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Abstract

This study explores the suitability of neural networks with a convolutional
component as an alternative to traditional multilayer perceptrons in the do-
main of trend classification of cryptocurrency exchange rates using technical
analysis in high frequencies. The experimental work compares the perfor-
mance of four different network architectures -convolutional neural network,
hybrid CNN-LSTM network, multilayer perceptron and radial basis function
neural network- to predict whether six popular cryptocurrencies -Bitcoin,
Dash, Ether, Litecoin, Monero and Ripple- will increase their value vs. USD
in the next minute. The results, based on 18 technical indicators derived from
the exchange rates at a one-minute resolution over one year, suggest that all
series were predictable to a certain extent using the technical indicators.
Convolutional LSTM neural networks outperformed all the rest significantly,
while CNN neural networks were also able to provide good results specially
in the Bitcoin, Ether and Litecoin cryptocurrencies.
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1. Introduction1

Cryptocurrencies are a kind of digital assets based on cryptographic pro-2

tocols and technologies, such as the blockchain, that run on decentralized3

networks and make transactions secure and difficult to fake. These, which4

are emerging as an alternative to traditional centralized currencies, have at-5

tracted significant attention in recent years due to the blockchain ecosystem6

and the high volatility of their exchange rates (Li & Wang, 2017; Vidal-Tomás7

& Ibañez, 2018; Nakano et al., 2018).8

Financial prediction is a domain full of challenges. Market data is of-9

ten characterized by the presence of noise, a high degree of uncertainty, and10

hidden relationships (Huang et al., 2005). Apart from the use of raw prices11

and volumes using traditional statistical methods, the prediction of price12

movements can be approached using fundamental and technical indicators13

(Lo et al., 2000; Tay & Cao, 2001). In this domain, Machine Learning al-14

gorithms have grabbed the interest of academics and practitioners due to15

their ability to capture nonlinear relationships in the input data and predict16

price movements without relying on traditional assumptions on their statisti-17

cal properties nor introducing human bias (Atsalakis & Valavanis, 2009; Hsu18

et al., 2016). These have benefited the automation of algorithmic trades in19

financial instruments at very high speeds. In this context, High-Frequency20

Trading (HFT) helps traders hold positions for short periods of time and21

earn their profits by accumulating tiny gains on a large number of transac-22

tions (Huang et al., 2019). On the academic side, there is a wide literature23

supporting the relevance forecasting at high frequencies (Huang et al., 2019;24

Dempster & Leemans, 2006; Dańıelsson & Love, 2006; Zafeiriou & Kalles,25

2013; Nelson et al., 2017; Borovkova & Tsiamas, 2018; Nakano et al., 2018;26

Chong et al., 2017; Shintate & Pichl, 2019).27

The use of HFT is especially appealing in the context of crypto-currency28

exchange rates, due to their intraday volatility. As a consequence, many HFT29

firms have started operating and offering collocation of services in cryptocur-30

rencies for institutional investors. The development of cryptocurrencies has31

coincided with a renewed interest in Neural Networks. This technique, de-32

spite being decades old, has gained considerable notoriety due to the current33

level of maturity reached by some feature learning frameworks, the success of34

deep learning the last few years in image recognition, and the high scalabil-35
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ity of their algorithms by using GPUs. This interest has been spread as well36

to the financial domain, with an increase of research on stock market price37

prediction using different deep neural network architectures for short-term38

and intraday technical trading (Chong et al., 2017; Lahmiri & Bekiros, 2019;39

Mallqui & Fernandes, 2019).40

In this context, the aim of this paper is contributing with new evidence41

on the suitability of using neural networks with a convolutional component42

to make intraday trend classification for cryptocurrencies based on techni-43

cal indicators. More specifically, we will benchmark Convolutional Neural44

Networks (CNN), hybrid CNN-LSTM networks (CLSTM), Multilayer Per-45

ceptrons (MLP) and Radial Basis Function Neural Networks (RBFNN) on46

intraday data for Bitcoin, Dash, Ether, Litecoin, Monero and Ripple.47

Given its nature, the study is more focused on the performance of the48

instrumental in the domain, and less on the design and implementation of49

profitable trading systems. The latter practical application would require,50

in addition to the implementation of a decision component, controlling for51

aspects like time management, liquidity issues, or transaction costs, among52

others.53

The rest of the document is structured as follows: first, we will provide54

an introduction to the relevant literature. That will be followed by a brief55

description of the network architectures compared in the study. The next56

section will be devoted to describing the experimental design. After that, we57

will cover the experimental results and, finally, the last one will be reserved58

