: The self-supervised ap-
proach also can be combined with visual navigation for au-
tonomous vehicles (Charalampous et al., 2016). The network
can learn meaningful features during visual navigation in a self-
supervised manner, enabling to generate an effective decision
for navigating the environment.
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