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Abstract 

Color image segmentation is a fundamental challenge in the field of image analysis and pattern recognition. In this 

paper, a novel automated pixel clustering and color image segmentation algorithm is presented. The proposed method 

operates in three successive stages. In the first stage, a three-dimensional histogram of pixel colors based on the RGB 

model is smoothened using a Gaussian filter. This process helps to eliminate unreliable and non-dominating peaks 

that are too close to one another in the histogram. In the next stage, the peaks representing different clusters in the 

histogram are identified using a multimodal particle swarm optimization algorithm. Finally, pixels are assigned to the 

most appropriate cluster based on Euclidean distance. Determining the number of clusters to be used is often a manual 

process left for a user and represents a challenge for various segmentation algorithms. The proposed method is 

designed to determine an appropriate number of clusters, in addition to the actual peaks, automatically. Experiments 

confirm that the proposed approach yields desirable results, demonstrating that it can find an appropriate set of clusters 

for a set of well-known benchmark images. 

Keywords: Color image segmentation, Clustering, Particle Swarm Optimisation, Multimodal optimisation 

1. Introduction 

Image segmentation is the first step in image analysis and refers to the grouping of pixels in an image into several 

meaningful homogeneous regions (Kurugollu, Sankur, & Harmanci, 2001). There are a wide range of existing methods 

for image segmentation, which can be categorized into threshold-based, clustering-based, region-based, edge-based, 

and physics-based segmentation methodologies. Additionally, there are other hybrid image segmentation techniques 

that use a combination of multiple approaches (Hettiarachchi & Peters, 2017). Approaches to segmentation can be 

further decomposed into bi-level segmentation methods, which split images into two segments, and multi-level 

segmentation methods which split images into multiple segments (Pare, Kumar, Bajaj, & Singh, 2016; Sarkar & Das, 

2013). Although some segmentation algorithms, such as thresholding methods (e.g., (Otsu, 1979; Kapur, Sahoo, & 

Wong, 1985)), are developed for bi-level segmentation, they can also be extended to deal with multi-level 

segmentation (Aziz, Ewees, & Hassanien, 2017; Horng & Liou, 2011; Khairuzzaman & Chaudhury, 2017; Raja, 

Rajinikanth, & Latha, 2014; V Rajinikanth, Aashiha, & Atchaya, 2014; Sathya & Kayalvizhi, 2011). Multi-level 

segmentation is generally a more complex and computationally expensive problem than bi-level segmentation. Upon 

increasing the desired number of segments, the computational complexity of the problem increases exponentially, 



 

   

 

 

   

 

making the use of exact methods to exhaustively search all possible solutions impractical. As a result, heuristic 

algorithms are often preferred, and have proven successful in solving such problems in the literature previously. 

The segmentation of color images (RGB) is extremely challenging, due to the variety of possible color intensities and 

the presence of three color channels, unlike gray images which have only a single color channel (Kumar, Pant, Kumar, 

& Dutt, 2015). According to Cheng et al. (2001), the segmentation of color images has attracted increasing research 

attention due to the larger quantity of information contained within color images, and the computational power 

required to handle the processing of such images is now less expensive than it was previously. 

The k-means and c-means algorithms are two of the most well-known clustering approaches used in color image 

segmentation, often providing very good results. However, one of the limitations is that the number of clusters is a 

parameter that must be defined a priori, and deciding this value is not trivial. Computational time is also a major 

concern while solving the problem, as it is dependent on the number of clusters required, as well as the size of the 

image. Threshold-based methods using histograms are commonly adopted in image segmentation. Unlike region-

based methods which require a high volume of computation to calculate spatial pixel similarity, threshold-based 

approaches use information contained in histograms. Threshold-based techniques are also considered to be relatively 

quick, since they generally only need to process the pixels in an image once (Shapiro & Stockman 2001), however 

most are applied to gray-level images using one-dimensional histograms. Historically, few studies applying such 

methods to color images have appeared in the literature, due to the higher dimensionality involved, and the complexity 

associated with each color component in each dimension being independent. However, in recent years there has been 

increased research attention given to color image segmentation based on two- and three-dimensional histograms. The 

main difficulty faced by existing approaches is determining the number of segments to split an image into, a user-

defined parameter (Yang & Huang, 2012). 

Due to the nature of the three-dimensional data structures used to represent color images as RGB values, the analysis 

of color images for global threshold selection to be used in segmentation is a demanding task. There are studies in the 

literature presenting transformation techniques that map the representation of an image into one or two dimensions, 

before performing segmentation, i.e., (Tenenbaum, Garvey, Weyl, & Wolf, 1974; Underwood & Aggarwal, 1977). 

Among others, Sarabi & Aggarwal (1981) and Schacter, Davis, & Rosenfeld (1976) convert the  three-dimensional 

histogram into a binary tree form, where each node is an indicator of a band in the RGB range. As a result, the 

performance of these algorithms is sensitive to the number of RGB points which quantify the nodal values in the 

transformed binary tree structure. 

Kurugollu et al. (2001) proposed a color image segmentation algorithm that contained two main steps: multi-

thresholding and fusion. Firstly, two-dimensional histograms are formed by combining pair-wise color bands (RG, 

GB, and BR). The histogram of each band-pair was used to find existing peaks that corresponded to cluster centers. 

