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Abstract. The Credal Decision Trees (CDT) have been adapted for Im-
precise Classification (ICDT). However, no ensembles of imprecise clas-
sifiers have been proposed so far. The reason might be that it is not a
trivial question to combine the predictions made by multiple imprecise
classifier. In fact, if the combination method used is not appropriate,
the ensemble method could even worse the performance of one single
classifier. On the other hand, the Bagging scheme has shown to pro-
vide satisfactory results in precise classification, specially when it is used
with CDTs, which are known to be very weak and unstable classifiers.
For these reasons, in this research, it is proposed a new Bagging scheme
with ICDTs. It is presented a new technique for combining predictions
made by imprecise classifiers that tries to maximize the precision of the
bagging classifier. If the procedure for such a combination is too con-
servative it is easy to obtain few information and worse the results of
a single classifier. Our proposal considers only the states with the mini-
mum level of non-dominance. An exhaustive experimentation carried out
in this work has shown that the Bagging of ICDTs, with our proposed
combination technique, performs clearly better than a single ICDT.

Keywords: Imprecise Classification, Credal Decision Trees, ensembles, Bag-
ging, combination technique.

1 Introduction

Within Machine Learning field, supervised classification (Hand, 1997) is a crucial
task that tries to predict, for an instance described via a set of attributes or
features, the value of a variable under study, also known as class variable. A
training set is used in order to learn the model that allows to make the predictions
about the class. For a new instance that is wanted to be classified, its associated
class value is predicted using the learned model. This prediction tends to consist
of a single state. Nevertheless, in many cases, the information available does not
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allow to point clearly to one class value. In these situations, it is more informative
that the classifier returns a set of states of the class variable. Classifiers of this
type are known as imprecise classifiers, which give us imprecise predictions.

When an imprecise classifier is utilized, a set of states of the class variable
might be obtained. These states are those which there is no evidence to reject
them, i.e, for each predicted class value, there is no another ”better” state ac-
cording to a certain criterion utilized. Usually, the set of predicted class values
is known as the set of non-dominated states and the criterion employed to ob-
tain it is called dominance criterion. Logically, the performance measure of an
imprecise classifier must take into account if the real class value is among the
non-dominated states and how precise is the set of predicted states, being the
precision measured by its cardinality.

Models based on imprecise probabilities are more appropriate to be applied
in the building process of an imprecise classifier than those based on the classical
probability theory. Many mathematical theories developed in the literature are
associated with the term imprecise probabilities. A detailed description of them
can be found in (Klir, 2005). Examples of these models are lower and upper
probabilities, belief functions, Choquet capacities, probability intervals etc.

There are few methods for imprecise classification in the literature. The first
of them was the Naive Credal Classifier (NCC) (Zaffalon, 2002; Corani & Zaf-
falon, 2008). It combines the Naive assumption (all the attributes are inde-
pendent given the class variable) and the Imprecise Dirichlet Model (IDM) to
produce an imprecise classification.

The Credal Decision Tree algorithm (CDT) (Abellán & Moral, 2003), which
is based on Decision Trees (DT) and uses the IDM and general uncertainty
measures on closed and convex sets of probability distributions (also called credal
sets) in the building process, has been adapted for Imprecise Classification in
(Abellán & Masegosa, 2012b). The model is called Imprecise Credal Decision
Tree (ICDT). Basically, ICDT builds the tree in a similar way that CDTs for
precise classification and, in the leaf nodes, it utilizes a dominance criterion in
order to predict the set of non-dominated states associated with that leaf node.
In (Abellán & Masegosa, 2012b; Corani, Abellán, Masegosa, Moral, & Zaffalon,
2014), it is shown that the ICDT method is much more informative method than
NCC.

On the other hand, the Bagging scheme (Breiman, 1996) is an ensemble
method that has been shown to have good performance in precise classification.
Essentially, for an instance, it combines the predictions made by distinct models
built with different training sets in order to give a final prediction about the value
of the class variable of the instance, in such a way that the diversity is increased.
The Bagging method performs better when it is used with weak and unstable
classifiers. Examples about this point can be found in (Abellán & Mantas, 2014;
Abellán & Masegosa, 2009; Abellán & Castellano, 2017; Marqués, Garćıa, &
Sánchez, 2012).

Furthermore, an important issue of DTs is that few variations in the training
set can produce considerable differences in the model, which is known as diversity
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(Tsymbal, Pechenizkiy, & Cunningham, 2005). Thus, the DTs are very suitable
to be applied in Bagging schemes. More specifically, the Bagging method has
been shown to provide good results with CDTs as base classifiers. Examples of
this fact can be found in (Abellán & Mantas, 2014; Abellán & Castellano, 2017;
Abellán & Masegosa, 2010, 2012a).

