
Few-Shot Learning-Based Human Activity Recognition

Siwei Fenga, Marco F. Duartea,∗

aDepartment of Electrical and Computer Engineering,
University of Massachusetts Amherst,

Amherst, MA, 01003

Abstract

Few-shot learning is a technique to learn a model with a very small amount

of labeled training data by transferring knowledge from relevant tasks. In this

paper, we propose a few-shot learning method for wearable sensor based human

activity recognition, a technique that seeks high-level human activity knowledge

from low-level sensor inputs. Due to the high costs to obtain human generated

activity data and the ubiquitous similarities between activity modes, it can be

more efficient to borrow information from existing activity recognition models

than to collect more data to train a new model from scratch when only a few

data are available for model training. The proposed few-shot human activity

recognition method leverages a deep learning model for feature extraction and

classification while knowledge transfer is performed in the manner of model pa-

rameter transfer. In order to alleviate negative transfer, we propose a metric

to measure cross-domain class-wise relevance so that knowledge of higher rele-

vance is assigned larger weights during knowledge transfer. Promising results

in extensive experiments show the advantages of the proposed approach.

Keywords: Human Activity Recognition, Few-Shot Learning, Knowledge

Transfer, Cross-Domain Class-Wise Relevance, Deep Learning

∗Corresponding author
Email addresses: siwei@umass.edu (Siwei Feng), mduarte@ecs.umass.edu (Marco F.

Duarte)

Preprint submitted to Journal of LATEX Templates March 26, 2019

ar
X

iv
:1

90
3.

10
41

6v
1

 [
cs

.L
G

]
 2

5
M

ar
 2

01
9

1. Introduction

Studies in human activity recognition (HAR) have been attracting increasing

attentions in recent years due to their potential in applications such as human

health care [1], indoor localization [2], smart hospital [3], and smart home [4].

HAR is a technique that aims at predicting participants’ activities from the low-

level sensor inputs. In recent years, the use of wearable devices such as smart

wristbands and smart phones has significantly facilitated HAR research due to

their small sizes and low power consumption [5] as well as their capability of

real-time information capturing [6].

Traditional machine learning (ML) methods such as support vector machines

and decision trees have significantly promoted the development of HAR stud-

ies during the past few decades. However, limitations such as heavy reliance

on human domain knowledge [7] and shallow feature extraction impede these

ML methods from providing satisfactory results in most daily HAR tasks [8].

More recently, deep learning (DL) methods have been continuously providing

marvelous performance in many areas such as computer vision and natural lan-

guage processing [9]. The capability to automatically extract high-level features

makes DL methods largely alleviated from the drawbacks of conventional ML

methods. There have been many DL-based HAR works proposed in recent years

[10, 11, 12, 13]. However, the training time and the amount of data required for

DL systems are always much larger than that of traditional ML systems, and

the large time and labor costs makes it difficult to build a large-scale labeled

human activity dataset with high quality. Therefore, it is necessary to find a

way to alleviate these problems of DL-based HAR.

Few-shot learning (FSL) [14, 15, 16, 17, 18, 19] is a type of transfer learning

technique [20] aiming at learning a classifier to recognize unseen classes (target

domain1) with only a small amount of labeled training samples by reusing knowl-

edge from existing models on relevant classes (source domain), which makes it

1The definition of domain is introduced in Section 2

2

easier to train deep learning models with only a few training samples from each

class. FSL has promising potential in many HAR applications. For example,

after a health care system is installed, the system should be able to be retrained

as the training data used in the previous system may not be representative of

the new environment (e.g. new activity types, different people, etc.). Further-

more, the retraining should only require a small amount of new data, as users

are generally not able to provide large amounts of data for training, especially

for elderly or disabled people. Nonetheless, it may be helpful to keep some of

the previously existing knowledge if we can discern between knowledge that is

relevant or helpful to learning the new tasks from the knowledge that is not rel-

evant, or that may even harm the learning performance if used during training,

a phenomenon known as negative transfer.

In this paper, we propose a novel FSL-based HAR method that we dub few-

shot human activity recognition (FSHAR). The framework of FSHAR includes

three steps. We first train a deep learning model with source domain samples,

where the model parameters are randomly initialized. After that, we calcu-

late the cross-domain class-wise relevance based on embeddings of both source

domain samples and target training samples obtained from the source feature

extractor. By leveraging the parameters from the source feature extractor and

the classifier, as well as the obtained cross-domain class-wise relevance, we ini-

tialize the parameters for a target model. Fine-tuning is then performed on the

initialized target model for final optimization. To the best of our knowledge,

this is the first application of deep learning-based few-shot learning to human

activity recognition.

The key contributions of this paper are as follows:

• We propose a novel parameter transfer-based few-shot learning scheme for

human activity recognition.

• We propose a general framework to measure cross-domain class-wise rele-

vance for human activity recognition to alleviate negative transfer.

• We design a deep learning framework to transform the low-level sensor

3

input of human activity signals to the high-level semantic information for

human activity recognition.

• We provide multiple experimental results to demonstrate the performance

improvements achieved by the proposed method compared with relevant

techniques from the state of the art.

The rest of this paper is organized as follows. Section 2 introduces notations

used in this paper and overviews relevant techniques. Details of the proposed

framework are presented in Section 3. Experimental results and the corre-

sponding analysis are provided in Section 4. Section 5 concludes this work with

suggestions for future work.

2. Related Work

In this section, we introduce the papers notations and definitions and provide

a review of techniques relevant to our proposed method.

Vectors are denoted by bold lowercase letters while matrices are denoted by

bold uppercase letters. The superscript T of a matrix denotes the transposition

operation. For a matrix A, A(q) denotes the qth column and A(p) denotes the

pth row, while A(p,q) denotes the entry at the pth row and qth column. The

`r,p-norm for a matrix W ∈ Ra×b is denoted as

‖W‖r,p =

 a∑
i=1

 b∑
j=1

|W(i,j)|r
p/r


1/p

. (1)

We use X = [X(1); X(2); · · · ; X(n)] ∈ Rn×d to denote sample sets, where

X(i) ∈ Rd is the ith sample in X for i = 1, 2, · · · , n, and where d and n denote

data dimensionality and number of samples in X, respectively.