Based on the peaks obtained, the fusion phase aligns the cluster labels in each histogram before applying a spatial-

chromatic majority filter to combine the two-dimensional histograms into a final segmentation map. Tan and Isa 

(2011) introduced a hybrid method based on histogram thresholding and fuzzy c-means (FCM). This method used 

histogram thresholding to attempt to overcome the issue that fuzzy c-means is sensitive to the number of clusters and 



 

   

 

 

   

 

initial assignment of cluster centroids. Their histogram thresholding technique was used to obtain all possible uniform 

regions of color images, before the FCM algorithm was used to improve the compactness of the regions formed by 

the clusters. 

Panagiotakis et. al. (2011) proposed an image segmentation method using a growing-merging in spatial domain based 

on tree equipartition and Bayesian flooding processes for feature extraction. Rajinikanth and Couceiro (2015) 

introduced an approach for color image segmentation based on RGB histograms. The “firefly” optimization algorithm 

and modified variants were applied to optimize Otsu's between-class variance function for each color component. The 

RGB histogram of an image was taken into account for bi-level and multi-level segmentation. Lifang and Songwei 

(2017) introduced a color image segmentation method using a modified firefly algorithm to optimize multi-level 

Kapur's entropy, minimum cross entropy and between-class variance objective functions. All three functions were 

applied to all three color components. Syu et. al. (2017) proposed a method which was built on hierarchical image 

segmentation based on iterative contraction and merging. In their work, finding the optimum number of similar region 

pairs among neighbouring regions was considered as an optimization problem. Deep Learning was used for semantic 

image segmentation by Chen et. al. (2018). 

As discussed above, the choice of the number of segments to split an image into is critical to the performance of an 

image segmentation method, and usually requires human expert input. In this paper, we will introduce a novel image 

segmentation approach that aims to automatically determine both the number of clusters that exist within that image 

and the pixels that are contained within each cluster. The center of each cluster can be determined by finding the peaks 

within a three-dimensional histogram of a color image, derived using the RGB values of the pixels in the image and 

smoothened via the application of a Gaussian filter. Here we use a multimodal variant of particle swarm optimization 

(PSO) with a local search strategy, to locate all of the global and local peaks within a histogram, and hence determine 

the centre points for each cluster. The number of peaks discovered by PSO provides the number of clusters contained 

within the image automatically. Based on the peaks discovered, individual pixels are then assigned to the closest 

cluster by Euclidean distance, providing the final segmented image. 

The paper is structured as follows. Section 2 presents the concepts of multimodal optimization and discovery of peaks 

in a given RGB histogram. Section 3 provides a description of the proposed method. Section 4 analyzes and compares 

the results obtained for the proposed approach and c-means to a set of well-known benchmark problems. Finally, some 

concluding remarks are given in Section 5. 

2.  Multimodal optimization and Particle Swarm Optimisation 

Unimodal optimization approaches usually search for a single global optimum when solving a given problem. On the 

other hand, multimodal optimization approaches explore the search space with the goal of detecting global and local 

optima simultaneously. Multimodal optimization algorithms are attractive in many real-world problems, particularly 

where multiple solutions of differing quality are required by the end users. Particle Swarm Optimization (PSO) is a 

well-known optimization algorithm introduced by Eberhart and Kennedy (1995). Although this algorithm was initially 

proposed as a unimodal approach, it has been extended to multimodal form a number of times in the literature, 



 

   

 

 

   

 

exploiting the mechanisms for particles’ motion to detect both global and local optima (Parsopoulos and Vrahatis, 

2001; Brits et al., 2007). 

In traditional PSO, each particle uses two vectors: position (x) and velocity (v). The position vector encodes the 

location of a particle and the velocity vector shows the amount of change in position and direction of a particle. PSO 

is an iterative algorithm. The search process starts by assigning random values (locations) to each particle in the 

solution space. The position components are then updated based on the particles’ velocity components at each iteration 

i. From each individual particle’s experience previously gained during the search process, the swarm’s overall 

experience and an element of stochasticity, the new velocity vector of a particle can be calculated by Equation (1). 
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where ( )i tv and ( )ix t  represent the velocity and position of the ith particle at iteration t, w is the inertia weight, 
best
ip

and 
bestg  represent the position of the best solution found so far by the ith particle and its neighbors, respectively. R1 

and R2 are two randomly generated numbers uniformly distributed in the range [0,1]. C1 and C2 are the confidence of 

a given particle in itself and its neighbors respectively. The mechanism for particle motion in traditional PSO can 

easily be extended to deal with multimodal problems. In the unimodal form of PSO, all particles in the population 

converge towards the same point (gbest) in the search space. However, unlike the unimodal form, multimodal PSO 

seeks multiple gbests across the search space (Wang, Moon, Yang, & Wang, 2012).  

Inspired by electrostatic interactions between particles, Barrera and Coello Coello (2009) presented a modified PSO 

variant to tackle multimodal problems. To reach multiple optima, individual particles move from their current position 

towards the particle with greatest electrostatic conduction calculated based on current fitness value. These interactions 

are mathematically calculated per 
2

, 0/ (4 )i j i jF Q Q r 
, where ,i jQ

, 0r  , and 0  are the electrical charges 

of the interacting particles, the distance between them, and the vacuum permittivity respectively. To put these concepts 

in the context of an optimization framework, the electric charge of the particles represents the value of the fitness 

function, which is weighted by the Euclidean distance, i.e., 
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constant scalar is replaced by  which is calculated following Li (2007).  For a constant index j, 

 Mj =1:

,arg maxi i jindex F
is used to replace the value of gbest in Eq. (1)  
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This modified variant of PSO for multimodal problems is used in the experimentation performed within this paper. 

