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{d.fuentes, david.casillas, roberto.martin}@edu.uah.es
{daniel.pizarro, cristina.losada,javier.maciasguarasa}@uah.es

June 2, 2020

Abstract

In this paper we propose a method based on deep learning that detects multiple
people from a single overhead depth image with high reliability. Our neural net-
work, called DPDnet, is based on two fully-convolutional encoder-decoder neural
blocks based on residual layers. The main block takes a depth image as input and
generates a pixel-wise confidence map, where each detected person in the image
is represented by a Gaussian-like distribution. The refinement block combines the
depth image and the output from the main block, to refine the confidence map.
Both blocks are simultaneously trained end-to-end using depth images and head
position labels.

The experimental work shows that DPDnet outperforms state-of-the-art meth-
ods, with accuracies greater than 99% in three different publicly available datasets,
without retraining not fine-tuning. In addition, the computational complexity of
our proposal is independent of the number of people in the scene and runs in real
time using conventional GPUs.

1 Introduction and State of the Art
People detection and tracking have attracted a growing interest of the scientific com-
munity in recent years because of its applications in multiple areas such as video-
surveillance, access control or human behavior analysis. Most of these applications
require robust and non-invasive systems (i.e without adding turnstiles or other contact
systems). Consequently, there have been an increasing number of works in the litera-
ture that address people detection and tracking [29, 6, 42, 37, 17, 14, 40] using cameras
and other non-invasive sensors. Despite the large amount of existing works address-
ing this task, it still presents open challenges [41] in terms of accuracy, stability and
computational complexity, and specially in highly populated scenes.
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The first proposed works in non-invasive people detection were based on the use
of RGB cameras. To name a few, [31] proposed a system based on learning person
appearance models, whereas [2] used hierarchical Gaussian Process Latent Variable
Models (hGPLVM) for modeling people. Other approaches were based on face detec-
tion [10] or interest point classification [20]. In recent years, improvements in tech-
nology and the availability of large annotated image datasets such as Imagenet [23]
have allowed Deep Neural Networks (DNNs) to become the state-of-the-art solutions
for tasks such as object detection [33], segmentation [8] and classification [19] in RGB
images. DNNs have also been proposed for the specific task of people detection. In
particular, [30] proposes a new DNN architecture that jointly performs feature ex-
traction, deformation handling, occlusion handling and classification. In [39] they
propose a Convolutional Neural Network (CNN) as a feature extractor followed by a
proposal selection network. In [14], they combine a novel DNN model that jointly op-
timizes pedestrian detection with semantic tasks, including both pedestrian and scene
attributes. Finally, [44] uses a novel physical radius-depth (PRD) to detect human can-
didates, followed by a CNN for human feature extraction. These proposals present
good results in controlled conditions, but all of them have problems in scenarios with
a high amount of clutter.

To reduce the effect of occlusions and to improve detection accuracy,oa some works
propose the fusion of RGB and depth data [25, 28, 45, 34, 8]. Other works propose to
place cameras in overhead configurations [3, 7, 12, 13].

A key factor in some applications is to develop detection methods that also preserve
privacy, preventing anyone from using the system to find out the identity of each person
in the scene. Taking this factor into account, in the last few years several works have
appeared that detect people by using sensors and camera configurations that do not
easily allow to identify any person being detected. For example, [9] propose the use of
a low resolution camera that is located far away from the users. This setup limits the
applicability of the proposed method to particular scenarios and makes the system weak
against occlusions. Other works employ depth sensors for people detection, either
based on Time-of-Flight (ToF) [5, 35, 36, 21] or structured light [43, 16, 32, 46, 13, 38]
technologies. All these works use an overhead camera to reduce the occlusions.

Some of these methods are based on finding distinctive maxima of the depth im-
age [5, 43], or a filtered depth image using the normalized Mexican Hat Wavelet fil-
ter [35, 36]. However, they usually fail to separate clusters of people that are close to
each other in the scene or produce false detections when parts of the body, other than
the head, are closer to the camera. Moreover, the proposals by [43], and [35, 36] do
not include a classification stage, so that they are not able to discriminate people from
other objects in the scene.

In order to reduce false positives, other works include a classification stage that
allows discriminating between people and other elements in the scene. In particu-
lar, [16, 38, 46, 26] use shape descriptors that encode the morphology of the human
head and shoulders as seen in the depth image. These proposals are able to discriminate
between people and other elements in the scene, but in some of them, their detection
rates significantly decrease if people are close to each other.

In this paper, we propose a method based on DNNs, called DPDnet, for robust and
reliable detection of multiple people from depth images acquired using an overhead
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depth camera, as shown in Figure 1. The proposed neural network is trained end-to-
end using depth images and the annotated position for each person in the scene. Once
trained, DPDnet is able to discriminate between people and other elements in the
scene, even if the test images are acquired using a different sensor from the one used
during training, or if it is located at a different height.

In addition to the evaluation done on a specifically recorded and labeled database [27],
our method has been tested using two widely used depth image datasets [43, 24] with-
out fine tuning or retraining, significantly improving the results of previous works in
the literature. DPDnet runs in real time using conventional GPUs, and its computa-
tional requirements do not depend on the number of people in the scene. To the best of
the authors knowledge, there are no other works in the literature able to detect people
in depth images with comparable accuracy and reliability.

(a) Camera location above sensed area.

(b) Example of recorded frame in sensed area.

Figure 1: Scheme of camera location above sensed area and example of recorded frame

The structure of the paper is described as follows: section 2 describes the person
detection algorithm, section 3 includes the experimental setup, results and discussion,
and section 4 contains the main conclusions and some ideas for future work.

2 DPDnet People Detector

2.1 Problem Formulation
We propose the DPDnet neural network to detect multiple people from a single depth
image. The output consists of a multi-modal confidence map, the same size as the input
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image, that jointly codifies the detection of multiple people in scene (see Figure 2).

