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a b s t r a c t 

Coral Reefs Optimization (CRO) is a recently proposed evolutionary-type algorithm which has shown 

promising results to tackle many complex optimization problems. This paper discusses the performance 

of this meta-heuristic in Unequal Area Facility Layout Problems (UA-FLPs). The UA-FLP is an important 

problem in industrial production, which considers a rectangular region and a set of rectangular facilities. 

These facilities must be allocated in the plant in the most adequate way satisfying certain constraints. 

The Flexible Bay Structure has been selected in order to represent solutions for the UA-FLP in the pro- 

posed CRO algorithm. In this paper, we detail the implementation of the algorithm and provide the re- 

sults of different tests in several UA-FLP instances with different size and setting. The obtained results 

confirm the excellent performance of the proposed algorithm in solving UA-FLPs, improving alternative 

algorithms devoted to this problem in the literature. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

Facility Layout Design (FLD) decides the allocation of depart- 2 

ments (or facilities ) in a manufacturing layout, trying to reach 3 

well laid out facilities taking into account some objectives or 4 

criteria, under certain constraints. Considering Tompkins, White, 5 

Bozer, and Tanchoco (2010) , a good distribution of the depart- 6 

ments implies improvements in the efficiency and can decrease 7 

the total expenses in a company between 20% and 50%. For 8 

this reason, FLD is a very important issue to consider in or- 9 

der to reduce expenses and other work resources in a manu- 10 

facturing ( Kouvelis, Kurawarwala, & Gutierrez, 1992 ). There are 11 

many different Facility Layout Problems (FLPs) in FLD applica- 12 

tions, which are determined by several features and design fac- 13 

tors. In this respect, it is possible to find some classifications 14 

and taxonomies for FLPs in the works by Drira, Pierreval, and 15 

Hajri-Gabouj (2007) , Hosseini-Nasab, Fereidouni, Fatemi Ghomi, 16 

and Fakhrzad (2018) and Anjos and Vieira (2017) , among others. 17 

A particularly interesting FLP, due to its direct application to real 18 

cases, is known as Unequal Area Facility Layout Problem (UA-FLP). 19 
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The UA-FLP was first described by Armour and Buffa (1963) , and it 20 

takes into account an industrial plant and a set of unequal depart- 21 

ments, both of them with rectangular shape. Then, the facilities 22 

must to be allocated adequately in the layout. As main constraints, 23 

in this version of FLP the overlap between facilities is not allowed 24 

and, in addition, they must be allocated within the boundary of 25 

the space plant layout. Normally, the main objective of UA-FLP is 26 

to minimize the cost of material flow between the departments 27 

that make up the industrial plant. ( Gonçalves & Resende, 2015 ). 28 

Different approaches have been recently applied aiming at 29 

solving the UA-FLP. In Komarudin and Wong (2010) it is estab- 30 

lished that it is possible to classify the approaches that solve 31 

this problem into deterministic procedures and heuristics/meta- 32 

heuristics methods. Taking into consideration the deterministic 33 

methods, Meller, Narayanan, and Vance (1998) suggested a branch 34 

and bound approach that included a structure with an acyclic sub- 35 

graph for solving this problem. In this sense, Montreuil (1991) and 36 

Konak, Kulturel-Konak, Norman, and Smith (2006) applied to UA- 37 

FLPs a proposal based on mixed integer programming. After- 38 

ward, Meller et al. (1998) modified Montreuil’s proposal in or- 39 

der to solve large UA-FLPs. They reached an optimal solution 40 

for a UA-FLP with eight facilities. Later, Sherali, Fraticelli, and 41 

Meller (2003) suggested a upgraded model that solved more effi- 42 

ciently UA-FLPs by means of decreasing the amount of error. More- 43 

over, Castillo, Westerlund, Emet, and Westerlund (2005) reached 44 
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optimal solution solving an UA-FLP of nine facilities using the 45 

