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Abstract 
 

Object detection, segmentation and classification are three common tasks in medical image 

analysis. Multi-task deep learning (MTL) tackles these three tasks jointly, which provides several 

advantages—saving computing time and resources and improving robustness against overfitting. 

However, existing multi-task deep models start with each task as an individual task and integrate 

parallelly conducted tasks at the end of the architecture with one cost function. Such architecture 

fails to take advantage of the combined power of the features from each individual task at an early 

stage of the training. In this research, we propose a new architecture, FT-MTL-Net, an MTL 

enabled by feature transferring. Traditional transfer learning deals with the same or similar task 

from different data sources (a.k.a. domain). The underlying assumption is that the knowledge 

gained from source domains may help the learning task on the target domain. Our proposed FT-

MTL-Net utilizes the different tasks from the same domain. Considering features from the tasks 

are different views of the domain, the combined feature maps can be well exploited using 

knowledge from multiple views to enhance the generalizability. To evaluate the validity of the 

proposed approach, FT-MTL-Net is compared with models from literature including 8 

classification models, 4 detection models and 3 segmentation models using a public full field digital 

mammogram dataset for breast cancer diagnosis. Experimental results show that the proposed FT-

MTL-Net outperforms the competing models in classification and detection and has comparable 

results in segmentation. 

 

Keywords: multi-task deep learning, object detection, segmentation, classification, medical 
imaging analysis. 

 

  

1. Introduction  
 

During the last decade, precision medicine, an approach that considers individual variability in 

diagnosis and treatment, has emerged as a novel paradigm for healthcare. One cornerstone for 

precision medicine is medical imaging. As tremendous resources and manpower have been directed 

towards research in medical imaging, this domain of study can be broadly divided into three 

categories: object detection, image segmentation, and imaging-based classification. The aim of 



object detection is to derive an envelope encircling the object of interest or the center points to 

locate the objects of interest. Segmentation generates a probability map that quantifies the 

likelihood of each pixel/voxel being within the region of interest (e.g., tumor). Imaging-based 

classification primarily identifies the object of interest to be malignant or benign. Most recently, 

deep learning (Lecun, Bengio, & Hinton, 2015) has gained great success in performing all three 

tasks (Affonso Carlos, Renato, & Marques, 2015; He, Zhang, Ren, & Sun, 2016; Khatami et al., 

2018; Szegedy et al., 2015).  

Deep learning owes its success largely to the fact that its models are capable of learning and 

reproducing an extensive range of parameters from the layers. These parameters are utilized to 

extract features from images to achieve good performance with respect to the tasks (Litjens et al., 

2017). As one of the first deep learning techniques, convolutional neural networks (CNN) 

(Greenspan, Ginneken, & Summers, 2016) have been extensively investigated. For object detection, 

CNN-based detectors are trained to find “bounding boxes” on the desired object(s). Example 

applications are colonic polyps in CT images (Roth et al., 2016), cerebral microbleeds in MRI scans 

(Dou et al., 2016), and breast and lung cancer in Ultrasound images (Lee & Chen, 2015). For 

segmentation, successful implementations of CNN have been reported in segmenting brain tumors 

(Havaei et al., 2017; W. Zhang et al., 2015; Zhao et al., 2018), epithelial tissue in prostatectomy 

(Bulten, Litjens, Hulsbergen-van de Kaa, & van der Laak, 2018), and joint craniomaxillofacial bone 

and landmark digitization (J. Zhang et al., 2018). For classification, CNN often takes extracted 

region of interest (ROI) as the input and the outputs are different class labels on the ROIs. The first 

application is traced back to 1996 when a 4-layer CNN was employed to classify the ROIs into 

biopsy-proven masses and normal tissues from mammograms images (Sahiner et al., 1996). Since 

then different CNNs have been introduced for various medical classification applications including 

breast lesions (Araujo et al., 2017; Huynh, Li, & Giger, 2016), lung nodules (Shen, Han, Aberle, 

Bui, & Hsu, 2019), skin lesions (Yap, Yolland, & Tschandl, 2018), and pulmonary peri-fissural 

nodules (Ciompi et al., 2015), just to name a few. Though commendable classification results have 

been reported, they are limited only to scenarios where manually labeled tumors (ROIs) are 

provided.  

The research reviewed above focuses on each individual task, namely, detection, segmentation, 

or classification. Recognizing the inter-dependencies of these tasks, researchers have started to 

develop pipeline system integrating these tasks where automatic detection and segmentation are 

often the first steps before classification. For instance, in (Al-Masni et al., 2017), a regional 

convolutional neural network (R-CNN) is proposed for mass detection, followed by a fully 

connected CNN-based classifier for “benign versus malignant” prediction. In (Dhungel, Carneiro, 



& Bradley, 2017a), a 3-step pipeline for mass detection, segmentation and classification is 

proposed. Specifically, raw images are fed into a CNN model with the detected candidates being 

refined through a random forest classifier on hand-crafted features. The refined candidate boxes 

are then segmented through a Conditional Random Fields (CRF) model (Lafferty, John, Andrew 

McCallum, 2001) followed by an active contour model (Anne Jorstad, 2014). A mixture model 

combining CNN model and random forest is trained with bounding boxes extracted from the 

detection step. The classification results are further tuned through hand-crafted features extracted 

from both bounding boxes and segmentation outputs from detection. ‘User intervention’ is 

introduced where the false positive detections are manually checked and excluded, with the aim of 

getting an accurate training dataset for the following segmentation and classification tasks. In (Al-

antari, Al-masni, Choi, Han, & Kim, 2018), a fully automatic system is designed for detection, 

segmentation and classification - all deploying deep learning models. You-Only-Look-Once 

(YOLO) (Redmon, Divvala, Girshick, & Farhadi, 2016) is implemented for mass detection, 

followed by a full resolution convolutional network (FrCN) for segmentation, and finally a 

traditional CNN for classification.  

