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Abstract 23 

Firefly algorithm (FA) is a classical and efficient swarm intelligence optimization method and 24 

has a natural capability to address multimodal optimization. However, it suffers from premature 25 

convergence and low stability in the solution quality. In this paper, a Yin-Yang firefly algorithm 26 

(YYFA) based on dimensionally Cauchy mutation is proposed for performance improvement of FA. 27 

An initial position of fireflies is specified by the good nodes set (GNS) strategy to ensure the spatial 28 

representativeness of the firefly population. A designed random attraction model is then used in the 29 

proposed work to reduce the time complexity of the algorithm. Besides, a key self-learning 30 

procedure on the brightest firefly is undertaken to strike a balance between exploration and 31 
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exploitation. The performance of the proposed algorithm is verified by a set of CEC 2013 32 

benchmark functions used for the single objective real parameter algorithm competition. 33 

Experimental results are compared with those of other the state-of-the-art variants of FA. 34 

Nonparametric statistical tests on the results demonstrate that YYFA provides highly competitive 35 

performance in terms of the tested algorithms. In addition, the application of a in constrained 36 

engineering optimization problems shows the practicability of YYFA algorithm. 37 

Keywords 38 

Yin-Yang firefly algorithm; Cauchy mutation; GNS strategy; Random attraction model; CEC 39 

2013 benchmark functions; Engineering optimization problems  40 

1. Introduction 41 

Firefly algorithm (FA) is a swarm intelligence algorithm based on flashing patterns and 42 

behavior of fireflies (Yang, 2014). It has advantages of simple structure and easy operation, and has 43 

been widely used in structural optimization (Chou & Ngo, 2017; Kaveh, Mahdipour Moghanni, & 44 

Javadi, 2019), engineering prediction (Danandeh Mehr, Nourani, Karimi Khosrowshahi, & 45 

Ghorbani, 2019; Tao, et al., 2018), resource allocation (Garousi-Nejad, Bozorg-Haddad, Loáiciga 46 

Hugo, & Mariño Miguel, 2016; H. Wang, et al., 2018) and other fields (Mosavvar & Ghaffari, 2019; 47 

Rajinikanth & Couceiro, 2015). However, it has a defect of low convergence accuracy in the process. 48 

Therefore, scholars have improved the firefly algorithm from several perspectives. The list of main 49 

variants of FA with their characteristics is shown in Table 1. It can be summarized that FA could be 50 

improved in seven aspects: adaptive parameters, novel move mode, novel attraction mode, elitism 51 

strategy, multi-groups, hybrid algorithm and interdisciplinary application. The following is a 52 

discussion on the characteristics of these seven aspects. 53 
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 54 

Table 1  55 

 56 

• The strategy of adaptive parameters has been one of the most popular techniques utilized in 57 

FA. Wang et al. (2017) found that the attractiveness had kept unchangeable at β0 (which referred to 58 

the initial value of attractiveness) since an extremely early stage during the search process in 59 

standard FA. Then a simple dynamic strategy to adjust the attractiveness coefficient has been applied 60 

to tackle this problem. Otherwise, chaotic maps also played an important role in adjusting 61 

parameters. 62 

• The improvement in move modes tried to enhance the search capability and reduce the 63 

possibility of population oscillation. This strategy included different approaches from different 64 

perspectives. Tian et al. adopted a time-varying inertia weight method for the current location of 65 

fireflies (Tian, et al., 2012). The simulation results indicated that IWFA outperformed FA and PSO. 66 

Uniform distribution, Gaussian distribution and Lévy flight were introduced into the randomization 67 

term of movement and had shown promising capabilities.  68 

• The strategy of novel attraction mode aimed to reduce the computational complexity of FA. 69 

Specific methods have been employed to choose one or more brighter fireflies to move. The time 70 

saved can be used to implement other improvement strategies. 71 

• The elitism strategy helped make the brightest firefly in the swarm or other fireflies brighter. 72 

RaFA utilized the Cauchy jump to update the brightest firefly for accelerating convergence; ODFA 73 

adopted an opposition-based learning method and dimensional-based approach to ensure the 74 

superiority of the population before the movement process (Verma, et al., 2016); OLFA used an 75 
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orthogonal learning technique to generate a promising learning exemplar for every firefly (Tomas, 76 

et al., 2019). 77 

• Dividing all fireflies into groups to implement different strategies has also been an effective 78 

way to improve the performance of FA. This method greatly enriched the diversity of the population. 79 