same approach than Sherali et al. (2003) with some improve- 46 

ments. Recently, Saraswat, Venkatadri, and Castillo (2015) and 47 

Purnomo and Wiwoho (2016) used the proposal taken from 48 

Sherali et al. (2003) in order to consider more than one objective. 49 

Chae and Regan (2016) reached optimal designs for problems up 50 

to 12 facilities. They also considered both fixed and flexible dimen- 51 

sions for facilities. 52 

In general, meta-heuristics methods perform better than deter- 53 

ministic algorithms for UA-FLPs, mainly in large and very large 54 

instances. That is why heuristic and meta-heuristic approaches 55 

have been more frequently used for solving UA-FLPs. For ex- 56 

ample, Tam (1992) developed a Simulated Annealing approach 57 

called LOGIC in order to find best solutions for this problem. 58 

More recently, Scholz, Petrick, and Domschke (2009) and Kulturel- 59 

Konak (2012) proposed Tabu search proposals for the UA-FLP. 60 

Many researches have employed Genetic Algorithms (GAs) for 61 

solving UA-FLPs. This way, Tate and Smith (1995) suggested a 62 

GA that included a penalty function in order to focus the pro- 63 

cess of finding solutions only to the feasible ones. Azadivar and 64 

Wang (20 0 0) addressed the UA-FLP by means of a GA that used a 65 

Slicing Tree Structure as layout representation. Considering aisles 66 

in the UA-FLP, Wu and Appleton (2002) and Gomez, Fernandez, 67 

De la Fuente Garcia, and Garcia (2003) proposed GA approaches 68 

for solving this problem. Enea, Galante, and Panascia (2005) used 69 

a GA to UA-FLP considering a fuzzy environment and also aspect 70 

ratio constraints. Moreover, Aiello, Enea, and Galante (2006) im- 71 

plemented a combination of a GA and Electre algorithm to ad- 72 

dress the UA-FLP. Liu and Meller (2007) applied an approach 73 

that combined Mixed-Integer Programming and GA to solve this 74 

problem. They deleted unfeasible features in order to easily solve 75 

the problem. Continuing with genetic approaches applied to this 76 

problem, García-Hernández, Pierreval, Salas-Morera, and Arauzo- 77 

Azofra (2013b) suggested an approach that combined Interac- 78 

tivity and a GA for capturing those features that the Decision 79 

Maker (DM) preferred in a particular solution. Their Interactive 80 

Genetic Algorithm was improved by García-Hernández, Palomo- 81 

Romero, Salas-Morera, Arauzo-Azofra, and Pierreval (2015) for 82 

achieving more diversity in the final layout solutions. In this 83 

respect, García-Hernández, Arauzo-Azofra, Salas-Morera, Pierreval, 84 

and Corchado (2015) reached an improvement by means of con- 85 

sidering both Decision Maker preferences and quantitative fac- 86 

tors in the final solution. They achieved it through an interactive 87 

multi-objective GA. More recently, Palomo-Romero, Salas-Morera, 88 

and GarcíHernández (2017) suggested a proposal that improved the 89 

quantitative performance of many of tested UA-FLPs using a GA 90 

based on an Island Model to explore different individuals from the 91 

varying search context. 92 

Alternative meta-heuristics have also been used to address 93 

UA-FLPs. For example, ant colony optimization ( Komarudin 94 

& Wong, 2010 ) ( Wong & Komarudin, 2010 ) ( Kulturel-Konak & 95 

Konak, 2011 ) ( Liu & Liu, 2019 ), artificial immune system ( Ulutas 96 

& Kulturel-Konak, 2012 ), biased random-key GA ( Gonçalves & Re- 97 

sende, 2015 ), collision detection and response approach ( Sikaroudi 98 

& Shahanaghi, 2016 ), GA combined with a decomposition strat- 99 

egy ( Paes, Pessoa, & Vidal, 2017 ), among others. Finally, Kang and 100 

Chae (2017) solved UA-FLP by means of a modification of the 101 

Harmony Search method proposed by Shayan and Chittilap- 102 

pilly (2004) . Additionally, they presented a new slicing tree rep- 103 

resentation for layout configuration. 104 

In order to represent the plant layout design, some different ap- 105 

proaches have been developed. The Block Layout Design Problem 106 

(BLDP) representation allows locating every facility in the plant 107 

freely in any position with the restriction of not overlapping with 108 

other facilities. In such representation, Mixed Integer Linear and 109 

Nonlinear Programming methods are used ( Castillo et al., 2005; 110 

Fig. 1. Layout representation based on FBS. 

Gonçalves & Resende, 2015; Meller & Gau, 1996 ). In the search for 111 

a representation more useful to apply evolutionary algorithms, two 112 

more facilities layout representations have been proposed: Slicing 113 

Tree Structure (STS) and Flexible Bay Structure (FBS). In STS, the 114 

space is recursively divided into vertical and horizontal sections 115 

( Kang & Chae, 2017; Komarudin & Wong, 2010; Scholz et al., 2009; 116 

Shayan & Chittilappilly, 2004 ) while in FBS, the space is only di- 117 

vided into horizontal or vertical bands ( Kulturel-Konak & Konak, 118 

2011; Meller, 1997 ). In this way, STS and FBS structures are not 119 

comparable nor in the way they use to locate the facilities in the 120 

plant, neither in the results obtained by each one of them. 121 

A representation based on the Flexible Bay Structure (FBS) has 122 

been selected in this paper in order to represent a facility layout 123 

as an individual in an evolutionary-type algorithm. With respect to 124 

the advantages of using FBS as layout representation, it is can be 125 

stated that considering FBS as layout representation permits the 126 

UA-FLP become simpler and easier to be addressed, because of the 127 

UA-FLP complexity is decreased into determining the facilities lo- 128 

cation order and the total number of facilities that each bay will 129 

contain ( Wong & Komarudin, 2010 ). Additionally, this kind of rep- 130 

resentation which was suggested by Tong (1991) has been widely 131 

used among the different structures available from the related ref- 132 

erences ( Liu & Liu, 2019; Palomo-Romero et al., 2017; Wong & Ko- 133 

marudin, 2010 ). This mechanism of illustrating plant layout con- 134 

sists of an area with rectangular shape that is vertically or hori- 135 

zontally split into sub-areas (called bays). Then, each one is split 136 

again to assign the departments that compose the manufactur- 137 

ing plant. According to Tate and Smith (1995) , the generated sub- 138 

areas possess the property of having flexible width in order to have 139 

enough space for containing different number of facilities. Finally, 140 

according to Aiello, Scalia, and Enea (2012) , using FBS offers an 141 

additional benefit due to it gives the possibility of incorporating 142 

aisles in an easy way. Fig. 1 shows a facility layout representa- 143 

tion based on FBS. This FBS example has been taken from Palomo- 144 

Romero et al. (2017) . 145 

In this work we test the performance of a different current 146 

evolutionary-based algorithm, the Coral Reefs Optimization (CRO) 147 

( Salcedo-Sanz, Del Ser, Landa-Torres, Gil-López, & Portilla-Figueras, 148 

2013 ) ( Salcedo-Sanz, Del Ser, Landa-Torres, Gil-López, & Portilla- 149 

Figueras, 2014a ) in order to address the UA-FLP. The CRO is an 150 

evolutionary-type algorithm which evolution is guided by imi- 151 

tating processes occurring in real coral reefs, such as reproduc- 152 

tion, the fight for space or the predation. The CRO is an al- 153 

gorithm which results in a kind of hybrid Evolutionary Algo- 154 

rithm and Simulated Annealing ( Salcedo-Sanz et al., 2014a ), and it 155 

has been shown to improve both techniques in diverse instances 156 

in areas such as Telecommunications ( Salcedo-Sanz, Sanchez- 157 

Garcia, J.A., Jimenez-Fernandez, & Ahmadzadeh, 2014d ) ( Salcedo- 158 

Sanz, García-Díaz, Portilla-Figueras, Ser, & Gil-López, 2014b ), 159 

Energy ( Salcedo-Sanz, Camacho-Gómez, Mallol-Poyato, Jiménez- 160 

Fernández, & DelSer, 2016 ) ( Salcedo-Sanz, Pastor-Sánchez, Pri- 161 

eto, Blanco-Aguilera, & García-Herrera, 2014c ), Structural Engineer- 162 

ing ( Salcedo-Sanz, Camacho-Gómez, Magdaleno, Pereira, & Loren- 163 

zana, 2017 ) ( Camacho-Gómez, Wang, Pereira, Díaz, & Salcedo-Sanz, 164 

2018 ) or Bio-medical applications ( Bermejo, Chica, Damas, Salcedo- 165 

Sanz, & Cordón, 2018 ) ( Yan, Ma, Luo, & Patel, 2019 ). Recently, 166 
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Fig. 2. Facility layout chromosome. 

