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1. Introduction1

Nowadays, companies face more changing and volatile environments, where2

increased competitiveness and personalization of products play a key role.3

Therefore, companies need smart tools that help their decision-making process4

to become more efficient and effective. In this paper, we propose intelligent5

methods to solve hard decision-making problems using optimization tech-6

niques, in order to contribute to the smart factory concept1, that is, sustainable7

and intelligent industries. Scheduling plays a very important role in indus-8

try. There are many different scheduling problems modeling different types9

of production processes. In many cases, factories need flexibility in their10

productive processes to achieve a higher personalization of their products.11

This flexibility may include the need of additional resources, which makes12

scheduling problems much more difficult to solve.13

Among the scheduling problems that appear in industrial processes, one of14

them is the so called Unrelated Parallel Machines scheduling problem (UPM),15

where a set of jobs have to be processed by a set of parallel machines. As16

the machines are unrelated, the processing time of a job may be different17

depending on the machine the job is assigned to. Recently, many studies18

have been conducted on the Unrelated Parallel Machine scheduling problem19

with Setup times between jobs (UPMS), which is an extension of the UPM20

problem. The UPMS arises when machines need to be reconfigured after the21

processing of one job, and before the processing of the next one.22

In the literature of the UPMS, no constraint is normally assumed made23

on the number of setups that can be done at the same time. In other words,24

at any point in time one may do as many setups as needed. Arguably, it is25

common that machines process jobs automatically, without the help of extra26

resources. However, we want to underline that in manufacturing environments,27

the machine setups between jobs is usually done by additional resources (e.g.28

workers). Since the number of these available resources is typically limited, the29

number of setups that can be done at the same time is limited. Therefore, an30

extension, and more realistic approach to the UPMS is the Unrelated Parallel31

Machine scheduling problem with setup times and additional Resources in32

the Setups (UPMSR-S), which is the problem introduced in this paper.33

1https://www.capgemini.com/resources/preparing-for-smart-factories/
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Among the variety of objectives considered in scheduling, one of the most34

studied is the minimization of the makespan, denoted by Cmax. The makespan35

is defined as the completion time of the schedule. In other words, the makespan36

is the latest completion time of a job. In this paper, we address the UPMSR-S,37

with the objective of minimizing the makespan.38

The rest of the paper is organized as follows: In Section 2, an overview of39

the related literature is presented. In Section 3 the formal definition of the40

problem and a mathematical model are presented. Sections 4 and 5 introduce41

the heuristics and metaheuristics designed for solving the UPMSR-S. Section42

6 shows the experimental campaign to assess the algorithms proposed. Finally,43

in Section 7 some conclusions and directions for future research are given.44

2. Literature review45

Unrelated parallel machine scheduling problems have been widely studied46

in the past years (see e.g. Fanjul-Peyro and Ruiz (2010), Fanjul-Peyro and Ruiz47

(2011), Arroyoa and Leung (2017)). The consideration of sequence dependent48

setup times between jobs (UPMS) has also received lot of attention. The49

interested reader in the UPMS problem is referred to Vallada and Ruiz (2011),50

Kurz and Askin (2001), Kim et al. (2002), among others. Allahverdi (2015)51

presents a review of scheduling problems of parallel machines with setup52

times.53

However, the problem with additional resources has been the focus of54

far fewer studies in the research community, especially when the additional55

resources are needed to do the setups between jobs. In this section we focus our56

attention on the most recent algorithms for the parallel machine scheduling57

problems considering setup times with the objective to minimize makespan.58

Besides, we also review the available algorithms for parallel machine scheduling59

problems that consider additional resources.60

Kurz and Askin (2001) present a mathematical programming model and61

several heuristics for the parallel machines scheduling problem with sequence-62

dependent set-up times. Rabadi et al. (2006) present a heuristic for the63

unrelated machine case. Helal et al. (2006) propose a tabu search algorithm64

to minimize the makespan. De-Paula et al. (2007) propose a method based on65

the VNS strategy for identical and unrelated parallel machines to minimize66

the makespan. Arnaout et al. (2010) propose a two-stage ant colony optimiza-67

tion algorithm. Vallada and Ruiz (2011) propose a genetic algorithm. More68

recently, Avalos-Rosales et al. (2015) propose a metaheuristic algorithm for69
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the unrelated parallel machine problem with sequence and machine-dependent70

setup times and Diana et al. (2014) propose an immune-inspired algorithm71

for the same problem. Fanjul-Peyro et al. (2019) propose a new mixed integer72

linear program and a mathematical programming based algorithm for the73

UPMS. Although the minimization of the makespan is one of the most studied74

optimization criterion in scheduling, other objectives have been analyzed. For75

example, Expósito-Izquierdo et al. (2019) propose a metaheuristic to study76

the effect of learning or tiredness on the setup times in a scheduling problem77

with identical parallel machines.78

As stated earlier, there are fewer studies for scheduling problems with ad-79

ditional resources. Ruiz-Torres et al. (2007) study a uniform parallel machines80

problem subject to a secondary resource in order to minimize the number of81

tardy jobs, where the speed of the machines depends on the allocation of the82

secondary resource. Ruiz and Andrés-Romano (2011) propose heuristics for83

the unrelated parallel machines problem with resource-assignable sequence84

dependent setup times, where the resources are not limited and with the85

objective of minimizing a linear combination of the total resources assigned86

and the total completion time. Afzalirad and Rezaeian (2016) propose an87

integer mathematical model and a genetic algorithm for an unrelated parallel88

machine scheduling problem with sequence dependent setup times, resource89

constraints on the processing times, precedence constraints and machine90

eligibility restrictions.91

Some other works of different variations of parallel machines problems92

with additional resources can be found in Chen (2004), Edis and Oguz (2012),93

Edis and Ozkarahan (2012), Edis et al. (2013) and Bitar et al. (2016). More94

recently, Fanjul-Peyro et al. (2017) present models and matheuristics for the95

unrelated parallel machine scheduling problem with additional resources. For96

the same problem, Arbaoui and Yalaoui (2018) use constraint programming,97

Villa et al. (2018) present some heuristics and Fleszar and Hindi (2018)98

present different algorithms, including mathematical programming models99

and constraint programming techniques.100

The GRASP algorithm (Greedy Randomized Adaptive Search Procedure)101

was introduced by Feo and Resende (1989). Ever since then, this algorithm102

has successfully been applied to solve real combinatorial problems. Different103

examples of applications can be found in Resende and Ribeiro (2014). Schedul-104

ing problems is one of the topics in which GRASP has been applied. Feo105

et al. (1991) propose a GRASP algorithm to solve a single machine scheduling106

problem with flow time and earliness penalties. Feo et al. (1996) use a GRASP107
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algorithm to solve a single machine scheduling with sequence dependent setup108