As a typical example, the firefly colony in IMGFA was divided into several subgroups with different 80 

model parameters (Tong, et al., 2017). Each subgroup carried out its own internal independent 81 

operation, and then the brightest firefly of each subgroup exchanged information. From this point 82 

of view, this method reduced the operability of the algorithm to a certain extent. 83 

• The ability of a single optimization algorithm was often flawed. FA did not perform well in 84 

searching for global optimum at a later stage of the iteration process. Hybrid algorithm has been an 85 

effective method to combine FA with other robust techniques. Namely, a tool with a strong local 86 

search ability, such as FA-PS, HFADE, HS/FA and CEFA, was embedded into a weak link of FA 87 

(Guo, et al., 2013; Li, et al., 2019; Sarbazfard & Jafarian, 2016; Wahid & Ghazali, 2019). In 88 

particular, FAPSO was different from hybrid algorithms. The main idea in FAPSO was multi-groups, 89 

namely two sub-populations selecting FA and PSO as their basic algorithm, to carry out the 90 

optimization process respectively (Xia, et al., 2018). 91 

• Interdisciplinary application denoted that an inspiration from other disciplines could help 92 

improve FA. FAtidal algorithm applied the Tidal Force formula (Yelghi & Köse, 2018), which 93 

described the effect of a massive body that gravitationally affected another massive body, to 94 

strengthen the exploitation function of FA. QFA algorithm adopted quaternion to represent the 95 

individuals in FA. However, QFA did not show any particular superiority according to their 96 

experimental results. In general, this strategy lost the simplicity of the FA. 97 
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In general, the standard FA has a simple structure and strong operability. Its optimization ability 98 

depends on the brightest firefly in the swarm, which has a weak function in exploration if the 99 

brightest firefly gets trapped in the local optimum. Otherwise, FA does not perform deep information 100 

mining for the brightest firefly during the iteration. As such, we try to reduce the number of times 101 

for movements and allocate computing resources to perform actions on the brightest firefly for 102 

attaining a good balance between the functions of exploration and exploitation. Therefore, an 103 

effective method named Cauchy mutation is applied to modify the FA algorithm, by which Yin-104 

Yang firefly algorithm (YYFA) is proposed. The main procedure of YYFA is stated as follows. A 105 

new random attraction model is firstly designed to replace the full attraction model in the original 106 

FA algorithm to reduce wastage of computing resources. Secondly, a self-learning strategy based on 107 

the elitism strategy with Cauchy mutation is utilized to strengthen the exploration and exploitation 108 

functions. Furthermore, a good nodes set (GNS) strategy is used to initialize the firefly population 109 

in order to improve the spatial representativeness of the population. 110 

The structure of the paper is organized as follows. In the next section, the basic theory of FA, 111 

Cauchy mutation and GNS strategy are discussed. The proposed YYFA algorithm is described and 112 

discussed in Section 3. Section 4 shows the behavior of the new approach and nonparametric 113 

statistical tests are employed on experimental results to analyze the performance of the proposed 114 

algorithm. In Section 5, four well-known engineering constrained optimization problems and a 115 

storm intensity model problem are utilized to further verify the performance of the proposed YYFA 116 

algorithm. Finally, the work is summarized in Section 6. 117 
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2. Preliminary 118 

2.1 Firefly algorithm  119 

Let D be the dimension of the search space. The location of each firefly in the search space 120 

represents a feasible solution, and its brightness represents the fitness of the optimization problem. 121 

Then, according to the fact that fireflies move in turn to brighter fireflies than themselves, the 122 

location update formula of firefly i attracted by a brighter firefly j is defined as: 123 

( )( 1) ( ) ( ( ) ( ))id id jd id ix t x t x t x t tβ α ε+ = + − +                       (1) 124 

where xid and xjd are the d-dimensional positions of the firefly i and j, respectively. β is the 125 

attractiveness, α represents the step factor, t indicates the iteration number and ε obeys uniform 126 

distribution in the range of [-0.5, 0.5]. 127 

α in the standard firefly algorithm is defined by: 128 

( ) 0
ttα α θ=                                (2) 129 

where α0 is the initial step factor of the algorithm, which is taken as 1; θ is the cooling 130 

coefficient and the range of values is [0.95, 0.99] (Yang, 2014). 131 

The brightness and attractiveness of a firefly can be computed by: 132 

2
0 exp( )ijI I rγ= −                              (3) 133 

                           2
0 exp( )ijrβ β γ= −                              (4) 134 

where β0, I0 are the attractiveness and brightness, respectively, at the location of the firefly 135 

itself, namely r=0, and r is the distance between two fireflies computed by: 136 

2

1
( )