For notations of transfer learning, we use D to denote a domain and T for

a task. A domain D consists of a feature space X and a marginal probability

distribution P (X) over a sample set X. A task T consists of a label space Y and

an objective predictive function f(X,Y) to predict the corresponding labels Y of

4

a sample set X. We use Dsrc = {Xsrc, P (Xsrc)} and Tsrc = {Ysrc, f(Xsrc,Ysrc)}

to denote the source domain and task, and use Dtrg = {Xtrg, P (Xtrg)} and

Ttrg = {Ytrg, f(Xtrg,Ytrg)} for the target domain and task.

2.1. Human Activity Recognition

Human activity recognition (HAR) is a technique that aims at learning high-

level knowledge about human activities from the low-level sensor inputs [8]. In

recent years, the growing ubiquity of sensor-equipped wearables such as smart

wristbands and smartphones have significantly promoted researches regarding

HAR in the field of pervasive computing [21].

Machine learning (ML) algorithms have been widely used in HAR. In the last

decade, traditional ML tools such as Markov models [22, 23] and decision trees

[24, 25] have yielded tremendous progress in HAR. However, most traditional

ML algorithms applied in HAR use manually designed features, which are shal-

low and heavily rely on human domain knowledge and experience; furthermore,

they are specific to particular tasks. Therefore, traditional ML algorithms can-

not handle complex HAR scenarios, and they require one specifically designed

model for each task, which increases the time and labor cost to build HAR

systems in terms of both labeled data collection and model construction.

In recent years, the application of deep learning (DL) methods to HAR has

significantly alleviated the drawbacks of traditional ML based HAR methods.

First, DL models can extract high-level features with little or no human design.

Second, DL models can be reused for similar tasks, which makes HAR model

construction more efficient. Different DL models such as deep neural networks

[26, 27], convolutional neural networks [10, 28], autoencoders [11, 29], restricted

Boltzmann machines [12, 30], and recurrent neural networks [31, 32] have been

applied in HAR. We refer readers to [8] for more details on DL-based HAR.

2.2. Few-Shot Learning

Few-shot learning (FSL) is a transfer learning technique that applies knowl-

edge from existing data to data from unseen classes which do not have sufficient

5

labeled training data for model training. In this paper we focus on the scenario

of Xsrc = Xtrg while Ysrc ∩ Ytrg = ∅.

The first work for FSL is [14], in which a variational Bayesian framework

is proposed to represent visual object categories as probabilistic models where

existing object categories are used as the prior knowledge, while the model for

unseen categories is obtained by updating the prior with one or more observa-

tions. Lim et al. [15] propose a sample-borrowing method for multiclass object

detection that adds selected samples from similar categories to the training set

in order to increase the number of training data.

In recent years, deep learning based FSL [16, 17, 18, 19] has become the

mainstream of FSL due to their unparalleled performance. Koch et al. [16]

proposed a double-network structure based on the deep convolutional siamese

network to extract features from image pairs and generates a similarity score

between inputs. Vinyals et al. [17] proposed matching networks to map a small

labelled support set from unseen classes and an unlabelled example to its label.

Snell et al. [18] proposed prototypical networks that learn a metric space to

perform classification by computing distances to prototype representations of

each class. Qi et al. [19] proposed a weight imprinting schedule to add a weight

for each new class into a softmax classifier.

During our literature search, we found that FSL is widely used in computer

vision studies, motivated by the fact that human beings are able to recognize

previously unseen objects with only a few training samples. By contrast, the

application of FSL in HAR has been much more limited, especially when com-

bined with DL. During our literature review, we did not find any DL based FSL

method that is used in HAR.

2.3. Long Short-Term Memory Network

A long-short term memory (LSTM) network [33] is a type of recurrent neural

network (RNN) which processes time series signals by taking as their input not

just the current inputs but also what they have processed earlier in time. Each

RNN contains a loop (repeating modules) inside the network structure that

6

Figure 1: Graphical summary of the FSHAR framework.

allows information to be passed from one step of the network to the next.

LSTMs are famous for their capabilities to capture long-term dependencies.

Compared with the simple repeating modules of most RNNs, which sometimes

only contains a single tanh layer, the repeating modules of LSTMs include more

complicated interacting layers in their structures. The workflow of LSTM can

be briefly described as follows. The first step is to determine the importance

of previous information, which is to decide a status between “completely forget

about this” and “completely keep this”. The next step is to decide what new

information to store in the cell state and then replace the old state with a new

state. Finally, we decide the information to output.

A stacked LSTM model [34] is a LSTM model with multiple hidden LSTM

layers where each layer contains multiple memory cells. By stacking LSTM

hidden layers, a LSTM model can be deeper that makes it capable of tackling

more complex problems.

7

3. Proposed Method

3.1. Basic Framework

The basic framework for FSHAR is illustrated in Fig. 1. We first train

a source network, which consists of a feature extractor and a classifier, with

source domain samples as training data and parameters being randomly ini-

tialized. The parameters of the source feature extractor and classifier are then

separately transferred to a target network. For the source feature extractor,

the parameters are copied to the corresponding part in the target network and

are used as the initialization for the target feature extractor parameter opti-

mization, a procedure known as fine-tuning2 in the literature. The transfer of

source classifier parameters is dependent on a cross-domain class-wise relevance

measure. The transferred classifier parameters are also used as the initialization

for the target classifier. In this paper we use the same network structure for

both source and target domains. The network structure is illustrated in Fig. 2.