None of the Imprecise Classification algorithms proposed so far make ensem-
ble of classifiers. The reason may be the following: Remark that the predictions
made by imprecise classifiers consist of a set of states, so that it is not a triv-
ial question to combine the predictions made by imprecise classifiers and no
technique has been proposed so far for this purpose. If the predictions are not
combined in a suitable way, it is really probable that the performance of the en-
semble is not better than the obtained by a single classifier, because an excessive
reduction of the information or the uncertainty can be produced.

Summarizing, the Bagging schemes has been shown to have a good perfor-
mance in precise classification, specially when they are used with CDTs as base
classifiers. In addition, there is no a procedure to combine the predictions made
by several imprecise classifiers and, consequently, there are no ensemble methods
for Imprecise Classification proposed so far. For these reasons, a new Bagging
scheme using CDTs for imprecise classification is proposed in this research. The
combination method that we suggest tries that the new Bagging method is as
more precise as possible, though it implies a higher risk of making erroneous
predictions. When a large set of imprecise informations are combined there is
a risk of loss of information. We will see that this does not happen with our
proposed combination technique.

An exhaustive experimental study is carried out in this work in which we try
to compare the performance of the Bagging of CDTs for imprecise classification
versus the ICDT algorithm. Recall that in (Abellán & Masegosa, 2012b) ICDT
algorithm is shown to be more informative that NCC. In addition, there is no
other ensemble method for Imprecise Classification in the literature. Both meth-
ods are applied to 34 different datasets, which have in common that all of them
have at least 3 states of the class variables, in such a way that this study on
imprecise classification makes more sense. Two known evaluation measures for
imprecise classification are used in order to compare the performance of both al-
gorithms. This experimentation shows that, similarly to what happens in precise
classification, the Bagging of CDTs for Imprecise Classification obtains better
results than the ICDT algorithm.

The rest of this paper is organised as follows: In Section 2, the necessary
previous knowledge is exposed: The Bagging scheme, the probability intervals
from the IDM, the dominance criteria on probability intervals from the IDM and
the adaptation of Credal Decision Trees for Imprecise Classification. The Bagging
scheme with Credal Decision Trees for imprecise classification is explained in
Section 3. In Section 4 the evaluation metrics for imprecise classification sed
in this work are exposed. The experimental study carried out in this work is
detailed in Section 5. Finally, Section 6 is devoted to concluding remarks and
future work.
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2 Background

2.1 The Bagging scheme

Let us suppose that a training set of N instances is disposed. Let us denote
C the class variable and {c1, · · · , ck} its possible states. The Bagging method
(bootstrap aggregating) (Breiman, 1996) builds a set of m classifiers. For each
one of them, it is obtained a bootstrapped replica of the original training set:
N instances are randomly selected with replacement. Then, a model is learned
using this selected bootstrapped replica. In order to build the classifiers, a basic
learning algorithm is used. This method is often a DT, but many other classifi-
cation algorithms can be also used in the Bagging scheme.

When a new instance is wanted to be classified, for each state of the class
variable, it is counted the number of classifiers that predict that class value for
the instance, which is called the number of votes. The state that has the highest
number of votes is the one predicted for the instance.

The Bagging scheme is summarized in Figure 1.

Procedure Bagging(training set of N instances D, learning algorithm C,
number of classifiers m)

1. From i = 1 to m

2. Select with replacement a sample of N
instances, Di, from D.
3. Build a classifier Ci using the algorithm
C and Di as training set

For classifying a new instance x:

1. From j = 1 to k

2. Let vj be the number of classifiers that predict
the class value cj for x (the number of votes)

3. Let consider l = argmaxj=1,··· ,k vj
4. Return cl

Fig. 1. Pseudo-code of Bagging scheme

The idea of the Bagging method is to obtain diversity by building several
models with different training sets. This diversity is reached specially when the
base classifier is weak and unstable, i.e, when it is sensitive to few variations in
the training set. This fact happens with DTs (Tsymbal et al., 2005). For this
reason, models based on DTs are specially suitable to be applied in the Bagging
scheme.
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2.2 Probability intervals from IDM

Let D be a dataset with N instances. Let us suppose that X is an attribute and
{x1, · · · , xt} are its possible values.