D

ij i j id jd
d

r x x x x
=

= − = −∑                     (5) 137 

 138 
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If we consider minimization problems, the framework of the standard FA is shown in Figure 139 

1. 140 

 141 

Figure 1  142 

2.2 Cauchy mutation 143 

Cauchy mutation is an efficient technique for improving optimization algorithms (Hu, Wu, 144 

Wang, & Xie, 2009; Ali & Pant, 2011; Sapre & Mini, 2019). The theoretical basis of Cauchy 145 

mutation is Cauchy probability density function, which is defined by Equation (6). Curves of 146 

Cauchy density function and standard normal distribution density function are presented in Figure 147 

2. It should be noted that the red curve is the standard Cauchy density curve. From the figure, the 148 

Cauchy distribution curves have long fat tails compared with the standard normal distribution, 149 

which can help the firefly jump out from the local optimum. Wang et al. (2016) conducted a Cauchy 150 

mutation in the firefly algorithm by Equation (7): 151 

( )
( )2 2

0

1 af x
x x aπ

 
=  

− +  
                       (6) 152 

*d d
best bestX X cauchy= +                          (7) 153 

where d
bestX denotes the dth dimension position of the best firefly found so far and Cauchy is a random 154 

number generated by the standard Cauchy distribution. 155 

However, it can be seen from Figure 2 that the standard Cauchy distribution falls within the 156 

interval of [-5,5] with a high probability. When faced with the optimization problem of large search 157 

range, Cauchy mutation is not adaptive to perform as the second term on the right side of Equation 158 

(7). Therefore, the equation needs to be redesigned to meet the universality for more optimization 159 
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problems. 160 

 161 

Figure 2 162 

2.3 GNS strategy 163 

In the swarm intelligence algorithm, we are eager to obtain better information from the initial 164 

firefly population, which means that the initial fireflies should be able to reflect the spatial 165 

characteristics in the search space. In other words, only when a population of fireflies which can 166 

best reflect the spatial characteristics in the search space is taken as the initial population, can the 167 

optimization quality be improved. Based on this idea, we attempt to initialize the position of fireflies 168 

by the good nodes set (GNS) strategy (Xiao, Cai, & Wang, 2007). The deviation of points generated 169 

by using the good nodes set strategy was much smaller than those of randomly selected points in 170 

theory (Hua & Wang, 1978). For comparison, we construct two point sets as shown in Figure 3. 171 

The left one is a set containing 100 two-dimensional good points in unit space. In the right one, 100 172 

points are selected in two-dimensional unit space by a random method. The distribution of good 173 

point sets is obviously more even than that of random points. For the firefly algorithm, this method 174 

can avoid the generation of invalid fireflies and accelerate the convergence speed. 175 

 176 
Figure 3  177 

3 Yin-Yang firefly algorithm 178 

 179 

3.1 Designed attraction model 180 

An evolutionary updating of a swarm in the standard firefly algorithm is accomplished by using 181 

a full attraction model, namely, each firefly moves in turn to a brighter one in each iteration.  182 

Let N be the number of fireflies in the swarm, so the maximum number of moves needed in 183 
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each iteration is ( )1 / 2fM N N= ∗ −  . This will lead to wastage of computing resources and 184 

oscillation when fireflies approach the global optimum. In order to save computing resources, Wang 185 

et al. (2016) proposed a random attraction model, that is, the current firefly randomly selected a 186 

firefly from the swarm and judged its brightness to choose whether to move or not. Inspired by that 187 

study, this study adopts a new random attraction model to replace the full attraction model to meet 188 

the exploration function of Yin-Yang firefly algorithm. 189 

In the random attraction model of Yin-Yang firefly algorithm, the first step is to ensure that 190 

individual brightness of the input swarm ranks from strong to weak. In the moving process of 191 

fireflies, we hope that weaker fireflies will become brighter when they move to brighter ones. In the 192 

proposed model, we hold that fireflies can maintain this trend without extra measures to avoid 193 

possible influence of weaker brightness fireflies. The main step of the random attraction model is 194 

described in the following Algorithm of Firefly Moving.  195 

Figure 4 196 

As shown in Figure 4, the proposed model starts with the second firefly, each firefly randomly 197 

selects one from the fireflies prior to move. Next come the third and fourth fireflies, and so on to 198 

the Nth firefly to ensure the diversity of the swarm. Thus, the total number of moves needed in each 199 

iteration is 1rM N= − . With the increase of number of fireflies and number of iterations, this 200 

new attraction model consumes less computational resources than the full attraction model, and 201 

more computational resources can be used for the next Yin-Yang firefly self-learning strategy. 202 