costs and linear delay penalties. For the job shop scheduling problem, Aiex109

et al. (2003) and Binato et al. (2002) design GRASP algorithms. Rajku-110

mar et al. (2011) present a GRASP algorithm to solve the flexible job-shop111

scheduling problem with limited resource constraints. Laguna and Velarde112

(1991) solve the just-in-time scheduling problem in parallel machines and they113

propose an approach that combines elements of GRASP algorithm and Tabu114

Search. Finally, some other fields in which GRASP algorithms have been115

successfully applied are project scheduling (see Alvarez-Valdes et al. (2008)),116

cutting and packing (see Parreño et al. (2010)), and industrial applications117

(see Anticona (2006)).118

Most related works in the literature, dealing with scheduling and setups,119

do not consider scarce resources. We strongly believe that neglecting the need120

of resources is not always realistic, since in most manufacturing processes121

machine setups are typically performed (or at least controlled) by workers. We122

therefore consider this paper as an attempt to close the gap between academic123

research and real scheduling in parallel machine problems with setups.124

3. Problem formulation125

In this section we formally introduce the UPMSR-S, for which the following126

sets and parameters are needed:127

• Set N = {1, . . . , n} of jobs to be scheduled, indexed by j, k and `.128

• Set M = {1, . . . ,m} of unrelated parallel machines, indexed by i.129

• Set T = {1, . . . , tmax} of time units, indexed by t. Parameter tmax is a130

large value, which is an upper bound for the makespan.131

• Parameter pij is the processing time of job j on machine i.132

• Parameter sijk is the setup time of machine i between the processing of133

jobs j and k, in this order.134

• Parameter rijk is the necessary number of renewable resources to do135

the setup on machine i between job j and job k, in this order.136

• Parameter Rmax is the number of available resources, needed for the137

setups.138
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The m machines are always available, and each machine can process only139

one job at a time and without preemption. Additionally, there is no precedence140

restriction in the sequence of jobs and all machines are available from time141

0. The setup times and resources are both sequence and machine dependent.142

That is, the setup time on machine i between jobs j and k may be different143

from the setup time on the same machine between jobs k and j. Furthermore,144

the setup time between jobs j and k on machine i may be different from the145

setup time between jobs j and k on other machines.146

Having limited resources to do the setups, the feasibility of the solution147

obtained depends on the number of resources used at any point in time.148

For instance, if we want to do setups on two or more machines at the same149

time, it is necessary that the sum of the resources required by these setups150

is not greater than Rmax. If this restriction can not be accomplished, it is151

necessary to rearrange one or more setups, possibly generating idle times in152

the machines.153

The following definition will be needed in the rest of the paper.154

Definition 3.1. Job k is the successor of job j if the two jobs are processed155

by the same machine i and between j and k, the machine i does not process156

another job. In the same way, job j is the predecessor of k if k is the successor157

of j.158

3.1. MILP model formulation159

In order to present a mixed integer linear (MILP ) formulation for the160

UPMSR-S problem, we define the following variables.161

• Binary variable Yij takes value 1 if job j is processed on machine i, 0162

otherwise.163

• Binary variable Xijk takes value 1 if job k is the successor of job j on164

machine i, 0 otherwise.165

• Binary variable Hijkt takes value 1 if the setup on machine i, between166

the successive jobs j and k, ends at instant t, 0 otherwise.167

• Cmax is the maximum completion time of the schedule or makespan.168

Additionally, it is necessary to define the set N0 = N ∪ {0}, where 0 is a169

dummy job in which all machines start and end. We set si0k = sik0 = ri0k =170

rik0 = pi0 = 0, ∀ i ∈M ; ∀ k ∈ N0.171
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A model for the UPMSR-S is:172

min Cmax (1)
s.t.

∑
k∈N

Xi0k ≤ 1, i ∈M (2)
∑
i∈M

Yij = 1, j ∈ N (3)

Yij =
∑

k∈N0,j 6=k

Xijk, i ∈M, j ∈ N (4)

Yik =
∑

j∈N0,j 6=k

Xijk, i ∈M,k ∈ N (5)
∑

t≤tmax

Hijkt = Xijk,∀i ∈M, j ∈ N0, k ∈ N, k 6= j (6)
∑

t

tHijkt ≥
∑

`∈N0

∑
t≤tmax

Hi`jt(t+ sijk + pij)− M̄(1−Xijk),

∀ i ∈M, j ∈ N0, k ∈ N, k 6= j (7)∑
i∈M,j∈N0,k∈N,k 6=j,t′∈{t,...,t+sijk−1}

rijkHijkt′ ≤ Rmax, ∀ t ≤ tmax (8)

∑
t≤tmax

tHijkt ≤ Cmax,∀i ∈M, j ∈ N0, k ∈ N0, k 6= j (9)

Xijk ≥ 0, Yij ≥ 0, Hijkt ∈ {0, 1}.

The objective (1) minimizes the makespan of the solution. Constraints (2)173

establish that at most one job is assigned to the first position of the sequence174

of each machine. Constraints (3) ensure that each job is assigned to one and175

only one machine. Constraints (4) ensure that every job j that is processed176

on machine i has a unique successor k. Constraints (5) ensure that each job177

k that is processed on machine i, has a unique predecessor j. Constraints (6)178

ensure that for every machine i and for each pair of successive jobs j and k on179

machine i, the setup between j and k must end in one and only one moment180

before tmax. Constraints (7) ensure that the setup between two successive jobs181

j and k on machine i, has to end at the earliest, when the previous setup ends182

plus the process time of job j on corresponding i, plus the setup time between183

jobs j and k on machine i. Here, M̄ is a sufficiently large value. Constraints184

(8) ensure that for any instant of time, the number of resources used does185

not exceed Rmax. Finally, constraints (9) impose that the makespan must be186
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greater than or equal to the final instant of all the setups done, including187

the final fictitious setup between the last job processed and the dummy job188

0. Note that, due to the structure of the problem, X and Y can be relaxed.189

Since H are binary, (6) implies that X will be integer. Therefore (2) implies190

that X are binary. Analogously, (4)-(5) imply that Y is integer, and adding191

(3) force Y to be binary.192

As we will see in the experiments, this model can only solve instances of193

small size. Therefore, in the next sections we propose more efficient approaches.194