3.2. Source Network Training

We first train a source network with source domain samples to get a source

feature extractor fsrc(·,Θsrc) with parameters Θsrc,
3 and a source classifier

C(·,Wsrc) with parameters Wsrc. The source classifier parameters can be rep-

resented as a matrix Wsrc ∈ Rcsrc×d, where csrc is the number of source classes

and d is the dimensionality of the encoded features fsrc(Xsrc) ∈ Rnsrc×d, which

is used as the feature for classification, where nsrc denotes the number of source

domain samples. We empirically use a stacked LSTM with two hidden layers

followed by two fully connected layers as our feature extractor. By using LSTM,

we can take advantage of the temporal dependencies within the HAR data, as

the layout of an LSTM layer forms a directed cycle where the states of the

network in current timestep depends on those of the network in the previous

2Fine-tuning is performed on both feature extractor and classifier of the target network.
3We often drop the dependence on Θsrc for readability, i.e., we use fsrc(·) to denote

fsrc(·,Θsrc) with parameters Θsrc when no ambiguity is caused.

8

Figure 2: Network Structure

timestep. We use a softmax classifier due to its simplicity of training by gradient

descent.

3.3. Knowledge Transfer

We consider the information from the source feature extractor as “generic

information”, as information from lower layers are believed to be more com-

patible between related tasks than that from higher layers4 [35]. To transfer

the information from the source feature extractor, we copy the source feature

extractor parameters Θsrc and use those as the initialization for the target fea-

ture extractor parameters, which means that the initialization of target feature

extractor parameters Θ0
trg = Θsrc. Since the information in a classifier is highly

task-specific, it is necessary to pick information that is relevant to the target

4We define lower layers as layers that are more close to the input layer and higher layers

as layers that are more close to the output layer of a network.

9

classes for knowledge transfer so that negative transfer can be alleviated. In

our problem scenario, we focus on the class-wise relevance between the source

and target training samples, which is referred as cross-domain class-wise rele-

vance in the sequel. We propose two different cross-domain class-wise relevance

measures: one based on statistical relevance and another based on semantic

relevance.

The statistical scheme to measure cross-domain class-wise relevance includes

two steps. First, we calculate the cross-domain sample-wise relevance, which

measures the similarity between each pair of source domain sample and target

training sample. Second, we calculate the cross-domain class-wise relevance

based on the obtained cross-domain sample-wise relevance. Multiple distance

metrics can be used to calculate cross-domain sample-wise relevance; we focus

on two options for this work. The cross-domain sample-wise relevance values

are stored in a matrix A ∈ Rnsrc×ntrg , where ntrg denotes the number of target

training samples.

• Cosine Similarity, which uses the exponential value of the cosine sim-

ilarity [17] to measure cross-domain sample-wise relevance. To be more

specific, the relevance between the ith source domain sample and the jth

target training sample is measured through

A(i,j) = e[f̃src(X
(i)
src)]

T f̃src(X
(j)
trg), (2)

for i = 1, 2, · · · , nsrc and j = 1, 2, · · · , ntrg, where f̃src(·) = fsrc(·)/‖fsrc(·)‖2
denotes the normalized encoded feature. The exponential operation makes

all relevance values positive to facilitate subsequent steps.

• Sparse Reconstruction, which uses the magnitudes of the reconstruc-

tion coefficients to measure cross-domain sample-wise relevance under

the assumption that there exists a linear mapping between source and

target embeddings provided by the source feature extractor. That is,

fsrc(Xtrg) = AT fsrc(Xsrc), where A acts as a reconstruction matrix with

element values indicating cross-domain sample-wise relevance. We first

10

solve the following minimization problem to get a reconstruction matrix

A:

min
A

1

2ntrg
‖AT fsrc(Xsrc)− fsrc(Xtrg)‖2F + λ‖A‖2,1, (3)

where λ is a balance parameter. Since each row of A indicates the impor-

tance of the corresponding encoded source domain sample in reconstruct-

ing the encoded target training samples, we use the `2-norm of each row

of A to measure the relevance between an encoded source domain sample

and the encoded target training samples, which leads to the `2,1-norm reg-

ularization term in (3) that enforces row sparsity on the transformation

matrix A for similarity measure.

With the obtained cross-domain sample-wise relevance matrix A, we sum up the

element values within each source-target class pair to get a class-wise relevance

matrix O ∈ Rcsrc×ctrg , where ctrg is the number of target classes. That is,

O(p,q) =
∑
i∈sp

∑
j∈sq

A(i,j), (4)

for p = 1, 2, · · · , csrc and q = 1, 2, · · · , ctrg, where sp and sq corresponds to the

set of sample indices in the pth class and the qth class. We refer to the scheme

with cosine similarity used for cross-domain sample-wise relevance measure as

FSHAR with Cosine Similarity (FSHAR-Cos) and the one with sparse

reconstruction used for cross-domain sample-wise relevance measure as FSHAR

with Sparse Reconstruction (FSHAR-SR) in the sequel.

The semantic scheme to measure cross-domain class-wise relevance is based

on the textual description of activity classes, in which multiple distance metrics

can be used. In this paper, we employ the normalized Google distance (NGD)

[36] as the distance metric. NGD is a semantic similarity measure based on

the number of hits returned by the Google search engine for a given pair of

keywords. The NGD between keywords P and Q is calculated by

NGD(P,Q) =
max{log g(P), log g(Q)} − log g(P,Q)

logN −min{log g(P), log g(Q)}
, (5)

where N is the total number of web pages searched by Google multiplied by the

average number of search terms on each page, which is estimated by the number

11

of hits by searching the word “the”; g(P) and g(Q) are the number of hits for

search terms P and Q, respectively; and g(P,Q) is the number of web pages on

which both P and Q occur. Assume P and Q are the textual descriptions of

the pth source class and the qth target class, respectively; then the cross-domain

class-wise relevance matrix O is obtained through

O(p,q) = e−NGD(P,Q) (6)

This scheme is referred to as FSHAR with normalized Google distance

(FSHAR-NGD) in the sequel.

In order to facilitate classifier parameter transfer, we need to normalize the

obtained cross-domain class-wise relevance matrix O such that for each target

class the relevance values from all source classes sum to 1. We propose two

normalization schemes for comparison. The normalized cross-domain class-wise

relevance values are stored in a matrix W ∈ Rcsrc×ctrg .