Convolutional Neural Network

Output

Confidence map

 

Input

Depth map

 

Figure 2: Depth input image and output confidence map.
.

The confidence map assigns a 2D Gaussian distribution centered in each detected
person. We use the centroid of the head in image coordinates as the localization refer-
ence. The 2D position of each person can be easily obtained from the confidence map
by detecting its local maxima.

The advantages of this strategy are twofold: first, learning the confidence map is a
well defined process to detect multiple hypothesis as opposed to using other parametriza-
tions (e.g multiple 2D coordinate vectors) which can lead to ambiguities in the regres-
sion function. Second, it makes computational complexity to be independent from the
number of people in the scene, assuming that the time used for extracting multiple
detection hypotheses from the confidence map is mostly negligible.

2.2 DPDnet Network Architecture
Figure 3 illustrates our approach to detect people from a single depth image.

Our DPDnet neural network consists of two blocks: the main block and the refine-
ment block. Both blocks use the encoder-decoder architecture inspired in the Segnet [4]
model, originally proposed in semantic segmentation, and use the residual layers pro-
posed in the ResNet [18] model.

The main block takes a single depth image as input, and outputs a confident map.
The refinement block takes as inputs the input depth image along with the confidence
map obtained from the main block, and outputs a refined confidence map. In Section 3,
we show that the refinement block significantly outperforms the results obtained by the
main block alone. Similar refinement blocks have been proposed for other tasks, such
as in monocular reconstruction methods [?].

The structure of the main block is detailed in Table 3. It takes 212 × 256 depth
images as input, and uses separable convolutional layers based on the Xception [11]
model. Separable convolutions are faster than conventional convolutions, while achiev-
ing similar performance. In addition to this, we use ReLU activations [1] and batch
normalization. To build the encoder-decoder core of the main block, we use several
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Figure 3: The DPDnet architecture divided into the main block and the refinement
block. Figure shows the general encoder-decoder structure in both blocks.

.

units of residual blocks, similar to those proposed in the ResNet [18] model. Encod-
ing blocks downsample the spatial dimensions by a factor of two, and decoding blocks
use upscaling layers to increase the spatial dimensions by the same factor. Their basic
architecture is described in Figure 4 and Tables 1 and 2.

Finally, the last block of the CNN and the cropping layers adapt the output of the
last decoding block to the output size of the confidence map (212× 256), which is the
same size as the input image. Table 3 summarizes all layers that appear in the main
block.

The refinement stage is a reduced version of the main block with two encoding and
decoding blocks. It is thus more shallow than the main block. The refinement block
takes as inputs the input depth image and the confidence map computed from the main
block, and outputs a new “refined” confidence map. Table 4 summarizes all the layers
and blocks used in the refinement stage.

In addition to the DPDnet architecture described above, we have adapted the same
model to work with images half the resolution of the original ones (106× 128), seam-
lessly producing downscaled confident maps. We will refer to this reduced model as
DPDnetfast in section 3. The reduction of input and output size allows low cost GPUs
to run our model with a very small impact in terms of accuracy.
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Table 1: Encoding Block

Encoding Block (filters=(a,b,c)),kernel size=k
Layer Parameters Output Size
Input - (Width, Height, Depth)

Convolution (Main Branch)
kernel=(1, 1)
strides=(2, 2)

filters=a
(Width/2, Height/2, a)

Batch Normalization (Main Branch) -
Activation (Main Branch) ReLU

Convolution (Main Branch)
kernel=(k, k)
strides=(1, 1)

filters=b
(Width/2, Height/2, b)

Batch Normalization (Main Branch) -
Activation (Main Branch) ReLU

Convolution (Main Branch)
kernel=(1, 1)
strides=(1, 1)

filters=c
(Width/2, Height/2, c)

Batch Normalization (Main Branch) -

Convolution (Shortcut)
kernel=(1, 1)
strides=(2, 2)

filters=c
(Width/2, Height/2, c)

Batch Normalization (Shortcut) -
Add (Main Branch+Shortcut) - (Width/2, Height/2, a)
Activation (Main Branch+Shortcut) ReLU
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Table 2: Decoding Block

Decoding Block (filters=(a,b,c)),kernel size=k
Layer Parameters Output Size
Input - (Width, Height, Depth)
Upsampling (Main Branch) size=(2,2) (2*Width,2*Height,Depth)

Convolution (Main Branch)
kernel=(1, 1)
strides=(1, 1)

filters=a
(Width/2, Height/2, a)

Batch Normalization (Main Branch) -
Activation (Main Branch) ReLU

Convolution (Main Branch)
kernel=(k, k)
strides=(1, 1)

filters=b
(Width/2, Height/2, b)

Batch Normalization (Main Branch) -
Activation (Main Branch) ReLU

Convolution (Main Branch)
kernel=(1, 1)
strides=(1, 1)

filters=c
(Width/2, Height/2, c)

Batch Normalization (Main Branch) -
Upsampling (Shortcut) size=(2,2) (2*Width,2*Height,Depth)

Convolution (Shortcut)
kernel=(1, 1)
strides=(1, 1)

filters=c
(Width/2, Height/2, c)

Batch Normalization (Shortcut) -
Add (Main Branch+Shortcut) - (Width/2, Height/2, a)
Activation (Main Branch+Shortcut) ReLU
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Table 3: Main Stage. In Encoding and Decoding Blocks, a, b and c represents the
number of filters of the intermediate convolutional layers in the branches.