the CRO has also been used to different problems such as clus- 167 

tering ( Medeiros, Xavier, & Canuto, 2015 ), neural network train- 168 

ing ( Yang, Zhang, & Zhang, 2016 ), time series analysis ( Durán- 169 

Rosal, Gutiérrez, Salcedo-Sanz, & Hervás-Martínez, 2018 ) or re- 170 

source allocation problems ( Ficco, Esposito, Palmieri, & Castiglione, 171 

2018 ), among others. In these works, the CRO has been successfully 172 

applied by reaching an excellent performance in the tested prob- 173 

lem ( Salcedo-Sanz, 2017 ). This work deals to investigate the per- 174 

formance of Coral Reefs Optimization addressing the UA-FLP. From 175 

the best of our knowledge, it is the first time that CRO is applied 176 

to solve the UA-FLP. We will show that the CRO algorithm is able 177 

to outperform other evolutionary based approaches in a number of 178 

large UA-FLP instances. 179 

The remainder of this work has been organized as follows: 180 

Section 2 details the novel suggested approach for solving the UA- 181 

FLP. Section 3 describes the experimental part of the work, with 182 

the results achieved in many different UA-FLPs. A comparison with 183 

published results reached by other approaches is carried out at this 184 

stage. Finally, Section 4 closes this research with a summary of the 185 

main concluding remarks and some future research lines that can 186 

be drawn based on this work. 187 

2. Proposed approach 188 

For addressing the UA-FLP we propose a new CRO approach 189 

which considers material flow as optimization criterion. Below, we 190 

will describe the algorithm’s structure and implementation. 191 

2.1. Individual codification 192 

In order to encode an individual of the CRO reef, the chromo- 193 

some structure suggested by Gomez et al. (2003) has been used. 194 

It is illustrated in Fig. 2 . This encoding structure is formed by two 195 

different segments. The first one illustrates the sequence of depart- 196 

ments in the facility layout, which is taken reading from top to 197 

bottom in each bay and reading the bay from left to right in the fa- 198 

cility layout. An integer permutation from 1 to n (being n the total 199 

number of departments that exist in the layout) is employed in the 200 

first segment. The information about where are the cuts that de- 201 

limit the bays of the layout is offered by the second segment. This 202 

one is composed by ( n − 1 ) elements which have binary values. So 203 

that, if it is the value’ 1’ in a certain segment position means that 204 

the department in the same segment position of the first segment, 205 

is the last element of the bay. Else, it will appeared the value’ 0’ in 206 

the segment. Fig. 2 gives the individual chromosome associated to 207 

the facility representation offered in Fig. 1 . 208 

2.2. Objective function 209 

Armour and Buffa (1963) stated the UA-FLP for the first 210 

time. The problem is defined by means of a rectangular layout of 211 

dimensions ( W × H ) which are fixed. Additionally, there is a group 212 

of facilities or departments with a determined area ( A i ). The sum 213 

of the department areas must be less or equal than the total area 214 

of the rectangular layout (see Eq. (1) ). 215 

n ∑ 

i 

A i ≤ W × H (1) 

Fig. 3. Example of a coral reef with size 4 x 4. 

The objective of the problem is to place all the departments 216 

in the layout, optimizing a given criterion and taking into consid- 217 

eration that overlapping between departments is not allowed. In 218 

Aiello et al. (2012) it is stated that the UA-FLP involves as main 219 

objective the minimization of the material flow between depart- 220 

ments. The fitness score used in evolutionary algorithms to evalu- 221 

ate UA-FLP test problems is therefore based on material flow. Ad- 222 

ditionally, in order to guide the search process to feasible individ- 223 

uals, a penalty function proposed by Tate and Smith (1995) have 224 

been used. This way, for every solution in the algorithm, a penalty 225 

mark is defined, which is proportional to the number of facilities 226 

that make up the layout and that not satisfy the aspect ratio con- 227 

straint (either the maximum aspect ratio or minimum side length). 228 

These facilities are considered as unfeasible . The fitness function 229 

that minimizes the material flow is the following: 230 

g( x ) = 

n ∑ 

i 

n ∑ 

j 

f i j d i j + (D in f ) 
k (V f eas − V all ) (2) 

where n is the number of departments in the layout, f ij is the 231 

material flow between the departments i and j , d ij is the Manhat- 232 

tan distance between i and j , Dinf is the number of facilities which 233 

are unfeasible, Vfeas is the best feasible fitness value that has been 234 

yet achieved, Vall is the best overall fitness value that has been 235 

yet achieved, an k is a penalty parameter that fits the value of the 236 

penalty function (it has been set as 3, following the suggestion in 237 

Tate & Smith, 1995 ). 238 

2.3. The Coral Reef Optimization Algorithm 239 

The Coral Reef Optimization Algorithm (CRO) was recently pro- 240 

posed by Salcedo-Sanz et al. (2014a) . This approach is a kind of 241 

evolutionary-type algorithm which imitates the evolution of coral 242 

reefs and the different processes occurring in these ecosystems. We 243 

will consider � as a model of the reef with size of N × M square 244 

grid (see Fig. 3 ). Each square located in �( i , j ) is a place that can 245 

host a coral �( i , j ) where i and j are the coordinates of the square 246 

in the reef. Each coral is a representation of a solution to our prob- 247 

lem, in our particular case, a plant layout solution for the UA-FLP. 248 

Once we have modeled the reef and the corals itself, the algorithm 249 

process is define using the steps that are detailed as follows. 250 

2.3.1. Initialization of the algorithm 251 

One of the most important parameters of the CRO algorithm is 252 

the number of initial corals in the reef. A rate specifying the pro- 253 

portion between empty and in-use squares in the reef is defined, 254 

ρ0 , in such a way that 0 < ρ0 < 1. Taking into consideration this 255 

parameter, the initial number of corals is calculated as: 256 

Initial Coral s = N × M × ρ0 

The initial corals are randomly generated and placed (also in a 257 

random way) in empty squares of the reef. Fig. 4 illustrates a coral 258 

reef initialized with random corals in a proportion of’ 0.5’ between 259 

empty and in use squares, i.e. ρ0 = 0 . 5 . This step is summarized 260 

in Algorithm 1 . Once the reef are initialized, the simulation of the 261 

corals’ evolution starts with an iterative execution of the corals’ re- 262 

production, which is realized by means of diverse operators until 263 
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Algorithm 1 Reef initialization. 

Input Reef size (width and height) and occupation rate 

Output Initial reef population 

1: procedure initialize reef ( n, m, ρ0 ) � Coral Reef initialization 

2: ree f _ size ← n × m 

3: k ← ree f _ size × ρ0 � Number of initial corals 

4: for k times do 

5: generate random coral 

6: place coral in random empty reef position 

7: end for 

8: return initial reef 

9: end procedure 

Fig. 4. Example of a coral reef with random individuals inserted and ρ0 = 0 . 5 . 