The Imprecise Dirichlet Model (IDM) (Walley, 1996) is a particular case of
the Probability intervals theory (De Campos, Huete, & Moral, 1994). The IDM
estimates that the probability that the variable X takes its possible value xi,
1 ≤ i ≤ t is within the interval:

Ii =

{[

n(xi)

N + s
,
n(xi) + s

N + s

]}

, ∀i = 1, · · · , t (1)

where n(xi) is the number of instances in the dataset that verify X = xi, ∀i =
1, 2, · · · , t and s > 0 a given hyperparameter of the model.

In (Abellán, 2006) it is proved that this set of probability intervals is reachable
and that the IDM intervals can be also expressed by a belief function. This set
of intervals gives rise to the following credal set (Abellán, 2006):

KD(X) =

{

p |

t
∑

i=1

p(xi) = 1,
n(xi)

N + s
≤ p(xi) ≤

n(xi) + s

N + s
∀i = 1, · · · , t

}

(2)

An important question is the selection of the s hyperparameter. It is easily
observable that the intervals are wider if the s value is higher. The s hyperpa-
rameter determines how quickly the lower and upper probabilities converge as
there is more data available. In (Walley, 1996) two values are proposed: s = 1
and s = 2, and it is recommended the value s = 1.

2.3 Dominance criteria on probability intervals from the IDM:

In Imprecise Classification, a dominance criterion is employed in order to de-
terminate which class values are not defeated under probability terms by the
rest. For this purpose, when probability intervals are used, as in this work, the
bounds of the intervals can be utilized.

Let us suppose that ci and cj are two possible values of the class variable C.
With the available information, the two following dominance criteria are very
utilized:

1. Let suppose that [li, ui] and [lj , uj ] are, respectively, the probability intervals
about the class values ci and cj . It is said that there is stochastic dominance
of cj on ci iff lj ≥ ui.

2. If we know that the probability of each state of C can be expressed via a
non-empty credal set P. We say that there is credal dominance of cj on ci
iff p(C = cj) ≥ p(C = ci) for each probability distribution p that belongs to
P.
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It is known that the credal dominance is more significant criterion that
stochastic dominance (Zaffalon, 2002). Nevertheless, it is often more compli-
cated to check it than stochastic dominance. According to the results proved in
(Abellán, 2012), under the IDM, both dominance criteria are equivalent. Thus,
with the IDM, if it is verified that there is stochastic dominance of one state on
another, then it is known that the credal dominance of the first state on the sec-
ond one is also satisfied. Therefore, with IDM, it is only required to consider the
extreme values of the intervals in order to check the cases of credal dominance
among the possible values of the class variable.

2.4 Credal Decision Tree for Imprecise Classification

The Credal Decision Tree algorithm, proposed in (Abellán & Moral, 2003), was
adapted for Imprecise Classification in (Abellán & Masegosa, 2012b). It was
called Imprecise Credal Decision Tree (ICDT).

As in classical DTs methods, in ICDT each node is associated with a feature
and each branch corresponds to a possible value of that feature. When there are
no more features to be entered in a node, or when entering a feature in that node
does not give more information of the class variable according to a measure, a
leaf or terminal node is reached. This terminal node indicates the expected value
of the class variable. When a new instance is wanted to be classified, it is followed
a path from the root to a terminal node using its attribute values and the tree
structure. The set of predicted states of the class variable for the instance is the
set of class values associated with that leaf node.

The most important point of the building process of a DT is the criterion
used in order to select the feature to split in each node, which is known as the
split criterion. In ICDT, the split criterion is the same as the one used in CDT 1.
Let D be a partition of the training set in a certain node. Let us suppose that C
is the class variable and {c1, . . . , ck} are its possible values. Let X be a variable
whose possible values are {x1, . . . , xt}. Using the same notation than in Section
2.2, let us denote KD(C) to the credal set associated with the class variable in
the partition D:

KD(C) =







p |

k
∑

j=1

p(cj) = 1,
n(cj)

N + s
≤ p(cj) ≤

n(cj) + s

N + s
∀j = 1, 2, · · · , k







(3)
The split criterion used in ICDT considers the maximum of the Shannon

Entropy (Shannon, 1948) in this credal set:

H∗(KD(C)) = max
{

H(p) | p ∈ KD(C)
}

, (4)

where H is the Shannon entropy (Shannon, 1948), defined as follows:

1 The building process is the same for both algorithms.
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H(p) = −

k
∑

i=1

p(ck) log p(ck) (5)

The maximum of entropy in credal sets is a good uncertainty measure that
verifies a couple of good properties (Klir, 2005).