 

3. Proposed Segmentation Method (3DHP) 

In this section we will describe our proposed approach, referred to as 3DHP herein. As discussed in the introduction, 

due to the difficulty in processing three-dimensional histograms, many segmentation methods based on histograms 

only deal with one-dimensional gray images. For color images using the RGB model, the color of a pixel is a 

combination of the three independent color channels red, green and blue. Each pixel can be represented by a three-

dimensional feature vector that contains three colors of an image pixel. Accordingly, a histogram based on these three 

color components can be formed (Navon, Miller, & Averbuch, 2005). 

The existence of peaks in a histogram indicates that there are different segments in the image, with each peak 

representing a different segment. Because of the nature of the data, the histograms obtained are usually very noisy 

(Kurugollu, et al., 2001). Consequently, three-dimensional histograms are often smoothed by a three-dimensional 

Gaussian filter to reduce the effect of this noise. This procedure also removes small non-significant local peaks from 

the histogram. The three-dimensional histogram, original color distribution and color distribution after the 

smoothening process for the Lenna image are illustrated in Figure 1. 

Next, we use the multimodal variant of PSO introduced by Barrera and Coello Coello (2009) and discussed in Section 

2 above to locate all of the peaks within the image, using the smoothed histogram. It is well-known that the fine search 

aspect of multimodal algorithms is a challenging task, as the algorithm may converge close to the global/local optima 

without reaching the desired goal. Qu et al. (2012) proposed an additional step to several existing multimodal PSO 

algorithms, aimed at enhancing the effectiveness of local search, which increases the likelihood of finding optima as 

well as reducing the number of function evaluations required for convergence. 
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In the proposed method, we employ this additional local search step, in order to increase the performance level of our 

approach. After locating the best K dominant peaks, K sets of peak intensity level in each RGB component are 

automatically obtained. Then 1 1 11
( , , )rgb r g bP 

, 2 2 22
( , , )rgb r g bP 

, 3 3 33
( , , )rgb r g bP 

( , , )K K K
rgb

K
r g bP 

are the sets of peaks that are considered as cluster centers. In addition, in order to eliminate 



 

   

 

 

   

 

non-dominant clusters, it is advantageous to limit the distance between two peaks. Based on a given distance limit 

parameter, dominating peaks eliminate non-dominating peaks within that radius. It is important to note that this 

procedure is optional and could be omitted.  In our experiments, this parameter is set to 80 pixels. The number of 

peaks discovered represents the number of clusters and each peak is considered as the cluster head. 

Eventually, each pixel is assigned to the closest peak in terms of Euclidean distance. The Euclidean distance between 

kth peak and (i,j)th pixel is calculated as follows: 

2 2 2

, , , ,
|| ( ) ( ) ( )|| rgb rgb g gr r b b

i j i j i j i jk k k k
I I I IP P P P      

 
(5) 

 

The proposed algorithm is summarized by the following three steps: 

● Compute (Figure 1(c)) and smoothen (Figure 1(d)) the three-dimensional histogram 

● Apply multimodal PSO to find the dominant peaks within the histogram, representing the clusters within the 

image 

● Assign each pixel to the closest peak (cluster) in order to segment the image 

  
(a) (b) 

  
(c) (d) 

Figure 1. Illustration of three-dimensional histogram, color distribution and smoothed color distribution of 

Lenna. (a) original Lenna image, (b) three-dimensional histogram of Lenna, (c) and (d) show the normal and 

smoothened RGB representation of Lenna. 



 

   

 

 

   

 

 

4. Experimental results and performance evaluation 

Our experiments were implemented using Matlab R2014 on a Core i7-3632qm 2.20GHz CPU, 8 GB RAM running 

Windows 10. The proposed approach has been tested over the well-known Lenna image and the standard publicly 

accessible Berkeley segmentation dataset (Martin, Fowlkes, Tal, & Malik, 2001). In this paper, 20 images from this 

dataset have been selected to demonstrate the capability of the proposed method. The size and variance of the Gaussian 

filter used to smoothen the are empirically set to 11 and 7. The segmentation results of the proposed scheme depend 

on the quality of the clusters. In order to evaluate the quality of the proposed method, we compare to the fuzzy c-

means (FCM) (Sutton, Bezdek, & Cahoon, 2000) and recently proposed SFFCM (Lei, et al., 2018) methods from the 

literature, using six quantitative performance assessment metrics and computation time (T). 

As the test images are somewhat heterogeneous, visual judgment is difficult and may not be sufficient for analysis 

purposes. Therefore quantitative evaluation criteria is required to measure the performance of segmentation (Chang, 

Zhao, Liu, & Zheng, 2016). Dividing one region of the reference image into two or more regions (over-segmentation), 

and conversely, representing two or more regions of the reference image by a single region (under-segmentation) are 

both undesirable. It is obvious that by increasing the number of segments, the homogeneity of pixels in each segment 

will also increase. On the other hand, a segmented image formed by a large number of small segments may not be 

satisfactory. Hence the number of segments and their homogeneity plays an important role in a successful 

segmentation (Hettiarachchi & Peters, 2017).  

There are multiple quantitative assessment functions that can be used to evaluate the image segmentation results. 

Three of the most fundamental functions used for numerical evaluation of image segmentation results are as follows: 

 F(I) proposed by Liu and Yang (1994) which penalizes over-segmentation: 
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F’(I) proposed by Borsotti et al. (1998) which is robust for noisy images: 
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and Q(I) further refined from F(I) by Borsotti et al. (1998), which penalizes non-homogeneous regions: 
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For the three formulae above, I is image, M N  is the image size (number of pixels), R is the number of regions 

identified, iA  is the number of pixels present in the ith region. ie represents the color error in region i, which is defined 

as the sum of the Euclidean distances between (RGB) pixels of region i in the original color image and the attributed 

(RGB) pixel values in region i in the archived segmented image. R is a penalizing term that discourages over-

segmentation (non-homogeneous regions). A small value of F and F(I) is desirable.  R A  represents the number of 

regions that have an area of exactly A, and Max represents the largest region in the segmented image.  

