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a b s t r a c t 

With the widespread adoption of data mining models to solve real-world problems, the scientific commu- 

nity is facing the need of increasing their interpretability and comprehensibility. This is especially relevant 

in the case of black box models, in which inputs and outputs are usually connected by highly complex 

and nonlinear functions; in applications requiring an interaction between the user and the model; and 

when the machine’s solution disagrees with the human experience. In this contribution we present a 

new methodology that allows to simplify the process of understanding the rules behind a classification 

model, even in the case of black box ones. It is based on the perturbation of the features describing 

one instance, and on finding the minimal variation required to change the forecasted class. It thus yields 

simplified rules describing under which circumstances would the solution have been different, and al- 

lows to compare these with the human expectation. We show how such methodology is well defined, 

model-agnostic, easy to implement and modular; and demonstrate its usefulness with several synthetic 

and real-world data sets. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction 

If the concepts of interpretability and comprehensibility origi-

ally appeared alongside the first real-world data mining applica-

ions ( Kononenko, 1993; Lavra ̌c, Džeroski, Pirnat, & Križman, 1993 ),

t has only been in the last years, with the rise of complex non-

inear models such as those produced by e.g. neural networks

 Montavon, Samek, & Müller, 2018 ), that their relevance has sub-

tantially increased ( Freitas, 2014; Gerretzen et al., 2016; Lipton,

016 ). If one has to select one case exemplifying the need for an

ncreased interpretability of data mining models, this can be easily

ound in medicine, e.g. in cancer diagnosis and treatment. Nowa-

ays, physicians have to process a large number of inputs coming

rom different analyses, such as x-rays, biopsies, or genetic tests,

o build an optimal treatment combining together different ther-

pies ( Urruticoechea et al., 2010 ). As this choice cannot be for-

alised using a simple set of rules, the future points towards a

idespread adoption of Medical Diagnostic Decision Support sys-
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ems (MDDS) to support physician activity ( Berner, 2007; Miller,

994; Musen, Middleton, & Greenes, 2014; Scott et al., 2019 ). In

his context, the need for interpretability comes from different

ides. From a scientific point of view, one is clearly interested in

he mechanisms detected by the system: e.g. not just which treat-

ent should be administered, but also why it is considered the

ost appropriate; this knowledge further fosters trust and reliance

n the system ( Bussone, Stumpf, & O’Sullivan, 2015 ). Additionally,

t may be necessary to resolve conflicting solutions, e.g. when the

DDS and the clinician have different views on the same prob-

em, thus requiring a reasoned disambiguation; and to support

raining, i.e. when a trainee is exposed to different situations and

e/she compares his/her responses with those of the system, to

earn from them ( Lagro et al., 2014; Yoon, Velasquez, Partridge, &

of, 2008 ). 

In order to tackle this problem, several alternatives have been

roposed in the literature, of which the most promising are based

n model-agnostic explanation ( Ribeiro, Singh, & Guestrin, 2016a ).

oughly speaking, such solutions are based on an a posteriori de-

cription of a black-box model through a set of (simpler) rules - see

ection 2 for further details. Nevertheless, it has to be noted that

his approach does not truly tackle the problem, but just rephrases

https://doi.org/10.1016/j.eswa.2019.07.001
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it, by mapping a complex model to a simpler, albeit not necessary

interpretable, one. 

In this contribution we propose a novel methodology for en-

hancing interpretability, which builds on top of the model-agnostic

explanation concept, but does not rely on creating alternative clas-

sification models. Given an already trained model, for instance for

the classification of instances between n classes, and a new in-

stance to be analysed, we propose an algorithm yielding the small-

est variation needed to change the class of the latter instance to

match the one expected/desired by the user. The user is then able

to understand under which conditions would the solution of the

model have been different; or equivalently, why that specific solu-

tion was yielded. On a more abstract level, the user can leverage on

this information to create his/her own representation of the black-

box model, without being conditioned by any a priori assumption

on the structure of that representation. Beyond yielding the small-

est variation needed to swap classes, the method can also be tuned

to minimise the number of features involved in this change - as,

in many contexts, simpler solutions (that is, minimising the num-

ber of changes) can be preferred for being easier to understand

and/or implement. We show how such methodology is well de-

fined, model-agnostic, easy to implement and modular, as it does

not impose constraints on the complexity of the classification al-

gorithm, which is treated as a black-box. Above and beyond this,

we demonstrate that the proposed approach allows to improve the

interpretability of data mining models, and to help tackling prob-

lems as the previously described ones, e.g. the disambiguation of

conflicting solutions and the improvement of medical training. 

Beyond this introduction, the remainder of the paper is organ-

ised as follows. Section 2 presents a brief overview on the in-

terpretability concept, and on how it has historically been dealt

with in data mining. The proposed methodology is presented

in Section 3 , for then applying it to four case studies, con-

structed upon data sets respectively representing different real

world problems and data characteristics ( Section 4 ). Afterwards,

Section 4.4 presents an analysis on the optimality and computa-

tional cost of the method. Finally some conclusions are drawn in

Section 5 . 