Fig. 5. Proposed CRO algorithm flowchart diagram. 

the stop criterion is reached (in our particular case, when the re- 264 

quired number of iterations have been satisfied). This iterative pro- 265 

cess (detailed in Salcedo-Sanz et al., 2014a ) will be described in the 266 

following section. 267 

2.3.2. Iterative coral evolution 268 

The reproduction phase is defined by different operators for 269 

modeling Sexual Reproduction (that can be external and internal) 270 

and Asexual Reproduction . All these kind of reproduction phases 271 

will generate new corals from the existing ones in the reef which 272 

will be denoted as larvae . Between sexual and asexual reproduc- 273 

tion phases, is the Larvae Setting step, where some of the new lar- 274 

vae elements will take place into the coral reef. Finally, a depre- 275 

dation phase will eliminate the weakest corals in the reef. Fig. 5 276 

summarizes the entire process of the CRO algorithm. Additionally, 277 

Algorithm 2 shows the flowchart diagram of the CRO algorithm 278 

with the different CRO phases which are detailed below. 

Algorithm 2 CRO algorithm. 

Input Algorithm’s control parameters 

Output Feasible solution with best fitness 

1: procedure cro ( n, m, ρ0 , F b , F a , F d , P d ) � Coral Reef Optimization 

algorithm 

2: initialize reef with size n × m and occupation rate ρ0 

3: repeat 

4: reproduce corals fraction F b by broadcast spawning 

5: reproduce corals fraction 1 − F b by brooding 

6: larvae evaluation 

7: larvae setting 

8: reproduce best corals fraction F a by asexual reproduc- 

tion 

9: predation of F d worst reef corals with P d probability 

10: until stop condition 

11: return best feasible solution 

12: end procedure 

279 

1. Broadcast spawning (External sexual reproduction) 280 

This phase is made up by two steps. Firstly, a number of the 281 

corals that exist in the reef, denoted by ρk , is selected randomly 282 

to be broadcast spawners . This fraction of broadcast spawners is 283 

calculated with respect to the overall amount of existing corals 284 

in the reef and it is denoted as F b . The remaining corals which 285 

have not been chosen for being broadcast spawners ( 1 − F b ) will 286 

be selected for being reproduced in the brooding phase. Sec- 287 

ondly, from the broadcast spawners ( ρk ), the algorithm will se- 288 

lect couples of corals in order to be reproduced. This selection 289 

of corals is random and with replacement, once a couple is se- 290 

lected, it can not be selected again for being reproduced in the 291 

same step. Each of the selected couples will form two children 292 

by sexual crossover. Specifically in our approach, the Partially- 293 

Mapped Crossover operator (PMX) proposed by Goldberg and 294 

robert (1985) , is used for the facility sequence segment, and the 295 

One Point Crossover ( Holland, 1992 ) is applied over the split 296 

segment. Then, a child will be randomly selected as coral larva 297 

which is then released out to the water. This crossover process 298 

is illustrated in Fig. 6 where it is shown how the layout rep- 299 

resentations change during CRO algorithm. The larvae result is 300 

stored until the Larvae Setting phase. Fig. 7 and Algorithm 3 de- 301 

tail the broadcast spawning phase. 

Algorithm 3 Broadcast spawning. 

Input Coral reef, External sexual reproduction rate 

Output Generated larvae set 

1: procedure broadcast spawning ( ree f, F b ) 

2: ρk ← coral _ num × F b � Number of corals to reproduce by 

broadcast spawning 

3: select ρk corals from ree f 

4: pair selected corals 

5: for each coral pair do 

6: apply crossover 

7: add generated solution to larvae set 

8: end for 

9: return generated larvae set 

10: end procedure 

302 

2. Brooding (Internal sexual reproduction) 303 

The remaining corals of the previous phase ( 1 − F b ) are selected 304 

to be reproduced by brooding , which consist of the formation 305 
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Fig. 6. Graphical diagram that illustrates Crossover process in Broadcast Spawning step. 

of a coral larva by means of a random mutation in each 1 − F b 306 

coral element. The obtained larvae is then released out to the 307 

water in a similar way than it is performed in the previous 308 

phase. Fig. 9 shows brooding reproduction over the two corals 309 

which have not been selected to be reproduced in the previ- 310 

ous phase ( Fig. 7 ). This mutation process is illustrated using 311 

Fig. 8 where it is shown how the layout representations change 312 

again during CRO algorithm. Moreover, Algorithm 4 expresses 313 

how this phase is performed. The resulting larvae is stored un- 314 

til the Larvae Setting phase. 315 

3. Larvae setting 316 

At this moment, all the larvae created by Broadcast Spawning or 317 

Brooding are stored. Then, the next step consists of trying to set 318 

Algorithm 4 Brooding. 

Input Coral reef 

Output Generated larvae set 

1: procedure brooding ( ree f ) 

2: select all corals not reproduced by broadcast spawning from 

ree f 

3: for each selected coral do 

4: apply mutation 

5: add generated solution to larvae set 

6: end for 

7: return generated larvae 

8: end procedure 
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Fig. 7. Graphical diagram that illustrates Broadcast Spawning step. 

and grow those larvae into the reef. For that matter, the fitness 319 

function for both larvae and corals that exist in the reef is com- 320 

puted (in our particular case, the fitness function is the existing 321 

material flow between the departments that compose the plant 322 

layout). Then, a larva is selected to be placed in a random lo- 323 

cation of the reef. If this position is free, the larva will be allo- 324 

cated there. If it is not, the fitness of the coral and the larva will 325 

be compared. This way, if the larva fitness is better (it has less 326 

value of material handling cost) than the coral, the coral will be 327 

replaced by the larva. If the larva does not replace the coral (it 328 

has higher value of material handling cost), it will try κ times 329 

(this number is ‘3’ as suggested by Salcedo-Sanz et al., 2013 ) to 330 

be placed in another position of the reef. If the larva can not be 331 

placed in κ attempts, it will be deprecated. This mechanism is 332 

explained by means of Fig. 10 and Algorithm 5 . 333 

4. Budding or fragmentation (Asexual reproduction) 334 

In this phase, all the existing corals in the reef are ranked as a 335 

function of their level of fitness . Then, a fraction of them de- 336 

noted by F a , is duplicated itself and tries to be allocated in 337 

a different square in the reef. This is performed by means of 338 

the same process that has been explained in the Larvae Set- 339 

Fig. 9. Graphical diagram that illustrates Brooding phase. 

Fig. 10. Graphical diagram that illustrates larvae setting phase. 

ting phase. This asexual reproduction is illustrated by means of 340 

Fig. 11 and Algorithm 6 . 341 

5. Depredation 342 

At the end of each algorithm iteration, a fraction of the worse 343 

fitness corals denoted by F d that exist in the reef will be depre- 344 

cated with a very low probability denoted by P d . This liberates 345 

space in the reef for next coral generation. Depredation step is 346 

shown using Fig. 12 and Algorithm 7 . 347 

Fig. 8. Graphical diagram that illustrates Mutation process in Brooding step. 
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Fig. 11. Graphical diagram that illustrates budding phase. 