Main Block
Layer Output Size Parameters

Input 212x256x1 -
Convolution 106x128x64 kernel=(7, 7) / strides=(2, 2)
Batch Normalization -
Activation ReLU
Max Pooling 35x42x64 size=(3, 3)

Encoding Conv. Block 35x42x256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

Encoding Conv. Block 18x21x512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

Encoding Conv. Block 9x11x1024
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=1024)

Decoding Separable Conv. Block 9x11x256
kernel=(3, 3) / strides=(1, 1)

(a=1024, b=1024, c=256)

Decoding Separable Conv. Block 18x22x128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

Decoding Separable Conv. Block 36x44x64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)
Cropping 36x43x64 cropping=[(2, 2) (1, 1)]
Up Sampling 108x129x64 size=(3, 3)
Convolution 216x258x64 kernel=(7, 7) / strides=(2, 2)
Cropping 212x256x64 cropping=[(2, 2) (1, 1)]
Batch Normalization -
Activation ReLU
Convolution 212x256x1 kernel=(3, 3) / strides=(1, 1)
Activation Sigmoid
Output 1 212x256x1 -
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Table 4: Refinement Stage

Refinement Block
Layer Output Size Parameters

Output 1 + Input 212x256x1 -
Convolution 106x128x64 kernel=(7, 7) / strides=(2, 2)
Batch Normalization -
Activation ReLU
Max Pooling 35x42x64 size=(3, 3)

Encoding Conv. Block 35x42x256
kernel=(3, 3) / strides=(1, 1)

(a=64, b=64, c=256)

Encoding Conv. Block 18x21x512
kernel=(3, 3) / strides=(2, 2)

(a=128, b=128, c=512)

Decoding Conv. Block 36x42x128
kernel=(3, 3) / strides=(2, 2)

(a=512, b=512, c=128)

Decoding Conv. Block 72x84x64
kernel=(3, 3) / strides=(2, 2)

(a=256, b=256, c=64)
Zero Padding 72x86x64 padding=(0, 1)
Up Sampling 216x258x64 size=(3, 3)
Cropping 212x256x64 cropping=[(2, 2) (1, 1)]
Convolution 212x256x1 kernel=(3, 3) / strides=(1, 1)
Activation Sigmoid
Output 2 212x256x1 -
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Figure 4: DPDnet decoding and encoding block.

2.3 Training procedure
We denote by pi the input depth image and by qi the target confident map, where
pi, qi ∈ R212×256. We assume that both pi and qi are normalized in the interval [0, 1].
The target confidence map qi is generated by a sum of two-dimensional Gaussian dis-
tributions with covariance matrix P = σ2I2×2 and centered around the labeled position
of each person in the scene. We use σ = 6 pixels in all our experiments.

The main and refinement blocks of the DPDnet are defined with the functions
Tm(pi, θm) and Tr(pi, qi, θr) respectively. All trainable parameters of the main block
are defined with vector θm, and similarly with θr for the refinement block. When refer-
ring to all trainable parameters of the entire DPDnet model we use their concatenation
θ = (θm, θr).

The complete DPDnet function T (pi, θ) is obtained by composition of Tm and Tr:

T (pi, θ) = Tr (pi, Tm(pi, θm), θr) (1)

We train our network using a set of corresponding depth images and confidence
maps {(pi, qi)}i=1,...,N . The following loss function is used:

L(θ) = 1

N

N∑
i=1

‖T (pi, θ)− qi‖2 + λ
1

N

N∑
i=1

‖Tm(pi, θm)− qi‖2, (2)

where λ is a hyper-parameter that weights the importance of the two terms in the loss
function and is set to λ = 1 in our experiments. Note that the second term of equation
(2) imposes the main block to be as close as possible to the target confidence map. This
forces the refinement block to improve the output of the main block.

By minimizing equation (2), we train the entire DPDnet model end-to-end in a
single step without separating the main block and refinement block.

In our experiments, we train the network for 50 epochs and use a validation set
to select the best model. We employ the Adam optimizer [22] with 0.001 as initial
learning rate. This optimizer has been chosen because of its adaptive capabilities in

10



terms of learning rate. The great advantage of Adam is the fact that it starts from
an initial learning rate set by the user and then uses the first and second moments of
the gradient to adapt the learning rate to the situation stipulated by Adam in the loss
function. This provides unrivaled speed and robustness compared to other optimizers,
making Adam a good choice for the problem proposed here.

3 Experimental Work

3.1 Datasets
In order to provide a wide range of evaluation conditions, we have used three different
databases, that will be described next. Figure 5 provides some sample frames to give
an idea on the style and quality of the different datasets.

3.1.1 GOTPD1 database

In this work, we have used part of the GOTPD1 database (available at [27] and GOTPD1,
that was recorded with a Kinect R© v2 device located at a height of 3.4m. The recordings
covered a broad variety of conditions, with scenarios comprising single and multiple
people, single and multiple non-people (such as chairs), people with and without ac-
cessories (hats, caps), people with different complexity, height, hair color, and hair
configurations, people actively moving and performing additional actions (such as us-
ing their mobile phones, moving their fists up and down, moving their arms, etc.).

The GOTPD1 data was originally split in two subsets, one for training and the other
for testing, with the configuration described in [26]. However, for this work, and given
the strict training data requirements of deep learning approaches, we will be using the
full GOTPD1 dataset for training purposes, and we recorded 23 additional sequences
to allow for a proper evaluation effort. In this manner, the training and testing subsets
are fully independent, as people and conditions differ between training and testing
recordings.

Table 5 and Table 6 show the details of the training and testing subsets, respectively.
#Frames refers to the number of frames in the recorded sequences, while #Positives
refers to the number of all the heads over all the frames (in our recordings we used 39
different people). The database contains sequences in which the users were instructed
on how to move under the camera (to allow for proper coverage of the recording area),
and sequences where people moved freely (to allow for a more natural behavior)1.

This dataset (composed by the original GOTPD1 and the additional 23 recorded
sequences), will be referred to as GOTPD1+ in the tables included in Section 3.4. The
first row of figure 5 shows two sample frames from this dataset.

3.1.2 MIVIA People Counting Dataset

The MIVIA people counting dataset (available at [24]) has been developed by the
MIVIA Research Lab in the University of Palermo and was first described and used

1This is fully detailed in the documentation distributed with the database at [27] and GOTPD1.
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Table 5: GOTPD1+ Training subset details.