• Scheme A: Soft normalization

W(p,q) =
O(p,q)∑csrc
p=1 O(p,q)

(7)

• Scheme B: Hard normalization

W(p,q) =

1, O(p,q) = {maxi O(i,q)}csrci=1

0, Otherwise

(8)

The initial value of target classifier weights is a linear combination of the trained

source classifier weights based on the normalized class-wise relevance matrix W.

That is,

W0
trg = WTWsrc, (9)

where W0
trg denotes the initialization of target classifier parameters. Compared

with hard normalization, soft normalization may help improve knowledge trans-

fer performance since it is able to capture the relationship between each single

target class and multiple source classes instead of one. This is important for

HAR tasks since there sometimes exists commonalities between activity cate-

gories.

12

Algorithm 1 FSHAR

Inputs: Source domain samples Xsrc; target training samples Xtrg;

Outputs: Target feature extractor parameters Θtrg; target classifier parame-

ters Wtrg.

1: Train a source network with source domain samples Xsrc to obtain the source

feature extractor parameters Θsrc and the source classifier parameters Wsrc;

2: Initialize the target feature extractor parameters Θ0
trg using the source fea-

ture extractor parameters Θsrc;

3: Calculate the normalized cross-domain class-wise relevance matrix W by

following one of the schemes proposed in Section 3.3;

4: Initialize the target classifier parameters W0
trg by following Eq. (9);

5: Fine-tune the initialized target network to get the target feature extractor

parameters Θtrg and the target classifier parameters Wtrg.

3.4. Fine-Tuning

As mentioned earlier, both Θ0
trg and W0

trg are used as the initialization

for the feature extractor and the classifier parameters in the target network,

respectively. The final target feature extractor parameter Θtrg and classifier

parameter Wtrg are obtained through backpropagation based fine-tuning with

target training samples. The rationale behind fine-tuning is that not every

target class has an unimodal distribution in the embedding space created by

the source feature extractor as it could be biased towards features that are

salient and discriminative among source classes, while fine-tuning is likely to

move the embedding space so that each target class may have an unimodal

distribution [19]. FSHAR is summarized in Algorithm 1.

3.5. Implementation

We used PyTorch [37] to implement the described framework. Network

parameter optimization was performed via Adam [38]. We employ the method

13

proposed in [39]5 to solve the optimization problem (3) , which efficiently solves

an `2,1-norm optimization problem by reformulating it as two equivalent smooth

convex optimization problems.

3.6. Limitation

As described in Section 3.3, FSHAR uses a linear combination of source

classifier parameters to get an initialization of classifier weights for target classes

based on a normalized cross-domain class-wise relevance matrix W. Although

the matrix W only characterizes the relative relevance of source classes to each

target class within the given source domain, it is also possible that none of

the source classes is sufficiently relevant to a certain target class. In that case,

FSHAR does not consider the domain-wise relevance for knowledge transfer.

This limitation of FSHAR will be considered in our future work.

3.7. Extension

As mentioned in Section 1, there would be a practical impact if the knowledge

extracted from new environments can be merged into the previously trained

HAR system. In FSHAR, it is possible to merge the target model with the

source model by concatenating the initialized target classifier weights with the

source classifier weights as the initialization of a combined classifier W0
comb =

[Wsrc; W
0
trg] and use Θsrc as the initialization for the feature extractor Θ0

comb in

the combined network. Fine-tuning can be performed on the combined network

with training data consisting of the source domain samples and target training

samples to get the optimal values of Θcomb and Wcomb.

4. Experiments

In this section, we evaluate the knowledge transfer performance of FSHAR.

Experiments are conducted on two benchmark human activity datasets. We also

5Codes available at: https://github.com/jundongl/scikit-feature/blob/master/

skfeature/function/sparse_learning_based/ls_l21.py

14

https://github.com/jundongl/scikit-feature/blob/master/skfeature/function/sparse_learning_based/ls_l21.py
https://github.com/jundongl/scikit-feature/blob/master/skfeature/function/sparse_learning_based/ls_l21.py

compare FSHAR with other relevant state-of-the-art techniques. The classifica-

tion rates on target testing samples are used as the metric to evaluate knowledge

transfer performance. We do not include experimental results of merged net-

work as introduced in Section 3.7 as we only focus on the knowledge transfer

performance that is reflected by classification accuracy on target testing data

instead of a merged system.

4.1. Dataset Information

We first provide the overall information of each dataset and introduce the

source/target domain setup. We perform experiments on two benchmark datasets:

the Opportunity activity recognition dataset (OPP) [40] and the PAMAP2

physical activity monitoring dataset (PAMAP2) [41]. OPP consists of com-

mon kitchen activities from 4 participants with wearable sensors. Data from

5 different runs are recorded for each participant with activities being anno-

tated with 18 mid-level gesture annotations. Following [13], we only keep data

from sensors without any packet-loss, which includes accelerometer data from

the upper limbs and the back, and complete IMU data from both feet. The

resulting dataset has 77 dimensions. PAMAP2 consists of 12 household and

exercise activities from 9 participants with wearable sensors. The dataset has

53 dimensions. For frame-by-frame analysis, a sliding window with a one-second

duration and 50% overlap is performed and the resulting data are used as inputs

to the system for both datasets. In order to eliminate the side effects caused

by imbalanced classes, we set the number of samples from each class to be the

same within each dataset through random selection. We keep 202 samples and

129 samples for each class of OPP and PAMAP2 when used as source data,

respectively.

4.2. Source/Target Split

In PAMAP2, the small number of samples for each participant may nega-

tively affect the knowledge transfer performance when used as the source data.

Therefore, the 9 participants are partitioned into 3 groups with the purpose of

15

alleviating potential negative influences caused by the small number of samples

in each class. To be more specific, the first three participants are in the first

group, the second three participants are in the second group, and the remaining

three participants are in the third group.