Pipeline-based approaches tackle each task one at a time and connect the tasks as a system. 

Though these approaches perform better in terms of automation or semi-automation and achieve 

satisfying results on diagnosis, the serial-type pipeline systems come with a set of disadvantages. 

First, the design and implementation of a deep learning model for each individual task is 

complicated and time consuming. Large amounts of efforts and computing resources are needed on 

model design, training, testing and tuning. Second, the relatively limited medical imaging dataset 

for training could potentially lead to overfitting (Litjens et al., 2017). To address these issues, multi-

task learning (MTL) (Caruana, 1997) emerged and has shown great promises in natural language 

processing (Collobert & Weston, 2008), speech recognition (Deng, Hinton, & Kingsbury., 2013), 

and computer vision (Girshick, 2015; He, Gkioxari, Dollar, & Girshick, 2017). One advantage of 

MTL is it saves computational resources by sharing convolutional layers (features maps) amongst 

separate tasks. MTL also may reduce the risk of overfitting through learning a more generalized 

feature map for each task (Baxter, 1997; Ruder, 2017). In addition, MTL improves learning 

efficiency and prediction accuracy for the task-specific models (Caruana, 1997).   

Current MTL deep model research is dominated by the direct parameters sharing approach 

(Ruder, 2017). The models employ “1-m-1” structure. The first “1” is a main shared deep CNN 

architecture (a.k.a. backbone). The “m” refers to multiple separate subnetworks (a.k.a. head 

architecture) for different tasks (He et al., 2017). These “m” head architectures share the feature 

maps from the backbone and make predictions individually. The second “1” is a cost function. 



During the training, the parameters from the backbone and the heads are updated simultaneously 

based on this single cost function in the form of a linear combination of each individual task’s cost. 

Following this “1-m-1” structure, several methods have been proposed for natural image analysis 

(Redmon et al., 2016; Ren et al., 2017). The success of MTL on natural images is naturally extended 

to the medical imaging applications. For instance, in (Akselrod-ballin et al., 2016), Faster R-CNN 

is introduced for detection and classification of mass regions simultaneously. In this architecture, 

a single ResNet model (He et al., 2016) is implemented to provide mass candidates and feature 

maps which are shared by the tasks of localization and classification. In (Samala, Chan, Hadjiiski, 

Helvie, & Cha, 2018), the researchers take mass classification from digital mammograms and 

digitalized screen-film mammograms as two separate tasks and address these two tasks by a single 

framework based on the Visual Geometry Group (VGG) model (Noh, Hong, & Han, 2015). 

Another study (Liu, Zhang, Adeli, & Shen, 2018) focuses on neuroimaging for Alzheimer’s disease 

to diagnose classification and predict clinical scores . In (Feng, Nie, Wang, & Shen, 2018), a multi-

task residual fully convolutional network (FCN) is proposed to segment organs (e.g. bladder, 

prostate and rectum) and estimate the intensities. Here we contend, while “1-m-1” approaches aim 

to handle multiple tasks from one model, the backbone needs to be carefully designed to include 

most if not all the features, which must be shared. Moreover, “1-m-1” models fail to consider the 

potential contributions from the head-features to the tasks, individually and jointly. As medical 

applications have unique challenges of potential overfitting due to limited training dataset, sharing 

head-features may help address this issue.  

Sharing head-features is an implementation of transfer learning concept. When first proposed, 

transfer learning was interested in the problems from different data sources. Here the data source 

is known as the domain. Transfer learning integrates knowledge gained from source domains with 

the data in target domains to help overcome data shortages in the target domain. The existing 

transfer learning methods fall into three major categories: instance transfer, parameter transfer, and 

feature transfer. (Pan & Yang, 2010; Yoon & Li, 2019). Instance transfer reuses data from the 

source domains to augment the data in the target domains. Although it is intuitive, instance transfer 

may be questioned for its validity when source and target domains differ greatly. Parameter transfer 

assumes that closely related tasks should have similar parameters in their respective models and 

encourages source and target domains to share some model parameters. Yet, it is challenging to 

appropriately utilize parameters from source domains and tune hyperparameters for the target 

domain. Feature transfer aims to identify a joint feature map shared by the source and target 

domains. Because multiple sources and target domains have shared knowledge and representations, 

features transferred from the source domains may enhance the generalizability of the model with 



reduced risk of overfitting. However, both parameter and feature transfer face the major obstacle 

of negative transfer (Pan & Yang, 2010; Yoon & Li, 2019). That is, when domain discrepancy 

exists, the transferred knowledge may damage instead of helping the predictive power of the 

models. Fortunately, this research is interested in multiple tasks from the same domain. Considering 

the feature map from each task is one view of the domain, the domain discrepancy from the cross-

domain transferring is not of concern, so the performance of an individual task shall be improved 

by cross-view feature transferring. Therefore, we propose FT-MTL-Net, an MTL with cross-view 

feature transferring. It is novel especially for medical application. This is because object detection, 

segmentation, and classification are three essential and inter-related tasks in medical imaging 

analysis. Represented joint feature maps from the cross-view feature transfer will take advantage 

of complementary power of the features from different tasks without having domain discrepancy 

issue. As a result, the generalizability of target task is enhanced on the medical dataset even with 

limited samples.  

As the initial step to validate the idea of FT-MTL-Net, we decide to explore the feature 

transferring from the segmentation task to the classification task. This is because 1) the goal of 

most medical imaging applications is to accurately diagnose/stage the disease - a classification 

problem; 2) Segmentation and detection are both closely tied to classification, but the features used 

in segmentation, detection, and classification differ. Specifically, classification and detection 

require features of low resolution for the abstracted representation (Szegedy et al., 2015; Wu, 

Zhong, & Liu, 2017), while segmentation needs high resolution features for the pixel/voxel wised 

prediction (Badrinarayanan, Kendall, & Cipolla, 2017; Shelhamer, Long, & Darrell, 2017). 