The algorithm that obtains the probability distribution that maximizes H∗

is detailed in (Mantas & Abellán, 2014).
Thus, the split criterion employed in the ICDT algorithm is the Imprecise

Informatio Gain (IIG) (Abellán & Moral, 2003), defined by the following formula:

IIG(C,X) = H∗(KD(C))−

t
∑

i=1

PD(X = xi)H
∗(KD(C | X = xi)) (6)

being H∗(KD(C | X = xi)) the credal set associated with C in the partition of
D for which X = xi, ∀i = 1, . . . , t and PD(X = xi) the probability distribution
that reaches the maximum of entropy in H∗(KD(X)). It is estimated in the same
way that the distribution that obtains the maximum of entropy in (4).

The main difference between the CDT algorithm and its adaptation for Im-
precise Classification, ICDT, is the criterion used to classify an example once the
instance has reached a leaf node following a path from the root node using the
tree structure. Whereas CDT simply assigns to the instance the most probable
state of the class variable in the corresponding terminal node (the most frequent
in that leaf), ICDT assigns IDM intervals to each possible value of class vari-
able according to that leaf node. Then, it applies a dominance criterion to that
IDM intervals associated with that terminal node in order to select the set of
non-dominated states of the instance.

The process to classify a new instance in ICDT algorithm is summarized in
Figure 2.

As we have said previously, for the concrete case of IDM, stochastic and
credal dominance are equivalent and the first criterion is far easier to check than
the second one. Therefore, in this research we use the stochastic dominance.

3 Bagging of Credal Decision Trees for Imprecise

Classification

In this research it is proposed a Bagging scheme for Imprecise Classification
using the ICDT algorithm as base classifier. We call it Bagging of Imprecise
Credal Decision Trees (Bagging-ICDT).

In order to build the base classifiers, the idea is similar to Bagging scheme
for precise classification. For each one of them a boostraped replica of the orig-
inal training set is selected. Then, using the boostraped sample and our base
classification algorithm, ICDT, an Imprecise Classification model is learned.

The key point of the proposed Bagging scheme for Imprecise Classification
is how to combine the predictions made for each one of the base classifiers.
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Procedure Classify Instance ICDT(Built Tree T , new instance x)

1. Apply x in T to reach a leaf node
2. Consider the probability intervals in this terminal node for x

{[

n′(ci)
N′+s

,
n′(ci)+s

N′+s

]

, i = 1, · · · , k
}

,

being n′(ci) the number of instances which verify that C = ci in the partition
associated with that terminal node and N ′ the size of that partition (Clearly,

N ′ =
∑k

i=1 n
′(ci)).

3. Apply a dominance criterion to the above intervals in order to get a set of
non-dominated states for x: {ci1 , ci2 , · · · , cir}, with r ≤ k.

Fig. 2. Classification of a new instance in ICDT algorithm

Remark that in precise classification this is as simple as taking the majority
vote. However, for Imprecise Classification it is not a trivial question, since in
these cases the base classifiers do not return an unique value of the class variable,
but they predict a set of non-dominated states.

In fact, there are multiple ways to combine the predictions, since one state
might be predicted as dominated by some classifiers and as non dominated by
others. The crucial issue is to determinate, taking into account the number of
classifiers that predict that one state is dominated, the threshold to decide if the
state is dominated or not for the final combination. Actually, this consists of a
trade-off between risk and information. Here, the term risk is used to denote
the probability of not including the real class value between the set of not-
dominated states. The term information indicates how precise is the prediction,
i.e, how many states are predicted as non-dominated. Logically, more information
implies more risk. We consider that our proposal is closer to the risk, because it
consider the states with the minimum level of non-dominance.

If all the states which have been predicted as non-dominated by at least
one classifier are finally predicted as non-dominated, the probability of making
an erroneous prediction is minimum. However, in these situations, the set of
predicted states would be composed by almost all the possible values of the
class variable, so that the predictions are hardly informative and the Bagging
classifier would not be very useful. For this reason, our strategy consists of the
opposite extreme: we want that the Bagging scheme be as more informative as
possible, even thought this implies more risk of erroneous prediction.

Therefore, in our proposed algorithm, when a new instance is wanted to be
classified, for each possible value of the class variable, it is counted the number
of classifiers which predict that state as dominated, which we call the number of
votes against. The states which has the minimum number of votes against are
those which are finally predicted as non-dominated by our Bagging scheme.
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The Bagging-ICDT algorithm is summarized in Figure 3, where C is the class
variable, being {c1, c2, · · · , ck} its set of possible values.