For each dataset, we select a portion of the classes as the source classes and

the remaining as the target classes. Details on the source/target class split are

listed in Table 1.6 We test the knowledge transfer performance in two scenarios:

i) the source data come from the same participant/group of participants as those

of the target data; ii) the source data come from different participants/groups

of participants from those of the target data. In the first scenario, the target

domain includes target activity classes of one participant for OPP or one group

of participants for PAMAP2, and the source domain includes source activity

classes of the same participant for OPP or the same group of participants for

PAMAP2. In the second scenario, the target domain includes target activity

classes of one participant for OPP or one group of participants for PAMAP2, and

the source domain includes source activity classes of the remaining participants

for OPP or the remaining groups of participants for PAMAP2.

4.3. Baselines

We compare our proposed FSHAR methods with the following four base-

lines.7 Note that all baselines are performed with the network structure de-

scribed in Section 3.1. The parameters for neural networks are listed in Table

2.

• Random Initialization (RandInit), which trains the designed network

with target training data from scratch and network parameters are ran-

6For OPP, Doors 1-2 denote two different doors and Drawers 1-3 denote three different

drawers. When using NGD to calculate cross-domain class-wise relevance, we considered the

same activity mode affecting on different objects as the same class. For example, we used

“Open Door” for both “Open Door 1” and “Open Door 2” when computing NGD.
7We do not compare FSHAR with meta-learning-based FSL methods such as [17, 18] due

to the generally limited number of classes in human activity datasets.

16

Dataset

Split
Source Activities Target Activities

Open Door 2 Open Door 1

Close Door 2 Close Door 1

Close Fridge Open Fridge

Close Dishwasher Open Dishwasher

OPP Close Drawer 1 Open Drawer 1

Close Drawer 2 Open Drawer 2

Close Drawer 3 Open Drawer 3

Clean Table

Drink from Cup

Toggle Switch

Lying Sitting

Standing Cycling

Walking Nordic Walking

PAMAP2 Running Descending Stairs

Ascending Stairs Ironing

Vacuum Cleaning

Rope Jumping

Table 1: Source/target split for activities

Parameters OPP PAMAP2

LSTM Layer 2 2

LSTM Hidden Size 64 50

FC1 Size 64 50

FC2 Size 64 25

Table 2: Network Structure for Both Datasets

17

domly initialized. No knowledge is transferred from the source network.

• Feature Extractor Transfer + Softmax Classifier (FeTr+Softmax),

which only transfers the source feature extractor parameters as the ini-

tialization for target feature extractor. The softmax is used as classifier

and fine-tuning is performed on the whole network.

• Feature Extractor Transfer + Nearest Neighbor Classifier (FeTr+NN),

which uses a copy of the source feature extractor parameters as that for the

target feature extractor. Then a nearest neighbor classifier is applied on

the embeddings extracted from both target training and testing samples.

Following [17], we first calculated the similarity between a given encoded

target testing sample xTrgTe and different encoded target training samples

Xtrg(i) for i = 1, 2, · · · , ntrg through

S(xTrgTe,Xtrg(i)) =
e[f̃src(xTrgTe)]

T f̃src(Xtrg(i))∑ntrg

k=1 e
[f̃src(xTrgTe)]T f̃src(Xtrg(k))

, (10)

where ṽ = v/‖v‖ is a normalization of vector v.

• Imprinting: Qi et al. [19] proposed a weight imprinting approach that

adds classifier weights in the final softmax layer for unseen categories by

using a copy of the mean of the embedding layer activations extracted from

the correponding training samples. Following [19],we computed the clas-

sifier weights for a target class cj by averaging the embeddings Wtrg(j) =

1
tj

∑tj
i=1 fsrc(Xtrg(i)), where tj is the number of samples in the jth tar-

get class. The obtained classifier weights were used as the initialization

for the target classifier. Fine-tuning was then applied on the weights for

optimization purposes.

18

Model

Participant 1-shot 5-shot

1 2 3 4 1 2 3 4

RandInit 37.06 39.39 32.21 40.48 54.56 56.99 53.87 60.46

FeTr+Softmax 47.52 46.83 42.37 41.08 63.00 62.18 59.19 57.83

FeTr+NN [17] 48.18 42.88 54.48 50.43 57.15 49.64 62.97 58.87

Imprinting [19] 48.12 48.56 52.89 49.43 66.02 63.00 67.73 65.30

FSHAR-NGD
Soft 55.92 53.24 58.62 54.75 67.08 64.50 67.55 68.21

Hard 51.96 50.48 55.44 54.20 61.99 60.73 66.95 67.70

FSHAR-Cos
Soft 52.53 49.87 55.82 52.54 66.66 62.74 67.68 69.05

Hard 50.81 47.95 54.75 51.19 63.49 61.12 67.44 66.98

FSHAR-SR
Soft 50.53 47.71 54.49 52.42 66.19 61.61 67.64 67.89

Hard 50.01 47.21 54.47 50.71 62.79 59.79 67.17 66.01

Table 3: Performance of FASTL and competing algorithms in classification on OPP

where both source and target data come from the same participant. Classification

accuracy (%) on target testing samples is used as the evaluation metric.

Model

Participant 1-shot 5-shot

1 2 3 4 1 2 3 4

RandInit 37.06 39.39 32.21 40.48 54.56 56.99 53.87 60.46

FeTr+Softmax 43.35 39.96 37.68 43.11 57.73 55.29 54.36 57.90

FeTr+NN [17] 45.91 37.43 32.99 41.09 53.61 46.11 37.77 42.58

Imprinting [19] 45.94 42.25 42.04 44.17 61.45 59.33 60.85 59.17

FSHAR-NGD
Soft 47.79 48.07 47.63 49.06 61.17 61.88 62.08 60.64

Hard 47.62 49.70 48.82 48.50 58.34 59.55 57.51 59.25

FSHAR-Cos
Soft 48.02 43.94 41.48 48.06 62.29 60.08 58.92 58.94

Hard 47.17 42.54 39.54 46.72 59.74 58.80 55.99 57.43

FSHAR-SR
Soft 47.65 43.02 39.90 46.88 62.19 59.53 58.96 58.57

Hard 45.65 40.56 37.09 46.37 59.38 55.58 54.72 58.61

Table 4: Performance of FASTL and competing algorithms in classification on OPP

where source and target data come from different participants. Classification accuracy

(%) on target testing samples is used as the evaluation metric.