#Sequences #Frames #Positives Description
S0001 through S0022,
S0102,S0110,S0123,
S0130,S0136,S0142

26853 14381 Single people sequences

S0023 through S0026 7138 2416 Two people sequences
S0027 through S0029,
S0031 through S0034,

S0152, S0153
6526 18106 Multiple people sequences

S0035,
S0038 through S0040 2323 1458

Sequences with chairs and
people balancing fists facing up

Totals 42840 36361

Table 6: GOTPD1+ testing subset details.

Sequence IDs #Samples #Positives Description
S041, S0101,

S0131 through S0135, S143 2742 2391 Single people sequences

S0144 through S0146 1888 2865 Two people sequences
S0030, S0147 through S0151,

S0154 through 157 4516 14837 Multiple people sequences

S0036 through S0037 1789 0 Sequences with chairs
Totals 11375 21403
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(a) Sample frames from the GOTPD1+ dataset.

(b) Sample frames from the MIVIA dataset.

(c) Sample frames from the Zhang2012 dataset.

Figure 5: Sample frames from the databases used (gray coded depth).

in [13]. It is mainly aimed at evaluating people flow density in the sensed environment,
but we will use it for people counting and tracking purposes.

The MIVIA dataset includes RGB and depth data captured with a Kinect R© device
located in an overhead position at a height of 3.20m. The recordings have been cap-

13



Table 7: MIVIA testing subset details.

Sequence IDs #Frames #Positives Description
DIS1 DIS2 7692 3601 Single people sequences

DIS3 DIS4 DIS5 10259 5315 Two people sequences
DIG1 DIG2 DIG3 12222 8780 Multiple people sequences

Totals 30173 17696

Table 8: Zhang2012 testing subset details.

Sequence IDs #Positives #Positives Description
dataset1 2384 4527 Multiple people sequences
dataset2 1500 1553 Multiple people sequences
Totals 3884 6080

tured in indoor and outdoor conditions, and for isolated and group transits. From the
34 available sequences, we will be using 8 of them, all that correspond to indoor con-
ditions for both the single people and multiple people transits. The recordings include
people walking with bags and other big objects, and their details are shown in Figure 7.

In our experiments we will use the depth streams with a resolution of 640× 480.
Because of the different sizes, it will be necessary to resize the depth streams used in
this database to the sizes that DPDnet can use.

This dataset will be referred to as MIVIA in the tables included in Section 3.4.
Middle row of figure 5 shows two sample frames from this dataset.

3.1.3 Zhang 2012 database

The Zhang 2012 database [43] consists of two sequences (dataset1 and dataset2)
recorded with a Kinect R© device also located in an overhead position, generating depth
data with a resolution of 320 × 240 pixels. Both sequences include multiple people
moving under the camera, and their details are shown in Table 8. The recordings in-
clude groups of people walking closely to each other, people walking freely and people
with bags and other big objects.

The data, kindly provided to us by its authors, is processed with an ad-hoc back-
ground subtraction strategy (described in [43]), that induces some artifacts in the depth
images.

This dataset will be referred to as Zhang2012 in the tables included in section 3.4.
Last row of figure 5 shows two sample frames from this dataset.

3.2 Experimental setup
In all the experiments carried out, we use the three different datasets described in sec-
tion 3.1.
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We compare the performance of our proposals DPDnet and DPDnetfast with
other strategies described in the literature that use an overhead ToF camera in a people
detection/tracking/counting task. The following state-of-the-art methods are used for
comparison:

• WaterFilling [43]: this method is based on the water filling algorithm and
the original source code was kindly provided to us by its authors. To run this
method in the GOTPD1+ dataset we scaled the images to 640× 480 pixels.

• SLICEPCA [26]: this method uses feature vectors extracted from the depth im-
age and a generative PCA model of these vectors to classify detections. In our
experiments, the PCA model is trained using the GOTPD1 dataset. In this regard,
we train two categories: people and non-people.

• SLICESVM [15]: this method is similar to SLICEPCA, but uses a SVM classi-
fier instead of PCA. In our experiments, the SVM model is trained again using
the full GOTPD1 dataset.

• MexicanHat [35, 36]: this method is based on the normalized Mexican Hat
Wavelet and requires the detection and removal of the floor plane. It does not
require training data though.

It is important to note that in the comparison, we did not use a tracking module for
any of the methods. Our objective is to provide a fair comparison on their discrimina-
tion capabilities without other improvements. The only input frame manipulation we
did was that required to scale the frame size to fit in the input stage conditions of the
evaluated algorithms.

3.3 Evaluation Metrics
To provide a detailed view on the performance on the evaluated algorithms, we will cal-
culate the main standard metrics in a detection problem, namely: Precision, Recall,
F1score, False Negative Rate (FNR), False Positive Rate (FPR), and overall error
ERR (calculated as ERR = FNR+ FPR)

We will also calculate confidence intervals for the F1score and ERR metrics, for
a confidence value of 95%, to assess the statistical significance of the results when
comparing different strategies.

3.4 Results and Discussion
In this section we will first provide detailed results for all the algorithms described in
Section 3.2 applied to each of the datasets described in Section 3.1.

Tables 9, 10 and 11 include the results for the GOTPD1+,MIVIA and Zhang2012
datasets respectively, including the evaluation metrics described in section 3.3 for all
the evaluated algorithms. To visually aid in the analysis of the results, we have added
a green background to those table cells that correspond to the best results across all
algorithms for each condition.
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Table 9: Detailed Results using all the tested algorithms on the GOTPD1+ dataset.
All values in % (cells in green background correspond to the best results across all
algorithms for each condition).