Procedure Bagging-ICDT(training set of N instances D, number of classifiers m)

1. From i = 1 to m

2. Select with replacement a sample of N
instances, Di, from D.
3. Build a classifier Ci using the ICDT
algorithm and Di as training set

For classifying a new instance x

1. From j = 1 to k

2. Let vaj be the number of classifiers that
predict the state cj as dominated

3. Let consider min against = minj=1,··· ,k vaj

4. The final predicted non-dominated set is
{cr | var = min against, 1 ≤ r ≤ k}

Fig. 3. Bagging scheme with ICDT

In summary, with our proposed method, Bagging-ICDT, it is tried to increase
the diversity considering distinct ICDTs built with different training set. To
classify new instances, the predictions made by the base classifiers are combined
in such a way that the Bagging is as more informative as possible.

4 Evaluation metrics for Imprecise Classification

As we have said previously, an evaluation metric for Imprecise Classification
should take into account two issues. The first of them is the accuracy of the
imprecise classifier, i.e, the average number of times in which if the real class
value of one instance is between the set of non-dominated states for that example.
The second point is the precision of the imprecise classifier, which is measured
via the average number of non-dominated states.

The following evaluation metrics only focus on one of the points described
above:

– Determinacy: It measures the proportion of instances classified precisely,
i.e, the proportion of instances for which the classifier returns only one state.

– Single Accuracy: It is the accuracy between the instances for which there
is only one non-dominated state.

– Set Accuracy: It indicates, between the instances for which the classifier
predicts more than one class value, the proportion of them for which the real
value of the class value is one of the non-dominated states.
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– Indeterminacy Size: It is the average number of non-dominated states.

Obviously, none of these metrics is useful in order to evaluate the whole
performance of an imprecise classifier.

The Discounted Accuracy measure (DACC), proposed in (Corani & Zaffalon,
2009), is a metric which tries to provide a global evaluation of an imprecise
classifier. It is defined as follows:

DACC =
1

NTest

NTest
∑

i=1

(correct)i
|Ui|

(7)

where NTest is the cardinality of the test set; Ui is the set of non-dominated
states for the i-th instance; |Ui| its cardinality; (correct)i is equal to 1 if the real
class value belongs to Ui and 0 otherwise.

As we can see, this evaluation measure does not penalize the errors in a strict
sense, since it does not add any value when there is an error. It is an accuracy
metric. DACC does not sum any value for the incorrect predictions and, for the
right ones, the added value is penalized by the number of predicted class values.

Clearly, a higher value of DACC implies a better performance. The highest
value of DACC is equal to 1, and it is reached when all the predictions are correct
and precise, i.e, when for all the instances there is only one non-dominated state
and it coincides with its real class value. If the classifier always returns as non-
dominated states all the possible values class values, the value of DACC is 1

k
. In

our opinion this value should be lower, since in these situations the classifier is
not informative.

A new evaluation measure for Imprecise Classification, MIC, was proposed
in (Abellán & Masegosa, 2012b). That metric supposes that the errors have
different degrees of importance in some situations. For the sake of simplicity, in
this research it is supposed that the importance of the errors is the same for all
of them.

If the prediction for an instance is right, MIC adds a value which depends

on |Ui|
k

. When an instance is incorrectly classified, since it is supposed the same
degree of importance for all the errors in this work, MIC adds a constant value,
dependent on k. More specifically, MIC is defined as follows:

MIC =
1

NTest

(

∑

i:Success

log
|Ui|

k
+

1

k − 1

∑

i:Error

log k

)

(8)

It is obvious that the higher is the value of MIC, the better is the performance.
We can observe that the optimal value of MIC, which is reached when all the
predictions are precise and correct, is equal to − log 1

k
= log k. Moreover, when

it is verified that |Ui| = k, ∀i = 1, · · · , NTest, i.e, when the imprecise classifier
always predicts all possible class values as non-dominated states for an instance,
the value of MIC is equal to 0. It is intuitively more correct, since in these cases
the classifier is not informative.



11

5 Experimentation

In this Section we present the experimental study in which it is shown that the
Bagging of Imprecise Credal Decision Trees (Bagging-ICDT), with our proposed
combination technique, performs clearly better than the Credal Decision Trees
for Imprecise Classification (ICDT). 2 When a lot of imprecise informations are
combined there is a risk of loss of information. 3 We will see that this does not
happen with our proposed combination technique.