for a summary and conclusions.59

2. Literature Review60

2.1. Cryptocurrencies61

Cryptocurrencies have attracted the attention of investors and regulators62

since they were first proposed (Nakamoto, 2009). Their popularity relies on63

their peer-to-peer system, their ungoverned nature, and their low transaction64

costs. This has led to a surge in trading volume, volatility and price on ex-65

changes. Either as a cause or an effect of this, they have become mainstream66

in media. Glaser et al. (Glaser et al., 2014) and Baek and Elbeck (Baek67

& Elbeck, 2015) defend that cryptocurrencies constitute a new asset class68

with more elements in common to speculative commodities than currencies,69

as their value is not based in any tangible asset. This has also raised the70

interest of the academic community.71
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There is a wide variety of recent studies covering financial aspects of differ-72

ent cryptocurrencies such as market efficiency (Vidal-Tomás & Ibañez, 2018);73

price volatility and study dynamic relationships between them (Katsiampa,74

2017; Corbet et al., 2018); transaction cost (Kim, 2017); price clustering75

(Urquhart, 2017); liquidity and potential for diversification (Wei, 2018; Pla-76

tanakis et al., 2018; Dyhrberg et al., 2018; Liu, 2019). Corbet et al. (Corbet77

et al., 2019) provide a literature review of the topics that have attracted most78

of the attention lately.79

2.2. Neural networks in the financial and cryptocurrency domains80

Albeit most of the early studies applying deep learning in the financial81

domain, are focused on identifying dependencies between stock market move-82

ments and news events using Deep Convolutional Neural Networks and Re-83

current Neural Networks (RNN) (Ding et al., 2015; Yoshihara et al., 2014),84

its application to extract information from the stock return time-series is85

currently growing. In fact, recently (Moews et al., 2019; Adcock & Grado-86

jevic, 2019) show how deep feed-forward neural networks are suitable for87

learning lagged correlations between the step-wise trends of a large num-88

ber of financial time-series such as cryptocurrency returns. Many systems89

based on neural networks for trading strategies in cryptocurrency markets90

using prices have been proposed (Atsalakis et al., 2019; Vo & Yost-Bremm,91

2018; Nakano et al., 2018). Silva de Souza et al. (Silva de Souza et al.,92

2019) study how strategies based on Artificial Neural Networks among other93

techniques can generate abnormal risk-adjusted returns when applied to Bit-94

coin. In their analysis, they defend that strategies based on neural networks95

may beat buy-and-hold strategies even during strong bull trends as these are96

able to explore short-run informational inefficiencies and generate abnormal97

profits. Furthermore, in recent times there are several studies using deep98

learning algorithms (Zhang et al., 2019; Sirignano & Cont, 2019; Mäkinen99

et al., 2018) which claim that there might be a universal price formulation100

for the deterministic part of trading behavior to some degree. This would101

imply that financial data at high-frequency could have stationary patterns102

over long time periods that can be learned (Shintate & Pichl, 2019).103

In this space, there are a few recent papers applying different architectures104

for price prediction and trend classification on the short-term, in mid and105

high frequencies.106

The first group of these studied in the literature are recurring neural net-107

works (RNNs), especially Long-Short-Term Memory neural networks (LSTMs).108
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Lahmiri and Bekiros (Lahmiri & Bekiros, 2019) explore the usage of Long-109

Short-Term Memory neural networks and Generalized Regression Neural110

Networks (GRNN) for price prediction in Dash, Ripple, and Bitcoin. The111

LSTM neural network performs clearly better than GRNN in terms of root112

mean squared error (obtaining less than the half) at the daily level.113

Bao et al. (Bao et al., 2017) propose a deep learning framework over114

technical indicators, prices, and macroeconomic variables to forecast the next115

day’s closing price. They combine wavelet transforms, stacked auto-encoders,116

and LSTM neural networks for stock price forecasting in six popular market117

indexes. Nelson et al. (Nelson et al., 2017) use an LSTM neural network118

to predict future trends of stock prices. They use a set of technical indica-119

tors and the price history in 15-minutes intervals. Borovkova and Tsiamas120

(Borovkova & Tsiamas, 2018) feed technical indicators to an online ensemble121

of LSTMs to predict stock price on 5-minute intervals. Their approach is122

able to deal with non-stationarities in different stock market indexes. Fisher123