3.2 Yin-Yang firefly self-learning strategy 203 

The theory of Yin-Yang in ancient China is the crystallization of wisdom of laboring people. It 204 

emphasizes the law of "mutual survival of negative and positive" and "balance between Yin and 205 
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Yang" in the world. The algorithm also focuses on seeking a balance between the two opposite 206 

functions of exploration and exploitation to attain better solutions. Therefore, the proposed 207 

algorithm adopts a Yin-Yang firefly self-learning strategy to explore the search space as well as to 208 

undertake high-level data mining for the optimal firefly. 209 

After a position update of the firefly swarm, the Yin-Yang firefly algorithm selects the firefly 210 

Xp with the best fitness as the "Yang firefly" and gives it a certain time for self-learning. Then a new 211 

firefly Xo is created randomly in the search space as a "Yin firefly". In a single learning process to 212 

address the shortcoming of Equation (7), the position of Xo is updated and modified in single 213 

dimension according to Equation (8). 214 

( )1 2
d d d d
o p r rX X cauchy X X= + ⋅ −                       (8) 215 

where d
oX  , d

pX  denote the dth dimension positions of the Yin and Yang fireflies, respectively; 216 

Cauchy represents a stochastic number generated by the standard Cauchy distribution function; and217 

1
d
rX , 

2
d
rX  are the d-dimensional positions of two fireflies randomly selected from the swarm. 218 

From the above equation, a multiplicative term related to the size of global domain is added to 219 

the Cauchy mutation item. Therefore, in the early stage of algorithm optimization, the population is 220 

evenly distributed. The brightest fireflies can adaptively learn based on the size of the search space 221 

to avoid missing local space due to the limitation of the Cauchy distribution. After updating the 222 

position, the fitness of Xo will be evaluated and compared with that of Xp. If the fitness of Xo is 223 

worse, it continues to update Xo in the next dimension. Once the exploration gets successful, namely 224 

the fitness of firefly Xo is better than that of Xp, the position and fitness of Xo are assigned to Xp to 225 

realize the balance between Yin and Yang, at which time both fireflies are the current optimal 226 

fireflies. The optimal firefly will use the remaining learning times to undertake deep data mining to 227 
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meet the exploitation function of the algorithm. 228 

3.3 Framework of the proposed YYFA 229 

The step factor α and attractiveness β in the proposed approach are updated by Equation (9) 230 

(H. Wang, Zhou, et al., 2017) and Equation (10) (J. I. Fister, Xin-She, Iztok, & Janez, 2012), 231 

respectively. 232 

( ) ( )1 1 tt t
T

α α  + = ⋅ − 
 

                            (9) 233 

( )
2

min 0 min
ijre γβ β β β −= + −                          (10) 234 

where minβ  is the minimum value of attractiveness; T is the maximum number of generations; and 235 

other parameters have the same meanings as before. 236 

Combining the GNS strategy, specially-designed attraction model and Yin-Yang firefly self-237 

learning strategies, the pseudo code of our proposed YYFA algorithm is shown in Figure 5. 238 

 239 

Figure 5  240 

 241 

3.4 Analysis of YYFA 242 

3.4.1 Computational complexity 243 

Let D be the dimension of the objective function, N be the swarm size, T be the maximum 244 

number of iterations, L be the self-learning time for Yin and Yang fireflies, and F be the 245 

computational time for evaluating the objective function. Then the maximum time consumptions 246 

TC of YYFA algorithm and FA algorithm are respectively: 247 
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-1 1
YYFA

N NTC N D T F D T
L L

  −   = + + ∗ ∗ + + ∗        
             (11) 248 

( ) ( )1 1
+

2 2FA

N N N N
TC N T F T

− − 
= ∗ ∗ + ∗ 
 

              (12) 249 

The time consumption of firefly algorithm is mainly composed of two parts: the first part is the 250 

time consumption for evaluating the objective function, and the second part is the time consumption 251 

for the moves. As can be seen from Equation (11), since L is generally set to be much larger than N, 252 

TCYYFA can be approximated as: 253 

( )YYFATC N D T F T D T= + ∗ ∗ ∗ + ∗                  (13) 254 

By utilizing the O notation to analyze the computational complexity, the computational 255 

complexity of YYFA is O(D) and that of FA is O(N2). In general, D is in the same order of magnitude 256 

as N. Thus, YYFA algorithm has a lower computational complexity. 257 

3.4.2 Comments on parameters 258 

In YYFA, we adopt the parameter setting of α(0)=0.2, βmin=0.2, β0=1 and γ=1 for attractions 259 

and moves. In addition, the parameters required from the user are the population size N and the 260 

number of self-learning times L for brightest firefly. From Subsection 3.4.1, the time complexity of 261 