5.1 Experimental settings

For this experimentation, we have used the implementation given in Weka soft-
ware (Witten & Frank, 2005) for ICDT. The structures given in Weka for the
Bagging scheme have been also utilized in order to add all the necessary methods
for implementing Bagging-ICDT. For Bagging-ICDT we have used 100 trees. It
is an appropriate number of classifiers for Bagging (Breiman, 1996). The rest of
the parameters used for both algorithms have been those given by the default
in Weka.

ICDT and Bagging-ICDT have been applied to a set of 34 known datasets.
They can be obtained from the UCI Machine Learning repository (Lichman,
2013). These datasets are different in terms of size of the set, number of con-
tinuous and discrete features, number of values per attribute, number of class
values, etc. The datasets have been selected in such a way that the class vari-
able has at least three possible values, as in (Abellán & Masegosa, 2012b). The
reason is that with only two class values or all that states of the class variable
are obtained or just one. Table 1 illustrates the most important characteristics
of each dataset.

Consistently with (Abellán & Masegosa, 2012b), we have preprocessed the
datasets as follows: Missing values have been replaced by mean values for con-
tinuous variables and by modal values for discrete attributes. Then, continuous
variables have been discretized via Fayyad and Irani’s discretization procedure
(Fayyad & Irani, 1993). For each preprocessed dataset a 10 times 10-fold cross-
validation procedure has been repeated.

In order to evaluate the performance of the algorithms considered in this ex-
perimentation, ICDT and Bagging-ICDT, we have considered the two evaluation
metrics for Imprecise Classification employed in (Abellán & Masegosa, 2012b):
MIC and DACC. Both of these measures have been detailed in Section 4.

For statistical comparisons between both algorithms, consistently with the
recommendations given in (Demšar, 2006), the two following tests with a level
of significance of α = 0.05 have been used:

2 We do not use the NCC in this experimentation because, as we have said in the
Introduction Section, in previous works, it has been shown to be a less informative
method than ICDT.

3 If the union of non-dominated states in each classifier were considered, it would be
produced a loss of information which would give rise to poor results, which we have
not included in this work.
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Table 1. dataset description. Column “N” is the number of instances in the datasets, column

“Feat” is the number of features or attribute variables, column “Num” is the number of numerical

variables, column “Nom” is the number of nominal variables, column “k” is the number of cases or

states of the class variable (always a nominal variable) and column “Range” is the range of states

of the nominal variables of each dataset.

dataset N Feat Num Nom k Range
anneal 898 38 6 32 6 2-10
arrhythmia 452 279 206 73 16 2
audiology 226 69 0 69 24 2-6
autos 205 25 15 10 7 2-22
balance-scale 625 4 4 0 3 -
bridges-version1 107 11 3 8 6 2-54
bridges-version2 107 11 0 11 6 2-54
car 1728 6 0 6 4 3-4
cmc 1473 9 2 7 3 2-4
dermatology 366 34 1 33 6 2-4
ecoli 366 7 7 0 7 -
flags 194 30 2 28 8 2-13
hypothyroid 3772 30 7 23 4 2-4
iris 150 4 4 0 3 -
letter 20000 16 16 0 26 -
lymphography 146 18 3 15 4 2-8
mfeat-pixel 2000 240 0 240 10 4-6
nursery 12960 8 0 8 4 2-4
optdigits 5620 64 64 0 10 -
page-blocks 5473 10 10 0 5 -
pendigits 10992 16 16 0 10 -
postop-patient-data 90 9 0 9 3 2-4
primary-tumor 339 17 0 17 21 2-3
segment 2310 19 16 0 7 -
soybean 683 35 0 35 19 2-7
spectrometer 531 101 100 1 48 4
splice 3190 60 0 60 3 4-6
sponge 76 44 0 44 3 2-9
tae 151 5 3 2 3 2
vehicle 946 18 18 0 4 -
vowel 990 11 10 1 11 2
waveform 5000 40 40 0 3 -
wine 178 13 13 0 3 -
zoo 101 16 1 16 7 2



13

– Corrected Paired t-test: This test is used to compare two algorithms
in a single dataset. It consists of a corrected version of the Paired t-test
implemented in Weka. Essentially, this test verifies if one algorithm is better
than the other one on average, across all training and test sets extracted
from a 10 times 10-fold cross-validation procedure on a original dataset.

– Wilcoxon test (Wilcoxon, 1945): We use this test to compare two algo-
rithms in multiple datasets. It ranks the differences betweeen the perfor-
mance of two algorithms for each dataset, without taking into account signs.
Then, it compares the ranks for the positive and negative differences.