Moreover, given that the segmentation task has already highlighted the candidate areas through the 

output masks, they can be taken as prior knowledge to guide the feature generation procedure 

focusing more on highlighted regions to efficiently obtain features representative of the candidate 

areas. Motivated by these two aspects, our proposed FT-MTL-Net is designed to transfer head 

features from candidate regions (previously derived from segmentation tasks) to the classification 

task. Three contributions come out of this novel design. First, to our best knowledge, it is the first 

fully automatic system for detection, segmentation and classification of tumors in medical imaging 

which can be trained end-to-end. Second, it enables feature transfer from the segmentation to the 

classification task. The features from high resolution (transferred from segmentation) and low 

resolution (existing features) are adopted to help improve the classification accuracy. Third, the 

features transferred are re-weighted based on the prior knowledge from the segmentation 

probability map. As a result, information from irrelevant regions is excluded, and the feature map 

is representative of the tumor regions only. Such design requires less parameters (in this study, 768 



parameters) compared to ~2M parameters from Mask-RCNN (He et al., 2017) and thus is 

computationally efficient.  

We evaluate the proposed FT-MTL-Net on INbreast (Moreira et al., 2012), a public full filed 

digital mammogram (FFDM) dataset. The performance is measured based on five-fold cross 

validation. For the classification task, this proposed method is compared with 8 methods (4 manual 

and 4 automated) using the performance metric area under ROC curve (AUC). Experimental results 

indicate FT-MTL-Net outperforms all eight competing methods with an AUC of 0.92 (± 0.02). For 

detection task, it outperforms four competing methods with a true positive rate of 0.91 (± 0.05) at 

an average of 3.67 false positives per image. For the segmentation task, it is compared with 3 

existing methods and achieves a comparable result of average dice index of 0.76 ± 0.03.  

The remainder of the paper is presented as follows. Details about our proposed FT-MTL-Net 

are presented Section 2. The dataset and processing procedures are discussed in Section 3 followed 

by the comparison experiments on a public dataset in Section 4. Section 5 draws conclusions with 

future directions.  

  

2. Proposed FT-MTL-Net 

The architecture of our proposed FT-MTL-Net is shown in Figure 1. The first part of FT-MTL-

Net is the backbone architecture. Similar to Mask-RCNN, the backbone consists of shared 

convolution layers (Conv layer) for feature map generation and a region proposal network (RPN) 

(Ren et al., 2017) for candidate region detection. Raw images are fed into the shared convolution 

layers to generate feature representations for all subsequent tasks (e.g., detection, segmentation and 

classification). RPN uses bounding boxes with pre-defined sizes to search entire raw images and 

outputs a set of rectangular candidate regions. Each candidate region is treated as an ROI candidate 

and has a corresponding area within the feature map to describe it. Feature maps for ROI candidates 

are resized to be the same through a bilinear interpolation (ROI-align (He et al., 2017)) in order to 

be fed into the head structures. Following the backbone, three head architectures are proposed to 

focus on these ROI candidates and make ROI-oriented predictions. Specifically, the detection head 

is to refine the ROI candidates for an accurate bounding box. The segmentation head generates 

masks for each ROI candidate. The classification head predicts whether the ROI candidates are 

benign or malignant.  



 

Figure 1 Architecture of proposed FT-MTL-Net 

2.1 Backbone Architecture   

2.1.1. Shared Convolution layers for Feature Generation 

The first part of the backbone is sharing convolution layers to render feature maps. Note we 

use 2D images (pixel) in the following discussion for simplicity, and the same methodology applies 

to 3D images (voxel). Given the gray scale input image 𝐼 ∈ ℝ𝑊×𝐻×1, a feature map 𝜃0 = 𝐵(𝐼) is 

generated by mapping 𝐵(·) conducted by the shared convolution layers. In this research, ResNet 

(He, Zhang, Ren, & Sun, 2015) is adopted to serve this purpose. ResNet is a well-known deep CNN 

architecture with the novel design of ‘short cut’ connection in the building block. Compared to 

traditional deep-CNNs, this design helps improve the performance in avoiding the problem of 

gradient vanishing (Drozdzal, Vorontsov, Chartrand, Kadoury, & Pal, 2017; He et al., 2016). Since 

inception, ResNet has been implemented in various computer vision tasks including medical 

applications (Fakhry, Zeng, & Ji, 2016; Gao et al., 2018). For the consideration of balance between 

computation efficiency and accuracy with the limited computation resources, we use ResNet-50. 

The last fully connected layer originally designed for classification is removed. Note that ResNet 

has 4 max-pooling layers. Let the original input image be 𝑊 × 𝐻 × 1 (width × height × channel; 

the following notations of feature map/image size follow this same format, if the channel number 

equals to 1, it will be omitted), the output of ResNet-50 is a feature map of 𝑤 × ℎ × 1024 (𝑤 = 

𝑊/16 and ℎ = 𝐻/16). In this study, the image is 512 × 512. As a result, the feature map 𝜃0 is 

32 × 32 × 1024.   

2.1.2. Region Proposal Network for ROI Proposal Detection 
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Taking feature map 𝜃0 from ResNet-50 and raw image I as inputs, RPN (Ren et al., 2017) 

predicts object bounds and objectness of scores at each position. The objectness score is a 

probability measure of an object within this specific patch. The outputs are a set of indicators for 

rectangular candidates (a.k.a. ROI proposals), denoted as Φ = {𝛷1 𝛷2 …  𝛷𝑛}. Since the targeting 

object in the raw image can be at any location with arbitrary sizes, searching the whole raw images 

for regions of all possible sizes and locations is computationally prohibitive. In RPN, the candidates 

in P are searched on the feature map using a sliding window. A sliding window runs spatially on 

the feature map at a pre-defined step size s. For each pixel in the center, ROI candidates with pre-

defined sizes are generated and mapped back to raw images. For candidate i, let  𝛷𝑖 =

(𝑎𝑖𝑤  𝑎𝑖ℎ  𝑎𝑖𝑥 𝑎𝑖𝑦), where 𝑎𝑖𝑤 denotes the width, 𝑎𝑖ℎ  denotes the height, and (𝑎𝑖𝑥  𝑎𝑖𝑦) denotes the 

center’s coordinate. If 𝛷𝑖 has an overlap with the ground truth mask that is greater than a pre-

defined threshold, it is taken as a positive ROI candidate. Otherwise, it is negative. Each 𝛷𝑖 is 

represented by a 1-dimension array of features, which is the mean value of each channel on the 

feature map (𝜃0). These features are used to predict the objectness for each 𝛷𝑖. After being trained, 

the RPN will output a set Φ containing ROI candidates with higher objectness scores than a 

predefined threshold (e.g., 0.5).  