Moreover, three other common evaluation criteria are used for quantitative comparison. The Probabilistic Rand Index 

(PRI) (Martin, et al., 2001) counts the pairs of pixels that not only have consistent labels in the segmented image, but 

also have consistent labels in the ground truth image. Variation of Information (VoI) or shared information distance 

(Meila, 2002) measure the correctness of segmentation by calculating the distance between two segmentations. The 

Global Consistency Error (GCE) (Martin, et al., 2001) evaluates the extent to which one segmentation can be a 

refinement of another. In this way, the associated segmentations are consistent because they represent the same image 

segmented at different scales. 

The visual qualitative analysis of all images is shown in Figure 2 and Figure 3. In Figure 3, the segmentation results 

for each method are shown using the mean average color value for all pixels in that cluster, and also using a distinct 

color set to the original image to clearly show the clusters found. The three-dimensional histogram peak locations and 

cluster centroids for each cluster identified by 3DHP, FCM and SFFCM are provided in Table 1. Likewise, Table 2 

and Table 3 indicate the numerical qualitative analysis of the results obtained using each of the three methods tested. 

If the ideal number of clusters was known in advance, FCM could yield robust segmentation results. In our 

experiments, the number of clusters for FCM is determined based on the number of peaks identified by 3DHP. 

It is clear from Figure 2 and Figure 3 that the proposed scheme is capable to achieve viable segmentation with well-

preserved edges. Table 2 shows that for all of the test images, 3DHP, FCM and SFFCM all produce favorable and 

reliable results. The main difference is that 3DHP does not require the number of segments to be determined in 

advance. Table 2 demonstrates that the actual computation time of the proposed technique is significantly lower than 

FCM. The computational complexity of FCM and SFFCM increases exponentially as the image size and number of 

clusters increases, whereas the computational effort required to execute 3DHP is independent of the size of the image. 

 



 

   

 

 

   

 

    
(a)  (b)  (c)  (d) 

Figure 2. (a) RGB distribution and peak locations (b) segmented image by 3DHP, m=4, (c) segmented image by 

FCM, m=4, (d) segmented image by SFFCM, m=4 

 

Figure 2(a) shows the cluster centroids located in the Lenna image by 3DHP while Figure 2(b), Figure 2(c) and Figure 

2(d) show the segmented image obtained by 3DHP, FCM and SFFCM, respectively. By observing the results shown 

in Figure 3 for ‘135069’ and ‘238011’, it seems that 3DHP is more effective at segmenting large homogenous regions, 

such as the background region in these two images. For ‘135069’, the sky is divided into multiple segments using 

FCM and SFFCM, whereas with 3DHP, except for the top-left corner, the sky is well distinguished. For the ‘238011’ 

image, the moon in the sky disappears entirely when using FCM and SFFCM. For the ‘232038’ image, 3DHP and 

FCM show better segmentation results than SFFCM as in the case of SFFCM, pixels representing the subject’s eyes 

are mistakenly assigned to the face. For the ‘124084’ image, with SFFCM all pieces of the flower and background are 

clearly distinguished, however this is not the case with two other algorithms. Additionally, for image ‘71046’, using 

3DHP the sky is segmented correctly, whereas FCM over-segments the sky, dividing it into two separate regions. 

  



 

   

 

 

   

 

Name Original Image m Segmented by 3DHP Segmented by FCM Segmented by SFFCM 
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Figure 3. Original benchmark image and segmented results 
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Figure 3. Continued 
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Figure 3. Continued 
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Figure 3. Continued 
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Figure 3. Continued  

 

Table 2 shows that 3DHP required almost the same execution time for all images, while FCM took much longer to 

process large images such as ‘12003’, ‘140075’ and ‘189003’. With the exception of the images with four or less 

clusters, among all test images, the computational time of 3DHP is lower than FCM. However, the computational time 

of SFFCM for all images is lower than both 3DHP and FCM. The values achieved for the three evaluation functions 



 

   

 

 

   

 

F(I), F’(I), and Q(I) suggest that all three methods yield consistent quantitative performance on the same image. 

However, the difference in these values is not substantial and in all cases they approach zero. The segmentation regions 

produced by the 3DHP method are more homogenous when inspected visually. The FCM method shows effective 

performance by producing good values for the three statistical measures F(I), F’(I), and Q(I). In most cases 3DHP 

provides better performance than SFFCM respect to F(I), F’(I), and Q(I). The success of FCM and SFFCM on certain 

images is a result of an appropriate number of clusters being chosen by the 3DHP method. 

Table 3 shows that the results obtained by all methods are competitive for at least some images, as they outperformed 

each other in many cases. Due to a large number of test images in the Berkeley dataset, providing tables for all PRI, 

VoI and GCE values is impractical. Hence the average of whole dataset results has been presented in Table 4. 