5.2 Results and discussion

Tables 2 and 3 show, respectively, the results obtained by each algorithm for
each dataset in DACC and MIC measures. For each dataset, the best result is
marked in bold. Furthermore, for each dataset, it is illustrated which algorithm
is better according to Corrected paired t-test (in case that the differences are
significative).

A summary of the results for both DACC and MIC evaluation metrics can
be seen in Table 4. In concrete, for MIC and DACC, it shows the average value,
the result of Wilcoxon test and the number of datasets where ICDT performs
significantly better than Bagging-ICDT according to Corrected Paired t-test and
vice-versa.

As it can be easily observed, for both DACC and MIC, in almost all datasets
Bagging-ICDT outperforms ICDT. In fact, for DACC, ICDT only performs bet-
ter than Bagging-ICDT in one dataset and both algorithms obtain the same
result is two datasets. In the rest of the datasets the performance is better for
ICDT according to this measure. Similarly, for MIC, Bagging-ICDT obtains a
better result than ICDT for all datasets except four. In three of them ICDT
outperforms Bagging-ICDT and in the other one both algorithms obtain exactly
the same result. As can be seen in Table 4, the average values of DACC and MIC
are much higher for Bagging-ICDT and, according to Wilcoxon test, Bagging-
ICDT outperforms ICDT significantly in both of these metrics. In addition,
according to corrected paired test, the number of datasets where Bagging-ICDT
obtains significantly better results than ICDT is 16 for DACC and 14 for MIC.
Nevertheless, for none of two metrics ICDT performs significantly better than
Bagging-ICDT in any dataset.

Therefore, it can be concluded that Bagging-ICDT performs clearly better
than ICDT, being the differences really considerable.

For a deeper analysis, we show in Table 5 the average results of Determinacy,
Single Accuracy, Set Accuracy and Indeterminacy size obtained by ICDT and
Bagging-ICDT. As in previous tables, the best results are marked in bold.

According to these results, the percentage of instances for which a single class
state is returned is higher for Bagging-ICDT (Determinacy). Between these in-
stances determinantly classified, the accuracy is similar for both algorithms (Sin-
gle Accuracy). Besides, the indeterminacy size is considerably lower for Bagging-
ICDT than for ICDT. It implies that the predictions of Bagging-ICDT are more
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precise than the ones made by ICDT, although with Bagging-ICDT there are
more erroneous predictions, due to the results obtained in Set Accuracy. Hence,
it can be said that Bagging-ICDT classifies the instances in a much more precise
way than ICDT, even though with Bagging-ICDT the error rate is a little bit
higher.

In summary, Bagging-ICDT is a far more precise classifier than ICDT, al-
though the second algorithm is a little bit better with the Set Accuracy measure.
The results obtained in the Imprecise Classification metrics proposed so far in the
literature, DACC and MIC, allow to conclude that the Bagging-ICDT clearly
outperforms ICDT. Therefore, it can be said that our proposed technique of
combining predictions given by several imprecise classifiers, which tries to max-
imize information although it implies more risk, as explained in Section 3, is
quite appropriate in the sense that it improves the results obtained with a single
ICDT.

6 Conclusions and Future Work

It this research it has been proposed the first ensemble method for Imprecise
Classification. We have taken into account that the Bagging scheme has been
shown to provide pretty good results for precise classification, specially when
it is used with Credal Decision Trees (CDT), which are known to be diverse
and unstable classifiers. Hence, the proposed ensemble scheme for Imprecise
Classification consists of a Bagging algorithm using the adaptation of CDTs for
Imprecise Classification (ICDT) as base classifier.

In order to combine the predictions made by multiple classifiers, it has been
proposed a new technique which tries that the Bagging imprecise classifier is as
more precise as possible. Our new technique considers only the states with the
lowest possible level of non-dominance, i.e. it is not too conservative. To reduce
that number of states could produce an unnecessary excessive risk.

An exhaustive experimentation has been carried out in this work, comparing
the ICDT algorithm with our Bagging scheme for ICDTs (Bagging-ICDT) with
the proposed combination technique. This experimental analysis has shown that
the Bagging-ICDT with our proposed combination technique, which tries to
minimize the loss of information assuming risk, clearly outperforms the ICDT
algorithm. As it was expected, even though the error rate is a little bit higher
for Bagging-ICDT than for ICDT, the first algorithm is much more precise than
the second one.