2. Related work 

In spite of past attempts, there seems to be no clear definition

of what the interpretability of a model is and how it can be mea-

sured ( Bibal & Frenay, 2016; Doshi-Velez & Kim, 2017; Narayanan

et al., 2018 ). 

There are a number of heuristics, guidelines and rules of thumb

that the community has been using for years to both define and

assess interpretability ( Biran & Cotton, 2017; Gilpin et al., 2018 ), al-

beit without a clear formalisation nor empirical evaluation. In this

sense, recent work ( Bibal & Frenay, 2016; Freitas, 2014 ) proposes

that comprehensibility can be assessed at two different levels: by

examining models (what they call a heuristic approach) or repre-

sentations (mainly with user-based surveys). In the former case,

simple measures can be used to compare several models of the

same type, such as the number of rules and terms in decision rules

( Letham, Rudin, McCormick, & Madigan, 2013; Schwabacher, Lan-

gley, & Norvig, 2001 ) or the number of nodes in decision trees

( Van Assche & Blockeel, 2008 ). If models differ, then this compar-

ison is not that obvious and other heuristics have been proposed.

Among others, it is worth citing the ranked taxonomy ( Backhaus &

Seiffert, 2014 ) that assigns a category to each model, where mod-

els within the same category are competitive among them in terms

of interpretability, whereas models in upper levels are more in-

terpretable than those in lower levels. With respect to representa-

tion comprehensibility, user-based surveys normally consider gen-

eral abstract questions about the models, e.g. “is this model more
nderstandable than the other one?” ( Allahyari & Lavesson, 2011 ),

hich allow comparisons of models of different nature. Freitas

2014) provides a good overview on multiple studies on the inter-

retability of different models. 

Closely related to interpretability, the research community has

lso proposed the concept of interestingness, i.e. the assessment

f the potential interest to the user of the patterns generated

y a data mining model. Clearly, interpretability is a prerequisite

o interestingness, as one should be able to clearly extract pat-

erns before assessing their usefulness. Broadly speaking, interest-

ngness can be measured through three families of metrics: ob-

ective measures, based on the probability and format of the pat-

erns; subjective measures, including surprisingness and novelty;

nd semantic measures, e.g. utility and actionability, thus based

n the domain knowledge. For a complete review on the topic,

he interested reader can refer to Geng and Hamilton (2006) and

otes Ruiz, Kamsu Foguem, and Grabot (2014) . 

Besides measuring it, many applications require improving the

nterpretability of a model. This can trivially be achieved by de-

igning inherently interpretable models, e.g. by using white-box

odels (such as decision trees or classification rules) over black-

ox models (SVMs, ANNs, etc. ) when interpretability is impor-

ant. This can nevertheless introduce some important drawbacks,

s accuracy must be sacrificed in favor of comprehensibility and

ome models might present design artifices that may induce er-

ors ( Freitas, 2014 ). Additionally, an untrained operator may find

ifficult to interpret even results yielded by simple algorithms, as

reviously shown with decision trees ( Bratko, 1997 ), rule induction

 Lavra ̌c et al., 1993 ) or bayesian classifiers ( Kononenko, 1993 ). 

In order to solve the aforementioned problems, some au-

hors proposed to enforce interpretability in a model-agnostic way

 Ribeiro et al., 2016a ). These methods lean on learning a posteri-

ri explanations of the models taken as a black-box, which would

ocally (though not globally) be faithful to such models; in other

ords, this can be seen as the creation of a simplified and easily

nterpretable model, given the black box one. Note that this im-

lies an equivalence between the concept of interpretability and

he following question: “are humans able to make accurate pre-

ictions about a model’s behaviour?”. Examples include the use of

parse linear models ( Ribeiro, Singh, & Guestrin, 2016c ), gradients

 Baehrens et al., 2010 ), and if-then rules ( Ribeiro, Singh, & Guestrin,

016b ). 

Finally, it is worth noting that the purpose of making compre-

ensible models is also frequently unclear ( Lipton, 2016; Miller,

019; Mittelstadt, Russell, & Wachter, 2019 ). Lipton (2016) , in his

tudy, tries to contextualise the definition of comprehensibility and

e finds out that it appears often related to trust, normally in

he context of medicine and health-care ( Breiman, 2001b; Caru-

na et al., 2015 ), but also in other scenarios, such as criminal jus-

ice systems, financial markets ( Lipton, 2016 ) or even education

 Kim, Glassman, Johnson, & Shah, 2015 ). Apart from trust, there

re other reasons for comprehensibility, such as causality, trans-

erability or informativeness. In this sense, he argues that inter-

retable models may have different characteristics, mainly deal-

ng with transparency (how the model works) and post-hoc inter-

retability (what else the model can tell me). 