DB Precision Recall F1score FNR FPR ERR

MexicanHat

Single person 99.87 99.34 99.60± 0.23 0.66 0.16 0.44± 0.25
Two people 99.63 49.72 66.34± 1.91 50.28 0.41 34.84± 1.93

More than two people 99.86 37.84 54.88± 0.87 62.16 0.47 55.92± 0.87
Chairs. no people 21.97 21.97± 1.92

Totals 94.24 45.63 61.48± 0.68 54.37 8.06 42.48± 0.69

SLICESVM

Single person* 98.23 99.87 99.04± 0.36 0.13 2.18 1.06± 0.38
Two people* 93.17 100.00 96.46± 0.75 0.00 16.25 5.05± 0.89

More than two people* 99.93 99.26 99.59± 0.11 0.74 0.63 0.73± 0.15
Chairs. no people* 35.33 35.33± 2.21

Totals* 96.71 99.40 98.04± 0.19 0.60 9.70 2.95± 0.24

SLICEPCA

Single person 98.23 99.87 99.04± 0.36 0.13 2.18 1.06± 0.38
Two people 94.10 100.00 96.96± 0.70 0.00 13.91 4.32± 0.82

More than two people 99.93 99.20 99.56± 0.12 0.80 0.63 0.79± 0.15
Chairs. no people 0.00 0.00± 0.00

Totals 99.06 99.36 99.21± 0.12 0.64 2.70 1.18± 0.15

WaterFilling

Single person 98.18 98.63 98.40± 0.47 1.37 2.31 1.79± 0.50
Two people 99.26 100.00 99.63± 0.25 0.00 1.66 0.51± 0.29

More than two people 99.90 99.81 99.85± 0.07 0.19 0.86 0.26± 0.09
Chairs. no people 22.97 22.97± 1.95

Totals 96.90 99.70 98.28± 0.18 0.30 9.24 2.59± 0.22

DPDnetfast

Single person 100.00 99.67 99.84± 0.15 0.33 0.00 0.18± 0.16
Two people 99.88 100.00 99.94± 0.10 0.00 0.28 0.09± 0.12

More than two people 99.92 99.90 99.91± 0.05 0.10 0.71 0.16± 0.07
Chairs. no people 0.39 0.39± 0.29

Totals 99.88 99.89 99.88± 0.05 0.11 0.36 0.17± 0.06

DPDnet

Single person 99.93 99.87 99.90± 0.12 0.13 0.08 0.11± 0.12
Two people 100.00 99.94 99.97± 0.07 0.06 0.00 0.04± 0.08

More than two people 100.00 99.71 99.86± 0.07 0.29 0.00 0.26± 0.09
Chairs. no people 0.00 0.00± 0.00

Totals 99.99 99.75 99.87± 0.05 0.25 0.02 0.19± 0.06
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3.4.1 Results for the GOTPD1+ database

Regarding the results for the GOTPD1+ database (Table 9), it is clearly seen that the
DPDnet and DPDnetfast solutions are the best ones, and this is specially signifi-
cant for sequences including more than two people. Despite this, SLICEPCA and
SLICESVM also obtain top results for the Recall and FNR rates, for the sequences
with one and two people. This happens at the cost of significantly increase the FPR
rates, which is the reason why these methods finally got worse performance in the
F1score and ERR metrics. The WaterFilling algorithm has also top performance
for the sequences with two people, but also with higher FPR rates. The MexicanHat
algorithm is clearly the worst one, as has been already proved in previous works.

Despite the good results of SLICESVM and WaterFilling, their robustness
to sequences without people (just chairs) is less than that of DPDnet, SLICEPCA

and DPDnetfast. In the case of SLICESVM , this bad performance could be due to
the class modeling carried out, and for the WaterFilling algorithm, it is clearly
due to the absence of an explicit discrimination procedure, which generates a higher
number of false positives. The results obtained with the SLICEPCA method in the
chair sequences are similar or better than those obtained with our CNN based proposals,
but we must bear in mind that the SLICEPCA method requires a calibration process to
know the intrinsic and extrinsic parameters of the sensor.

It is also worth mentioning that the DNN based methods are undoubtedly the best
when considering the FPR rates, showing a very good discrimination capability.

Finally, when comparing DPDnet and DPDnetfast, a singular effect can be ob-
served: the FNR values for DPDnetfast are better than those of DPDnet, while the
FPR values of DPDnet are better than those of DPDnetfast. This can be explained
by the reduction in the image resolution, since this reduction implies an interpolation
that allows to slightly filter the noise and artifacts in the input image. This can lead the
fast version to have an easier job in discriminating negatives, while in the case of the
conventional version, the availability of the full image information allows for a better
discrimination of actual people present in the scene.

3.4.2 Results for the MIVIA database

Regarding the results for the MIVIA database (Table 10), we first have to stress and
remind the fact that no training nor adaptation has been done for this new dataset.

Again, the best results are found in the CNN-based methods (which imply the use of
a model trained on a different dataset), and (in specific metrics) in the WaterFilling
algorithm (that does not need any training procedure).

The SLICEPCA and SLICESVM methods exhibit a relevant performance drop
that can be explained by their higher sensitivity to the mismatch in the recording con-
ditions as compared with those of the training material used.

The better performance of the WaterFilling algorithm in theRecall and FNR
rates is again achieved at the cost of increasing the FPR rates, which finally translates
to overall lower F1score and ERR metrics.

As in the case of GOTPD1+, the MexicanHat method is the worst of all in all
metrics.
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Table 10: Detailed Results using all the tested algorithms on the MIVIA dataset. All
values in % (cells in green background correspond to the best results across all algo-
rithms for each condition).