As future work, other ensemble schemes that have been shown to have good
performance in precise classification, can be also used in Imprecise Classifica-
tion, such as Boosting (Freund & Schapire, 1996) or Random Forest (Breiman,
2001). As said previously, in precise classification, the Decision Trees are very
suitable to be applied in ensemble schemes. Thus, the ICDT algorithm would be
very appropriate to be employed as base classifier in other future ensembles for
Imprecise Classification.
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On the other hand, the proposed combination technique has been shown to
have satisfactory behaviour. Nevertheless, it is not clear that this combination
method is optimal. Therefore, for future research, it would be interesting to study
other techniques for combining the predictions made for Imprecise Classifiers.
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Table 2. Complete results obtained for DACC measure

Dataset ICDT Bagging-ICDT

anneal 0.9957 0.9967

arrhythmia 0.6625 0.7150 ◦
audiology 0.7887 0.8232

autos 0.7817 0.8278 ◦
balance-scale 0.6961 0.6977

bridges-version1 0.6375 0.6503

bridges-version2 0.5729 0.6199

car 0.9168 0.9299 ◦
cmc 0.4884 0.4931

dermatology 0.9405 0.9500

ecoli 0.7993 0.8054

flags 0.5554 0.6034 ◦
hypothyroid 0.9935 0.9935

iris 0.9337 0.9390

letter 0.7714 0.8277 ◦
lymphography 0.7275 0.7591

mfeat-pixel 0.7702 0.8837 ◦
nursery 0.9628 0.9654 ◦
optdigits 0.7716 0.8647 ◦

page-blocks 0.9619 0.9663 ◦
pendigits 0.8812 0.9175 ◦

postoperative-patient-data 0.7104 0.7100
primary-tumor 0.3815 0.4239 ◦

segment 0.9406 0.9502 ◦
soybean 0.9178 0.9276

spectrometer 0.4430 0.5127 ◦
splice 0.9270 0.9447 ◦
sponge 0.9293 0.9475

tae 0.4678 0.4678
vehicle 0.6899 0.7025

vowel 0.7635 0.7953 ◦
waveform 0.7371 0.7777 ◦

wine 0.9194 0.9290

zoo 0.9592 0.9612

Average 0.7763 0.8023

◦, • statistically significant improvement or degradation
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Table 3. Complete results obtained for MIC measure

Dataset ICDT Bagging-ICDT

anneal 1.7825 1.7847

arrhythmia 1.7861 1.9316 ◦
audiology 2.5156 2.5936

autos 1.4535 1.5553 ◦
balance-scale 0.6033 0.6006

bridges-version1 1.0247 1.0446

bridges-version2 0.8755 0.9767

car 1.2330 1.2568 ◦
cmc 0.2599 0.2636

dermatology 1.6637 1.6844

ecoli 1.6128 1.6182

flags 1.0322 1.1398

hypothyroid 1.3744 1.3744
iris 0.9911 0.9982

letter 2.5135 2.6771 ◦
lymphography 0.8857 0.9417

mfeat-pixel 1.7194 2.0066 ◦
nursery 1.5350 1.5398 ◦
optdigits 1.7275 1.9579 ◦

page-blocks 1.5332 1.5418 ◦
pendigits 2.0042 2.0925 ◦

postoperative-patient-data 0.6213 0.6207
primary-tumor 1.1476 1.2278

segment 1.8119 1.8331 ◦
soybean 2.7004 2.7203

spectrometer 1.7353 1.9527 ◦
splice 0.9784 1.0077 ◦
sponge 0.9822 1.0121

tae 0.2218 0.2216
vehicle 0.8171 0.8372

vowel 1.7889 1.8594 ◦
waveform 0.6656 0.7325 ◦

wine 0.9658 0.9817

zoo 1.8532 1.8578

Average 1.3652 1.4248

◦, • statistically significant improvement or degradation
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Table 4. Summary of the results obtained for DACC and MIC measures. In the
”Wilcoxon test” rows, if one classifier is significantly better than the other one it is
expresed by ”*”. The row ”Paired t-test” indicates the number of datasets where one
the algorithm in the column is better than the other one under the corrected-paired
t-test

ICDT Bagging-ICDT

DACC: Average 0.7763 0.8023
Wilcoxon t-test *
Paired t-test 0 16

MIC: Average 1.3652 1.4248
Wilcoxon t-test *
Paired t-test 0 14

Table 5. Average results obtained for basic metrics by each algorithm. Best scores are
marked in bold.

Algorithm Determinacy Single Accuracy Set Accuracy Indeterminacy size

ICDT 0.9477 0.8023 0.8877 5.2290

Bagging-ICDT 0.9965 0.8037 0.7792 2.7013