Our contribution leverages on the existing literature and on

he concept of model agnostic explanation. Specifically, we start

rom the idea that model comprehensibility can be understood as

he ability to identify the factors behind the model classification

rocess; consequently, the methodology we propose leverages on

dentifying the features which are responsible for the yielded re-

ult, or alternatively, for reaching an alternative result. While this

pproach is consistent with the literature on the identification of

mportant features (or combination of features) at the macroscopic

evel, it is - to the best of our knowledge - the first research to
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Fig. 1. Graphical representation of the process for creating rationales from a black- 

box classification model. Panel a ) depicts the initial situation, while b ) and c ) re- 

spectively represent the search in one and two dimensions. See main text for de- 

tails. 
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1 In a binary case, this would be equivalent to stop when a change of class has 

been detected. 
lso focus on an individualised understanding of a single observa-

ion. We believe that while state-of-the-art techniques offer value

n the understanding of models as a whole, and as such are useful

o understand a set of observations, they lack granularity to inter-

ret the model results at a microscopic level, i.e. for a single obser-

ation. In other words, we here shift the focus from increasing the

ntepretability of a whole model, to improving our understanding

f the rationales behind the classification of a single instance. 

. Methodology 

In order to simplify the explanation of our approach, and with-

ut loss of generality, we here suppose a simple two-classes clas-

ification. As depicted in Fig. 1 Left, several instances are described

y just two features f 1 and f 2 , such that the problem space is lim-

ted to a plane. The class of each instance is denoted by black cir-

les and triangles, while a black dashed line depicts the inner sep-

ration of the classification model ( a priori unknown to the user).

inally, a new instance is presented to the system (or user) and is

lassified by the model - as represented by the red solid circle. As

reviously introduced, the goal is to create a simple representation

f the rationales of such new classification; or, in other words, an

nderstandable abstraction of the black dashed line. Note that a

imple estimation of the two features’ importance in the classifi-

ation would not suffice, as this is calculated for the whole model,

nd is not specific to the analysed instance. We here propose to

chieve this by finding the minimal change in the instance features

here, f 1 and f 2 ) that would result in a different forecast label - see

he red solid arrow pointing towards the classification frontier. 

Finding such minimal change could be achieved by resorting

o a brute force analysis, in which a large number of locations on

he features’ plane are evaluated by the model, for then finding

he one closest to the analysed instance. The computational cost of

uch solution would nevertheless be of O ( n d ), n being the sampling

esolution required for each feature and d the number of features.

he brute force approach thus becomes computationally unfeasible

ven for a handful of features. 

Instead of sampling the complete feature space, the method-

logy here proposed is based on restricting the search in the

eighbourhood of the instance under analysis (the red circle of

ig. 1 Left). Additionally, the dimensionality of the search is pro-

ressively increased. In the first iteration each feature is changed

n an independent way, i.e. by considering one dimension of the

eature space at a time; afterwards, if no solution of interest

as been detected, the algorithm moves to higher numbers of

imensions. The methodology steps have been summarised in a

owchart ( Fig. 2 ) and are further described hereafter: 

1. Initially set n f , i.e. the number of features to be changed at the

same time, to 1. 

2. Create and classify new virtual instances: 

a Create a vector C containing all the possible combinations

of n f elements out of d (the latter being the total number of
available features). Note that, when n f = 1 , C contains a list

of all the features in the problem. 

b For every element c in C , generate n p new virtual instances.

The coordinates of these new instances are randomly drawn

from (i) an a priori distribution specified by the user or (ii)

an empirical distribution observed in similar datasets. All

other features, i.e. those not included in c , are copied from

the reference instance. Note that, for n f = 1 , this is equiva-

lent to randomly changing one feature at a time, and save

the result as a new instance. 

c Sort all new virtual instances as a function of their distance

to the target instance. 

d Apply the classification model to predict the class of each

new virtual instance, starting from the one closest to the

target instance. When one of them is assigned to another

possible class chosen by the user, 1 stop the process and

jump to step (3). 

3. If no element of the desired class is found, increment n f by one

and go back to step (2). 

4. Select the closest virtual instance for each combination of fea-

tures - note that there might be no solution for one specific

combination. 

our important aspects of the method must be highlighted. Firstly,

he algorithm always gives priority to low dimensional solutions.

ollowing Occam’s Razor principle, larger combinations of features

re not explored unless a solution could not be found in the pre-

ious steps. The stop conditions for steps 2.d and 3 can neverthe-

ess be customised. For instance, multiple feasible solutions can be

aved for each set of modified features; likewise, even if a valid

olution is found for a given n f , the algorithm can still be executed

or n f + 1 . In both cases, the obtained result would be a Pareto

ront, i.e. multiple solutions, all of them feasible, that have to be

valuated and prioritised by the user of the system. Going back

o the previous biomedical example, an MDDS may suggest a dif-

erent treatment would the patient had a very different age, or a

ifferent (yet close) age and a different physical condition, and so

orth. The physician may then evaluate all options, and get a better

iew of the classification rationales. 