  

Figure 2 Illustration for the proposing bounding boxes resized to same size through ROI Align 

For 𝛷𝑖 ∈ Φ, the associated bounding boxes on the feature map vary in sizes. Therefore, the 

candidates are resized to the same size (7×7 in this study) through ROI align layer (He et al., 2017), 

a linear interpolation procedure. Next, the ROI candidates within Φ  are represented with its 

associated feature map 𝜃1  of the same size (as shown in Figure 2), and shared by the head 

architectures (see section 2.2).  

2.2 Multi-Task Head Architecture  
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2.2.1. Head Architecture for Detection Task 

The detection subnetwork follows the same design in (Ren et al., 2017) where a mean pooling 

layer is implemented to reduce the feature map resolution to one dimension. It is fully connected 

to the output layer of bounding box regression. The output value is associated with the 

corresponding ROI candidate 𝛷𝑖 = (𝑎𝑖𝑤  𝑎𝑖ℎ  𝑎𝑖𝑥 𝑎𝑖𝑦)  before the aforementioned resizing 

procedure. Let 𝑇 = (𝑎𝑡𝑤  𝑎𝑡ℎ 𝑎𝑡𝑥  𝑎𝑡𝑦) be the target candidate, in which (𝑎𝑡𝑥  𝑎𝑡𝑦) denotes the 

predicted center coordinate and 𝑎𝑡𝑤 and 𝑎𝑡ℎ   denote the predicted width and height, respectively. 

Assume the targeting outputs for ground truth bounding box is Υ = (𝑎𝜐𝑤  𝑎𝜐ℎ  𝑎𝜐𝑥  𝑎𝜐𝑦), where 

(𝑎𝜐𝑥  𝑎𝜐𝑦) denotes the ground truth bounding box’s center coordinate, 𝑎𝜐𝑤  and 𝑎𝜐ℎ  denote the 

width and height, respectively. The cost function for regression task is as follows:    

 𝐿𝑏𝑜𝑥(𝑇 𝛶) = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓(𝑇 𝛷𝑖) − 𝑓(𝛶 𝛷𝑖)) (1) 

where, 

𝑆𝑚𝑜𝑜𝑡ℎL1(𝑥) = {
0.5𝑥2            𝑖𝑓 |𝑥| < 1

|𝑥| − 0.5        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

        (2) 

 

𝑓(𝑇 Φ𝑖) = (log(
𝑎𝑡𝑤

𝑎𝑖𝑤
)  log (

𝑎𝑡ℎ

𝑎𝑖ℎ
)  

𝑎𝑡𝑥 − 𝑎𝑖𝑥

𝑎𝑖𝑤
 
𝑎𝑡𝑦 − 𝑎𝑖𝑥

𝑎𝑖ℎ
) 

(3) 

 

𝑓(𝛶 Φ𝑖) = (log (
𝑎𝑣𝑤

𝑎𝑖𝑤
)  log (

𝑎𝑣ℎ

𝑎𝑖ℎ
)  

𝑎𝑣𝑥 − 𝑎𝑖𝑥

𝑎𝑖𝑤
 
𝑎𝑣𝑦 − 𝑎𝑖𝑥

𝑎𝑖ℎ
) 

(4) 

The detection head will refine the sizes and locations of ROI candidates and output the final 

predictions on the bounding boxes.   

2.2.2. Head Architecture for Segmentation Task 

In the segmentation subnetwork, two deconvolutional layers are introduced to increase the 

resolution of the feature maps for segmentation and also serve the purpose of deriving task-specific 

feature maps (𝜃3 and 𝜃4). Following the deconvolutional layers, one 1 × 1 convolutional layer is 

added for the final output. Per-pixel sigmoid function is applied to this final output to obtain two 

probability maps (𝑀𝑏  and 𝑀𝑚 ). Since the candidate 𝛷𝑖  from RPN has 7×7, the resolution is 



increased by 2x2 (two deconvolution layers) resulting in 𝑀𝑏 and 𝑀𝑚 sized 𝛽 ×  𝛾 (𝛽 = 𝛾 = 28). 

𝑀𝑏 and 𝑀𝑚 describe the probabilities that each pixel is within the benign and malignant tumors 

independently. 

The last feature map (𝜃4) before final segmentation output provides high resolution information 

for each pixel along the 256 channels. The features (𝜃4) are different from those from the detection 

task (𝜃2) and classification task (𝜃5  discussed in Section 2.2.3). Both 𝜃2 and 𝜃5 are abstracted 

features of lower resolution (He et al., 2017; Ronneberger, Fischer, & Brox, 2015; Shelhamer et 

al., 2017). We hypothesize that the high-resolution features from the segmentation shall help 

improve the classification (discussed in Section 2.2.3) greatly, thus they are transferred. Transfering 

high resolution feature maps to low-resolution feature maps requires some operations. One example 

is max pooling or average pooling (He et al., 2016; Szegedy et al., 2015) where the maximum or 

the mean values of the features are derived and transferred. Yet, such an approach treats all features 

inside and outside ROIs equally. Knowing medical imaging analysis mostly focuses on tumorous 

areas (such as in this study), we propose a prior knowledge guided feature generation method: 

feature values representing different regions are re-weighted based on the probability maps. A 

weight map 𝑀𝑤 of the size 𝛽 ×  𝛾 is generated based on the outputs of segmentation masks 𝑀𝑏 and 