4. Heuristics195

Solving a UPMSR-S problem involves deciding the following three sub-196

problems:197

1. Assignment problem. Decide which jobs should be processed on each198

machine.199

2. Sequencing problem. Decide the order in which the jobs must be pro-200

cessed.201

3. Timing problem. Decide the time on which the jobs and setups are202

processed.203

Due to the complexity of the problem, we divide the algorithms proposed204

in this section into two phases: constructive phase and repairing phase. In205

the first one, jobs are assigned and sequenced on machines (decision 1 and206

decision 2). In the second phase, the solution obtained in the constructive207

phase is analyzed in order to check if the resource constraints are satisfied.208

If the solution is unfeasible, a procedure to repair the solution is carried out209

and setups are rearranged (decision 3). Figure 1 shows the general procedure210

of the proposed heuristic algorithms to solve the UPMSR-S. In the rest of211

this section we detail both the constructive phase and the repairing phase.212

Constructive
phase:

Assignment +
Sequence

Repairing
mechanism:

Timing

Feasible
solution to
UPMSR-S

Figure 1: Heuristics flowchart.
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4.1. Constructive phase213

For the constructive phase, three algorithms following two different ap-214

proaches have been developed. The first approach consists of building a215

solution regardless all the information about the resource constraints. In other216

words, we look for solutions to the UPMS problem. For this approach we217

have adapted two algorithms from the existing literature on the UPMS. In218

the second approach we do consider the information about the number of219

resources used while the solution is built. The algorithm designed following220

this approach is not based on any previous research. Since the problem is221

new, we cannot compare with other algorithms in the literature. However,222

we do re-implement the best algorithms found for the UPMS problem and223

adapt them to the UPMSR-S (Constructive 1 and Constructive 2, defined224

below), so they can be compared with the original algorithm that we propose225

(Constructive 3, defined below).226

4.1.1. First approach constructive227

For this approach, two constructive algorithms are proposed. Both are228

based on the two most efficient algorithms we found for the UPMS problem.229

Constructive 1: The first constructive is based on the algorithm proposed230

by Diana et al. (2014). This algorithm is based on the Dynamic Job Assignment231

with Setups Resource Assignment, proposed by Ruiz and Andrés-Romano232

(2011), and Multiple Insertion, proposed by Kurz and Askin (2001). The idea233

in this algorithm is, for each job not assigned (jobs not assigned are referred234

to as pending jobs), to evaluate the increases in makespan due to its possible235

inclusion at each of the positions of the partial solution, and to assign the job236

that generates the lowest makespan increase (this will be the “best” position).237

This constructive procedure is summarized in Algorithm 1, where Ci is the238

completion time of machine i, C ′ijk is the completion time of machine i in the239

partial solution after the insertion of job j in position k, and N∗ is the set of240

pending jobs to be assigned.241
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Algorithm 1 Constructive 1
N∗ ← N
while N∗ 6= ∅ do

foreach j ∈ N∗ do
foreach i ∈M do

Find the best position k to insert j and save C ′ijk;
end

end
(i∗, j∗, k∗) = arg mini,j,k{C ′ijk};
Insert j∗ on i∗ in position k∗ and update Ci of machine i∗;
N∗ ← N∗ \ {j∗};

end

Constructive 2: The second constructive is based on the algorithm pro-242

posed by Avalos-Rosales et al. (2015) for the UPMS. The idea in this algorithm243

is to sort the jobs in a non-increasing order according to its average processing244

time over all machines, defined as p̄j = ∑
i∈M pij/m. Afterwards, take the first245

job of that list to calculate the increases in makespan C ′i due to its possible246

inclusion at each of the positions of machine i in the partial solution. Then247

the job is assigned to the position that generates the lowest makespan increase248

(this will be the “best” position). This constructive procedure is summarized249

in Algorithm 2.250

251

Algorithm 2 Constructive 2
N∗ ← N
while N∗ 6= ∅ do

Calculate p̄j = ∑
i∈M pij/m ∀j ∈ N∗;

j∗ = arg maxj∈N∗{p̄j};
foreach i ∈M do

Find the best position k to insert j∗, and save C ′ijk;
end
(i∗, k∗) = arg mini,k{C ′ij∗k};
Insert j∗ on i∗ in position k∗ and update Ci of machine i∗;
N∗ ← N∗ \ {j∗};

end
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4.1.2. Second approach constructive252

As opposed to the first approach, in which the information about resource253

constraints is not taken into account, the second approach does consider the254

information about the resources. A new constructive is proposed following255

this approach.256

Constructive 3: The idea in this constructive is to take into account, not257

only the completion time of the machines, but also the number of resources258

needed to do a setup when a job is assigned. Note that, if we have a sequence259

(j1, j2, . . . , jk−1, jk, . . . , j`), and we insert a new job j in position k, in general260

the new sequence is (j1, j2, . . . , jk−1, j, jk, . . . , j`). Then, we no longer do the261

setup between jk−1 and jk, and we have two new setups: the setup between262

jk−1 and j and the setup between j and jk.263

For this purpose, we define a coefficient that takes into account all the
factors that are affected when we insert a job j in some position k of machine
i, in the partial solution. We call this coefficient λi,j,k, which measures not
only the completion time on a machine when a new job is assigned, but also
the extra resources needed. This coefficient is defined as:

λi,j,k = C ′i +pij +(θs(i,k−1,k)∗θr(i,k−1,k))+(θs(i,k,k+1)∗θr(i,k,k+1))−(γs(i,k)∗γr(i,k))

where:264

• C ′i is the completion time, in the partial solution, of the machine where265

the job j is inserted.266

• θs(i,k−1,k) is the time needed for the new setup that we have to do267

between the jobs in positions k − 1 and k, when we insert job j in268

position k on machine i (θs(i,k,k+1) is defined analogously).269

• θr(i,k−1,k) is the number of resources that we need for the new setup270

between the jobs in positions k − 1 and k, when we insert job j in271

position k on machine i (θr(i,k,k+1) is defined analogously).272

• γs(i,k) is the time needed for the setup that we no longer have to do,273

when we insert the new job in position k on machine i.274

• γr(i,k) is the number of resources that we needed to do the setup that275

we no longer have to do, when we insert the new job in position k on276

machine i.277
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This constructive inserts each pending job at each position of the partial278

solution. Afterwards, we calculate the λ value and assign the job that generates279

the lowest value of λ. This algorithm follows the strategy proposed by Diana280

et al. (2014). The novelty we introduce consists of considering the information281

about the new resources constraint, to build solutions that need less resources282