Secondly, the sampling procedure in step 2.b is designed to op-

imise the search in the feature space. By drawing the new feature

alues from the corresponding empirical distributions, one min-

mises the number of virtual instances created in regions of the

eature space that are sparsely populated, thus maximising the

robability of finding a relevant result. This can nevertheless be

ubstituted by more complex search strategies, as for instance a

imulated Annealing ( Kirkpatrick, Gelatt, & Vecchi, 1983 ) or a Ge-

etic Algorithm ( Davis, 1991 ). 

Thirdly, the distance that has here been considered between in-

tances, both real and virtual, is a simple Euclidean one; in other

ords, all features are considered as equal from a distance point

f view and all features are supposed to be continuous. Some

ituations may nevertheless call for a different approach: for in-

tance, when looking for ways of modifying the classification of

n instance, some features may be more complicated to change

 e.g. , some treatments cannot easily be changed, as essential for

he well-being of the patient) and the sensitivity of their contri-

ution to the best solution should be adapted accordingly. Addi-

ionally, when features are not equally normalised, the same ab-

olute variation may have different relative importance. This can

asily be accounted for in the proposed methodology, by adding a

eight vector, or alternatively by normalising the input data set;

t is yet to be noted that the choice of the weighting vector de-
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Fig. 2. Flowchart of the proposed methodology - See Section 3 for details. 
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pends on the user’s understanding of the problem, and hence is

an arbitrary choice. Finally, the very nature of the feature might

influence the choice of the distance metric. It is evident that cate-

gorical features must be treated differently than continuous ones,

as a Euclidean distance is ill-defined in the first case. While some

categorical features, such as age, can be transformed back into a

continuous value where the Euclidean distance is meaningful, we

can imagine other scenarios where this is not possible, as e.g. , the

type of a cell or the eye colour. In such cases, the solution may

entail developing customised distances to take this into account

( e.g. , refer to distance techniques like categorical embedding ( Guo

& Berkhahn, 2016; Levy & Goldberg, 2014 ) or similarity measure-

ments ( Boriah, Chandola, & Kumar, 2008 )). 

Fourthly, the computational cost of this approach, while still

important, is substantially reduced with respect to the brute force

analysis, as it is dominated by the maximum number of features

explored at the same time - as opposed to the total number of

features. This point will further be discussed in Section 4.5 . 

We believe that the proposed methodology can provide valu-

able information in numerous decision making problems; and we

demonstrate this in the following two sections, by presenting four

case studies based on real-world data-sets. In order to further en-

sure the usefulness to the scientific community, a Python imple-

mentation of the methodology is freely available at the following

link: https://gitlab.com/SBINX/DataWhitening . 

4. Results 

4.1. Data set description 

The proposed methodology has been tested using four public

and well-known data sets, all of them available through the UCI

repository. They have been selected in order to be representative

of heterogeneous areas and classification problems - e.g. different

types of input features and number of labels. 

Breast cancer 

As a first data set we considered the Breast Cancer Wisconsin

Data Set, described in Street, Wolberg, and Mangasarian (1993) and

Mangasarian, Street, and Wolberg (1995) and publicly available at

[dataset]Wisconsin Breat Cancer data set (2017) . It contains in-

formation about 569 patients with breast cancer, each one char-

acterised by 30 features computed from a digitalised image of a

fine needle aspirate (FNA) ( Wu & Burstein, 2004 ) of the breast

mass. Each cell nucleus is described by ten features: radius, tex-

ture, perimeter, area, smoothness, compactness, concavity, number

of concave points, symmetry, and fractal dimension. The average,
tandard error and average of the three largest values are then cal-

ulated for each feature, thus yielding a final set of 30 values for

ach patient. The task aims at diagnosing the cancer as malign or

enign. 

ortuguese wines 

The second data set includes characteristics of Portuguese

hite wines, as described in Cortez, Cerdeira, Almeida, Matos, and

eis (2009) and available at [dataset]Wine Quality data set (2019) .

ach one of the 4898 wines is described by 12 physiochemical

eatures: fixed acidity, volatile acidity, citric acid, residual sugar,

hlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sul-

hates, alcohol. Additionally, a quality rating in 11 classes was as-

igned to each wine by experts, based on a sensory taste test: from

, very bad, to 10, excellent. We simplified the case study by con-

idering a bivariate output, such that wines of quality inferior to 6

ave been grouped together in class 1, and all the others in class

. 

ushrooms 

As a third example we have considered the well-known mush-

ooms data set ( [dataset] Mushroom data set, 2019; Schlimmer,

987 ), in which 8124 mushrooms are described in terms of 22 cat-

gorical physical characteristics. As in previous cases, the task to be

xecuted is a classification one, aimed at discriminating between

oisonous and edible mushrooms. 

ung cancer 

The fourth and final example includes a data set of lung cancer

atients data ( [dataset] Lung Cancer data set 2019; Hong & Yang,

991 ). The problem consists in a classification task, in which the

abel of each instance is to be forecast among three pathological

ung cancer types. The 32 instances are described by means of 56

ominal features, all of them assuming integer values in the range

0 − 3] . The interest of this data set resides in the fact that the

roblem is ill-defined, as more features than instances are pro-

ided. Finally, note that Ref. ( Hong & Yang, 1991 ) gives no infor-

ation on the meaning of the features, nor on the origin of the

ata. 