Algorithm 5 Larvae setting. 

Input Coral reef, larvae set 

Output Updated reef 

1: procedure larvae_setting ( ree f, larv ae ) 

2: for each larvae do 

3: pl aced ← F al se 

4: k ← 3 � Number of attempts to settle in the reef 

5: while not placed and k > 0 do 

6: pos ← random reef position 

7: if pos is empty or larv a fitness is better than resi- 

dent’s then 

8: larv a settles in pos 

9: placed ← True 

10: else 

11: k ← k − 1 

12: end if 

13: end while 

14: end for 

15: return ree f 

16: end procedure 

Algorithm 6 Asexual reproduction. 

Input Coral reef, Asexual reproduction rate 

Output Updated reef 

1: procedure asexual_reproduction ( ree f, F a ) 

2: n a ← coral _ num × F a � Number of corals to duplicate 

3: select the best n a corals from ree f 

4: for each selected coral do 

5: settle coral in ree f � Same procedure as larvae_setting 

6: end for 

7: return ree f 

8: end procedure 

Algorithm 7 Depredation. 

Input Coral reef, depredation fraction, depredation probability 

Output Updated reef 

1: procedure depredation ( ree f, F d , P d ) 

2: n d ← coral _ num × f d � Number of corals that may be 

predated 

3: select the worst n d corals from ree f 

4: for each selected coral do 

5: if random (0 . 0 , 1 . 0) < = P d then 

6: remove coral from ree f 

7: end if 

8: end for 

9: return ree f 

10: end procedure 

Fig. 12. Graphical diagram that illustrates depredation step. 

3. Experimental set and results obtained 348 

The performance of the proposed CRO approach is tested in 349 

comparison with state-of-the-art algorithms for the UA-FLP in this 350 

section. For this, we have used many UA-FLP instances taken 351 

from other works of related references. The set of well-known 352 

UA-FLPs are: Slaughterhouse detailed in Salas-Morera, Cubero- 353 

Atienza, and Ayuso-Munoz (1996) ; CartonPacks and Chopped- 354 

Plastic from García-Hernández, Arauzo-Azofra, Salas-Morera, Pier- 355 

reval, and Corchado (2013a) ; O7, O8 and O9, described by 356 

Meller et al. (1998) ; VC10 (both side and aspect ratio con- 357 

straints) illustrated in van Camp, Carter, and Vannelli (1992) ; 358 

MB12 explained by Bozer and Meller (1997) ; Ba12 detailed in 359 

Bazaraa (1975) ; Ba14 presented in Komarudin and Wong (2010) of 360 

the problem described in Bazaraa (1975) ; Ma15 (with two differ- 361 

ent shape constraints) from Bozer, Meller, and Erlebacher (1994) ; 362 

AB20 detailed by Armour and Buffa (1963) ; SC30, a modification 363 

taken from Komarudin and Wong (2010) of the problem described 364 

in Liu and Meller (2007) ; SC35 from Liu and Meller (2007) ; and 365 

DU62 described by Dunker, Radons, and Westkämper (2003) . 366 

The characteristics of the selected UA-FLPs for being tested are 367 

described in Table 1 . This information is the UA-FLP name, num- 368 

ber of facilities, facility width, facility height, shape constraint (be- 369 

ing α the maximum aspect ratio constraint, and lmin the minimum 370 

side length constraint), and finally the references for the problem 371 

data sources. Note that the used measure distance is the Man- 372 

hattan as default parameter. However, the Euclidean distance have 373 

been applied to the instances of Slaughterhouse, Carton Packs and 374 

Chopped Plastic. Note that Ba14 problem has two different values 375 

for the minimum side length constraint which is’ 1’ for the depart- 376 

ments that are from 1 to 12, and, it is’ 0’ for the departments 13 377 

and 14. 378 

The proposed CRO performance deeply depends on a set of pa- 379 

rameters. We have tuned them in an empirical way. Thus, we have 380 

performed different checks in order to reach the best set of values 381 

for the algorithm in the UA-FLP. Table 2 illustrated the best val- 382 

ues obtained for the CRO parameters. Taking into consideration the 383 

values express in Table 2 , a full-factorial experiment has been per- 384 

formed testing sets of UA-FLPs with each possible combination of 385 

parameters. Specifically, the representative sets of UA-FLPs which 386 

have been selected for tuning our CRO algorithm have been O9 387 

from Meller et al. (1998) , Ma15a taken from Bozer et al. (1994) and 388 

SC30 taken from Liu and Meller (2007) . These problems have been 389 

chosen as representative ones in order to consider the different de- 390 

partment sizes (small, medium and large) of the UA-FLPs. Then, a 391 

comparison between the reached solutions has been done in order 392 

to select which parameter option fits better. The best CRO configu- 393 
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Table 1 

Features of the tested well-known problems. 

Problem name Fac. W × H Aspect ratio Reference 

Slaughterhouse 12 51.14 × 30.00 α= 4 Salas-Morera et al. (1996) 

CartonPacks 11 20.00 × 14.50 α= 4 García-Hernández et al. (2013a) 

ChoppedPlastic 10 10.00 × 30.00 α= 4 García-Hernández et al. (2013a) 

O7 7 8.54 × 13.00 α= 4 Meller et al. (1998) 

O8 8 11.3 × 13.00 α= 4 Meller et al. (1998) 

O9 9 12.00 × 13.00 α= 4 Meller et al. (1998) 

vC10Ra 10 25.00 × 51.00 α= 5 van Camp et al. (1992) 

Vc10Rs 10 25.00 × 51.00 Min . side = 5 van Camp et al. (1992) 

Ba12 12 6.00 × 10.00 Min . side = 1 Bazaraa (1975) 

MB12 12 6.00 × 8.00 α= 4 Bozer and Meller (1997) 

Ba14 14 7.00 × 9.00 Min . side = {1,0} Komarudin and Wong (2010) 

Ma15 15 15.00 × 15.00 α= 5 Bozer et al. (1994) 

Ma15s 15 15.00 × 15.00 Min . side = 1 Bozer et al. (1994) 

AB20 20 2.00 × 3.00 α= 5 Armour and Buffa (1963) 

SC30 30 12.00 × 15.00 α= 5 Liu and Meller (2007) 

SC35 35 16.00 × 15.00 α= 4 Liu and Meller (2007) 

Du62 62 Arbitrary × Arbitrary α= 4 Dunker et al. (2003) 

Table 2 

CRO parameters selection. 