and Kraus (Fischer & Krauss, 2018) compare LSTM neural networks with124

Random Forest, deep neural networks (DNN), and Logistic Regression for125

S&P500 price prediction. The LSTM model obtained both the best accu-126

racy and daily returns.127

Wu et al. (Wu et al., 2019) propose a framework to select input variables128

for LSTM models in Bitcoin price forecasting. Kwon et al. (Kwon et al.,129

2019) use LSTM networks to classify the price trend (price-up or price-down)130

of different cryptocurrencies obtaining better results than Gradient Boosting131

Models. Miura et al. (Miura et al., 2019) benchmark LSTMs, MLP, and132

gated recurrent units on Bitcoin prices to predict realized volatility. On133

their study LSTMs and gated recurrent units performed better compared to134

MLPs.135

Mallqui and Fernandes (Mallqui & Fernandes, 2019) compare different136

ensembles and neural networks to classify Bitcoin price trend, closing, max-137

imum and minimum price. In their study RNNs and MLPs obtain the best138

results for price trend and closing price prediction respectively.139

The second group of architectures widely used in the literature are Deep140

Neural Networks (DNN) such as feed-forward networks, or more specifically,141

MLPs. Adcock & Gradojevic (Adcock & Gradojevic, 2019) use feed-forward142

neural networks with lagged returns and simple technical trading rules to143

forecast BTC/USD returns. The authors conclude that these architectures144

are suitable for Bitcoin returns forecasting, although the results might vary145

over time impacted by its sharp price movement. In order to assess this146
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volatility in Bitcoin prices, Kristjanpoller and Minutolo (Kristjanpoller &147

Minutolo, 2018) propose a hybrid approach combining lagged values, tech-148

nical indexes, and econometric models, preprocessed with Principal Compo-149

nents Analysis and fed into an MLP architecture.150

Nakano et al. (Nakano et al., 2018) use a DNN to predict price direction151

on Bitcoin 15-minutes time intervals using prices and technical indicators.152

Their intraday strategy obtains better returns than buy-and-hold and other153

primitive technical trading strategies. Chong et al. (Chong et al., 2017)154

propose a deep feature learning-based stock market prediction model. They155

use principal component analysis (PCA), an auto-encoder, and a restricted156

Boltzmann machine, with a three-layer DNN to predict the stock returns157

at the 5-minutes level in the Korean stock market. Das et al. (Das et al.,158

2018) examine the predictability of the S&P500 Index using past returns159

of all the stocks in the index through the use of DNN. They train a feed-160

forward deep learning network with three hidden layers of 200 nodes each161

to predict the direction of the closing price from 5 to 30 days ahead. Singh162

and Srivastava (Singh & Srivastava, 2017) combine PCA with RNN, Radial163

Basis Function Neural Networks and DNN for trend prediction in NASDAQ164

daily prices. DNNs outperformed the other neural network architectures in165

the experiments.166

The third group architectures studied are the ones based on principles of167

the field of image processing, such as Convolutional Neural Networks. Selvin168

et al. (Selvin et al., 2017) compare LSTMs, RNNs, and CNN architectures169

using a sliding window approach for short-term future stock price prediction.170

In their approach, the CNN architecture outperforms LSTM and RNN.171

Shintate and Pichl (Shintate & Pichl, 2019) compare LSTMs and MLPs172

on Bitcoin and Litecoin exchange time-series at 1-minute intervals. They173

also propose their own algorithm (RSM), namely Random Sampling Method,174

based on deep learning developments in the field of image processing. RSM175

obtains the best accuracy when compared to LSTMs and MLP on their176

study. Hiransha et al. (Hiransha et al., 2018) compare Multilayer Perceptron177

(MLP), RNN, LSTM and CNN architectures for predicting the stock price of178

highly traded companies in the National Stock Exchange (NSE) of India and179

the New York Stock Exchange (NYSE). In their study, the model with best180

results was the CNN architecture, outperforming as well as other classical181

models as ARIMA at the day level. Sezer & Ozbayoglu (Sezer & Ozbayoglu,182

2018) propose a trading algorithm using a 2D CNN architecture at the daily183

level to determine buy and sell points in the stocks market. Their model184
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outperformed Buy & Hold, MLPs and LSTMs on short and long out-of-185