𝑀𝑚: 

 𝑀𝑤𝑖 𝑗
= max (𝑀𝑏𝑖 𝑗

 𝑀𝑚𝑖 𝑗
)   for 𝑖 ∈  1 𝛽  𝑗 ∈  1 𝛾  (5) 

where 𝑀𝑤𝑖 𝑗
 is combined with the feature map 𝜃4  (of size 𝛽  ×  𝛾  ×  𝛿 ) to generate a prior 

knowledge guided feature map 𝜃4
 = 𝑃(𝜃4 𝑀𝑤) of the same size: 

 𝜃4𝑖 𝑗 𝑘

 = 𝜃4𝑖 𝑗 𝑘
× 𝑀𝑤𝑖 𝑗

  for 𝑖 ∈  1 𝛽  𝑗 ∈  1 𝛾  𝑘 ∈  1 𝛿  (6) 

In order to generate compressed features that can be directly used by the classification task, the 

resolution of the feature map  𝜃4
  is reduced from 28 × 28 to 1 × 1 through a max pooling layer and 

a global mean pooling layer (similar procedure as in (Noh et al., 2015)).    

For the cost function of segmentation, assume the output prediction map is 𝑠𝛽 × 𝛾 of resolution 

𝛽 ×  𝛾and the cost function for segmentation is average cross entropy over all the pixels within the 

s and ground truth mask 𝑚𝑀 × 𝑁, which can be calculated as follows:  

 

𝐿𝑚𝑎𝑠𝑘(𝑠 𝑚) = (
1

𝛽 × 𝛾
)∑∑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠𝑖𝑗  𝑚𝑖𝑗)

𝛾

𝑗=1

𝛽

𝑖=1

 

(7) 



in which  

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦  𝑦) = −𝑦 log(𝑦 ) − (1 − 𝑦)log (1 − 𝑦 ) (8) 

The segmentation head outputs two individual probability maps measuring likelihood of each 

pixel being within benign and malignant tumor respectively. Following the same setting as Mask-

RCNN (He et al., 2017) to solve the overlapping issue of different types tumors, a final mask is 

selected based on the output of the classification task. 

2.2.3. Head Architecture for Classification Task 

In the classification subnetwork, the feature map 𝜃6 for the final classification layer is of size 

1 × 1  × 1280. Among these 1280 feature channels, 1024 are obtained from a shared feature map 

𝜃1 provided by the backbone through a global mean pooling. The remaining 256 channels come 

from 𝜃4
′ , which are used as an addition of pixel wised information. The feature channels from two 

sources are combined together and fully connected to the final classification layer with 3 outputs 

(background, benign and malignant), and a corresponding probability array P = (𝑝0 𝑝1 𝑝2) is 

computed by a softmax activation function (Krizhevsky, Sutskever, & Hinton, 2012) over the 3 

outputs. The cost function for the classification task is the log loss function for its corresponding 

class u: 

 𝐿𝑐𝑙𝑠(𝑝 𝑢) = −𝑙𝑜𝑔(𝑝𝑢) (9) 

The classification head outputs final predictions for the detected ROIs to be: background, 

benign or malignant. The ROIs with high probabilities of being benign or malignant tumors are 

investigated for final prediction using “malignant-veto” logic described in Section 2.3.  

2.3 Model Training and Inference  

Table 1 Detailed steps of the training procedure 



Step 1. Initialize the ResNet-50 with the weights trained using natural images from the dataset of 

ImageNet, which is made available online by the developers of ResNet (He et al., 2016).  

Step 2. Initialize the weights of all other layers through a normal distribution with mean = 0 and standard 

deviation = 0.05.  

Step 3. Fine-tuned end-to-end for the region candidate task using cost function 𝐿𝑝𝑟𝑜𝑝 . 

Step 4. Keep the weights within shared layers and RPN layer fixed, tune the weights within subnetworks 

alone with cost function 𝐿𝑢𝑛𝑖.   

Step 5. Keep tuning the weights within shared layers and subnetworks together with cost function 𝐿𝑢𝑛𝑖.  

In the training procedure, all three tasks are trained simultaneously with one combined loss 

function: 

 𝐿𝑢𝑛𝑖 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑏𝑜𝑥 + 𝜆3𝐿𝑚𝑎𝑠𝑘  (10) 

where 𝜆1 𝜆2, and 𝜆3 are weights for each individual cost function. In this study, 𝜆1 𝜆2, and 𝜆3 are 

all set to be 1. A 5-step training procedure (see Table 2) following the same logic in (Ren et al., 

2017) is adopted. Once the training process is complete, the model is ready to make inferences for 

testing images.  

There are two major differences between the inference workflow and the training procedure. 

The first difference is sequential execution vs. parallel training. That is, in inference, it follows 

(Step 1) ROI candidates are obtained from the backbone; (Step 2) the detection task is conducted 

to provide accurate bounding box predictions; (Step 3) the segmentation task is triggered to 

generate mask predictions and features based on the bounding boxes; (Step 4) features from 

segmentation are transferred and joined for classification. The second difference is an added 

“malignant-veto” logic motivated by the medical practices in the inference workflow. As expected, 

each medical case often may have multiple bounding boxes and thus ROIs to be investigated. We 

define the “malignant-veto” logic as: if one bounding box is predicted as malignant, this mass will 

be predicted as malignant with a score equaling the maximum score among all these boxes 

indicating malignancy; if none of the bounding boxes indicates malignancy, it gets a malignancy 

score  1 − 𝑆𝑏𝑚𝑎𝑥 , where 𝑆𝑏𝑚𝑎𝑥 is the maximum score among all the bounding boxes assigned 

with a benign score. 