Table 1. Cluster centroids and peaks  

Name 
Num of 

clusters 
 

Peak locations: 3DHP Cluster centroid: FCM Cluster centroid: SFFCM 

Lenna m=4 

 

r 

g 

b 
 

 

94 176 208 228 

24 69 137 195 

64 78 125 179 
 

 

102 176 211 228 

32 77 124 158 

70 86 113 162 
 

 

59 32 125 242 

99 34 140 200 

95 32 126 170 
 

12003 m=6 

 

r 

g 

b 
 

 

20 74 132 256 171 214 

31 109 168 222 75 150 

19 31 41 149 31 94 
 

 

29 134 202 98 68 249 

40 168 136 129 91 214 

19 44 78 37 30 147 
 

 

67 201 252 110 176 34 

98 134 201 145 83 46 

31 77 135 37 40 21 
 

12074 m=5 

 

r 

g 

b 
 

 

16 81 253 201 166 

45 94 256 183 128 

33 58 250 144 75 
 

 

138 229 16 74 191 

123 234 44 75 182 

75 216 32 51 135 
 

 

171 178 40 14 209 

149 181 53 45 205 

99 99 36 33 182 
 

108073 m=4 

 

r 

g 

b 
 

 

27 93 249 253 

45 90 167 251 

36 54 102 256 
 

 

111 237 30 62 

100 172 46 75 

63 113 35 49 
 

 

49 41 99 237 

75 55 91 158 

48 40 53 99 
 

124084 m=5 

 

r 

g 

b 
 

 

166 15 85 243 256 

1 17 94 191 254 

10 10 55 1 158 
 

 

62 103 23 154 227 

56 107 21 11 173 

19 68 8 9 24 
 

 

223 149 18 39 72 

168 10 15 43 80 

7 8 8 10 41 
 

135069 m=5 

 

r 

g 

b 
 

 

72 29 93 192 238 

135 52 99 183 256 

165 50 84 172 256 
 

 

29 62 79 55 70 

43 122 144 110 134 

47 151 177 136 164 
 

 

61 29 63 65 75 

120 43 123 127 139 

148 46 153 157 170 
 

140075 m=5 

 

r 

g 

b 
 

 

102 11 169 115 115 

1 12 161 84 107 

3 14 132 1 86 
 

 

187 146 89 32 138 

182 131 51 20 104 

156 101 23 13 27 
 

 

136 92 194 133 26 

123 6 195 99 22 

95 9 179 14 13 
 

169012 m=4 

 

r 

g 

b 
 

 

50 244 132 216 

42 254 124 218 

34 256 88 183 
 

 

177 119 222 63 

149 86 223 46 

109 69 192 42 
 

 

142 77 90 210 

115 58 44 202 

90 52 41 154 
 

189003 m=8 

 

r 

g 

b 
 

 

15 256 209 145 68 196 142 60 

14 253 159 1 67 38 112 88 

12 232 141 34 65 88 96 154 
 

 

170 251 153 191 95 19 52 227 

32 243 120 155 78 16 46 192 

68 222 108 141 78 14 47 177 
 

 

177 43 183 234 26 63 144 201 

158 39 36 222 18 73 32 156 

151 38 78 209 16 125 36 137 
 



 

   

 

 

   

 

209070 m=4 

 

r 

g 

b 
 

 

31 96 141 200 

47 122 185 256 

49 103 137 256 
 

 

165 128 91 45 

220 168 119 63 

181 131 101 63 
 

 

92 65 105 137 

118 90 139 180 

99 83 111 134 
 

232038 m=6 

 

r 

g 

b 
 

 

19 110 65 122 179 243 

29 147 98 121 160 221 

15 215 38 111 162 214 
 

 

177 120 46 114 20 63 

165 156 62 119 32 92 

171 220 34 110 15 36 
 

 

60 48 119 178 118 18 

90 61 156 162 119 29 

32 36 221 165 107 14 
 

238011 m=3 

 

r 

g 

b 
 

 

62 8 244 

80 38 213 

137 36 218 
 

 

54 9 62 

70 37 79 

121 39 136 
 

 

63 59 7 

80 76 37 

138 131 34 
 

35008 m=4 

 

r 

g 

b 
 

 

20 84 156 216 

23 81 160 220 

14 53 158 205 
 

 

94 30 67 188 

117 40 75 195 

72 17 40 181 
 

 

54 70 64 145 

70 113 65 150 

30 45 38 144 
 

35010 m=4 

 

r 

g 

b 
 

 

54 79 188 206 

60 138 213 205 

41 55 193 88 
 

 

46 199 83 193 

63 198 123 216 

41 92 61 190 
 

 

54 203 72 184 

66 200 129 209 

42 85 54 183 
 

56028 m=4 

 

r 

g 

b 
 

 

166 15 86 243 

148 16 85 233 

96 7 55 194 
 

 

162 226 45 107 

148 214 46 103 

99 166 33 70 
 

 

157 115 182 49 

141 113 163 52 

91 74 105 39 
 

65019 m=7 

 

r 

g 

b 
 

 

21 254 91 196 214 255 166 

20 193 64 132 210 251 159 

21 2 1 1 187 256 132 
 

 

169 251 65 222 24 252 125 

124 198 43 162 21 231 66 

23 11 11 10 19 55 22 
 

 

133 219 254 19 250 129 44 

93 155 215 20 187 33 28 

45 2 19 18 9 16 14 
 

67079 m=4 

 

r 

g 

b 
 

 

52 177 41 125 

83 175 49 130 

109 130 18 89 
 

 

42 56 136 177 

47 87 142 176 

22 110 103 132 
 

 

42 53 163 88 

47 85 164 125 

19 111 121 139 
 

Table 1. Continued.  