UA-FLP Chosen values Tested values 

O9 Ma15s SC30 Combination of: 

N × M 25 × 25 25 × 25 25 × 25 10 × 10 15 × 15 25 × 25 

ρ0 c0.4 0.4 0.4 0.4 0.5 0.6 

F b c0.9 0.9 0.9 0.8 0.85 0.9 

F a c0.1 0.1 0.2 0.1 0.15 0.2 

F d 0.1 0.1 0.1 0.01 0.05 0.1 

P a c0.1 0.1 0.1 0.01 0.05 0.1 

Table 3 

Statistical results reached by the CRO algorithm. 

Problem name OFV Best OFV Mean CPU(s) 

Slaughterhouse 3487.12 3487.12 78.00 

CartonPacks 80.91 80.91 74.00 

ChoppedPlastic 265.77 265.77 65.00 

O7 134.16 134.16 4.00 

O8 245.48 245.48 24.00 

O9 239.44 239.44 49.00 

vC10Ra 20142.13 20576.93 61.00 

Vc10Rs 22897.65 22898.65 63.00 

Ba12 8021.0 8103.96 87.00 

MB12 125.00 125.00 81.00 

Ba14 4665.93 4731.23 92.00 

Ma15 26800.63 26972.95 104.00 

Ma15s 22871.97 23034.88 106.00 

AB20 5243.95 5250.02 202.00 

SC30 3519.44 3566.27 622.00 

SC35 4263.3 4409.34 552.00 

Du62 713876.55 3719342.03 871.00 

ration for each representative UA-FLP instance has been shown in 394 

the column ‘Chosen value’. 395 

The experimentation has been replicated five times for each 396 

UA-FLP like in Komarudin and Wong (2010) with a stopping cri- 397 

teria of 10,0 0 0 iterations as maximum and 500 iterations with- 398 

out improvement. The CRO algorithm was coded with Python 2.7.3. 399 

All experiments were performed using an Intel Core i5 6200U 400 

(2.30 GHz × 4), 8GB RAM and a Linux operating system. 401 

3.1. Results 402 

Table 3 presents the statistical results obtained by the sug- 403 

gested CRO algorithm. For each UA-FLP, the best objective function 404 

value (best OFV), the mean objective function value (mean OFV) 405 

and CPU time (in seconds) for reaching the best objective func- 406 

tion value, are detailed. From the table, it can be extract that the 407 

CRO algorithm is robust because of the percentage of gap between 408 

the best and mean objective function value is relatively low. This 409 

gap usually increases as the number of facilities increases in the 410 

UA-FLP. Regarding CPU time, See and Wong (2008) stated that in 411 

facility layout design the CPU time is not an extremely important 412 

issue. In this context, our proposal is able to reach satisfactory so- 413 

lutions in an reasonable CPU time if it is compared to alterna- 414 

tive approaches (as for instance Komarudin & Wong, 2010; Palomo- 415 

Romero et al., 2017 , among others). 416 

A comparison of the results reached by our CRO algorithm and 417 

the results taken from related references that uses both FBS and 418 

STS, have been performed in order to analyze the performance of 419 

the proposed CRO approach. This information is shown by means 420 

on Tables 4 and 6 . The first one ( Table 4 ) offers for each data set 421 

problem the following information: The best known solution re- 422 

sult, its associated layout representation, and also, the reference 423 

of the paper that obtained it. Additionally, taking into account 424 

that we have used FBS as layout representation in our approach, 425 

Table 4 also presents for each problem, the best known solution 426 

results and their associated reference considering particularly FBS 427 

as layout representation. In this table, we have set in bold font 428 

those results reached by our proposed approach which are the best 429 

known results. This way, regarding Tables 4 and 5 , it can be seen 430 

that our proposal reaches or improves the best solution fitness in 431 

7 cases out of 17 tested problems when considering both STS and 432 

FBS as layout representation. This fact (our proposal reaches or 433 

improves the best solution) happens in 14 cases out of 17 tested 434 

problems when we consider exclusively FBS representation. In the 435 

remaining cases, our approach is able to reach solutions very close 436 

to the best known ones. 437 

According with Kang and Chae (2017) the STS can reach lay- 438 

out solutions that cannot be represented by means of FBS. That 439 

is the reason why in most cases, the solutions obtained using STS 440 

achieve better results than those that are reached using FBS. For 441 

this reason, we consider interesting to analyze the result compar- 442 

Please cite this article as: L. Garcia-Hernandez, L. Salas-Morera and J.A. Garcia-Hernandez et al., Applying the coral reefs optimization 

algorithm for solving unequal area facility layout problems, Expert Systems With Applications, https://doi.org/10.1016/j.eswa.2019.07.036 

https://doi.org/10.1016/j.eswa.2019.07.036


L. Garcia-Hernandez, L. Salas-Morera and J.A. Garcia-Hernandez et al. / Expert Systems With Applications xxx (xxxx) xxx 9 

ARTICLE IN PRESS 

JID: ESWA [m5G; July 16, 2019;16:55 ] 

Table 4 

Summary of test problems and their best-known and best-known FBS solutions. 

Problem Best known Layout represent. Reference Best known FBS Reference 

Slaughterhouse 3487.12 FBS This approach 3487.12 This approach 

CartonPacks 89.02 FBS This approach 89.02 This approach 

ChoppedPlastic 265.77 FBS This approach 265.77 This approach 

O7 131.56 STS Gonçalves and Resende (2015) 134.16 This approach 

O8 243.12 STS Wong and Komarudin (2010) 245.48 This approach 

O9 236.14 STS Kang and Chae (2017) 239.44 This approach 

Vc10Ra 18522.79 STS Kang and Chae (2017) 20142.13 This approach 

Vc10Rs 19951.17 STS Gonçalves and Resende (2015) 22897.65 This approach 

Ba12 8021.0 FBS This approach 8021.0 This approach 

MB12 125.00 FBS This approach 125.00 This approach 

Ba14 4628.79 STS Gonçalves and Resende (2015) 4665.93 This approach 

Ma15a 26800.63 FBS This approach 26800.63 This approach 

Ma15s 22871.97 FBS This approach 22871.97 This approach 

AB20 4959.11 STS Kang and Chae (2017) 5243.95 This approach 

SC30 3352.70 STS Kang and Chae (2017) 3443.34 Kulturel-Konak and Konak (2011) 

SC35 3316.77 STS Gonçalves and Resende (2015) 3613.11 Kulturel-Konak and Konak (2011) 

Du62 3635307.0 STS Kang and Chae (2017) 3641497.00 Kulturel-Konak and Konak (2011) 

Table 5 

Test result comparisons between the best solutions reached by our CRO algorithm and alternative published FBS approaches. 