DB Precision Recall F1score FNR FPR ERR

MexicanHat

Single person 93.76 92.66 93.21± 0.56 7.34 2.94 4.36± 0.46
Two people 88.61 86.64 87.61± 0.64 13.36 6.21 8.77± 0.55

More than two people 93.73 53.67 68.26± 0.76 46.33 2.65 21.21± 0.67
Totals 91.81 71.40 80.33± 0.43 28.60 3.89 13.27± 0.37

SLICESVM

Single person* 92.92 93.90 93.41± 0.55 6.10 3.39 4.26± 0.45
Two people* 87.75 87.97 87.86± 0.63 12.03 6.85 8.70± 0.55

More than two people* 91.85 94.11 92.96± 0.42 5.89 6.13 6.03± 0.39
Totals* 90.85 92.22 91.53± 0.30 7.78 5.66 6.46± 0.27

SLICEPCA

Single person* 93.30 93.90 93.67± 0.55 6.10 3.20 4.13± 0.44
Two people* 87.97 87.97 87.97± 0.63 12.03 6.71 8.62± 0.54

More than two people* 92.91 93.95 93.43± 0.40 6.05 5.25 5.59± 0.38
Totals* 91.52 92.14 91.83± 0.30 7.86 5.20 6.20± 0.26

WaterFilling

Single person 95.20 98.96 97.04± 0.38 1.04 2.41 1.96± 0.31
Two people 96.67 99.84 98.23± 0.26 0.16 1.96 1.31± 0.22

More than two people 91.29 98.53 94.77± 0.37 1.47 6.81 4.57± 0.34
Totals 93.68 99.02 96.27± 0.21 0.98 4.08 2.91± 0.18

DPDnetfast

Single person 99.71 97.41 98.55± 0.27 2.59 0.14 0.94± 0.22
Two people 99.54 99.09 99.32± 0.16 0.91 0.26 0.50± 0.14

More than two people 99.24 96.62 97.91± 0.23 3.38 0.53 1.72± 0.21
Totals 99.43 97.54 98.47± 0.13 2.46 0.34 1.14± 0.12

DPDnet

Single person 100.00 98.56 99.27± 0.19 1.44 0.00 0.47± 0.15
Two people 99.81 99.05 99.43± 0.15 0.95 0.11 0.41± 0.12

More than two people 99.23 98.14 98.68± 0.19 1.86 0.54 1.09± 0.17
Totals 99.57 98.50 99.03± 0.11 1.50 0.26 0.72± 0.09

Table 11: Detailed Results using all the tested algorithms on the Zhang2012 dataset.
All values in % (cells in green background correspond to the best results across all
algorithms for each condition).

DB Precision Recall F1score FNR FPR ERR

MexicanHat
Dataset1 40.52 24.51 30.54± 1.51 75.49 410.76 102.49±−
Dataset2 26.72 21.02 23.53± 2.02 78.98 86.32 81.92± 1.83

Totals 36.56 23.68 28.74± 1.22 76.32 182.85 95.87± 0.54

SLICESVM

Dataset1* 82.92 85.77 84.32± 1.19 14.32 226.82 29.60± 1.49
Dataset2* 59.56 59.28 59.42± 2.33 40.72 64.38 49.82± 2.37

Totals* 77.50 79.44 78.46± 1.10 20.56 110.57 36.09± 1.29

SLICEPCA

Dataset1* 94.31 97.81 96.03± 0.64 2.19 67.60 7.44± 0.86
Dataset2* 94.48 99.30 96.83± 0.83 0.70 8.36 3.84± 0.92

Totals* 94.35 98.16 96.22± 0.52 1.84 25.69 6.28± 0.66

WaterFilling
Dataset1 95.40 98.76 97.05± 0.55 1.24 55.48 5.53± 0.75
Dataset2 96.70 98.91 97.79± 0.70 1.09 4.96 2.66± 0.77

Totals 95.70 98.79 97.22± 0.44 1.21 19.71 4.61± 0.57

DPDnetfast

Dataset1 99.57 99.21 99.39± 0.25 0.79 4.95 1.12± 0.34
Dataset2 99.01 99.11 99.06± 0.46 0.89 1.45 1.12± 0.50

Totals 99.44 99.19 99.31± 0.22 0.81 2.47 1.12± 0.28

DPDnet
Dataset1 98.89 99.76 99.32± 0.27 0.24 12.94 1.26± 0.36
Dataset2 97.10 99.90 98.48± 0.58 0.10 4.35 1.83± 0.64

Totals 98.46 99.79 99.12± 0.25 0.21 6.87 1.44± 0.32

18



3.4.3 Results for the Zhang2012 database

Regarding the results for the Zhang2012 database (Table 11), we are again in the
case of a mismatch between the training and evaluation conditions discussed above.

Here, the superiority of the CNN-based methods are even clearer than in the two
previous datasets, obtaining very good results considering the experimental conditions.

The performance drop of the SLICEPCA and SLICESVM methods is higher than
in the MIVIA results (specially in the latter). As mentioned in Section 3.1.3, images of
this dataset contain artifacts from the background subtraction method, and this might
affect the classifiers SLICEPCA and SLICESVM , which were trained with cleaner
data.

As discussed in the case of the MIVIA results, the WaterFilling algorithm
performance is closer to the top results in the Recall and FNR rates, with the same
explanation than above.

The CNN-based methods are affected by image artifacts to a much lower extent
than SLICEPCA and SLICESVM . Between the two proposals, DPDnet is more af-
fected than DPDnetfast, possibly given that its greater number of parameters (due
to its the larger input image size) forces it to search for more defined and detailed
features similar to those found in the training subset of the GOTPD1+ dataset, while
DPDnetfast generalizes better when facing new datasets, due to the lower definition
of its input images (finding more general characteristics of people).

Finally, as in all the previous cases, the MexicanHat method gets the worst per-
formance for all metrics.

3.4.4 Overall comparison

Once the detailed results have been discussed for each dataset, now we will provide full
details on the overall comparison among the evaluated algorithms for all the datasets
used. We will include tables with the overall behavior of the different strategies, and we
will also include bar charts to ease the visual comparison, providing error confidence
values for all the metrics. In the tables and graphics below, we have omitted the results
for the MexicanHat algorithm due to its bad performance. In the charts, please note
that the vertical scale is not the same for all of them, as they have been adjusted to
allow for a better visualization.