sample periods in their study. Tsantekidis et al. (Tsantekidis et al., 2017)186

propose a CNN architecture to predict price trend in stock prices on high187

frequencies using data from limit order books. Their results show how CNNs188

beat other state-of-the-art algorithms for the same purpose.189

To the best of our knowledge, despite being one of the techniques obtain-190

ing best results on financial prediction in the literature, image processing191

based architectures are the least explored of the above-mentioned groups.192

On top of it, there is a gap regarding the application of Convolutional Neural193

Networks for cryptocurrency forecasting and price prediction at high frequen-194

cies. CNNs architectures have been the most adopted deep learning model195

and have become a de facto standard for image classification and computer196

vision in recent years (Canziani et al., 2016). However, a frequent issue of197

CNNs is that these tend to ignore the latent dynamics existing in the data.198

Our proposed methodology encodes a time series as a 2D image-like structure199

to take into account dependencies from recent market movements and also200

potential recurrences.201

The architectures used in this study are briefly described in the section202

that follows.203

204

3. Architectures considered205

3.1. Multi-layer perceptrons206

The Multi-layer Perceptron (MLP) is one of the most popular classic207

neural network architectures. It is a type of feed-forward neural network208

which originally consists of at least three layers: an input layer, a hidden209

layer, and an output layer (Guresen et al., 2011).210

Input data is propagated forward to the output neuron, and each in-211

termediate unit is fully connected to the neurons of the next layer through212

weighted connections (Hiransha et al., 2018). Learning occurs by changing213

these connection weights, often through a gradient descent-based approach214

like the back-propagation algorithm, to minimize the error obtained. An ex-215

ample of an MLP architecture can be seen in Figure 1.216

217
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Figure 1: Example of an MLP architecture for a single hidden layer, n neurons in the input
and k neurons in the hidden layer. x,y and w represent the input features, the prediction,
and the weighted connections respectively.

3.2. Radial Basis Function networks218

Radial Basis Function Neural Networks (RBFNNs) are feed-forward neu-219

ral networks with a similar setting to MLP architectures. As can be seen in220

the example architecture in Figure 2, the main difference between RBFNNs221

and MLPs relies on the hidden layer.222

First, RBFNNs apply Gaussian activation functions (denoted by ϕ in223

Fig. 2) while MLPs use sigmoidal or other monotonic functions as ReLU.224

Second, RBFNNs compute Euclidean distances between the weights (centers)225

and the input neurons rather than dot products.226
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Figure 2: Example of a radial basis function neural network (RBFNN) architecture for a
single hidden layer, n neurons in the input and k neurons in the hidden layer. x,y and c
represent the input features, the prediction, and the hidden layer centers respectively.
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In other words, RBFNN architectures store prototypes in their hidden227

layer, used to compute the average Euclidean distance as a similarity mea-228

sure. This allows the classifier to identify when a test example could represent229

a novel class, or a new regime in the domain time series forecasting (Liu &230

Zhang, 2010). It is demonstrated that their related cost function is local231

minima free with respect to all the network weights (Serrano, 2019).232

3.3. Convolutional neural networks233

Convolutional Neural Networks (CNN) constitute another type of feed-234

forward architecture which often take their input as bi-dimensional matrices.235

They typically consist of a set of successive convolutional and subsampling236

layers, one or more hidden layers and an output layer. The first two types of237

layers are combined n-times to extract high-level feature vectors in one dimen-238

sion. These feature vectors are processed by the hidden and output layers,239

that work like a fully connected multilayer perceptron (Sezer & Ozbayoglu,240

2018). An example of a CNN architecture can be seen in Figure 3.241
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Figure 3: Example of a CNN architecture for a single convolutional layer, a single pooling
(subsampling) layer, a single dense (fully-connected) layer and n neurons in the input. x
represents the input features flattened.