Problem CRO Palomo(2017) Kulturel-Konak (2011) Kulturel-Konak (2012) Wong (2010) Enea (2005) 

Slaughterhouse 3487.12 – – – – 3854.00 

CartonPacks 89.02 – – – – 94.10 

ChoppedPlastic 265.77 – – – – 377.18 

O7 134.16 134.19 – – – –

O8 245.48 245.51 – – – –

O9 239.44 241.06 – – 241.06 –

Vc10Ra 20142.13 20142.13 20142.13 21463.07 21463.1 –

Vc10Rs 22897.65 22899.65 22899.65 22899.65 22899.65 –

Ba12 8021.0 8435.83 8129.00 8021.0 8786.00 –

MB12 125.00 125.00 – – – –

Ba14 4665.93 4665.93 4780.91 4739.74 5004.55 –

Ma15a 26800.63 – 27545.27 – 27545.30 –

Ma15s 22871.97 – 23197.80 – 23197.80 –

AB20 5243.95 5256.10 5336.36 5297.6 5677.83 –

SC30 3519.44 3613.11 3443.34 3563.95 –

SC35 4263.3 3885.29 3700.75 – – –

Du62 3713876.55 – 3641497.00 – – –

Table 6 

Summary of the results reached by the proposed CRO. 

Problem name Best sol. FBS Diff(%) STS Diff(%) Solution by CRO 

Slaughterhouse 3487.12 10.52 10.52 1 | 8-2 | 4 –5 | 12-7-6 | 11-3-10-9 

CartonPacks 89.02 5.70 5.70 2-6-11 | 9-10-1-8 | 5-4-7-3 

ChoppedPlastic 265.77 41.61 41.61 10-2-3-4-5-6-7 | 1-9-8 

O7 134.16 0.02 - 1.93 3-5-7-8 | 1-4-6-2 

O8 245.48 0.02 - 0.96 5-8-6-3 | 2-1-4-7 

O9 239.44 0.69 - 1.37 5-9-6-2-3 | 8-1-4-7 

Vc10Ra 20142.13 0.00 - 8.03 5-8-10-9-2-6-1 |-7-3 

Vc10Rs 22871.97 1.43 - 12.86 7 | 5-10-9 | 3 | 11 | 12 | 8 | 6 | 4-2 | 1 

Ba12 8021.0 0.00 0.00 4 –10 | 9-5-7 | 3 | 2 –12 | 1 | 11-8-6 

MB12 125.00 0.00 0.00 12 | 10-7-3-4-2-8-6-5-1-9 | 11 

Ba14 4665.93 0.00 - 0.79 7-11-5 | 10 | 1 | 3 | 9 | 4-2 | 13-1-4-12-8-6 

Ma15a 26800.63 2.78 2.78 6 –11 | 2-1-8-7-13 | 4-15-3 | 5-14-12-10-9 

Ma15s 22871.97 1.43 1.43 9-10-12-15-6-8-11-7 | 14-4-3-13 | 5-2 | 1 

AB20 5243.95 0.23 - 11.20 1-16-11 | 17-13 | 12-9-15 | 3 –14 | 19-10 | 6-4-2-7-20 | 18-5 

SC30 3519.44 - 2.16 - 4.73 19-34-30-10 | 2-6-22-26 | 17-25-29-35-28-21 | 3-4-1-20 

SC35 3885.29 - 4.74 - 14.63 19-34-30-10 | 2-6-22-26 | 17-25-29-35-28-21 | 3-4-1-20 

Du62 3713876.55 - 1.9 - 2.11 19-34-30-10 | 2-6-22-26 | 17-25-29-35-28-21 | 3-4-1-20 | 23-33-18-24-32 | 

13-15-7-11-8 | 12-34-9 | 14-31-5-27-16 

ison of our proposal against other works that use FBS in its ap- 443 

proach. In particular, these FBS proposals are taken from Palomo- 4 4 4 

Romero et al. (2017) , Kulturel-Konak and Konak (2011) , Kulturel- 445 

Konak (2012) , Wong and Komarudin (2010) and Enea et al. (2005) . 446 

Table 5 displays the results achieved by our proposal and the pre- 447 

vious ones. For each UA-FLP, we have highlighted in bold the best 448 

solution. First, Table 5 shows that the proposed CRO algorithm 449 

is able to reach better results than the other compared FBS ap- 450 

proaches in most cases. As it was mentioned previously, the CRO 451 

algorithm improves the results of 14 out of 17 tested problems. 452 

Specifically, note that the suggested CRO approach obtains better 453 

solutions than the approach by Enea et al. (2005) in all problems 454 

compared: Slaughterhouse, Carton Packs and Chopped Plastic. The 455 

CRO also obtained better results than the algorithm by Wong and 456 

Komarudin (2010) , in all cases of the seven problems in which we 457 

compared with this approach. Also, compared with the algorithm 458 
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Fig. 13. Best design reached by the proposed CRO approach in the Slaughterhouse 

UA-FLP. 

Fig. 14. Best design reached by the proposed CRO approach in the CartonPacks UA- 

FLP. 

presented by Kulturel-Konak (2012) , the CRO achieved better so- 459 

lutions in all of six problems in which we tested both algorithms. 460 

Additionally, our approach was able to obtain better or same so- 461 

lutions than the proposal by Kulturel-Konak and Konak (2011) in 462 

7 out of 10 problems analyzed. Finally, our approach was capable 463 

to reach equal or better solutions than the proposal by Palomo- 464 

Romero et al. (2017) in 10 out of 11 problems tested. 465 

Considering FBS, the proposed CRO algorithm has been capable 466 

to equal or win previous algorithms results in most cases. The CRO 467 

has equalized the best result for three problems and has improved 468 

the best solution for other eleven UA-FLPs (considering a total of 469 

17 test UA-FLPs). Note that we have demonstrated effectiveness of 470 

the suggested CRO algorithm when addressing small problems (it 471 

reaches better on all problems which have between 7 and 15 facil- 472 

Fig. 16. Best design reached by the proposed CRO approach in the O9 UA-FLP. 