3. Experiment and Results 
 

3.1 Dataset  



The dataset used in this study is obtained from INbreast, an online accessible full-field digital 

mammographic (FFDM) database (Moreira et al., 2012). INbreast was established by the 

researchers from the Breast Center in CHJKS, Porto, under the permission of both the Hospital’s 

Ethics Committee and the National Committee of Data Protection. The FFDM images were 

acquired from the MammoNovation Siemens system with pixel size of 70 mm (microns), and 14-

bit contrast resolution. The resolution of each image is 2560 × 3328. For each subject, both CC 

and MLO view were available. For each image, the annotations of region of interests (ROIs) 

(ground truth masks) were made by a specialist in the field and were validated by a second specialist. 

The ROI masks were also made available through the attached xml file.  

In this research, 108 subjects with labeled masses are selected. Each mass is assigned with a 

Breast Imaging Reporting and Data System (BI-RADS) (Eberl, Fox, Edge, Carter, & Mahoney, 

2015) score ranging from 2 to 6. Following the same definition in (Dhungel et al., 2017a), the 

masses with BI-RADS score=2, 3 are treated as benign and the remaining cases (BI-RADS=4, 5, 

6) are labeled as malignant. There are 37 benign subjects and 71 malignant subjects. 

3.2 Data pre-processing  

For cases with multiple masses in one image, each individual mass and its corresponding 

bounding mask is extracted and saved as a new data sample. As a result, the total number of cases 

in the dataset increases to 115 (41 benign vs. 74 malignant). For each mass, a bounding box is 

computed as the minimal rectangle in the image that contains the whole mass. In the second step, 

for each breast image, a rectangle that contains the entire breast is obtained, and the region outside 

of this bounding box is excluded. This step is to exclude background region in each image and 

reduce search space and computational burden during training process.  

Five-fold cross validation is adopted and data augmentation is implemented to enrich the 

training dataset. Specifically, within each fold, the training dataset (80%) is augmented by 

randomly selecting 2 to 5 options from the operations including rotating, flipping, zooming in/out, 

cropping, contrasting enhancement and Gaussian smoothing. The image, mask and bounding box 

will go through the same procedure. Considering the balance of benign cases vs. malignant case, 

each benign sample is augmented 150 times, and each malignant sample is augmented 75 times. 

The final training dataset has 8,700 images (4,440 benign vs 4,260 malignant).  

3.3 Experimental Setup 

The experiments are conducted on a windows desktop with 32G RAM and an Intel 16-core 



CPU. The model is trained using one single NVIDIA Titan XP GPU with 12G memory. Both the 

data processing procedure and the architecture are developed with Python and deep learning 

libraries (e.g., Keras and tensorflow). The whole architecture is built upon the MASK RCNN 

package downloaded through the open source website GitHub 

(https://github.com/matterport/Mask_ RCNN). Details of tuned parameters are: (1) training 

iterations for the 4 training steps are set to be 10; (2) the learning rate for each step is set to be 0.005 

with a momentum equal to 0.9; (3) the training batch size is set to be 8 to satisfy the GPU memory; 

(4) other parameters are set with default values provided by Keras or the downloaded Mask RCNN 

package.  

3.4 Experimental Results 
 

FT-MTL is designed for three inter-related tasks in medical applications: classification, object 

detection and segmentation. High resolution features from the segmentation task are transferred to 

the classification task for improved performance. In the comparison study, we decide to compare 

the proposed FT-MTL with methods in classification, object detection and segmentation, 

respectively. These include some methods that only focus on one of the three tasks, e.g., 

classification, as well as methods handling multiple tasks. To the best of our knowledge, Mask-

RCNN (He et al., 2017) may be the only method that addresses all three tasks jointly for medical 

applications. We include Mask-RCNN in the comparison on all three tasks with the competing 

methods respectively. In addition, detailed comparison analysis between FT-MTL and Mask-

RCNN is provided.  

3.4.1. Classification Task 

A response operating characteristic (ROC) curve is commonly used to evaluate the 

classification performance, especially in medical imaging applications. ROC is a function of true 

positive rate (TPR) with respect to 1- false positive rate (1-FPR). The area under the ROC curve 

(AUC) is used as a metric to evaluate the classification power of a model. Table 2 summarizes the 

comparison results. The first three methods take manually delineated ROIs from domain experts as 

inputs and focus on the classification task only. The AUC ranges from 0.86 to 0.91. The following 

four pipelined systems are automated systems taking the whole images detecting the objects, and 

classifying them . Here we take the classification results for comparison, and the AUC ranges from 

0.76 to 0.86. It is not surprising the AUC performances from the pipelined system are not as good 

as that from the one-task approaches as the later heavily involves the domain experts to provide the 

https://github.com/matterport/%20Mask_RCNN)


accurate segmentations. However, the delineation of the ROIs by experts is time consuming and 

may not always be available. In looking at the multi-task category, we observe the approaches in 

the category outperforms most one-task and pipelined systems. Though Mask-RCNN has an AUC 

of 0.89, lower than that from Random Forest on CNN (0.91), Mask-RCNN has much smaller 

standard deviation, 0.02 compared to 0.12 from the Random Forest, an indicator of the robustness 

of the model.  