.2. Classification models creation 

The classification models have been based on two well known

lgorithms. First, a Random Forest ( Breiman, 2001a; Verikas, Gelzi-

is, & Bacauskiene, 2011 ), an evolution of the classical Decision

ree model ( Quinlan, 1986 ), in which multiple trees are trained on

ubsets of the original data, for then merging their results into a

https://gitlab.com/SBINX/DataWhitening
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Table 1 

Classification scores and average training time for the four considered data sets, for the 

RF and ANN classification algorithms. 

Classification model Accuracy No CV Accuracy CV Avg. training time (sec.) 

Breast cancer 

Random Forest 99.29% 94.31% 1.54 

ANN 97.89% 94.83% 2.15 

Portuguese wines 

Random Forest 97.48% 76.77% 3.62 

ANN 72.64% 72.30% 2.01 

Mushrooms 

Random Forest 100.0% 100.0% 5.58 

ANN 100.0% 100.0% 2.36 

Lung cancer 

Random Forest 100.0% 46.87% 1.18 

ANN 100.0% 53.12% 0.19 

Table 2 

Synthesis of the results obtained for the breast cancer, Portuguese wines and mushrooms data sets. In each case 

we report the feature (or set of features) most frequently responsible for a class change; the frequency of times 

such feature of combination appeared; and the average change suggested by the methodology. 

Feature Frequency Suggested change 

Breast cancer ( malignant → benign ) 

Concave points 62.2% Decrease below 0.04 

Breast cancer ( benign → malignant ) 

Radius & area 34.5% Increase radius above 17 and area above 105 

Radius & perimeter 25.4% Increase radius above 18 and area above 950 

Portuguese wines ( bad → good ) 

Volatile acidity 46.1% Decrease below 0.21 

Density 23.2% Decrease below 0.991 

Alcohol 18.6% Increase above 10. In a 18% of cases, an increase above 12 is required. 

Mushrooms ( edible → poisonous ) 

Gill size 100.0% Broad to narrow 

Mushrooms ( poisonous → edible ) 

Odor 71.31% Pungent to almond 

Gill size 28.69% Narrow to broad 
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a  
ingle classification score. We used the implementation included in

he Scikit-learn library ( Pedregosa et al., 2011 ), with 1,0 0 0 estima-

ors and a minimum number of samples in each split of 10. Second,

he Artificial Neural Network (ANN) model, in the implementation

nown as Tensorflow ( Abadi et al., 2016; Rampasek & Goldenberg,

016 ). The model was composed of one hidden layer with three

eurons, and has been trained during 1,0 0 0 epochs. Note that, in

oth cases, the algorithms’ parameters have not been fine tuned,

s the objective here is not to obtain the highest classification

core, but instead to illustrate the capabilities of the methodol-

gy. Table 1 reports the classification score obtained by both mod-

ls on the four data sets, both with and without a Leave-One-Out

ross-Validation (CV) ( Kohavi, 1995 ), and the time needed to train

hem. As previously highlighted, the methodology here proposed

s agnostic as to the algorithm used in the classification, which

s treated as a black box; any other classification model, from the

any available in the literature, could thus be used. 

.3. Classification models analysis 

Once the classification models have been trained, we applied

he proposed methodology, whose main results are synthesised in

able 2 . 

The breast cancer and Portuguese wines data sets yield ex-

ected results - see also Fig. 3 for a graphical representation. Re-

arding the first, the forecast class changes to benign when the

umber of concave points is reduced, i.e. the shape is more reg-

lar; on the other hand, the class becomes malignant with an in-

rease in the radius, area and / or perimeter (note that these three
eatures are related, thus a change on at least two of them is re-

uired). These results are in line with what previously reported in

he literature ( Abdalla et al., 2008; Narasimha, Vasavi, & Kumar,

013; Wittekind & Schulte, 1987 ). In the case of the wines data

et, the most important element allowing to increase the quality

f a lesser wine is the reduction of its volatile acidity. This has

xtensively been studied in the literature: a high acidity can re-

ult in an acrid taste ( Boulton, Singleton, Bisson, & Kunkee, 2013;

onvaud-Funel, 1999 ), and can be addressed through techniques

ike microbial stabilisation, nanofiltration or refermentation ( Vilela-

oura et al., 2011 ). Note that the values reported in Table 2 corre-

pond to RF classification models; using ANNs yields qualitatively

imilar results. 

The mushrooms data set presents an important difference with

espect to the two previous cases, i.e. the fact that features can

nly assume discrete values. This can easily be addressed by

hanging the way virtual instances are created: instead of sam-

ling the new feature values from a uniform distribution, these

re forced to be the discrete values in the original data set. Ad-

itionally, if the classification model is not able to handle categor-

cal variables (as is the case of ANNs), these new feature values

an be converted to binary variables through a One Hot Encoder.

able 2 suggests that the two most important features for achiev-

ng a class change are the gill size and the odour - this is also in

ine with previous results ( Dong & Li, 1999; Ishikawa, 20 0 0 ). 