Fig. 17. Best design reached by the proposed CRO approach in the Ba14 UA-FLP. 

ities, as Slaughterhouse, Carton Packs, Chopped Plastic, O7, O8, O9, 473 

Vc10Ra, Vc10Rs, Ba12, MB12, Ba14, Ma15), solving medium prob- 474 

lems (our CRO algorithm achieves better result on problem AB20 475 

and very close result on SC30 which respectively have 20 and 30 476 

facilities), and also, addressing large problems (our CRO algorithm 477 

is able to find solutions close to the best ones on problems SC35 478 

and DU62 which respectively have 35 and 62 facilities). In contrast, 479 

exclusively in the three problems (SC30, SC35 and DU62) where 480 

our approach is not capable to achieve the best solution, the sug- 481 

gested CRO algorithm is able to reach solutions very close to the 482 

best known result taken from the references. 483 

Moreover, Table 6 further compares the results reached by the 484 

CRO approach and the best known result obtained by other authors 485 

in related literature. This way, Table 6 shows the solution with best 486 

fitness produced by the suggested CRO approach, the difference (in 487 

percentage) between the solution with best fitness reached by the 488 

Fig. 15. Best design reached by the proposed CRO approach in the ChoppedPlastic UA-FLP. 
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Fig. 18. The best design reach by the proposed CRO approach for ma15a UA-FLP. 

Fig. 19. The best design reach by the proposed CRO approach for ma15s UA-FLP. 

CRO approach and the best known FBS result reached by previous 489 

works, and finally, this table presents the best facilities designs ob- 490 

tained by our CRO algorithm. In order to complete this table, ex- 491 

amples of the facility layout solutions of the problems: Slaughter- 492 

house, CartonPacks, ChoppedPlastic, O9, Ba14, ma15a and ma15s, 493 

that were generated by the proposed CRO algorithm and improved 494 

substantially the solutions than were reached by previous works, 495 

are respectively displayed in Figs. 13–19 . These Figures offer the 496 

facility layout distribution of instances without empty space (as 497 

O9, ma15a and ma15s) and also, with empty space consideration 498 

(Ba14). As it was said previously, we have used the same defini- 499 

tion of Ba14 that Komarudin and Wong (2010) , in their work, it is 500 

specified that Ba14 is a problem with 14 facilities and 4 portions 501 

of remaining space which each one has an area equal to 0,5. 502 

It is well known that a correct plant layout design can increase 503 

efficiency and reduce industrial production costs in a very remark- 504 

able way. In this sense, the obtained results contribute to a signif- 505 

icant improvement of industrial plants performance. 506 

4. Conclusions 507 

In this work, an evaluation of the performance of applying Coral 508 

Reefs Optimization to UA-FLPs considering FBS as representation 509 

structure, has been performed. From the best of our knowledge, is 510 

it the first time that CRO has been employed to solve UA-FLP. The 511 

proposed CRO approach has been applied to 17 UA-FLP instances 512 

taken from the related references, and its performance has been 513 

analyzed by comparison with different state-of-the-art approaches 514 

extracted from recent literature. From the empirical study carried 515 

out, we have found that the proposed CRO approach is able to 516 

reach or improve the best known results in 14 out of the 17 tested 517 

UA-FLPs when considering exclusively FBS representation. More- 518 

over, our suggested proposal reaches or improves the best solution 519 

in 7 cases of the 17 tested problems when considering as layout 520 

representation both STS and FBS. In the remaining cases, our ap- 521 

proach is able to reach solutions with results very close to the best 522 

known ones. This fact shows an excellent performance of the CRO 523 

algorithm when solving UA-FLPs. 524 

A promising future line of work could be to add some qualita- 525 

tive preferences to the CRO algorithm. Furthermore, this research 526 

could be extended in order to take into account the possibility of 527 

adding additional considerations as, for example, the inclusion of 528 

aisles. Finally, another possible research direction could be to com- 529 

bine alternative methods of layout representation together with 530 

CRO for addressing UA-FLPs, and test advanced versions of the CRO 531 

approach ( Salcedo-Sanz, 2017 ) in this problem. 532 
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Appendix A. Data set for Slaughterhouse UA-FLP. 565 

This UA-FLP is a real case problem that was planned in the 566 

city of Córdoba (Spain). The facility plant dimensions are 30 m ×567 

51.14 m . It was first described by Salas-Morera et al. (1996) . Table 7 568 

gives information about the department names, and also, their as- 569 

sociated area and aspect ratio constraints. Fig. 20 details material 570 

handling flow between the facilities that made up the plant layout. 571 

Appendix B. Data set for CartonPacks UA-FLP. 572 

This UA-FLP is related to a carton recycling plant of 20 m ×573 

14.5 m . It was described by García-Hernández et al. (2015) . Briefly, 574 

Table 8 offers information about the department names, and also, 575 

their associated area and aspect ratio constraint. Fig. 21 details ma- 576 

terial handling flow between the facilities that made up the plant 577 

layout. 578 

Table 7 

Facility features for the Slaughterhouse problem. 

Id Facility Area ( m 

2 ) Aspect ratio 

A Stables 570 4 

B Slaughter 206 4 

C Entrails 150 4 

D Leather & skin 55 4 

E Aeration chamber 114 4 

F Refrigeration chamber 102 4 

G Entrails chamber 36 4 

H Boiler room 26 4 

I Compressor room 46 4 

J Shipping 109 4 

K Offices 80 4 

L Byproduct shipping 40 4 

Table 8 

Facility features for the CartonPacks problem. 

Id Facility Area ( m 

2 ) Aspect ratio 

A Raw Material 40 4 

B Finished products 40 4 

C Mechanic 20 4 

D Offices 50 4 

E Staff WC 20 4 

F Expedition 40 4 

G Hydraulic 1 20 4 

H Hydraulic 2 20 4 

I Crushing 20 4 

J Circ. saw 10 4 

K Heat exchange 10 4 

Fig. 20. Material flow requirements for the Slaughterhouse problem. 

Fig. 21. Material flow requirements for the CartonPacks problem. 

Table 9 

Facility features for the ChoppedPlastic problem. 

Id Facility Area ( m 

2 ) Aspect ratio 

A Reception 35 4 

B Raw material 50 4 

C Washing 15 4 

D Drying & skin 24 4 

E Chopped 35 4 

F Finished product 30 4 

G Expedition 25 4 

I Office 30 4 

J Toilets 15 4 

K Repair shop 20 4 

Fig. 22. Material flow requirements for the ChoppedPlastic problem. 

Appendix C. Data set for ChoppedPlastic UA-FLP. 579 

This UA-FLP is related to a chopped plastic plant of 30 m × 580 

10 m . It was described by García-Hernández et al. (2013a) . Briefly, 581 

Table 9 offers information about the department names, and also, 582 

their associated area and aspect ratio constraint. Fig. 22 details ma- 583 

terial handling flow between the facilities that made up the plant 584 

layout. 585 
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