Table 3 Comparison between our proposed model and eight competing methods on Mass classification 

with INBreast Dataset 

Methods Configuration AUC 
Transfer learning from deep CNNs + ensembled classifiers 

(Huynh et al., 2016) 
one task 0.86 ± 0.01 

Lib SVM (Diz, Marreiros, & Freitas, 2016) one task 0.90 

Random Forest on CNN with pre-training (Dhungel et al., 

2017a) 
one task 0.91 ± 0.12 

Random Forest on CNN with pre-training (Dhungel et al., 

2017a)  
pipelined system 0.76 ± 0.23 

Multi-view Residual Network (Dhungel, Carneiro, & 

Bradley, 2017b) 
pipelined system  0.80 ± 0.04 

Deep learning through unregistered views (Carneiro, 

Nascimento, & Bradley, 2017) 
pipelined system 0.78 ± 0.09 

Pre-trained CNNs + multiple instance learning (Zhu, Lou, 

Vang, & Xie, 2017) 
pipelined system 0.86 ± 0.03 

Mask-RCNN (He et al., 2017) multi-task 0.89 ± 0.02 

Proposed FT-MTL multi-task 0.92 ± 0.01 

 

In comparing our proposed FT-MTL with Mask-RCNN (see Figure 3), the ROC curve from 

FT-MTL in general dominates that from Mask-RCNN. FT-MTL has AUC 0.92± 0.01 compared to 

Mask-RCNN with 0.89 ± 0.02. A pair t-test gives p<0.01 indicating FT-MTL significantly 

outperforms Mask-RCNN on AUC value.  

 

Figure 3 ROC curves for Mask-RCNN and our proposed model on test dataset for detected mass (vertical 

Mask-RCNN
FT-MTL Net



line denotes 2×TPR std across 5 folds) 

From this comparison, we have two conclusions drawn: (1) a multi-task learning approach 

outperforms traditional one-task and integrated pipeline approaches, indicating the joint advantages 

of multiple tasks; (2) features transferred from the segmentation head to the classification head will 

significantly improve the classification performance.  

Please note as the first attempt into MTL, our current design of FT-MTL only transfers the 

segmentation features into the classification. As one MTL approach in general, we are still 

interested in exploring the performance of the detection and segmentation tasks with respect to 

competing methods. This is discussed in the following two sections.  

3.4.2. Detection Tasks 

For the detection experiment, we first present the comparison results in mean true positive rate 

(TPR) across 5 folds and false positive rates per image (FPI) (see Table 3). Since the literature 

reported the TPRs under different FPIs, for a comprehensive and fair comparison, we derive two 

sets of TPRs under different FPI settings: FPI = 3.67 and/or 5. Standard deviation across 5 folds is 

reported. As seen from Table 3, multi-task learning approaches (Mask-RCNN and FT-MTL-Net) 

have comparable detecting power as traditional one-task detection models and pipelined systems. 

It should be noted that the Multi-view Residual Network (Dhungel et al., 2017b) achieves the best 

performance (0.96±0.03@0.8). This is because after the detection module, a specifically designed 

cluster method is implemented to remove overlapping for both true positives and false positives. It 

is our intention to further improve the detection performance by adopting some new postprocessing 

methods such as those in Dhungel et al., (2017b).  

Table 4 Comparison between our proposed model and other competing methods on detection with INBreast 

Dataset 

Methods Configuration TPR@FPI 
Adaptive thresholding + machine learning 

(Kozegar, Soryani, Minaei, & Domingues, 2013) one task 0.84@3.67 

Cascaded Deep Learning +Random Forests 

(Dhungel, Carneiro, & Bradley, 2015) 
one task 0.78@3.67 

Random Forest on CNN with pre-training (Dhungel 

et al., 2017a)  
pipelined system 0.87@5 

Multi-view Residual Network (Dhungel et al., 

2017b) 
pipelined system  0.96±0.03@0.8 

Deep learning through unregistered views (Carneiro 

et al., 2017) 
pipelined system N.A. 

Pre-trained CNNs + multiple instance learning (Zhu 

et al., 2017) 
pipelined system N.A. 

mailto:0.78@3.67
mailto:0.87@5


Mask-RCNN (He et al., 2017) multi-task 
0.85 ±0.07@3.67 

0.85 ± 0.07@5 

Proposed FT-MTL-Net multi-task 
0.91 ±0.05 @3.67 

0.91 ± 0.05@5 

 

Next, we compare FT-MTL-Net with Mask-RCNN. Here we use the free response operating 

characteristic (FROC) curve to present its performance. It is a function of true positive rate (TPR) 

with respect to false positive rate per image (FPI). Following the same standard  in  (Dhungel et al., 

2017a), we define: if the intersection of union (IoU) between predicted bounding boxes and ground 

truth is greater than 0.2, this bounding box is regarded as true positive, otherwise, it will be regarded 

as false negative.  From 错误!未找到引用源。a,  we observe that FT-MTL-Net achieves a TPR 

of 0.91 with standard deviation of 0.05 (TPR = 0.91 ± 0.05 )at FPI = 3.67 on the testing dataset. In 

fact, this TPR (0.91) tends to be stable for FPIs that are greater than 1.5. The Mask-RCNN obtains 

a TPR = 0.85 ± 0.07 at FPI = 3.67. A t-test is conducted on the TPR values obtained among the 5 

folds for Mask-RCNN and our proposed model. With a p-value < 0.05, we conclude FT-MTL-Net 

outperforms Mask-RCNN. One may be surprised to observe such performance as our FT-MTL-

Net indeed takes the same architecture as that in (Ren et al., 2017) for the detection task. This may 

be explained as following: in the testing stage, each detected bounding box uses the probabilities 

(background vs. benign tumor vs. malignant tumor) from the classification task as its objectness 

score. FT-MTL-Net has a classification head architecture with enhanced capability which is not 

only better at differentiating benign tumors from malignant tumors, but also better at classifying 

tumors from background regions. This capability in turn helps improve the detection task indirectly. 

To measure the robustness of the detection results on different IoU thresholds, the average precision 

curve is shown in 错误!未找到引用源。. It is a function of true positive rate against the different 

IoUs. It is noted for values where IoU <= 0.4, the TPR remains stable and consistently is above 0.9. 

The TPR starts to decrease if IoU is greater than 0.4.   As a result, we set IoU = 0.4 as our threshold 

to define whether a mass is detected by the predicted bounding box for the following two tasks. 

The performances for segmentation and classification are evaluated only on the detected mass 

which takes an average of 95% of the testing dataset according to the curve. In integrated systems 

such as in (Dhungel et al., 2017a), similar approaches are implemented by manually excluding all 

false positives.  