Name 
Num of 

clusters 
 

Peak locations: 3DHP Cluster centroid: FCM Cluster centroid: SFFCM 

71046 m=4 

 

r 

g 

b 
 

 

102 33 83 212 

139 45 95 219 

158 37 83 169 
 

 

96 31 70 116 

134 44 81 145 

154 34 68 151 
 

 

96 113 44 94 

133 144 57 102 

155 154 45 85 
 

76002 m=5 

 

r 

g 

b 
 

 

24 199 133 71 138 

16 212 154 70 137 

1 183 155 47 67 
 

 

64 132 185 115 32 

60 153 201 109 24 

31 152 175 60 11 
 

 

140 109 36 189 59 

162 107 28 204 53 

161 46 12 176 29 
 

95006 m=7 

 

r 

g 

b 
 

 

39 136 256 117 255 176 192 

41 171 252 70 97 118 156 

49 189 213 84 124 129 59 
 

 

81 142 245 90 141 225 43 

53 88 223 82 165 90 43 

58 92 192 79 178 112 50 
 

 

113 87 45 78 249 127 87 

63 56 43 53 225 164 78 

66 55 54 61 190 155 85 
 

35301

3 
m=5 

 

r 

g 

b 
 

 

1 45 205 215 161 

10 71 100 240 195 

2 70 56 210 170 
 

 

154 8 83 204 47 

87 13 104 100 67 

36 16 94 57 62 
 

 

5 53 15 157 190 

8 78 27 96 89 

18 74 15 36 49 
 

 

  



 

   

 

 

   

 

Table 2. Quantitative evaluation of results (F, F’, Q and T). 

Name 
Quantitative evaluation  

 3DHP 

Quantitative evaluation  

FCM 

Quantitative evaluation 

SFFCM 

Len

na 

F = 1.3700e-06 

F’ = 1.4000e-07  

Q = 2.6600e-06   

T = 6.0102 

F = 1.2400e-06 

F’ = 1.2000e-07 

Q = 2.3800e-06 

T = 1.2037 

F = 2.8797e-06  

F = 2.8797e-07  

F = 5.5049e-06 

T = 1.0731 

120

03 

F = 5.7133e-07 

F’ = 5.7133e-08 

Q = 0.00000159  

T = 6.0912 

F = 2.234e-07 

F’ = 2.234e-08 

Q = 6.1514e-07 

T = 10.8642 

F = 2.1131e-06 

F’ = 2.1131e-07 

Q = 5.1966e-06 

T = 2.0153 

120

74 

F = 6.8033e-07 

F’= 6.8033e-08 

Q = 1.477e-06 

T = 6.2889 

F = 4.1665e-07 

F’ = 4.1665e-08 

Q = 9.3783e-07 

T = 6.2983 

F = 3.9226e-06 

F’ = 3.9226e-07 

Q = 8.0792e-06 

T = 1.9179 

108

073 

F = 1.2326e-06  

F’ = 1.2326e-07 

Q = 1.56e-06 

T = 6.1383 

F = 2.5369e-07 

F’ = 2.5369e-08 

Q = 6.245e-07 

T = 3.2681 

F = 8.5821e-07 

F’ = 8.5821e-08 

Q = 2.203e-06 

T = 1.9291 

124

084 

F = 1.8806e-06 

F’ = 1.8806e-07 

Q = 2.9142e-06 

T = 5.8947 

F = 6.1935e-07 

F’ = 6.1935e-08 

Q = 1.4125e-06 

T = 6.1178 

F = 1.4316e-06 

F’ = 1.4316e-07 

Q = 3.5087e-06 

T = 1.9511 

135

069 

F = 5.2978e-06 

F’ = 5.2978e-07 

Q = 2.2316e-06 

T = 6.3629 

F = 1.4337e-08 

F’ = 1.4337e-09 

Q = 3.3285e-08 

T = 7.2662 

F = 1.3683e-07 

F’ = 1.3683e-08 

Q = 3.1574e-07 

T = 2.4723 

140

075 

F = 4.6692e-07 

F’ = 4.6692e-08 

Q = 1.4902e-06 

T = 6.5012 

F = 3.6162e-07 

F’ = 3.6162e-08 

Q = 1.1465e-06 

T = 10.2341 

F = 8.0344e-07 

F’ = 8.0344e-08 

Q = 2.4868e-06 

T = 2.4577 

169

012 

F = 4.6059e-07 

F’ = 4.6059e-08 

Q = 1.4619e-06 

T = 6.1061 

F = 3.9575e-07 

F’ =3.9575e-08  

Q = 1.2622e-06 

T = 5.9679 

F = 1.3975e-06 

F’ = 1.3975e-07 

Q = 4.6398e-06 

T = 2.6330 

189

003 

F = 1.2906e-06 

F’ = 1.2906e-07 

Q = 2.7658e-06 

T = 6.2119 

F = 7.4229e-07 

F’ = 7.4229e-08 

Q = 1.8435e-06 

T = 14.7445 

F = 4.9384e-06 

F’ = 4.9384e-07 

Q = 1.132e-05 

T = 2.3438 

209

070 

F = 5.4227e-07 

F’ = 5.4227e-08 

Q = 1.1735e-06 

T = 6.2352 

F = 2.4162e-07 

F’ = 2.4162e-08 

Q = 7.1333e-07 

T = 6.6647 

F = 8.6215e-07 

F’ = 8.6215e-08 

Q = 3e-06 

T = 2.1026 

2320

38 

F = 9.4895e-07 

F’ = 9.4895e-08 

Q = 1.2228e-06 

T = 6.2871 

F = 2.1004e-07 

F’ = 2.1004e-08 

Q = 5.1624e-07 

T = 4.7355 

F = 5.6393e-07 

F’ = 5.6393e-08 

Q = 1.4172e-06 

T = 2.0963 

238

011 

F = 1.457e-06 

F’ = 1.457e-07 

Q = 9.0549e-07 

T = 6.0678 

F = 1.4087e-08 

F’ = 1.4087e-09 

Q = 4.6698e-08 

T = 2.9922 

F = 2.059e-08 

F’ = 2.059e-09 

Q = 8.14e-08 

T = 1.9768 

 