YYFA is directly proportional to the dimension of problem rather than the number of fireflies. Thus, 262 

we can initialize the population by more fireflies to make the most of GNS strategy. Too many 263 

fireflies, however, would reduce the distance between individuals and lead to fluctuations. L should 264 

be defined based on the problem size and number of iterations and thus controls the frequency of 265 

population movements. A large value of L will help improve in finding a better position for the 266 

current brightest firefly and local search, but easily get a slow convergence rate and lose the 267 
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effectiveness of other fireflies. On the other hand, a low value of L will accelerate the algorithm but 268 

can be stuck in premature convergence. 269 

4. Simulations and experiments 270 

4.1 Algorithm behavior 271 

In this section, eight two-dimensional test functions are simulated to denomstrate behaviors of 272 

the proposed YYFA algorithm during the optimization process. Details of the above functions are 273 

presented in Table 2 and they are all minimization problems. We use five fireflies to test each 274 

function in 5000 iterations coupled with 50 self-learning times, and the search results are shown in 275 

the column of ‘Search result’ in Table 2. Figure 6 shows the two-dimensional test function and 276 

paths of firefly population on the contour plots. 277 

As can be seen from Table 2, YYFA algorithm has promising results on these eight test 278 

functions. Five fireflies can accurately find the global best in four of them. The results of Levy N. 279 

13 function and Rosenbrock function are very close to the global best. The errors of the remaining 280 

two functions can also be controlled within 0.001. The followings are some observations via 281 

inspecting behaviors of fireflies in Figure 6:  282 

(i) The initialization by GNS strategy renders fireflies evenly distributed, so that only 5 fireflies 283 

can attain reliable results to save computing resources; 284 

(ii) The population can be guided and moved to the global optimum by the self-learning process. 285 

Taking the Levy N. 13 function as an example, its global optimum is located near the center of the 286 

search space, and 5 fireflies are initially distributed around the periphery of the search space. After 287 

the first time of Yin-Yang firefly self-learning process, the fireflies quickly gathered from different 288 

directions to the optimum.  289 
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(iii) YYFA has the capability of local search. Bukin function has many local bests around the 290 

global optimum. From Figure 6 (a), it can be seen that when the firefly population is near the global 291 

optimum, the population starts to mine effective information in a surrounding manner. 292 

 293 

Table 2  294 

 295 

Figure 6 296 

4.2 Benchmark functions and simulation environment 297 

The suite of 28 benchmark functions used for the Single Objective Real Parameter Algorithm 298 

competition that was held in the Congress on Evolutionary Computation 2013 (CEC 2013) is 299 

utilized to test the proposed YYFA algorithm. The benchmarks can be classified into three categories: 300 

unimodal functions (f1–f5), basic multimodal functions (f6–f20) and composition functions (f21–f28). 301 

The function names along with their global optima are provided in Table 3. For more details on 302 

these, please refer to Liang, et al. (2013). 303 

 304 
Table 3  305 

The variable bounds for all dimensions of the functions are specified as [-100, 100] and the 306 

corresponding global optimum value does not change with dimensions. The competition requires 307 

that the algorithm be tested for three dimension-settings (D=10, 30 and 50) along with the 308 

corresponding maximum number of functional evaluations (D*104). To maximize the ability of the 309 

algorithm, we use the corresponding maximum number of iterations (D*104) as a stopping criterion. 310 

With a fixed number of iterations, the number of function evaluations for each optimization of FA 311 

could be different. Thus, the number of function evaluations consumed by algorithms in each test 312 
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will be recorded to help further analysis. 313 

Additionally, all the experiments on a single function will run 51 times independently to 314 

eliminate the impact of randomness. All results are recorded in terms of error between the global 315 

optimum and value obtained by the algorithm. The terms ‘Mean’, ‘Std. dev.’ and ‘Num. of Eval.’ 316 

refer to the mean, standard deviation of the error and mean number of function evaluations obtained 317 

over 51 runs. All experiments are run on a Windows 10 64-bit computer with an Intel i7 (3.4GHz) 318 

processor and 8 GB RAM, and are implemented under MATLAB R2018a environment. 319 

4.3 Numerical experiments and results discussion 320 

In order to test the performance of YYFA algorithm, FA and three state-of-the-art FA variants 321 

are selected for comparison. They are ApFA (H. Wang, Zhou, et al., 2017), RaFA (H. Wang, et al., 322 