From the previous discussion on the results show in tables 9, 10 and 11, it can be
concluded that the proposed solutions DPDnet and DPDnetfast are the best alterna-
tives for a robust detection in this application. They have obtained the best results, and
they have proved to be robust against changing database recording conditions, main-
taining the overall error rate around 1% percent in all cases. The classic trainable
methods such as SLICEPCA and SLICESVM are good alternatives but have worse
results, and they require calibration and retraining to change the detection environment
to provide optimal results. On the other hand, WaterFilling can be seen as another
alternative system, but unlike the two previous approaches, it acts more as a detector
of maximums than as a classification algorithm. Finally, the MexicanHat algorithm
is not a good alternative system and globally has obtained the worst results among the
evaluated systems.
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Table 12 shows the final aggregated results of the evaluated algorithms on the
GOTPD1+ dataset, and in Figures 6a and 6b we show the graphical comparison among
the different strategies.

Table 12: Results for the GOTPD1+ dataset. All values in %.

DB Precision Recall F1score FNR FPR ERR

DPDnet 99.99 99.75 99.87± 0.05 0.25 0.02 0.19± 0.06
DPDnetfast 99.88 99.89 99.88± 0.05 0.11 0.36 0.17± 0.06

WaterFilling 96.90 99.70 98.28± 0.18 0.30 9.24 2.59± 0.22
SLICEPCA* 99.06 99.36 99.21± 0.12 0.64 2.70 1.18± 0.15
SLICESVM* 96.71 99.40 98.04± 0.19 0.60 9.70 2.95± 0.24
MexicanHat 94.24 45.63 61.48± 0.68 54.37 8.06 42.48± 0.69

Figure 6a shows how the performance metrics are reasonably high, except for the
WaterFilling and SLICESVM algorithms, whose Precision and F1score have
a significant drop. This tendency is also clearly observed in the error metrics of Fig-
ure 6b. The CNN-based methods achieve the best results, and the observed improve-
ments are statistically significant against the non CNN-based methods, considering the
included confidence bands.

(a) Performance metrics.
.

(b) Error metrics.
.

Figure 6: Overall performance and error metrics for the GOTPD1+ dataset.

Table 13 shows the final aggregated results of the evaluated algorithms on the
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MIVIA dataset, and in Figures 7a and 7b we show the graphical comparison among
the different strategies

Table 13: Results for the MIVIA dataset. All values in %.

DB Precision Recall F1score FNR FPR ERR

DPDnet 99.57 98.50 99.03± 0.11 1.50 0.26 0.72± 0.09
DPDnetfast 99.43 97.54 98.47± 0.13 2.46 0.34 1.14± 0.12

WaterFilling 93.68 99.02 96.27± 0.21 0.98 4.08 2.91± 0.18
SLICEPCA* 91.52 92.14 91.83± 0.30 7.86 5.20 6.20± 0.26
SLICESVM* 90.85 92.22 91.53± 0.30 7.78 5.66 6.46± 0.27
MexicanHat 91.81 71.40 80.33± 0.43 28.60 3.89 13.27± 0.37

Figure 7a shows a much more significant performance drop of the non CNN-
based methods, with a clear superiority of the DPDnet and DPDnetfast approaches
in Precision and F1score. Their worse performance in Recall as compared with
WaterFilling was already explained in previous sections. In what respect to the
error metrics of Figure 7b, the CNN-based methods achieve the best results in the over-
all error, again with statistically significant results as compared with the others.

(a) Performance metrics.
.

(b) Error metrics.
.

Figure 7: Overall performance and error metrics for the MIVIA dataset.

Table 14 shows the final aggregated results of the evaluated algorithms on the
ZHAN2012 dataset, and in Figures 8a and 8b we show the graphical comparison
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among the different strategies, where it is again clear how our proposals clearly outper-
form the other algorithms, with statistically significant improvements.

Table 14: Results for the Zhang2012 dataset. All values in %.

DB Precision Recall F1score FNR FPR ERR

DPDnet 98.46 99.79 99.12± 0.25 0.21 6.87 1.44± 0.32
DPDnetfast 99.44 99.19 99.31± 0.22 0.81 2.47 1.12± 0.28

WaterFilling 95.70 98.79 97.22± 0.44 1.21 19.71 4.61± 0.57
SLICEPCA* 94.35 98.16 96.22± 0.52 1.84 25.69 6.28± 0.66
SLICESVM* 77.50 79.44 78.46± 1.10 20.56 110.57 36.09± 1.29
MexicanHat 36.56 23.68 28.74± 1.22 76.32 182.85 95.87± 0.54

(a) Performance metrics.
.

(b) Error metrics.
.

Figure 8: Overall performance and error metrics for the Zhang2012 dataset.

3.5 Computational Performance Evaluation
Regarding the computational demands, Table 15 shows the performance of the evalu-
ated algorithms measured in average frames per second (we have explicitly removed
results for MexicanHat due to its bad performance and its bad results in computa-
tional behavior according to the results shown in [26]).

22



All the experiments shown were run in a standard PC, with an Intel I7-6700 at
3.4GHz and 32Gb RAM. The GPU used was an NVIDIA GTX 1080 Ti. The evaluation
was run on samples from the GOTPD1+ dataset.

In the case of the DPDnet and DPDnetfast we also show CPU results.

DPDnet DPDnetfast WaterFilling SLICEPCA SLICESVM

FPS (CPU) 2.7 9.8 16.6 312.0 406.0
FPS (GPU) 65.4 116.9 N/A N/A N/A

Table 15: Timing Results, measured as average frames per second (FPS).