 



 
 

Figure 4a FROC curve (IoU > 0.2, vertical 

line denotes 2×TPR std across 5 folds) 

Figure 5b Average precision for detection on the 

testing dataset (vertical line denotes 2×TPR std 

across 5 folds) 

3.4.3. Segmentation Tasks 

The segmentation performance is quantified with Dice similarity index (Dice, 1945). Let A be 

the predicted mask, and B be the ground truth mask, 

 

 
𝐷𝑖𝑐𝑒(𝐴 𝐵) =

2(𝐴⋂𝐵)

𝐴 ⋃𝐵
 

(10) 

Where 

 𝐴 ⋂𝐵 counts the number of pixels that are labeled with 1s in both mask A and B.  

𝐴⋃𝐵 counts the number of pixels that are labeled with 1s either in mask A or B.  

We compare FT-MTL-Net with Mask-RCNN, 1 one-task method and the same four pipelined 

systems. From Table 5, we observe these two MTL models underperform the other competing 

method to a certain degree. The reason may be that, in (Dhungel et al., 2017a) and (Al-antari et al., 

2018), the input training images are outputs from a former detection procedure, there is a ‘manual 

intervention’ procedure that will exclude all the false positive detections and this  helps improve 

the performance of segmentation results. The MTL models are fully automatic model without any 

user intervention. The segmentation network is trained with both true positive and false positive 

detections from the RPN, and the false positive detections have a negative influence on 

segmentation results. Another reason may come from an architecture aspect: the feature maps used 

for segmentation are highly reduced in spatial resolution compared with the original masks. Before 

the segmentation network, 4 max-pooling layers are implemented within the shared convolutional 

Mask-RCNN
FT-MTL Net

0.91@1.5
Mask-RCNN
FT-MTL Net



layers, in which important pixel information for segmentation are lost (Chen et al., 2017). Such lost 

information is difficult (if not impossible at all) to retrieve through the subsequent layers. With 

limited pixel information, the segmentation network may suffer from low accuracy. Noting this, 

our plan for the next steps is to improve FT-MTL with a focus on segmentation improvement. For 

example, we may add a connecting path from high-resolution features to enrich feature sets as those 

in Unet (Gao et al., 2019; Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017).  

Table 5 Comparison between our proposed model and other competing methods on segmentation with 

INBreast Dataset 

Methods Configuration DICE index 
FrCNN (Al-antari et al., 2018) 

one task 92.67 

Random Forest on CNN with pre-training (Dhungel 

et al., 2017a)  
pipelined system 0.85 ± 0.02 

Multi-view Residual Network (Dhungel et al., 

2017b) 
pipelined system  N.A. 

Deep learning through unregistered views (Carneiro 

et al., 2017) 
pipelined system N.A. 

Pre-trained CNNs + multiple instance learning (Zhu 

et al., 2017) 
pipelined system N.A. 

Mask-RCNN (He et al., 2017) multi-task 0.79 ± 0.02 

Proposed FT-MTL-Net multi-task 0.76 ± 0.03 

3.4.4. Illustration 

To demonstrate the functions of FT-MTL-Net, we select predicting results for two cases and 

their corresponding outputs after different steps and include them in Figure 6. As shown, each raw 

image is fed into the trained model. After the backbone architecture, several candidates (marked 

with yellow dashed bounding box) of pre-defined size and with objectness score (O score) greater 

than 0.5 are detected (the above case has two candidates and the bottom case has only one). These 

candidates are resized to the same size and fed into the head architecture. Through the head 

architecture, each candidate’s bounding box (dashed bounding boxes) will be refined by the 

detection task; the mask (solid contour region) will be predicted through the segmentation task; the 

classification task will assign each candidate a probability of being malignant or benign (M score/B 

score). These predicted results will be finalized through the “malignant-veto” logic introduced 

above to reduce the overlapping detections.  In this figure, we can conclude that our proposed 

method can 1) accurately identify suspicious regions within breast images 2) make precise 

predictions on the suspicious regions’ categories and 3) outputs segmentation masks with 

reasonable accuracy. 



 

Figure 6 Examples of two cases (malignant case on top and benign case on bottom) and their corresponding 

outputs from different steps.  

4. Conclusion and Discussion 

Most medical image analysis applications are related to one or more tasks in object detection, 

segmentation and classification. Multi-task deep learning thus becomes a viable solution to address 

these tasks jointly as it provides the advantages of both multi-task learning and deep neural 

networks and enables fully automatic image analysis. In this research, we propose a new multi-task 

deep learning architecture with a focus on the classification task. Cross-view feature transfer based 

on the same domain knowledge is implemented. To the best of our knowledge, our proposed FT-

MTL may be the first fully automatic system which addresses detection, segmentation and 

classification of tumors in medical imaging and can simultaneously be trained end-to-end. The 

feature transfer is implemented between the different views from the same domain and thus is 

negative transfer free. In addition, the features transferred are re-weighted based on the targeted 

ROIs resulting in much adding a much smaller   number of parameters to the model. The immediate 

advantage of this is the model does not have a significant computational burden added even with 

all three tasks being tackled together. The comparison experiments indicate the promise of this 

Raw image with human 
labeled mask

Outputs of backbone 
architecture

Inputs of head 
architecture

Outputs of head 
architecture

Combination of final 
outputs and raw images

Benign case (B)

Malignant case (M)

M score 0.91

B score 0.56

B score 0.87

Final Prediction : Malignant
Probability : 0.91

Final Prediction : Benign
Probability : 0.87

O score 0.77

O score 0.97

O score 0.91



cross-view feature transferred enabled MTL. While promising, as we mentioned in the discussion 

related to the detection and segmentation tasks, we plan to explore the features transferred across 

all three tasks to improve the performance of all three tasks together. This can be further validated 

in other clinical applications (e.g., brain tumor) with different imaging modalities (e.g., MR, PET).  
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