2016) and OBLFA (Yu, et al., 2015a). The comparative study in this section is based on the 28 323 

benchmarks in CEC 2013 competition.  324 

Parameter settings are vital to the performance of the algorithm. The GNS strategy in YYFA 325 

requires a large population number N to guarantee the performance of the algorithm. Considering 326 

the fairness of the test and the characteristics of other contestants, however, the population size N is 327 

set to be 20, 30 and 40 for the three dimension-settings as the complexity of the problem increases. 328 

Thus, the self-learning times L in YYFA is set to a large value, which are 800 for 10D, 30D cases 329 

and 625 for 50D case. This will slow down the convergence speed of the YYFA and consume more 330 

computing resources to some extent. The settings of other parameters for each algorithm adopt the 331 

values recommended in the original literature, which are presented in Table 4. Since RaFA and 332 

OBLFA do not provide ideal parameter updating equations for α and β, we adopt the same equations 333 

as for YYFA.  334 
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 335 

Table 2. 336 

The performance of test algorithms on the benchmarks at dimensions 10, 30 and 50 are provided 337 

in Table 5, 6 and 7 respectively. It can be clearly seen in Table 5 that YYFA outperforms RaFA, 338 

OBLFA and FA for most test functions. But OBLFA and FA can achieve slightly better mean error 339 

than YYFA on function f21 and f16, respectively. Besides, YYFA gets better results in terms of mean 340 

error and standard deviation on 13 functions compared with ApFA. As for the mean number of 341 

function evaluations over 51 runs, OBLFA consumes the most resource to evaluate in general while 342 

YYFA needs slightly more function evaluations than ApFA. In the 30D case from Table 6, YYFA 343 

still maintains its advantage in convergence accuracy over RaFA, OBLFA and FA but ranks last on 344 

f16. In addition, YYFA has only 11 functions tested with better results in comparison with ApFA and 345 

consumes more computational resources to get a better fitness such as function f4 and f14. This also 346 

validates our thinking in subsection 3.4.2 about setting parameters, which refers to that the 347 

parameter L of 625 is relatively large to slow the convergence speed. The ability of algorithm to 348 

search the global optimum would deteriorate along with increase in the problem dimension, but 349 

YYFA is still able to determine such values on function f1, f4, f5, f11 and f14 in 50D case. In this case, 350 

YYFA obtains better mean accuracy than ApFA on 12 functions but get stuck in more function 351 

evaluation times.   352 

To quantitatively analyze the differences between the test algorithms, we conduct pairwise 353 

comparisons based on the Wilcoxon signed rank test (Derrac, García, Molina, & Herrera, 2011). 354 

This test analyzes the significance of the difference between two algorithms by checking whether 355 

the two sets of samples come from different population distributions. In this study, the mean errors 356 
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and its corresponding standard deviations are taken as the test data. The results are presented in 357 

Table 8, where R+ is the sum of ranks for the problems in which YYFA outperforms the competing 358 

algorithm and p-value associated with min (R+, R-). As this table shows, the null hypothesis which 359 

holds that the two algorithms are the same, is rejected considering a significance value of α=0.05 360 

for all comparisons with RaFA, OBLFA and FA over three dimension settings. Combined with the 361 

values of R+, we can hold that YYFA has a superior performance over them. Furthermore, p-values 362 

from ApFA all exceed 0.1, which means the hypothesis is accepted and YYFA has the same 363 

performance as ApFA statistically.  364 

The convergence curves for some selected functions on all dimension cases are presented in 365 

Figure 7, 8 and 9. The followings are some observations as inferred from the curves: 366 

• Compared with other test algorithms, YYFA has the slowest convergence speed, which is 367 

consistent with our comments on parameters discussed in Subsection 3.4.2. 368 

• The curves of YYFA on f1 in 10D case and f5 suddenly fall almost vertically in the process, 369 

which shows its ability of escape-local-optimum. 370 

• In 10D case, although the convergence of YYFA at early stage is slower on f4, f6, f14 and f17, 371 

the algorithm provides lower errors at the end. 372 

• In 50D case, YYFA show its great performance on composition functions f22, f26 and f28, which 373 

indicates that YYFA is an effective approach to address complicated problems.  374 