(possibly allowing an increase in makespan). This fact makes the repairing283

mechanism of phase 2 easier, because the solution built in the constructive284

phase is closer to feasibility.285

Algorithm 3 summarizes this constructive procedure.286

Algorithm 3 Constructive 3
N∗ ← N
while N∗ 6= ∅ do

foreach j ∈ N∗ do
foreach i ∈M do

Find the best position k to insert j and save λi,j,k;
end

end
(i∗, j∗, k∗) = arg mini,j,k{λi,j,k};
Insert j∗ on i∗ in position k∗;
N∗ ← N∗ \ {j∗};

end

It is important to clarify that the solutions obtained by any of the three287

constructive algorithms proposed in this section may be non feasible, in the288

sense that more than Rmax resources may be needed at some points in time.289

Therefore, the repairing mechanism in Section 4.2 is implemented for all three290

constructive algorithms, which aims at ensuring that the resources used at291

any point in time do not exceed Rmax.292

4.2. Repairing phase293

Once all jobs are assigned and sequenced, it is necessary to evaluate the294

solution obtained in order to verify if the resource constraints are satisfied. In295

case more than Rmax resources are needed at one point in time, the solution296

must be repaired. In this section, these evaluation and repairing methods are297

explained.298
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The evaluation method consists of calculating the total resources needed299

at each time instant. If the resource constraints are satisfied at one instant, we300

evaluate the next time instant. This process is repeated until all the sequence301

is evaluated or until we find an instant at which the resource constraints are302

not satisfied. Figure 2 illustrates an example of the repairing mechanism in a303

solution with 6 jobs, 3 machines and 3 resources available to do the setups.304

Grey boxes represent jobs being processed, the number inside them being305

the job index. White boxes represent machine setups. Inside them we see the306

setup times and resources needs. In Figure 2(a), we can see that the resource307

constraints are satisfied until instant 4. In instant 5, 5 resources in total are308

needed to do the setups in machines 1 and 2. Since Rmax = 3, this solution309

needs to be repaired.310

The proposed repairing mechanism consists of postponing the beginning311

of the setup that starts the latest, out of the setups that overlap at this312

time instant, until the completion time of the setup finishing first. Then, the313

consumption of resources is re-evaluated and if the resource constraints are314

satisfied, we evaluate the next time instant. In this case, the setup on machine315

2 is postponed two time units until the setup on machine 1 ends (Figure 2(b)).316

It is important to mention that if there are several such setups that start at317

the same time, the rule to break ties is to postpone the setup that is done in318

the machine with lowest completion time Ci. Algorithm 4 summarizes this319

repairing procedure.320

Algorithm 4 Repairing mechanism
for t < tmax do

Evaluate the consumption of resources at instant t;
if consumption of resources > Rmax then

Postpone the beginning of the setup in the machine that begins the
latest out of those that overlap at instant t;

end
end

Hereinafter, we denote the three heuristics algorithms as follows:321

• Heuristic 1: Constructive 1 + Repairing mechanism.322

• Heuristic 2: Constructive 2 + Repairing mechanism.323

• Heuristic 3: Constructive 3 + Repairing mechanism.324
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(a) Non feasible solution. (b) Feasible solution.

Figure 2: Example Repairing mechanism.

5. GRASP Algorithm325

As we will see in the experiments section, the results of the heuristics326

proposed in Section 4 are far from the optimal solutions. Therefore, in this327

section we propose multi-start methods based on the heuristics above, in328

order to find a greater variety of solutions. Multi-start methods are well-329

know algorithms to diversify the solutions found, in order to overcome local330

optimality. More specifically, we propose a GRASP (Greedy Randomized331

Adaptive Search Procedure) algorithm. As stated in the literature review,332

this type of algorithm is one of the most commonly used multi-start methods.333

A complete GRASP iteration has two phases: one phase that consists of334

constructing a partial solution (see Section 5.1), and a second phase that335

consists of applying a local search procedure in order to improve the solution336

found in the constructive phase (see Section 5.2).337

5.1. Randomization of the constructive phase338

Randomization in the constructive phase is widely used in combinatorial339

optimization in order to avoid local optimality. In this section, we propose the340

following randomization of the constructive algorithms proposed in Section341

4. During the assignment process, instead of choosing the best candidate342

according to the assignment rule defined, we assign at random one candidate343

from a restricted candidate list (RCL). The size of the RCL depends on an α344

value (α ∈ [0, 1]) that we calibrate in the experiments section. The closer α is345

to 1, the larger the size of RCL.346
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5.2. Local search347

In order to improve the makespan of the sequences obtained by the348

constructive phase of the GRASP algorithms, a local search consisting of three349

different phases is proposed. These three phases follow the same philosophy as350

the second approach (See Section 4.1). They seek for changes in the sequence351

that take into account not only the completion times on the machines, but352

also the amount of resources needed. Once all jobs are assigned and sequenced353

in the constructive phase, the next three local search phases are applied in354

the following order:355

1. Internal swap356

2. External swap357

3. External insertion358

Before and between these operations, the solution is evaluated (and re-359

paired by the repairing mechanism, if necessary) in order to keep the current360

best solution. After applying the repairing mechanism, the solution may have361

idle times as we can see in the Figure 2 b). However, we justify to the left this362

solution before applying the next local search, a procedure we call “shiftleft()”,363

which deletes idle times. This operation possibly introduces infeasibility into364

the partial solution. If the external swap or the external insertion find a better365

solution than the current solution, the whole process is repeated after the366

completion of the external insertion. Algorithm 5 shows a pseudocode of the367

local search.368
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Algorithm 5 Pseudocode Local search.
Current solution ← Initial solution
Current solution ← Apply Repairing mechanism
Best solution ← Current solution
StopCriteria← False
while StopCriteria = False do

StopCriteria← True
ShiftLeft(Current solution)
Current solution ← Apply Internal swap
Current solution ← Apply Repairing mechanism
if Current solution < Best solution then

Best solution ← Current solution
end
ShiftLeft(Current solution)
Current solution ← Apply External swap
Current solution ← Apply Repairing mechanism
if Current solution < Best solution then

Best solution ← Current solution
StopCriteria← False

end
ShiftLeft(Current solution)
Current solution ← Apply External insertion
Current solution ← Apply Repairing mechanism
if Current solution < Best solution then

Best solution ← Current solution
StopCriteria← False

end
end

We now explain each of the three local search phases more in detail.369

5.2.1. Internal swap370

This operation is widely used in scheduling problems, as for example in
Vallada and Ruiz (2011), Diana et al. (2014) and Arnaout et al. (2010). In
this operation, for each job j on each machine i, we test a swap between job
j and any other job k processed on the same machine. Note that, after such
swap, in general, there will be two setups that we no longer do, and two new
setups. For each such swap, we compute a coefficient that considers, not only
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the completion time of the machines, but also the number of resources needed.
We call this coefficient S(j,k) and is defined as:

S(j,k) = (γs(j,k) ∗ γr(j,k))− (θs(j,k) ∗ θr(j,k)),

where:371

• γs(j,k) is the time needed for the setups that we no longer have to do372

when we apply the internal swap.373

• γr(j,k) is the number of resources needed to do the setups that we no374

longer have to do, when we apply the internal swap.375

• θs(j,k) is the time needed for the new setups that we have to do when376

we apply the internal swap.377

• θr(j,k) is the number of resources that we need for the new setups that378

we have to do when we apply the internal swap.379

After evaluating all the possible swaps, we keep the swap that generates the380

largest S(j,k). We repeat this process while we improve the solution. Algorithm381

6 summarizes the internal swap process. For the sake of brevity, j ∈ i means382

that job j is assigned to machine i.383
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Algorithm 6 Internal swap.
StopCriteria← False
while StopCriteria = False do

StopCriteria← True
foreach i ∈M do

Best Swap ← 0
foreach j ∈ i do

foreach k ∈ i and k 6= j do
Test the swap job j with job k and compute S(j,k)
if S(j,k) > Best Swap then

Best Swap ← S(j,k)
StopCriteria← False

end
end

end
Do Best Swap

end
end

5.2.2. External swap384

To explain the external swap, we define i′ as the machine yielding the
makespan. In the external swap, we try to swap each job j previously assigned
on the machine i′, with each job k of each of the other machines i 6= i′. Note
that, after each such external swap, in general, there will be two setups in
each machine that we no longer have to do, and two new setups on each of
the two machines. When we test a swap, we compute a coefficient that follows
the same idea as the previous internal swap, defined as:

S(i,j,k) = (ρ(i,j,k) + γs(i,j,k) ∗ γr(i,j,k))− (φ(i,j,k) + θs(i,j,k) ∗ θr(i,j,k)),

where:385

• ρ(i,j,k) is the sum of the processing times of the swapped jobs in the386

original sequence.387

• φ(i,j,k) is the sum of the processing times of the swapped jobs after the388

swap.389

• γs(i,j,k) is the time needed for the setups that we no longer have to do390

(on the two machines) when we apply the external swap.391
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• γr(i,j,k) is the number of resources needed for the setups that we no392

longer have to do (on the two machines), when we apply the external393

swap.394

• θs(i,j,k) is the time needed for the new setups (on the two machines).395

• θr(i,j,k) is the number of resources needed for the new setups (on the396

two machines).397

When all swaps are tested, we keep the swap that generates the largest398

S(i,j,k). We repeat this process while we improve the solution. Algorithm 7399

summarizes the external swap operation.400

Algorithm 7 External swap.
StopCriteria← False
while StopCriteria = False do

StopCriteria← True
Best Swap ← 0
i′ ←Makespan Machine
foreach j ∈ i′ do

foreach i ∈M \ {i′} do
foreach k ∈ i do

Test the swap j − k and compute S(i,j,k)
if S(i,j,k) > Best Swap then

Best Swap ← S(i,j,k)
StopCriteria← False

end
end

end
end
Do Best Swap

end

5.2.3. External insertion401

This operation consists of testing the insertion of each job scheduled
on the machine i′ that defines the makespan, in each position on the other
machines. Note that, after one such insertion, in general, on machine i′ there
are two setups that we no longer do, and one new setup. Besides, on the
machine where the job is inserted, there will be two new setups, and one of
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the original setups is no longer done. As in the internal and external swaps,
we compute a coefficient that considers the completion time on the machines
and the amount of resources needed in the sequence, seeking to reduce this
consumption of resources (without significantly increasing the completion
time). By abuse of notation, we call this coefficient S(i,j,k) defined as:

S(i,j,k) = (Cmax + γs(i,j,k) ∗ γr(i,j,k))− (C∗(i,j,k) + θs(i,j,k) ∗ θr(i,j,k)),

where:402

• Cmax is the makespan in the original sequence.403

• C∗(i,j,k) is the completion time of the machine i after job j is inserted in404

position k.405

• γs(i,j,k) is the time needed for the setups that we no longer have to do406

(on the two machines) when we apply the external insertion.407

• γr(i,j,k) is the number of resources needed for the setups that we no408

longer have to do (on the two machines).409

• θs(i,j,k) is the time needed for the new setups (on the two machines).410

• θr(i,j,k) is the number of resources needed for the new setups (on the411

two machines).412

When all insertions are tested, we keep the insertion that yields the largest413

S(i,j,k). When an insertion is done, this operation is completed. Algorithm 8414

summarizes the external insertion process.415
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Algorithm 8 External Insertion.
Best Insertion ← 0
i′ ←Makespan Machine
foreach j ∈ i′ do

foreach i ∈M \ {i′} do
foreach k ∈ i do

Test the insertion of job j, in position k of machine i, and compute
S(i,j,k)
if S(i,j,k) > Best Swap then

Best Insertion ← S(i,j,k)
end

end
end

end
Do Best Insertion

6. Computational experiments416

In order to assess the efficiency and quality of the algorithms proposed in417

this paper, we test them on a randomly generated benchmark. The benchmark418

consists of two sets of small and large instances, and is based on the one419

used in Vallada and Ruiz (2011). Since those are instances for the problem420

without resources (UPMS), they are here completed by adding the resource421

needs (rijk) and the number of available resources (Rmax), as will be explained422

later. The set of small instances has 640 instances, with n ∈ {6, 8, 10, 12}423

and m ∈ {2, 3, 4, 5}. The set of large instances has 1000 instances with424

n ∈ {50, 100, 150, 200, 250} and m ∈ {10, 15, 20, 25, 30}. For both groups of425

instances, the setup times were generated by an integer uniform distribution426

in the ranges: {1−9}, {1−49}, {1−99} and {1−124}. The processing times427

for both groups of instances were generated by an integer uniform distribution428

between 1 and 99. By combining the different values of n, the different values429

of m and the four different distributions for the setup times, we have: 1)430

4x4x4 = 64 different configurations for the small instances. 2) 5x5x4 = 100431

different configurations for the large instances. Each such configuration has432

been randomly replicated 10 times, having in total 640 small instances and433

1000 large instances. Instances and complete results are available from the434

authors upon request.435
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Over these instances we have added the following input data. For small436

instances, the maximum number of available resources (Rmax) was generated437

by an integer uniform distribution between 1 and 2. For large instances,438

Rmax was generated by an integer uniform distribution between 3 and 4. For439

both instances, the resource needs rijk were generated by an integer uniform440

distribution between 1 and Rmax.441

The experiments were run on a Pentium core i7 PC running at 2.60 GHz442

and 8 GB of RAM memory under Windows 10 64 bit. The platform used for443

the codes is Microsoft Visual Studio 2013 and the methods were coded in C#444

under the same .NET Framework.445

In order to compare the proposed algorithms, the Relative Percentage446

Deviation (RPD) is computed for each algorithm and instance, according to447

the following expression:448

RPD = Cmax(alg)− Cmax(best)
Cmax(best) · 100,

where Cmax(alg) is the makespan of the solution obtained with the algorithm449

tested and Cmax(best) is the best known makespan for the instance.450

6.1. Heuristics in solutions solved to optimality451

TheMILP model was implemented using CPLEX 12.6. Only the instances452

with n = 6 were tested, as for larger values of n the MILP seldom returns453

the optimal solution.454

The solver was allowed to run for 1 hour. After this time, the solver was455

able to find the optimal solution for 140 of these 160 instances. In this section,456