In this architecture, convolutional layers consist of multiple filters or con-242

volutions that are applied to the input from the previous layer. Convolution243

filter kernel weights are optimized during the training process. In this context244

subsampling or pooling layers reduce the dimension of the features, acting245

as a mechanism of robustness against noise.246
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3.4. Long Short-Term Memory neural networks247

Long Short-Term Memory neural networks (LSTM), proposed by Hochre-248

iter and Schmidhuber (Hochreiter & Schmidhuber, 1997), are designed to249

keep adjacent temporal information whilst they are able to remember infor-250

mation for a long time in their cells. In this regard, LSTM neural networks251

provide an extension to recurrent neural network architectures. Albeit LSTM252

consists of a memory block instead of a neural network layer with a feedback253

loop as normal RNNs. Each LSTM memory block (or cell) is supported by254

three components: the input, forget and output controlling gates.255

The forget gate retrieves information from the prior state in the last mem-256

ory block (long-term state) using the previous time-step output (or previous257

short-term state). It controls which information should be removed. The258

input gate determines the amount of information needed in order to generate259

the current state. It controls which information is added to the cell (or long-260

term) state. Finally, output gates act as filters and control which information261

from the current state produces the output (prediction) or short-term state.262

An example of an LSTM block can be seen in Figure 4.263

In this work we are not going to use a simple LSTM network, but instead264

our configuration will be a hybrid deep network that combines convolutional265

layers, LSTM layers and dense layers for output, called CLSTM hereafter.266

g gcell
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xt xt
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Figure 4: Example of am LSTM block. x and h represent the input and the predicted
output (short-term state) respectively. g represents a tangent function.
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4. Experimental design267

4.1. Sample268

The core data set used in the experimental analysis will cover six of the269

most popular cryptocurrencies (Bitcoin, Dash, Ether, Litecoin, Monero, and270

Ripple) over a year of data (third quarter of 2018 to second quarter of 2019).271

The price series vs. USD, sampled at 1-minute intervals over the period from272

the 1st of July of 2018 to the 30rd of June of 2019, was sourced from the273

cryptocurrency data provider Cryptocompare.274

Figure 5: Evolution of exchange rates vs. USD at a 1-minute resolution from Q3 2018 to
Q2 2019. Data scaled to base 100.

Figure 5 shows the behavior of the exchange rates vs. USD at the minute275

bar over the mentioned period. The series were scaled to base 100 for the276

sake of clarity.277

In this study, we will rely on 18 technical indicators based on a popu-278

lar set first used by Kara et al. (Kara et al., 2011) that we extended with279

additional long and short moving averages (5, 20, 30 and 60 minutes). The280

set includes popular momentum-based indicators such as Commodity Chan-281

nel Index, Momentum, Moving Average Convergence/Divergence, Relative282

Strength Index, Stochastic, and Williams’ R.283

This list of technical indicators is a representative set of the trend-following284

technical indicators covered by the relevant literature (Hsu et al., 2016). It285
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puts together previous research works that use neural networks in the finan-286

cial domain (Diler, 2003; Armano et al., 2005; Huang & Tsai, 2009; Kim &287

Han, 2000; Yao et al., 1999) and overlaps across most of the papers for price288

trend prediction on the financial domain and cryptocurrencies. (Adcock &289

Gradojevic, 2019; Nakano et al., 2018; Kristjanpoller & Minutolo, 2018). It290

has also been used later by other authors (Hsu et al., 2016; Patel et al., 2015).291

If we consider how these two families of indicators are used by practi-292

tioners, on one hand, moving-averages are often used to define trading rules293

that generate buy or sell signals based on the relative behavior of indicators294

calculated over shorter and longer time periods. The comparison of these295

lagging indicators reveals changes in stock price trends based on the princi-296

ple that short moving-averages are more sensitive to recent price movements297

than the long ones. Momentum indicators, on the other hand, measure price298

differences over relatively short periods of time to track the speed of price299

changes. These are used by investors to measure the strength of trends and300

are often used to forecast reversals that are subsequently used to define trad-301

ing signals. Neely et al. Neely et al. (2014) provide examples of the structure302

of some of these rules.303

In summary, this set of features, which is formally defined in Table 1,304

consists of the following:305

• Accumulation/Distribution Oscillator (A/D)306

• Commodity Channel Index (CCI)307

• Larry William’s R (LWI)308

• Momentum309

• Moving average convergence divergence (MACD)310

• Relative Strength Index (RSI)311

• Simple n-second moving average (SMA) over 5, 10, 20, 30 and 60 time312

periods313

• Stochastic D% (SD)314

• Stochastic K% (SK)315
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Table 1: Technical indicators used in the analysis. Formulas as reported in (Kara et al.,
2011).