As it can be clearly seen, the computational performance of the DNN based strate-
gies running on a generic CPU is well behind that obtained by the WaterFilling
and SLICE approaches, although the DPDnetfast could run at a reasonable rate of 10
FPS. The performance of the SLICE algorithms is much better than the one reported
in [26] as the CPU we use is significantly better. When the GPU enters the compe-
tition, the results for DPDnet and DPDnetfast are, as expected, much better than
those for WaterFilling, but still behind SLICESVM and SLICEPCA. However
both DNN-based strategies are well above the requirements demanded for real time
operation. Taking into account that these approaches significantly outperform the other
methods, there is still room for further reduction in the network complexity.

In what respect to the effect of the scene complexity on the computational per-
formance of the algorithms, [26] already showed that the SLICEPCA algorithm was
affected by the number of persons in the scene (this was due to the fact that the ROI
estimation and the feature extraction modules, which demands that are proportional to
the number of people, had a big impact in the processing time). On the other hand, the
DPDnet, DPDnetfast, and WaterFilling algorithms do not exhibit such a scene
complexity dependence.Table 16 shows the FPS performance for these algorithms eval-
uated on sequences with one, two, and more than two people. It can be seen that there
is no direct impact of the number of persons on the results for DPDnet, DPDnetfast,
and WaterFilling. For the SLICEPCA and SLICESVM approaches, the relative
decrease in computational performance between the FPS for the single and more than
two people cases is of 65.3% and 58.4%, respectively.

DPDnet (GPU) DPDnetfast (GPU) WaterFilling SLICEPCA SLICESVM

Single person 66.9 111.5 16.6 572.0 682.0
Two people 60.9 124.0 16.8 391.8 498.8

More than two people 65.5 117.5 16.5 198.7 283.4

Table 16: Average timing results for the WaterFilling, DPDnet and DPDnetfast

algorithms for sequences with varying number of users (FPS).
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4 Conclusions
In this work we propose two specific neural networks (DPDnet and DPDnetfast)
that detect multiple people from depth data captured by an overhead ToF sensor. We
evaluate and compare our method with other recent state-of-the-art methods using three
different depth image datasets and following a rigorous experimental procedure. We
took into account that the training and testing subsets were fully independent, and that
the scenes were as realistic as possible, that is, that they contained people of different
heights, with different hairstyles, wearing different,talking on a mobile phone, and that
there were objects such as different types of chairs.

Our proposal outperforms the other methods in all datasets even when the number
of people is high and they are very close to each other. Additionally, there was no need
to retrain nor fine-tune the network to the different datasets used.

Comparing the two proposed method, DPDnetfast is 38% faster than DPDnet
at the cost of 0.1% loss decrement in accuracy. Future works include adaptation of
our approach to work with non-overhead depth sensors and the use of other network
topologies to improve accuracy and efficiency.

References
[1] A. F. Agarap. Deep learning using rectified linear units (relu). arXiv preprint

arXiv:1803.08375, 2018.
[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-

detection-by-tracking. In 2008 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8, June 2008.

[3] B. Antic, D. Letic, D. Culibrk, and V. Crnojevic. K-means based segmentation for
real-time zenithal people counting. In Proceedings of the 16th IEEE International
Conference on Image Processing, ICIP’09, pages 2537–2540, Piscataway, NJ,
USA, 2009. IEEE Press.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep convolutional
encoder-decoder architecture for image segmentation. CoRR, abs/1511.00561,
2015.

[5] A. Bevilacqua, L. Di Stefano, and P. Azzari. People tracking using a time-of-
flight depth sensor. In Video and Signal Based Surveillance, 2006. AVSS ’06.
IEEE International Conference on, pages 89–89, Nov 2006.

[6] A. Brunetti, D. Buongiorno, G. F. Trotta, and V. Bevilacqua. Computer vision
and deep learning techniques for pedestrian detection and tracking: A survey.
Neurocomputing, 300:17 – 33, 2018.

[7] Z. Cai, Z. L. Yu, H. Liu, and K. Zhang. Counting people in crowded scenes by
video analyzing. In Industrial Electronics and Applications (ICIEA), 2014 IEEE
9th Conference on, pages 1841–1845, June 2014.

[8] Y. Cao, C. Shen, and H. T. Shen. Exploiting depth from single monocular images
for object detection and semantic segmentation. IEEE Transactions on Image
Processing, 26(2):836–846, 2017.

24



[9] A. Chan, Z.-S. Liang, and N. Vasconcelos. Privacy preserving crowd monitoring:
Counting people without people models or tracking. In Computer Vision and
Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–7, June
2008.

[10] T.-Y. Chen, C.-H. Chen, D.-J. Wang, and Y.-L. Kuo. A people counting system
based on face-detection. In Genetic and Evolutionary Computing (ICGEC), 2010
Fourth International Conference on, pages 699–702, Dec 2010.

[11] F. Chollet. Xception: Deep learning with depthwise separable convolutions.
CoRR, abs/1610.02357, 2016.

[12] B.-K. Dan, Y.-S. Kim, Suryanto, J.-Y. Jung, and S.-J. Ko. Robust people counting
system based on sensor fusion. Consumer Electronics, IEEE Transactions on,
58(3):1013–1021, August 2012.

[13] L. Del Pizzo, P. Foggia, A. Greco, G. Percannella, and M. Vento. Counting people
by rgb or depth overhead cameras. Pattern Recognition Letters, 2016.

[14] X. Du, M. El-Khamy, J. Lee, and L. Davis. Fused dnn: A deep neural network
fusion approach to fast and robust pedestrian detection. In Applications of Com-
puter Vision (WACV), 2017 IEEE Winter Conference on, pages 953–961. IEEE,
2017.

[15] A. Fernandez-Rincon, D. Fuentes-Jimenez, C. Losada, M. Marron, C. A. Luna,
J. Macias-Guarasa, and M. Mazo. Robust people detection and tracking from
an overhead time-of-flight camera. In 12th International Conference on Com-
puter Vision Theory and Applications., volume 4, pages 556–564, Porto, Portugal,
03/2017 2017.
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