the three proposed deterministic algorithms (Section 4.1) are compared with457

these optimal solutions.458

Table 1 shows the average RPD between the solutions obtained by each459

heuristic and the optimal solutions, on these instances. Columns “Av. t(ms)”460

show the average CPU times, in milliseconds, of each heuristic, for each value461

of m. Column “% optimal” shows the percentage of optimal solutions found462

by the MILP model, for each value of m. Column “Avg. t(s)” shows the463

average CPU times, in seconds, of the MILP model.464

We observe that the solutions obtained by the heuristics of the first465

approach yield lower RPD than the heuristic of the second approach. We466

underline that Heuristic 2 yields the lowest average RPD and seems to be467

the fastest, in this set of instances.468
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First Approach Second Approach
Heuristic 1 Heuristic 2 Heuristic 3 MILP Model

Size RPD Av. t(ms) RPD Av. t(ms) RPD Av. t(ms) % of optimal Avg. t(s)
6x2 13.43 5.33 16.09 4.21 12.56 5.45 52.5 1881.90
6x3 23.46 5.35 20.45 4.35 24.40 5.65 87.5 1069.10
6x4 28.02 5.28 14.61 4.01 29.51 5.61 100 716.61
6x5 27.61 5.21 8.00 4.15 28.47 5.41 77.5 1093.03
Average 23.13 5.29 14.79 4.18 23.74 5.53 79.37 1190.16

Table 1: Average Relative Percentage Deviation (RPD) in instances solved to optimality
for deterministic algorithms.

6.2. Heuristics in small instances469

We continue with the comparison among the three heuristics in all 640470

small instances. Table 2 shows the RPD and the average time in milliseconds471

of each algorithm, for each group of instances. We can see that Heuristic 2472

yields slightly better RPD than the other algorithms. We can also see that473

the CPU times of the three algorithms are similar.474

First Approach Second Approach
Heuristic 1 Heuristic 2 Heuristic 3

Size RPD t(ms) RPD t(ms) RPD t(ms)
6x2 8.06 5.32 9.58 5.41 8.67 6.01
6x3 12.67 5.35 8.57 5.49 13.85 7.01
6x4 18.86 5.21 6.07 5.21 20.20 7.13
6x5 18.30 5.23 1.46 4.45 19.03 6.91
8x2 3.13 5.42 9.32 5.53 3.96 7.13
8x3 9.56 6.3 11.71 5.62 9.75 7.34
8x4 17.03 6.32 10.08 5.74 15.47 7.41
8x5 16.05 5.92 11.04 5.69 19.62 7.03
10x2 5.26 6.52 7.42 6.58 5.40 7.29
10x3 8.45 6.6 5.85 6.9 8.29 7.35
10x4 11.31 6.65 12.02 6.88 12.94 7.37
10x5 13.34 5.98 8.92 5.59 13.28 7.01
12x2 5.18 9.01 8.93 9.45 3.58 8.56
12x3 8.03 8.89 10.88 9.23 6.51 9.12
12x4 8.03 7.9 13.85 8.53 6.93 9.23
12x5 12.88 7.84 18.98 7.86 9.74 8.03
Average 11.01 6.53 9.67 6.51 11.07 7.49

Table 2: Comparison between deterministic algorithms in small instances.
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In order to verify if such differences are maintained when the size of the475

instances increase, the results over the large set are analyzed in the next476

section.477

6.3. Heuristics in large instances478

In Table 3 the RPD and average CPU time in seconds, for the three479

heuristics are shown. As opposed to small instances, in the large instances we480

can see greater differences between the heuristics. It is specially interesting481

to note that Heuristic 1 and Heuristic 2 (which do not consider information482

about resources in the constructive phase) perform much worse than Heuristic483

3 (which does consider the information about the resources). We observe484

that the RPD of Heuristic 3 is less than 1%, while the other heuristics have485

RPD close to 40% and 70%, respectively. These large differences in the486

performances of the heuristics proposed are due to the fact that Heuristic 3487

considers the resources during the constructive phase, whereas Heuristics 1488

and 2 do not. These results also empirically prove that modifying algorithms489

so that resources are considered in the constructive phase, really improves490

the quality of the solutions returned. A reason for this is that the repairing491

phase is easier for Heuristic 3, as the solution obtained during the constructive492

phase is closer to being feasible.493
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First Approach Second Approach
Heuristic 1 Heuristic 2 Heuristic 3

Size RPD t(s) RPD t(s) RPD t(s)
50x10 39.84 0.010 49.11 0.009 2.39 0.014
50x15 38.51 0.009 57.37 0.007 0.19 0.010
50x20 38.52 0.012 73.44 0.010 0.12 0.021
50x25 38.98 0.013 67.99 0.008 0.52 0.023
50x30 39.30 0.018 55.02 0.009 0.58 0.020
100x10 37.53 0.042 42.85 0.012 0.78 0.045
100x15 38.08 0.039 65.05 0.014 0.12 0.047
100x20 37.43 0.041 75.89 0.020 0.00 0.052
100x25 38.15 0.040 74.99 0.019 0.00 0.049
100x30 37.72 0.043 80.11 0.020 0.00 0.050
150x10 37.37 0.081 57.64 0.070 0.01 0.091
150x15 37.54 0.080 68.98 0.075 0.00 0.089
150x20 37.87 0.078 76.29 0.071 0.00 0.084
150x25 38.35 0.083 75.82 0.070 0.00 0.094
150x30 38.21 0.089 78.88 0.078 0.00 0.124
200x10 39.07 0.120 53.04 0.090 0.07 0.353
200x15 40.44 0.140 70.78 0.099 0.00 0.362
200x20 41.20 0.138 74.14 0.109 0.00 0.342
200x25 42.18 0.233 81.30 0.098 0.00 0.456
200x30 42.23 0.288 85.32 0.094 0.00 0.488
250x10 42.95 0.399 59.09 0.204 0.03 0.501
250x15 43.48 0.322 73.25 0.284 0.00 0.531
250x20 44.27 0.343 80.12 0.293 0.00 0.553
250x25 44.34 0.464 82.01 0.286 0.00 0.609
250x30 45.61 0.589 83.12 0.400 0.00 0.700
Average 39.97 0.148 69.66 0.098 0.19 0.228

Table 3: Comparison between deterministic algorithms in large instances.