The fourth and final data set is the most complex one. Firstly,

s the mushrooms one, its features are categorical; as in the previ-

us case, the generation of virtual instances should be modified

ccordingly. Secondly, it involves a classification task with three



196 S. Belkoura, M. Zanin and A. LaTorre / Expert Systems With Applications 137 (2019) 191–201 

Fig. 3. Graphical representation of the proposed methodology applied to the breast cancer (first and second row) and the wine (third row) data sets. In the former case, the 

top row corresponds to a malign cancer, the central row a benign one. Left, centre and right panels respectively depict the original data set, the search by varying one single 

feature, and the full search in the plane. See main text for details. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Evolution of the percentage of instances for which the methodology is able 

to find a solution, as a function of the number of features deleted during the feature 

selection process. Solid lines depict the evolution for n f = 1 , 2 and 3. The dashed 

grey line (right Y axis) depicts the evolution of the log 10 of the p -value yielded by 

a χ2 test executed over the feature deleted at each iteration. 
classes; hence, two results have to be found for each instance, cor-

responding to the two classes different from the forecast one. Fi-

nally, the high number of features, compared to the limited num-

ber of instances, implies that many of them are strongly corre-

lated; as a consequence, modifying a few features seldom results

in a change of class, as all correlated features must be changed

coherently. To illustrate this, only in a 12.5% of cases a new class

was found by changing two features; this number increases to 17%

and 30% for respectively three and four features. This can be solved

by a feature selection process, in which the most correlated fea-

tures are identified and dropped. To confirm this idea, Fig. 4 re-

ports the evolution of the percentage of times a solution is found,

as a function of the number of deleted features (using a χ2 test

to evaluate the correlation between them). Single-features solu-

tions are started to be found when more than 30 redundant fea-

tures are deleted; at the same time, the number of solutions with
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Fig. 5. Efficiency of a Simulated Annealing optimisation. The six curves in the left panel represent the evolution of the SA success ( i.e. the fraction of times it finds a solution 

better than the proposed methodology) as a function both of the percentage of features included in the search, and of the number of iterations. Additionally, the right panel 

depicts the maximum achieved success as a function of the percentage of features included in the search. 
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wo or three features starts to decline, as complex combinations

f changes are no longer required. It can then be concluded that,

hile the proposed methodology is agnostic to the used classifica-

ion model, the latter one should be a meaningful representation

f the problem, as unreliable results may otherwise be obtained. 

.4. Solution optimality and computation cost 

As previously discussed, the proposed methodology is based on

he idea that a classification model can be better understood when

ne or few features are varied, both to make these features action-

ble and to reduce the computational cost associated to a full fea-

ure space search. It is nevertheless possible that a better solution,

n terms of the sum of the variations applied to the features, could

xist, provided the number of modified features is not constrained.

n other words, the proposed methodology may be yielding a sub-

ptimal solution; while not a problem per se , this may introduce

iases in the way the model is understood. If such optimal solu-

ions could in principle be detected through other approaches, as

.g. a brute force search, one has to balance the enhanced precision

ith the increased computational cost of the analysis. This balance

s studied in this section, by presenting the results obtained with

imulated Annealing and brute force search strategies. 

.4.1. Simulated annealing 

As a first step, we here compare the results obtained for the

ine data set with the solutions found by a Simulated Anneal-

ng (SA) algorithm ( Hwang, 1988 ). SA is an optimisation tech-

ique aimed at finding an approximate global optimum in a fixed

mount of time. It is inspired on annealing in metallurgy, a tech-

ique involving heating and controlled cooling of a material. Given

 target function, in this case the Euclidean distance between

he solution and the original instance, the SA algorithm stochasti-

ally samples new solutions around the previous best result, while

lowly decreasing the search radius. 

With respect to a standard Simulated Annealing model, we have

ere added the possibility of fixing the number of features com-

osing the search space. Given the original instance, which is used

s the starting point of the optimisation, the model creates mul-

iple copies of it and randomly searches a solution in its neigh-

ourhood; the latter is composed of a subset of randomly chosen

eatures, which is fixed at the beginning of the process. This allows

o study a full spectrum of results: from unrestricted searches, in

hich all features can be explored, thus corresponding to a stan-

ard SA implementation; to searches focusing on a few, randomly
elected features, in a fashion similar to what proposed in this con-

ribution. 

Fig. 5 Left reports the evolution of the effectiveness of the SA

earch, defined as the fraction of times the SA solution is better

 i.e. closer to the target instance) than what obtained by the pro-

osed methodology. Such effectiveness is reported as a function of

he number of iterations of the SA algorithm, and of the percentage

f retained features. Additionally, Fig. 5 Right depicts the evolution

f the maximum effectiveness achieved by the SA algorithm as a

unction of the percentage of retained features. 