19

Model

Group 1-shot 5-shot

1 2 3 1 2 3

RandInit 41.20 38.36 49.73 50.62 53.00 64.65

FeTr+Softmax 42.97 49.34 42.90 54.08 55.43 54.72

FeTr+NN [17] 44.78 51.08 43.17 49.18 56.15 47.53

Imprinting [19] 46.83 54.35 58.50 60.25 60.48 70.08

FSHAR-NGD
Soft 46.33 54.84 58.98 61.17 57.21 67.35

Hard 44.64 57.67 47.90 51.93 62.84 61.12

FSHAR-Cos
Soft 48.29 56.00 56.83 62.74 60.52 68.97

Hard 48.39 55.46 55.52 65.70 61.65 67.07

FSHAR-SR
Soft 50.87 55.07 55.25 65.43 62.45 68.75

Hard 48.98 54.85 56.62 65.95 62.01 66.75

Table 5: Performance of FASTL and competing algorithms in classification on

PAMAP2 where both source and target data come from the same group of partic-

ipants. Classification accuracy (%) on target testing samples is used as the evaluation

metric.

Model

Group 1-shot 5-shot

1 2 3 1 2 3

RandInit 41.20 38.36 49.73 50.62 53.00 64.65

FeTr+Softmax 41.33 43.91 56.27 52.24 59.22 71.80

FeTr+NN [17] 44.48 44.81 52.93 48.28 48.27 59.17

Imprinting [19] 50.33 48.77 63.03 61.99 57.61 71.00

FSHAR-NGD
Soft 51.45 50.42 63.00 64.37 56.95 69.53

Hard 54.59 48.93 62.37 67.24 53.51 65.48

FSHAR-Cos
Soft 50.72 50.58 62.82 63.83 58.58 74.28

Hard 49.64 50.10 60.45 62.24 57.77 63.65

FSHAR-SR
Soft 50.77 50.44 63.70 67.91 58.56 77.18

Hard 50.28 49.56 61.12 66.69 57.28 69.17

Table 6: Performance of FASTL and competing algorithms in classification on

PAMAP2 wheresource and target data come from different groups of participants.

Classification accuracy (%) on target testing samples is used as the evaluation metric.

20

4.4. Performance Comparison

We present the classification accuracy results of FSHAR and baselines on

both datasets in Tables 3-6,8 including different combinations of datasets (OPP

or PAMAP2), whether source data and target data being generated from the

same participant (OPP)/groups of participants (PAMAP2) or not, and the num-

ber of training samples from each target class (1 or 5). In these tables, each

column corresponds to a participant (OPP)/group of participants (PAMAP2)

under either the scenario of 1-shot or 5-shot. Each number is an average of re-

sults from 100 repetitions with varying target training samples. For each table,

we highlight the best performance in each column as well as the classification

accuracy values with a difference less than 1% from the best one, since such a

difference can be considered trivial.

It is obvious that the best performances are almost always achieved by

FSHAR methods. More detailed analysis on different aspects is provided as

below.

• Transfer Learning and Negative Transfer: We can find that most

transfer learning based methods perform bettern than “RandInit”. How-

ever, we also see negative transfer when only the source feature extractor

weights are transferred. We conjecture that the possible reason is that

the weights we transferred are generated from all source domain samples

without any regard for similarity measure and selection. Therefore, source

domain samples with different relevance to the target domain make equal

contributions to the weights and those with weak relevance may provide

harmful information during training. The consistent poor performance

of “FeTr+NN” is possibly due to the unfeasibility for fine-tuning, which

8For FSHAR-SR, we conducted experiments with the balance parameter given ranges of

λ ∈ {10−4, 10−3, 10−2, 10−1, 1}. Since we observed that these values provided similar results,

we only present results generated with balance parameter λ = 10−2 in Tables 3-6, as we

consider these results being representative of the performance of FSHAR-SR with a varying

λ value.

21

results in sub-optimal network parameter choices.

• Number of Training Samples: Increasing the number of training sam-

ples for each target class from 1 to 5 can bring an increase of about 10% to

15% in performance for each method. It is also obvious that gap between

“RandInit”, the baseline without knowledge transfer, and other transfer

learning methods shrinks. We believe that by as the number of target

training samples increase, the gap between performance of “RandInit”

and transfer learning based methods will keep shrinking, which decreases

the necessity of transfer learning.

• Source Data: For OPP, using source data from the same participant

consistently provides better performance than that of using source data

from different participants. Our method assumes that data from the same

participants may have similar marginal distribution, though they have dif-

ferent conditional distribution due to disjoint label space between source

domain and target domain. However, this is not true for PAMAP2. We

conjecture that the combination of 3 participants into a group may intro-

duce discrepancies in marginal distribution, which may leads to negative

transfer.

• Soft Normalization vs. Hard Normalization: Soft normalization

does better than hard normalization in more cases than the other way

around. For activity data, each activity may be correlated with multiple

other activities instead of only a specific one. Soft normalization is able to

characterize the relationship between a target activity with multiple source

activities in the similarity, while hard normalization only selects the most

similar source activity to each target activity, thus potentially degrading

knowledge transfer performance due to the possible useful information

from other source activities.

• Cross-Domain Class-Wise Relevance Measures: For OPP, we find

that FSHAR-Cos and FSHAR-SR provides similar performance in almost

22

all cases. When each target class provides only one sample for training,

FSHAR-NGD does better than both FSHAR-Cos and FSHAR-SR while

when five samples are used, these three methods performs similarly. Due

to the source/target split scheme we use especially for OPP, it is easy

for NGD to find similarities between source and target classes using the

semantic information in their labels, which also means the results from

FSHAR-NGD may change when a different source/target split scheme is

employed. This also explains the fact that the advantages of FSHAR-NGD

is not significant for PAMAP2. Furthermore, the performance of FSHAR-

NGD may change if we use different texts to describe each activity class.