  375 

Table 3 376 

Table 6 377 

Table 7 378 
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Table 8 379 

Figure 7 380 

Figure 8 381 

Figure 9 382 

4.4 Parameter sensitivity of YYFA 383 

In Section 4.3, we test the proposed YYFA algorithm and other FA variants. The results verify 384 

the effectiveness of the modified Equation (8) based on RaFA and proves its advanced status. 385 

However, the shortcoming in convergence speed of YYFA is also a key problem that cannot be 386 

ignored. Thus, 10 different combinations of the two user-defined parameters N and L are employed 387 

to provide insights into effects of these parameters compared with the base setting in Section 4.3. 388 

We conduct the experiments based on 6 selected functions in 30D case including f2, f6, f15, f20, f21 and 389 

f28, which ensure the integrity of function categories (f2 is a unimodal function, f6, f15, f20 are 390 

multimodal functions and f21, f28 belong to composition functions). The details of combinations and 391 

the results over 51 independent runs are presented in Table 9. The convergence curves for different 392 

combinations on each function are given in Figure 10. The followings are observations from the 393 

results and curves on three different function categories. 394 

Unimodal function f2: Comb. 4 with N=100 and L=250 reduces the mean error by almost three-395 

quarters but consumes less computing resources according to the base case. To compare with ApFA, 396 

it is meaningful for YYFA with Comb. 4 to reduce the error by about an order of magnitude with 397 

more function evaluations. From the curves, we can observe that combinations with a low value of 398 

L (Comb. 2 and 10) converge fastest but miss a better result while combinations with a high value 399 

of L (Comb. 1 and 9) have a slowest speed. Besides, the parameter N has not much impact on results 400 
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under the same L. 401 

Multimodal functions f6, f15, f20: Function f6 has about a similar situation as f2 with L dominating. 402 

Comb. 4 with N=100 and L=250 attains the best fitness with less times to evaluate. The results on 403 

f15 among 10 combinations are close. The best one is still worse compared with ApFA, which verifies 404 

the No Free Lunch theorem (Wolpert & Macready, 1997) that YYFA fails to search on f15. Comb. 8 405 

with N=500 and L=500 makes great difference on f20. When the optimization results of other 406 

parameter combinations (except Comb. 2) are limited to about 15, the mean error obtained by Comb. 407 

8 can fall below 13. It can be inferred that YYFA algorithm prefers a large value of N instead of 408 

ordinary value below 100. 409 

Composition functions f21, f28: From the curves of f21, we can observe that although Comb. 9 410 

with N=250 and L=2000 converge slowest, it helps f21 get the smallest mean error, which is superior 411 

to ApFA. This also proves the former parameter discussion that a large value of L will help local 412 

search. Several groups of parameters achieve more reliable results on f28, and the group with larger 413 

L accounts for the majority among them. 414 

To summarize, YYFA algorithm is able to attain a reliable result with moderate number of 415 

function evaluations. The ideal value of parameter N for the optimization problem should be large 416 

enough firstly. Besides, parameter L is set according to the problem’s dimension, the prefer L is 417 

supposed to be moderate. Parameter tuning procedure (Eiben & Smit, 2011) could also be employed. 418 

 419 

Table 9  420 

Figure 10 421 
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5. Performance in practical optimization problems 422 

5.1 Constrained engineering optimization problems 423 

This section is devoted to the performance evaluation of the proposed YYFA algorithm on four 424 

well-known constrained engineering optimization problems, which are problems of pressure vessel 425 

design (PVD), tension/compression spring (TCS), welded beam design (WBD) and speed reducer 426 

design (SRD). Details of constraints and ranges for these problems can be referred to Baykasoğlu & 427 

Ozsoydan (2015). All problems belong to minimization questions while satisfying the constraints. 428 

To handle the constraints, a basic penalty method (considering a penalty factor of 1030) is employed 429 

when the problem encounters a constraint violation. Fifty independent tests are run for each problem 430 

and the best solution are recorded and compared with ApFA in Table 10.  431 

As it can be seen from the table, the results are straightforward since YYFA has competitive 432 

fitness values in addressing the four problems. It can be observed that YYFA consumes fewer 433 

function evaluations and gets better fitness values than ApFA. From the above, YYFA is suggested 434 

as a helpful solver for constrained single-objective optimization problems. 435 

 436 

Table 10 437 

5.2 Parameters optimization in rainstorm intensity model 438 

The joint effects of global climate change and urbanization have a significant impact on urban 439 

flood control safety. To alleviate the problem of flood, we must strengthen the construction of urban 440 

drainage and waterlogging prevention infrastructure. The important premise is to scientifically 441 