Results indicate that, on one hand, the SA algorithm is able to

each results as good as the proposed methodology - note that an

ffectiveness of 0.5 represents a situation in which both algorithms

re virtually identical. Yet, this can only be achieved at the cost

f executing a large number of optimisation iterations, implying

 significant computational cost. On the other hand, the SA is ill-

esigned to handle situations in which few features are allowed

o vary; this is to be expected, as the randomly selected features

 i.e. those that are allowed to change) could be irrelevant for the

roblem at hand, thus lowering the effectiveness. 

.4.2. Brute force search 

If the SA algorithm is in principle able to yield a solution close

o the one proposed by our algorithm, while with some caveats

hen the number of free features is limited, the previous analyses

till do not clarify how far away such solution is from the opti-

al one. As previously discussed, this optimum can be obtained

hrough a brute force approach; yet this is feasible only when the

roblem under analysis is described by few features, as the com-

utational cost increases exponentially. We here study this issue

hrough a simplified model, in which the classification model is

efined as an (n − 1) -dimensional hyper-plane intersecting an n -

imensional feature space, and in which virtual instances are cre-

ted according to a regular mesh. This allows to estimate the av-

rage error of a brute force search as half the distance between

eighbouring points in the search mesh. Fig. 6 reports the evolu-

ion of the average error yielded by the proposed algorithm (blue

ine) and the corresponding standard deviation (blue whiskers),

hen 10,0 0 0 virtual instances per feature are considered, as a

unction of the number of dimensions of the problem - i.e. the

umber of features. It can be appreciated that the error is almost

onstant, and is thus independent from the feature space dimen-

ionality. On the other hand, the red line represents the ratio be-

ween the number of instances in the brute force search, as re-

uired to reach the same average error, and that of our solution;

n other words, this represents how the computational cost scales
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Fig. 6. Efficiency of a brute force search, as compared with the proposed algorithm. 

(Blue line, left scale) Average error yielded by the proposed algorithm, as a function 

of the number of dimensions of the feature space. (Red line, right scale) Ratio be- 

tween the number of virtual instances needed by the brute force approach and that 

of the proposed algorithm, to achieve the same average error. See main text for a 

description of the classification model. 
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for the brute force search, when the same precision is to be ob-

tained. Results indicate that a complete exploration of the feature

space is unfeasible for more than four features (note the logarith-

mic Y scale). 

4.5. Computational cost 

The results presented in the two previous sections demon-

strated that our approach is efficient, with respect to other more

optimal alternatives, in terms of the number of virtual instances

analysed. Specifically, as introduced in Section 3 , the complexity of

the methodology is dominated by the maximum number of fea-

tures to be changed at the same time. One last question to be

answered is how this translates into the computational cost; or,

in other words, what is the execution time corresponding to a

medium-sized problem in a standard desktop machine - an impor-

tant aspect for real-world implementations. 

Accordingly, Fig. 7 reports an histogram of the time required

by the proposed methodology to compute the best solution, in a

MacBook Pro-with an Intel Core i5 at 2.7GHz, both with one (left

panel) and two (right panel) features, in the case of the wine data

set. It can be appreciated that almost all solutions are found within

10 seconds, thus enabling real-time applications. 

While this methodology does not depend on the nature of the

classification algorithm and presents several advantages in opera-
Fig. 7. Histogram of the computation time associated with the proposed me
ional decision making, as for instance in the previously discussed

edical example, two interconnected limitations should here be

iscussed. 

Firstly, while the computational complexity of the methodol-

gy does not depend on the output dimensionality, it does depend

n the input one. The analysis has a complexity of O (n max 
f 

· n p · c) ,

 

max 
f 

being the maximum number of features to be varied at the

ame time; n p the number of virtual instances to be created;

 = 

(n f 
d 

)
; and d being the number of input features. This implies

hat applying the proposed methodology to some models, espe-

ially those expecting a large number of input features, may not

e feasible. This may be the case of, for instance, convolutional

eural networks (CNN) models, commonly used in medical imag-

ng classification problems ( Li et al., 2014; Lo et al., 1995; Milletari,

avab, & Ahmadi, 2016 ). However, a potential solution may involve

he use of the inner layers of a highly dimensional network to

educe the dimensionality of the problem, coupled with a back-

ngineering for the extraction of the closest solution. Even with-

ut resorting to these solutions, tens of input features can be dealt

ith in reasonable time. 

Secondly, the dimensionality of the input also depends on the

umber of features that should be perturbed to alter the forecast

f an observation. If n f is forced to be 1, then no limit on d is nec-

ssary, otherwise a trade-off must be encountered. If more features

eed to be perturbed at the same time, d must be controlled in

rder for the problem to be tractable. As this depends on the char-

cteristics of the problem under analysis, the limit should be esti-

ated in every specific case. 

Both limitations can further be tackled by weighting the fea-

ures to be perturbed, one can improve the probability of finding

 solution of low dimension. But, highly dimensional solutions are

eldom interesting in an operational context as more effort s needs

o be implemented. 