Therefore, we argue that the advantages of FSHAR-NGD over FSHAR-

Cos and FSHAR-SR can be a coincidence based on the source/target

class split scheme and the way each activity class being described. But it

is also noticeable that using statistical methods to calculate cross-domain

class-wise relevance may suffer from insufficient training data, while the

performance of semantic methods is independent of that.

4.5. Effects of Fine-Tuning

We illustrate the effects of fine-tuning on the scenario of OPP with source

and target data coming from the same participant in Fig. 3. It is obvious that

fine-tuning improves classification performance in almost all cases except for the

two of Participant 3 with the setup of 1-shot learning and soft normalization on

the cross-domain class-wise relevance matrix for both FSHAR-Cos and FSHAR-

SR. Additionally, the improvements become larger with the increase of number

of training samples. We conjecture that with only one training sample from

each target class, fine-tuning is more likely to lead to overfitting that degrade

the generalization capability of the learned model. Results from other scenarios

(i.e. PAMAP2, source and target data from different participant/group of par-

ticipants) are not included due to the fact that they perform similar patterns

and the purpose of saving space.

23

5. Conclusion

We propose a few-shot learning framework for human activity recognition.

The main contributions in this proposed approach is two-fold. First, we propose

a method to transfer the parameters for a feature extractor and classifier from

the source network to the target network based on cross-domain class-wise rele-

vance. Second, the proposed framework is a general framework where different

cross-domain class-wise relevance measure can be embedded. With the proposed

framework, satisfying human activity recognition results can be achieved even

when only very few training samples are available for each class. Experimental

results show the advantages of the framework over methods with no knowledge

transfer or that only transfer knowledge of feature extractor.

Future work includes four aspects: 1) we will study and try to overcome the

problem of cross-domain relevance; 2) a merged model after knowledge transfer

is also worth exploring; 3) we may combine statistical ways and semantic ways

to measure cross-domain class-wise relevance instead of separating them; 4) it is

worth trying to find a way to combine source data from both same and different

participants from the target participant to see if knowledge transfer performance

can be improved.

References

References

[1] H. Lin, J. Hou, H. Yu, Z. Shen, C. Miao, An Agent-Based Game Platform

for Exercising People’s Prospective Memory, in: WI-IAT, Vol. 3, 2015, pp.

235–236.

[2] H. Xu, Z. Yang, Z. Zhou, L. Shangguan, K. Yi, Y. Liu, Indoor Localization

via Multi-Modal Sensing on Smartphones, in: UbiComp, 2016, pp. 208–

219.

[3] D. Snchez, M. Tentori, J. Favela, Activity recognition for the smart hospi-

tal, IEEE Intell. Syst. 23 (2) (2008) 50–57.

24

[4] J. Wen, J. Indulska, M. Zhong, Adaptive Activity Learning with Dynami-

cally Available Context, in: PerCom, 2016, pp. 1–11.

[5] C. Hu, Y. Chen, X. Peng, H. Yu, C. Gao, L. Hu, A Novel Feature Incremen-

tal Learning Method for Sensor-Based Activity Recognition, IEEE Trans.

Knowl. Data Eng. (2018)

[6] R. Saeedi, A. Gebremedhin, A Signal-Level Transfer Learning Framework

for Autonomous Reconfiguration of Wearable Systems, IEEE Trans. Mob.

Comput. (2018)

[7] Y. Bengio, Deep Learning of Representations: Looking Forward, in: SLSP,

2013, pp. 1–37.

[8] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep Learning for Sensor-Based

Activity Recognition: A Survey, Pattern Recognit. Lett. 119 (2019): 3–11

[9] Y. LeCun, Y. Bengio, G. Hinton, Deep Learning, Natural 521 (7553) (2015)

436–444.

[10] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P. Wu, J. Zhang,

Convolutional Neural Networks for Human Activity Recognition Using Mo-

bile Sensors, in: MobiCASE, 2014, pp. 197–205.

[11] B. Almaslukh, J. AlMuhtadi, A. Artoli, An Effective Deep Autoencoder

Approach for Online Smartphone-Based Human Activity Recognition, IJC-

SNS 17 (4) (2017) 160–165.

[12] V. Radu, N. D. Lane, S. Bhattacharya, C. Mascolo, M. K. Marina, F.

Kawsar, Towards Multimodal Deep Learning for Activity Recognition on

Mobile Devices, in: UbiComp, 2016, pp. 185–188.

[13] N. Y. Hammerla, S. Halloran, T. Ploetz, Deep, Convolutional, and Recur-

rent Models for Human Activity Recognition Using Wearables, in: IJCAI,

2016, pp. 1533–1540.

25

[14] F.-F. Li, B. Fergus, P. Perona, A Bayesian Approach to Unsupervised One-

Shot Learning of Object Categories, in: ICCV, 2003, pp. 1134–1141.

[15] J. J. Lim, R. R. Salakhutdinov, A. Torralba, Transfer Learning by Borrow-

ing Examples for Multiclass Object Detection, in: NIPS, 2011, pp. 118–126.

[16] G. Koch, R. Zemel, R. Salakhutdinov, Siamese Neural Networks for One-

Shot Image Recognition, in: ICML, 2015.

[17] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., Matching Networks

for One Shot Learning, in: NIPS, 2016, pp. 3630–3638.

[18] J. Snell, K. Swersky, R. Zemel, Prototypical Networks for Few-Shot Learn-

ing, in: NIPS, 2017, pp. 4077–4087.

[19] H. Qi, M. Brown, D. G. Lowe, Low-Shot Learning with Imprinted Weights,

in: CVPR, 2018, pp. 5822–5830.

[20] S. J. Pan, Q. Yang, A Survey on Transfer Learning, IEEE Trans. Knowl.