6.4. GRASP in instances solved to optimality494

In this section we show the results of the GRASP algorithms introduced in495

Section 5. These algorithms will stop when a time limit is reached as explained496

later. Table 4 shows the RPD of the three GRASP algorithms for different497

values of α and for different values of m in the instances solved to optimality.498

Column “t(s)” shows the time limits for all algorithms for each combination499

of m and n. We observe that for GRASP 1 and GRASP 2, the results are500
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better with larger α, while for GRASP 3, the results are better with smaller501

α. Note that there is a small difference between GRASP 2 and GRASP 3:502

GRASP 2 with α = 0.75 has an average RPD of 3.35%, while GRASP 3 with503

α = 0.25 has an average RPD of 2.77%. It seems that, as opposed to the504

heuristics, the GRASP in which the information about resources is considered505

in the constructive phase (GRASP 3) yields lower RPD, in the instances506

solved to optimality.507

First Approach Second Approach
GRASP 1 GRASP 2 GRASP 3

Size t(s) α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75
6x2 3 8.17 7.65 6.08 8.48 2.89 1.91 3.53 1.66 1.53
6x3 3 12.48 8.92 8.13 12.23 7.73 5.97 3.57 3.83 4.65
6x4 3 15.49 10.90 7.91 11.95 5.74 2.53 2.40 4.53 8.34
6x5 3 18.00 9.16 10.82 6.43 4.67 2.99 1.59 2.51 3.73
Av. RPD 13.53 9.16 8.24 9.77 5.26 3.35 2.77 3.13 4.56

Table 4: Average Relative Percentage Deviation (RPD) in instances solved to optimality
for GRASP algorithms.

6.5. GRASP in small instances508

Table 5 shows the average RPD for the three GRASP algorithms with509

different values of α in the small instances. We observe that the algorithms510

with the first approach (GRASP 1 and GRASP 2) perform better with higher511

value of α, while GRASP 3 performs better with lower value of α. In order to512

check if the differences in the average RPD are statistically significant, an513

analysis of variance (ANOVA), Montgomery (2012) is applied. We consider514

RPD as the response variable. Two factors are analyzed: ALGORITHM515

∈ {GRASP 1, GRASP 2, GRASP 3}, and ALPHA ∈ {0.25, 0.5, 0.75}. Figure516

3(a) shows the means plot with LSD intervals at the 95% confidence level517

for factor ALGORITHM. We observe that there are statistically significant518

differences between GRASP 1 and the other GRASP algorithms. However,519

there are no statistically significant differences (overlapped intervals) between520

GRASP 2 and GRASP 3, although the average RPD of GRASP 3 is lower.521

Figure 3(b) shows the interaction plot between the two factors considered.522

We observe that GRASP 3 performs better with lower α (less randomness),523

while the algorithms with the first approach perform better with larger α524

(more randomness).525
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First Approach Second Approach
GRASP 1 GRASP 2 GRASP 3

Size t(s) α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75
6x2 3 7.32 5.78 4.76 9.57 2.79 1.16 2.65 1.35 1.58
6x3 3 12.08 7.64 6.91 10.37 6.12 4.45 2.43 2.05 3.37
6x4 3 15.32 10.73 7.74 11.76 5.56 2.35 2.23 4.36 8.19
6x5 3 17.83 9.20 10.53 6.27 4.69 2.71 1.51 2.27 3.37
8x2 3 7.21 4.44 3.73 10.22 5.32 2.55 1.19 1.14 2.42
8x3 3 13.37 9.65 8.63 17.13 5.46 2.53 4.05 3.95 7.72
8x4 3 19.23 12.57 11.77 18.12 9.00 3.41 3.88 6.36 10.06
8x5 3 18.43 16.75 18.15 12.83 9.77 7.14 5.31 8.26 9.54
10x2 5 6.64 5.55 3.99 5.53 2.99 1.97 2.08 2.82 3.34
10x3 5 12.28 9.36 7.29 11.76 6.50 4.30 3.70 4.54 7.55
10x4 5 13.38 11.44 7.00 15.66 9.79 5.44 2.18 5.31 10.96
10x5 5 19.49 12.72 10.97 12.79 8.20 6.23 5.41 7.08 10.21
12x2 5 5.89 3.98 3.55 5.47 4.26 3.18 3.06 4.02 4.92
12x3 5 8.62 6.69 5.51 9.61 7.59 4.46 3.43 6.77 9.77
12x4 5 12.73 9.51 7.16 13.59 5.76 4.18 6.23 11.13 12.29
12x5 5 17.01 15.56 11.51 10.32 9.32 4.09 5.28 14.79 14.37
Av. RPD 12.93 9.47 8.07 11.31 6.44 3.76 3.41 5.39 7.48

Table 5: Average Relative Percentage Deviation (RPD) for GRASP algorithms in small
instances.

(a) Means Plot and LSD intervals. (b) Interaction Plot.

Figure 3: ANOVA in small instances.

6.6. Comparison between GRASP algorithms in large instances526

Regarding the large instances, Table 6 shows the results obtained by each527

GRASP algorithm for different values of α. Note that the CPU time t(s)528

increases with the size of the instance. Similarly as the small instances, the529

algorithms following the first approach (GRASP 1 and GRASP 2) perform530

better with higher value of α, while GRASP 3 performs better with lower531

value of α. Besides, in this group of instances, we observe large differences532

between the two approaches. GRASP 3 with α = 0.25 yields an average RPD533

of 0.52%, while the other GRASP algorithms yields an average RPD greater534

than 40%. As stated earlier, these large differences among the two approaches535
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may be because the second approach (GRASP 3) generates solutions closer536

to feasibility and the repairing mechanism modifies less the initial solution.537

As in the small instances group, an ANOVA is applied in order to validate538

if the differences are statistically significant with the same response variable539

and factors. Figure 4(a) shows the means plot with LSD intervals at the 95%540

confidence level for large instances and factor ALGORITHM. We confirm that541

the algorithm following the second approach (GRASP 3) yields significantly542

lower RPD than the algorithms following the first approach. As in small543

instances, in the interaction plot in Figure 4(b) we observe that GRASP 3544

performs better with lower α. Nevertheless, as opposed to the small instances,545