.6. Feature relevance 

One may intuitively expect that the features more relevant for

he methodology here presented should correspond to those that

re relevant in the construction of the original classification model.

o illustrate, the opposite situation is easy to visualise. Let us sup-

ose that, for example, one feature is irrelevant for defining the

lassification function 

˜ F ; given one instance, varying such feature

ill never change the predicted class of the instance, and there-

ore its analysis will be useless. While the opposite may not al-

ays be true, we explore this issue in Fig. 8 , which depicts the

mportance of features in the classification as measured through
thodology, for one (left panel) and two (right panel) features searches. 
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Fig. 8. Importance of features in the classification as a function of their importance 

in the proposed methodology, for the wine dataset - see main text for definitions. 

The grey dashed line represents the identity function, while the red one the best 

linear fit. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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heir Gini impurity / information gain ( Breiman, Friedman, Olshen,

 Stone, 1984 ), as a function of their importance in the proposed

ethodology (fraction of times they are chosen in the best solu-

ion). Note that the Gini impurity measure is recognised to be a

iased approach ( Strobl, Boulesteix, Zeileis, & Hothorn, 2007 ), as it

as a tendency to inflate the importance of continuous features or

igh-cardinality categorical variables. However, in case of continu-

us independent variables, results are consistent with other more

obust methods, e.g. permutation importance ( Strobl, Boulesteix,

neib, Augustin, & Zeileis, 2008 ). The wine data-set presents con-

inuous and independent input variables, as so the comparison of

he most frequent variables used for class swap and the results of

he Gini impurity is expected to be a relevant one. A linear rela-

ionship can be appreciated, as represented by the dashed red line

 slope of 1.478 ± 0.33, R 2 = 0 , 830 . While such relationship is not

erfect, it nevertheless suggests that the initial model can be used

s a way of optimising the whole process, by focusing initially on

hose features more relevant for the classification. Also, this serves

s a proof of concept of the methodology. Indeed, by scanning the

omplete set of observations and extracting for each the individual

haracteristics that trigger a forecast change, we have been able

o rebuild - or at least approximate - the distribution of the more

mportant features used by the classification algorithm. This shows

ow our methodology results are indeed able to approximate the

ecision making rules of the algorithm. 

. Conclusions and discussion 

In this contribution we have proposed a new method for in-

reasing the interpretability and comprehensibility of data mining

lassification models. Starting from an instance that has been clas-

ified as belonging to one class, the solution entails identifying

he minimum variation in the features’ values required to change

he output class. This methodology presents four major advantages

orth discussing. First, it is model-agnostic, as it does not depend

n the considered classification model, which is treated as a black-

ox - a beneficial feature in the case of complex models. Second,

t presents a very low computational cost, especially when com-

ared with alternative solutions like Simulated Annealing or brute

orce methods. Third, it has a flexible nature, as several steps and

ssumptions can be adapted to the problem under analysis. Fi-

ally, it is also worth noting that, while in this contribution we

ave focused on classification problems, the same approach can

e applied to unsupervised scenarios, e.g. for improving the inter-

retability of clustering solutions. In this final section, we are going

o present an additional consideration of relevance in real-world

pplications: the behaviour of the methodology for noisy or wrong

lassification models. 
First of all, throughout the text we have considered a simplified

ituation in which the classification model is assumed as correct -

.e. if the classification of the instances is defined, in the real world,

y an unknown function F , the trained data mining model reaches

 function 

˜ F such that ˜ F = F . This is nevertheless an atypical sit-

ation: most data mining models only reach an approximation (at

est) of the reality, due both to their intrinsic limitations and un-

erlying hypotheses, to limited training data, and to the presence

f noise in the training labels. This latter problem, known in data

ining as learning with noisy labels ( Natarajan, Dhillon, Raviku-

ar, & Tewari, 2013 ), is especially common in biomedicine: for

nstance, it is known that a 10% of the Alzheimer’s diagnostics

re wrong, as a reliable diagnosis requires a post-mortem anal-

sis ( Chang & Silverman, 2004; Eastley, Wilcock, Ames, Burns, &

Brien, 2005; Ryan, 1994 ). This problem is not specific to the pro-

osed methodology, but is on the contrary common to all data

ining and machine learning algorithms; even the best DSS sys-

em can be wrong, and the user should be aware of this. The

ethodology here discussed can nevertheless help tackling such

ituations: having knowledge about how the underlying classifica-

ion algorithm works can help the user to be better aware of its

imitations, enabling the confrontation of his or her own knowl-

dge with the machines one. This has here been illustrated through

he fourth real-world data set, which suffered from an overfitting

n the training phase. Conversely, the user should be aware that re-

ults may depend on the distance metric used, which may favour

ne dimension over another and thus give biased results, if an ap-

ropriate weighting is not applied by the user. 

To conclude, while this contribution has only explored low di-

ensional problems, the proposed methodology can in principle

e applied to higher numbers of dimensions. This would require

urther inquiries, for instance on how to conceptually combine

hanges coming from a large number of features. On the other

and, this will open the door to the study of large black-box mod-

ls, as for instance deep learning ones. 
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