Data Eng. 22 (10) (2010) 1345–1359.

[21] A. Bulling, U. Blanke, B. Schiele, A Tutorial on Human Activity Recogni-

tion Using Body-Worn Inertial Sensors, ACM Comput. Surv. 46 (3) (2014)

33:1–33:33.

[22] C. Zhu, W. Sheng, Human Daily Activity Recognition in Robot-Assisted

Living Using Multi-Sensor Fusion, in: ICRA, 2009, pp. 2154–2159.

[23] S. Lee, H. X. Le, H. Q. Ngo, H. I. Kim, M. Han, Y.-K. Lee, et al.,

Semi-Markov Conditional Random Fields for Accelerometer-Based Activity

Recognition, Appl. Intell. 35 (2) (2011) 226–241.

[24] L. C. Jatoba, U. Grossmann, C. Kunze, J. Ottenbacher, W. Stork, Context-

Aware Mobile Health Monitoring: Evaluation of Different Pattern Recog-

nition Methods for Classi cation of Physical Activity, in: EMBS, 2008, pp.

5250–5253.

26

[25] M. Ermes, J. Parkka, L. Cluitmans, Advancing from Online to Online

Activity Recognition with Wearable Sensors, in: EMBC, 2008, pp. 4451–

4454.

[26] K. H. Walse, R. V. Dharaskar, V. M. Thakare, PCA Based Optimal ANN

Classifiers for Human Activity Recognition Using Mobile Sensors Data, in:

ICTIS, 2016, pp. 429–436.

[27] P. Vepakomma, D. De, S. K. Das, S. Bhansali, A-Wristocracy: Deep Learn-

ing on Wrist-Worn Sensing for Recognition of User Complex Activities, in:

BSN, 2015, pp. 1–6.

[28] S. Ha, J.-M. Yun, S. Choi, Multi-modal Convolutional Neural Networks for

Activity Recognition, in: SMC, 2015, pp. 3017–3022.

[29] A. Wang, G. Chen, C. Shang, M. Zhang, L. Liu, Human Activity Recogni-

tion in a Smart Home Environment with Stacked Denoising Autoencoders,

in: WAIM, 2016, pp. 29–40.

[30] L. Zhang, X. Wu, D. Luo, Real-Time Activity Recognition on Smartphones

Using Deep Neural Networks, in: UIC-ATC-ScalCom, IEEE, 2015, pp.

1236–1242.

[31] M. Inoue, S. Inoue, T. Nishida, Deep Recurrent Neural Network for Mobile

Human Activity Recognition with High Throughput, Artif. Life Rob. 23

(2) (2018) 173–185.

[32] M. Edel, E. Köppe, Binarized-BLSTM-RNN based Human Activity Recog-

nition, in: IPIN, 2016, pp. 1–7.

[33] S. Hochreiter, J. Schmidhuber, Long Short-Term Memory, in: Neural Com-

put., Vol. 9, 1997, pp. 1735–1780.

[34] C. Dyer, M. Ballesteros, W. Ling, A. Matthews, N. A. Smith, Transition-

Based Dependency Parsing with Stack Long Short-Term Memory, in: ACL,

2015.

27

[35] J. Yosinski, J. Clune, Y. Bengio, H. Lipson, How Transferable are Features

in Deep Neural Networks?, in: NIPS, 2014, pp. 3320–3328.

[36] R. L. Cilibrasi, P. M. Vitanyi, The Google Similarity Distance, IEEE Trans.

Knowl. Data Eng. 19 (3) (2007) 370–383.

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, A. Lerer, Automatic Differentiation in PyTorch,

in: NIPS Workshop, 2017.

[38] D. P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv

preprint arXiv:1412.6980 (2014).

[39] J. Liu, S. Ji, J. Ye, Multi-Task Feature Learning via Efficient `2,1-Norm

Minimization, in: UAI, 2009, pp. 339–348.

[40] R. Chavarriaga, H. Sagha, A. Calatroni, S. T. Digumarti, G. Tröster, J. d.

R. Millán, D. Roggen, The Opportunity Challenge: A Benchmark Database

for On-Body Sensor-Based Activity Recognition, Pattern Recognit. Lett.

34 (15) (2013) 2033–2042.

[41] A. Reiss, D. Stricker, Introducing a New Benchmarked Dataset for Activity

Monitoring, in: ISWC, 2012, pp. 108–109.

28

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(a) 1-shot+FSHAR-NGD

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(b) 5-shot+FSHAR-NGD

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(c) 1-shot+FSHAR-Cos

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(d) 5-shot+FSHAR-Cos

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(e) 1-shot+FSHAR-SR

1 2 3 4
Participant ID

0

10

20

30

40

50

60

70

C
la
ss
if
ic
a
ti
o
n
 A
cc

u
ra
cy

 (
%
)

Soft-noFT

Soft

Hard-noFT

Hard

(f) 5-shot+FSHAR-SR

Figure 3: Effects of fine-tuning on OPP with source and target data coming from

the same participant. Left column: 1-shot learning. Right column: 5-shot learning.

Top row: FSHAR-NGD. Middle row: FSHAR-Cos. Bottom row: FSHAR-SR. In

all subfigures, “noFT” means without fine-tuning being performed on the initialized

target network, and “Soft”/“Hard” refer to soft/hard normalization scheme on the

cross-domain class-wise relevance matrix O as described in Section 3.3.

29

	1 Introduction
	2 Related Work
	2.1 Human Activity Recognition
	2.2 Few-Shot Learning
	2.3 Long Short-Term Memory Network

	3 Proposed Method
	3.1 Basic Framework
	3.2 Source Network Training
	3.3 Knowledge Transfer
	3.4 Fine-Tuning
	3.5 Implementation
	3.6 Limitation
	3.7 Extension

	4 Experiments
	4.1 Dataset Information
	4.2 Source/Target Split
	4.3 Baselines
	4.4 Performance Comparison
	4.5 Effects of Fine-Tuning

	5 Conclusion