determine a reasonable equation for urban rainstorm intensity. Equation (14) is often used to 442 

compute the intensity of rainstorm in a single recurrence period. 443 
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where i denotes the rainstorm intensity (mm/s); t indicates the duration of rainfall (min); M, n and 445 

b are some parameters. 446 

As the equation is an overdetermined nonlinear equation, the parameter optimization problem 447 

of the equation is actually a nonlinear optimization problem. In this work, YYFA and FA are used 448 

respectively to optimize the parameters for the real rainstorm data. The adopted fitness function is: 449 
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where Q denotes the residual sum of squares, k is the serial number of the specific rainfall duration 451 

and ik represents the real rainstorm intensity. 452 

The real data containing the relationship between the intensity and duration of rainstorm in 453 

three different recurrence periods in Zhengzhou City are chosen from Tang, Zhang, Wang, & Liu 454 

(2019) as shown in Table 11. Besides, the search range for model parameters is set as M=[0,100], 455 

n=[0,100] and b=[0,2]. Both two algorithms run for 30 independent times and the best parameter 456 

estimates are recorded in Table 12. 457 

Table 11  458 

 459 

Table 12  460 

It can be observed that YYFA algorithm has a better performance on the rainstorm intensity 461 

model than FA, which proves the practicability of YYFA. 462 

6. Conclusions 463 

An improved firefly algorithm based on the Yin Yang philosophy, named Yin-Yang firefly 464 
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algorithm, for single-objective optimization problems is proposed to strike a balance between 465 

exploitation and exploration by the modified dimensional Cauchy mutation. The framework of 466 

YYFA is presented in details with analysis of its time complexity and sensitivity of user-defined 467 

parameters. The proposed algorithm is compared with the state-of-the-art FA variants based on CEC 468 

2013 benchmark functions and it is verified that YYFA has a competitive performance. Besides, we 469 

make some suggestions on parameter selection. Its applications in four popular constrained 470 

engineering optimization problems demonstrate its advancement. Based on our analysis, YYFA has 471 

several particular features as listed below: 472 

• YYFA has a simple structure and strong programmability with only one equation added for 473 

Cauchy mutation on the brightest firefly. The design of Cauchy mutation on each dimension results 474 

in a decrease in time complexity, which leads to transform in large population size for GNS strategy. 475 

•To the best of our knowledge, this work is the first one to employ the technique of GNS in FA, 476 

which helps enhance the algorithm performance through large population size. 477 

•  Different combinations of user-defined parameters gives more chances to attain reliable 478 

solutions, which is proven by results on four popular constrained engineering optimization problems. 479 

The paper proves that YYFA has a good optimization potential. The follow-up work is to employ 480 

techniques such as orthogonal experiment design to conduct a more rigorous study on two user-481 

defined parameters and apply YYFA to dynamic optimization problems as well as more practical 482 

optimization problems. 483 
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Table captions 610 

 611 

Table 1.  The list of main variants of FA between 2010 till 2019 612 

 613 

Table 2.  The list of functions and search results for YYFA behavior simulations 614 
 615 

Table 3.  CEC 2013 benchmark functions 616 
 617 
Table 4.  Parameter settings of each algorithm in comparison 618 

 619 

Table 5.  Results on the 10D benchmark functions  620 
 621 
Table 4.  Results on the 30D benchmark functions 622 
 623 
Table 5.  Results on the 50D benchmark functions 624 

 625 

Table 8.  Results of Wilcoxon signed rank test 626 

 627 
Table 9.  Effect of algorithm parameters 628 

 629 
Table 10. Performance on constrained engineering optimization problems 630 

 631 
Table 11. Rainfall intensity data of different recurrence periods and durations 632 

 633 
Table 12. Comparison of fitting results between YYFA and FA 634 
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Figure captions 637 
 638 

Figure 1.  Pseudo code of FA 639 

 640 
Figure 2.  Probability distribution curves of different shapes and positions 641 
 642 
Figure 3.  Comparison of point distribution generated by GNS and random method in two-643 

dimensional unit space 644 
 645 
Figure 4.  Algorithm of Firefly Moving in YYFA 646 
 647 

Figure 5.  Pseudo code of YYFA 648 

 649 
Figure 6.  Behavior of fireflies in YYFA for searching the global optimum 650 
 651 
Figure 7.  Convergence curves for the 10D case 652 

 653 
Figure 8.  Convergence curves for the 30D case 654 
 655 

Figure 9.  Convergence curves for the 50D case 656 

 657 
Figure 10. Convergence curves for different parameter combinations 658 
 659 
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