GRASP 1 performs better with lower α.546

First Approach Second Approach
GRASP 1 GRASP 2 GRASP 3

Size t(s) α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75 α = 0.25 α = 0.5 α = 0.75
50x10 10 16.81 21.67 32.81 21.15 21.14 19.19 2.87 8.78 19.81
50x15 10 37.09 44.62 50.67 32.22 36.33 34.03 1.33 9.65 25.15
50x20 10 37.12 47.70 65.06 36.33 40.71 39.99 0.64 14.34 28.14
50x25 10 43.06 56.78 78.76 34.55 33.88 36.85 0.00 18.66 34.77
50x30 10 32.54 57.67 88.57 22.30 28.58 19.71 3.57 17.89 40.12
100x10 20 31.10 28.46 42.27 25.50 27.23 31.10 0.55 9.47 25.10
100x15 20 45.36 45.29 65.65 38.23 40.61 45.36 0.21 11.18 26.71
100x20 20 52.56 51.37 76.33 50.75 48.52 52.56 0.00 13.88 29.33
100x25 20 54.66 56.08 86.27 53.03 54.03 54.66 0.18 13.53 30.69
100x30 20 57.46 55.90 90.54 50.56 48.12 57.46 0.72 13.74 34.33
150x10 30 19.85 26.15 32.20 29.06 27.26 30.31 0.23 7.21 18.99
150x15 30 34.90 42.65 49.82 44.09 43.83 45.04 0.34 8.52 21.87
150x20 30 41.71 48.01 57.41 51.76 51.74 57.31 0.69 9.18 24.49
150x25 30 42.26 51.79 62.05 55.45 51.44 59.72 0.31 12.59 27.20
150x30 30 40.46 50.12 62.34 57.66 53.36 55.72 0.07 11.09 27.03
200x10 40 20.29 27.01 33.98 26.67 26.22 28.80 0.35 8.03 22.11
200x15 40 35.46 42.55 55.23 39.99 41.22 44.24 0.17 8.96 27.18
200x20 40 37.34 44.51 56.87 44.89 44.70 46.88 0.05 9.37 28.73
200x25 40 41.78 50.75 63.60 50.28 48.61 51.46 0.06 11.11 32.67
200x30 40 46.51 57.51 74.97 56.40 58.54 58.47 0.17 11.71 37.18
250x10 50 22.32 27.67 38.89 28.10 28.44 30.20 0.03 7.89 24.13
250x15 50 35.97 43.54 55.64 39.79 39.98 43.21 0.11 9.32 31.28
250x20 50 39.93 51.05 66.01 48.06 48.69 50.41 0.11 11.20 38.97
250x25 50 42.85 51.80 70.78 50.88 51.93 52.52 0.08 12.32 42.76
250x30 50 43.88 54.82 77.56 55.84 55.88 59.00 0.21 13.38 51.41
Av. RPD 38.13 45.42 61.37 41.74 42.04 44.17 0.52 11.32 30.01

Table 6: Average Relative Percentage Deviation (RPD) for GRASP algorithms in large
instances.

28



(a) Means Plot and LSD intervals. (b) Interaction Plot.

Figure 4: ANOVA in large instances.

6.7. Effect of local search547

In order to verify that the local search phase contributes to the GRASP548

algorithms proposed, a sample of 100 large instances has been solved with549

each GRASP algorithm without the local search. More precisely, we select550

one instance of each possible configuration in the large set. For each such551

instance, we run each GRASP algorithm with the local search, and without552

the local search. In both cases, the maximum time allowed is as explained553

in Table 6. Table 7 shows the percentage difference between the solutions554

obtained by the algorithms with local search and the algorithms without local555

search. This difference is calculated for each GRASP algorithm and for each556

α value. We observe that, since all values are positive, the algorithms with557

local search find better solutions. Moreover, to verify if there are significant558

differences between the solutions, an ANOVA was implemented, obtaining559

statistically significant differences.560

α = 0.25 α = 0.5 α = 0.75
GRASP 1 4.70 4.85 3.21
GRASP 2 6.56 5.17 5.10
GRASP 3 6.88 3.68 2.38

Table 7: Differences (in %) between solutions with local search and solutions without local
search.

7. Conclusions and future work561

In this paper, we reduce the gap between academic research and real562

scheduling in parallel machine problems. We have designed efficient smart563

tools to solve the unrelated parallel machine scheduling problem with setup564
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times and additional resources in the setups (UPMSR-S) with makespan565

minimization. Therefore, we have proposed a mathematical model and three566

metaheuristics for the UPMSR-S. The first two metaheuristics ignore the567

information about the resource constraints during the constructive phase568

(first approach), and then, the solution obtained is evaluated and repaired (if569

the resource constraints are not satisfied) with a repairing mechanism. The570

third metaheuristic takes into account the information about the resource571

constraints during the constructive phase (second approach) and, as with the572

first approach, the solution obtained is evaluated and repaired if necessary,573

with the same repairing mechanism. A local search algorithm consisting of574

three swap and insertion operations is also proposed to try to improve the575

initial solution. An exhaustive comparative evaluation between the proposed576

algorithms is carried out under an extensive benchmark of small and large577

instances. After a deep analysis, we conclude that there are no statistically578

significant difference between the best metaheuristic of the first approach579

(GRASP 2) and the metaheuristic of the second approach (GRASP 3) in580

small instances. In large instances, the differences between the two approaches581

are larger and the second approach metaheuristic is much better than the582

other metaheuristics. This confirms that algorithms in which the resource583

constraints are considered in the constructive phase, are expected to yield584

better results. Besides, we also proved empirically that the local search phase585

significantly contributes to all GARSP algorithms proposed.586

We have empirically proved that, if the scarce resources are really bounding587

(which happens in our large size instances), including knowledge of the problem588

in the constructive phase significantly improves the algorithm. However, in589

instances in which the resources are not as limiting (which happens in our small590

size instances), including information about the resources in the constructive591

phase does not significantly improve the algorithm’s performance. Then, the592

main strengths of our method rely on its capability for finding good solutions,593

with short CPU time, to large instances of the proposed problem, when the594

scarce resources are really binding. Note that, this type of instances is more595

common in manufacturing environments.596

Future research on this topic will focus on different lines. First of all,597

we want to address the problem from a bi-objective perspective, in which598

both the makespan and the maximum number of resources are minimized599

simultaneously. Secondly, another future line is the stochastic version of the600

problem here introduced. In particular, setup times and processing times could601

be considered as non deterministic parameters, to provide a more realistic602
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approach for instances in which high variability appears in one or both of these603

family of parameters. Therefore, we believe that simheuristic algorithms are604

a good strategy in this complex problem (see Juan et al. (2014)). Thirdly, a605

game theory analysis would be useful when considering situations in which the606

different resources are owned by different agents, with conflicting objectives.607

Lastly, it would also be interesting to extend this research to other scheduling608

problems such as the flowshop.609
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