Table 2. Continued 



 

   

 

 

   

 

350

08 

F = 4.1193e-07 

F’ = 4.1193e-08 

Q = 1.0089e-06 

T = 6 .4512 

F = 2.8003e-07 

F’ = 2.8003e-08 

Q = 7.4904e-07 

T = 4.0833 

F = 6.7645e-07 

F’ = 6.7645e-08 

Q = 2.0802e-06 

T = 1.9318 

350

10 

F = 2.4355e-07 

F’ = 2.4355e-08 

Q = 8.2145e-07 

T = 6.3137 

F = 1.0827e-07 

F’ = 1.0827e-08 

Q = 3.643e-07 

T = 4.0775 

F = 4.6721e-07 

F’ = 4.6721e-08 

Q = 1.6177e-06 

T = 2.3095 

560

28 

F = 3.5229e-07 

F = 3.5229e-08 

Q = 1.0031e-06 

T = 6.2556 

F = 2.3402e-07 

F’ = 2.3402e-08 

Q = 6.7532e-07 

T = 5.6569 

F = 7.001e-07 

F’ = 7.001e-08 

Q = 2.4089e-06 

T = 2.0573 

650

19 

F = 2.0482e-06 

F = 2.0482e-07 

Q = 3.3029e-06 

T = 6.1657 

F = 8.2575e-07 

F’ = 8.2575e-08 

Q = 2.0284e-06 

T = 13.7039 

F = 3.3699e-06 

F’ = 3.3699e-07 

Q = 8.0541e-06 

T = 2.5992 

670

79 

F = 1.4427e-07 

F = 1.4427e-08 

Q = 4.6106e-07 

T = 6.2369 

F = 5.7994e-08 

F’ = 5.7994e-09 

Q = 1.8602e-07 

T = 4.0155 

F = 3.4167e-07 

F’ = 3.4167e-08 

Q = 8.7742e-07 

T = 1.9546 

710

46 

F = 9.764e-07 

F = 9.764e-08 

Q = 9.7541e-07 

T = 6.2244 

F = 5.975e-08 

F’ = 5.975e-09 

Q = 1.8072e-07 

T = 4.0063 

F = 5.0245e-07 

F’ = 5.0245e-08 

Q = 1.2051e-06 

T = 2.1358 

760

02 

F = 3.2006e-07 

F = 3.2006e-08 

Q = 9.3846e-07 

T = 6.1982 

F = 2.1645e-07 

F’ = 2.1645e-08 

Q = 6.4376e-07 

T = 6.4097 

F = 6.8293e-07 

F’ = 6.8293e-08 

Q = 2.0449e-06 

T = 1.9069 

950

06 

F = 7.8068e-06 

F = 7.8068e-07 

Q = 4.0658e-06 

T = 6.3001 

F = 9.6367e-07 

F’ = 9.6367e-08 

Q = 1.9532e-06 

T =11.3612 

F = 4.0633e-06 

F’ = 4.0633e-07 

Q = 9.1928e-06 

T = 2.5159 

353

013 

F = 1.1838e-06 

F = 1.1838e-07 

Q = 1.9317e-06 

T = 6.2308 

F = 2.2597e-07 

F’ = 2.2597e-08 

Q = 6.2344e-07 

T = 10.1865 

F = 6.0339e-07 

F’ = 6.0339e-08 

Q = 1.8535e-06 

T = 2.1671 

 

Table 3. Quantitative evaluation of results (PRI, VoI and GCE). 

Name 
Quantitative evaluation  

 3DHP 

Quantitative evaluation  

FCM 

Quantitative evaluation 

SFFCM 

120

03 

PRI = 0.702839 

VOI = 3.031937 

GCE = 0.392419 

PRI = 0.699288 

VOI = 3.365230 

GCE = 0.432079 

PRI = 0.706441 

VOI = 2.409350 

GCE = 0.308196 

120

74 

PRI = 0.646981 

VOI = 2.431389 

GCE = 0.371896 

PRI = 0.657461 

VOI = 2.475026 

GCE = 0.381657 

PRI = 0.756473 

VOI = 1.574813 

GCE = 0.196605 

108

073 

PRI = 0.591311 

VOI = 2.212177 

GCE = 0.301846 

PRI = 0.575904 

VOI = 2.552988 

GCE = 0.318638 

PRI = 0.594306 

VOI = 2.265117 

GCE = 0.291351 

124

084 

PRI = 0.715632 

VOI = 2.458209 

GCE = 0.337242 

PRI = 0.705431 

VOI = 2.718757 

GCE = 0.370913 

PRI = 0.719107 

VOI = 2.163888 

GCE = 0.272354 



 

   

 

 

   

 

135

069 

PRI = 0.985861 

VOI = 0.147977 

GCE = 0.016432 

PRI = 0.335102 

VOI = 1.994055 

GCE = 0.025972 

PRI = 0.396392 

VOI = 1.720451 

GCE = 0.025217 

140

075 

PRI = 0.749074 

VOI = 3.508455 

GCE = 0.498595 

PRI = 0.737769 

VOI = 3.716510 

GCE = 0.539043 

PRI = 0.836686 

VOI = 2.073448 

GCE = 0.216793 

169

012 

PRI = 0.626588 

VOI = 4.269046 

GCE = 0.501943 

PRI = 0.674412 

VOI = 4.418008 

GCE = 0.556223 

PRI = 0.700653 

VOI = 3.275286 

GCE = 0.334645 

189

003 

PRI = 0.669132 

VOI = 4.147374 

GCE = 0.574200 

PRI = 0.683224 

VOI = 4.443397 

GCE = 0.607502 

PRI = 0.689975 

VOI = 3.404865 

GCE = 0.470955 

209

070 

PRI = 0.635576 

VOI = 4.409536 

GCE = 0.501888 

PRI = 0.663834 

VOI = 4.569162 

GCE = 0.539298 

PRI = 0.696154 

VOI = 3.573111 

GCE = 0.360163 

2320

38 

PRI = 0.838627 

VOI = 2.528876 

GCE = 0.300290 

PRI = 0.878349 

VOI = 2.503639 

GCE = 0.335550 

PRI = 0.899851 

VOI = 1.771766 

GCE = 0.217234 

238

011 

PRI = 0.930953 

VOI = 0.473332 

GCE = 0.055855 

PRI = 0.804132 

VOI = 0.957979 

GCE = 0.104131 

PRI = 0.669144 

VOI = 1.407235 

GCE = 0.145632 

350

08 

PRI = 0.600557 

VOI = 2.863001 

GCE = 0.260084 

PRI = 0.625892 

VOI = 3.237172 

GCE = 0.355314 

PRI = 0.658769 

VOI = 2.601046 

GCE = 0.222847 

350

10 

PRI = 0.728838 

VOI = 3.515352 

GCE = 0.419921 

PRI = 0.733839 

VOI = 3.552653 

GCE = 0.432048 

PRI = 0.719058 

VOI = 3.148263 

GCE = 0.345505 

560

28 

PRI = 0.592725 

VOI = 3.714739 

GCE = 0.438474 

PRI = 0.603916 

VOI = 3.765604 

GCE = 0.442325 

PRI = 0.625383 

VOI = 3.040313 

GCE = 0.316286 

650

19 

PRI = 0.764709 

VOI = 4.731903 

GCE = 0.422061 

PRI = 0.838701 

VOI = 5.246779 

GCE = 0.581516 

PRI = 0.867411 

VOI = 3.410182 

GCE = 0.258204 

670

79 

PRI = 0.752014 

VOI = 2.840880 

GCE = 0.327411 

PRI = 0.750624 

VOI = 2.917691 

GCE = 0.342623 

PRI = 0.716400 

VOI = 2.143727 

GCE = 0.153132 

710

46 

PRI = 0.902722 

VOI = 1.547911 

GCE = 0.183469 

PRI = 0.708500 

VOI = 2.201056 

GCE = 0.297266 

PRI = 0.722012 

VOI = 1.825423 

GCE = 0.266854 

760

02 

PRI = 0.766120 

VOI = 3.483626 

GCE = 0.521048 

PRI = 0.779309 

VOI = 3.440196 

GCE = 0.513478 

PRI = 0.799879 

VOI = 2.458226 

GCE = 0.306349 

950

06 

PRI = 0.617331 

VOI = 3.350518 

GCE = 0.543149 

PRI = 0.687417 

VOI = 3.671150 

GCE = 0.583522 

PRI = 0.770048 

VOI = 2.420249 

GCE = 0.359053 



 

   

 

 

   

 

353

013 

PRI = 0.751297 

VOI = 2.025594 

GCE = 0.286181 

PRI = 0.724700 

VOI = 2.350025 

GCE = 0.415924 

PRI = 0.825604 

VOI = 1.402835 

GCE = 0.240564 

 

Table 4. Mean values of PRI, VoI and GCE over the Berkeley dataset. 
 PRI VoI GCE 

3DHP 0.685857 2.765545 0.360208 

FCM 0.688451 2.979884 0.413387 

SFFCM 0.739651 2.130512 0.258597 

 

Based on these results, we conclude that the 3DHP, FCM and SFFCM techniques can all show high quality 

performance in the segmentation process for at least some images. As it is clear from both visual and numerical results, 

the proposed 3DHP technique yields promising segmentation results. This is supported by the capability of the method 

to produce the number of clusters and cluster centroids automatically. 

5. Conclusion 

In this paper, we have introduced a new automated pixel clustering and color image segmentation algorithm. The 

proposed approach (3DHP) can automatically determine an appropriate number of clusters as well as the cluster 

centroids, demonstrating the advantage of peak detection using a multimodal optimization algorithm. Since the best 

number of clusters is often not known a priori in many practical applications, 3DHP can be utilized more widely in 

practice than existing approaches. The majority of images with differing numbers of clusters from a well-known 

benchmark data set have been demonstrated to be handled effectively by the proposed approach. The computational 

experiments have illustrated that the proposed algorithm can automatically discover all known cluster centroids. More 

importantly, the time required for clustering is not dependent on the size of the image to be segmented. Our approach 

uses relatively less time to find the cluster centroids compared to FCM, making it a viable algorithm for image 

segmentation. Furthermore, both the proposed method and FCM and SFFCM yield desirable results in terms of the 

quantitative evaluation function. The difference in these values is not significant and, for all three techniques, these 

values approach zero. Finally, experimental results confirm that the proposed 3DHP method can obtain robust and 

promising segmentation results. 
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