Indicator Formula

A/D Ht−Ct−1

Ht−Lt

CCI Mt−SMt

0.015Dt

LWR Hn−Ct

Hn−Ln
× 100

MACD MACD(n)t−1 + 2/n+ 1 × (DFt −MACD(n)t−1)
Momentum Ct − Ct−n
RSI 100 − 100

1+(
∑n−1

i=0 Upt−i/n)/(
∑n−1

i=0 Dwt−i/n)

SMA (5,10,20,30,60) Ct+Ct−1+...+Ct−n+1

n

SD
∑n−1

i=0 Kt−i%

n

SK Ct−LLt−n

HHt−n−LLt−n
× 100

WMA (5,10,20,30,60) n×Ct+(n−1)×Ct−1+...+Ct−n+1

n+(n−1)+...+1

Ct: closing price; Lt: lowest price; Ht: highest price at time t; DF : EMA(12)t − EMA(26)t; EMA:
Exponential moving average; EMA(k)t: EMA(k)t−1 + α× (ct − EMA(k)t−1); α: smoothing factor:
2/1 + k; k: time period of k minute exponential moving average; LLt and HHt: mean lowest low and
highest high in the last t minutes; Mt : Ht+Lt+Ct/3; SMt :

∑n
i=1Mt−i+1)/n; Dt : (

∑n
i=1 |Mt−i+1−

SMt|)/n;Upt: upward price change; Dwt: downward price change at time t.

• Weighted n-second moving average (WMA) over 5, 10, 20, 30 and 60316

time periods317

While it could be argued that the number of indicators could be greater,318

and others such as volume indicators have not been used to identify trends,319

the current selection is limited due to the high computational cost of algo-320

rithms used. Our setup is in the same range of indicators than other recent321

papers in the academic literature (Xu et al., 2019; Sun et al., 2019; Hosein-322

zade & Haratizadeh, 2019; Picasso et al., 2019; Kristjanpoller & Minutolo,323

2018).324

Given that the indicators require lagged information, we extended the325

sample slightly with the last minutes of the 30th of June of 2018 to ensure326

that we had the 18 required features from the very start of the 1st of July.327

We have constructed our data set, where each pattern contains the values328

for the i indicators for “l” consecutive lags for each pattern plus the trend329

(that is, whether the value appreciated or not) as the class to be predicted.330

This process is shown in Figure 6, on an example that uses 6 indicators and331

7 time lags as the window size. The relevant trend to predict is the value332
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(a) Pattern 1 (b) Pattern 2 (c) Pattern 3

Figure 6: Pattern generation process. Example based on 6 technical indicators and 7 lags.
Class is highlighted in the “Trend” column. Matrix format is used for convolutional neural
networks, MLP and RBFNN use a flattened 1-dimensional vector.)

corresponding to the following period of time, shown in the last column.333

Therefore, our system predicts the outcome for a given time step (t + 1)334

using the indicators that correspond to the previous l time steps (t, t − 1,335

. . . , t − l + 1). For the intermediate time steps, we don’t use the trend336

column. For the MLP and RBFNN approaches, patterns are converted in337

one-dimensional vectors of l × i + 1 attributes, including the class. For the338

CNN and CLSTM network approach, patterns are l × i matrices with an339

additional class value per pattern. Note that the process of finding a good340

value for l, is part of the experimental protocol.341

In Convolutional layers, neurons only receive input from a subarea of the342

previous layer (Dresp-Langley et al., 2019). The proposed CNN architecture343

aims to learn the relevant technical indicators during the training process by344

extracting feature maps that represent price trends. The relationships be-345

tween these price trends are later fed into a fully connected layer to learn the346

different relationships present. This automates the behavior of chartists and347

technical analysts that often make decisions based on the current and previ-348

ous values of several technical indicators, trendlines and their price patterns349

such as triangles, bears, flags, etc. (Campbell et al., 1997).350

In order to avoid temporal bias in the data generation process, we ran-351

domize the order of the aforementioned patterns. That is, our hypothesis is352

that our system will recognize correlations between values of the l time steps353

regardless of their occurrence in the complete interval analyzed.354

The application of the mentioned approach on the data set described355

above resulted in the generation of 525,600 patterns to be split into three356

samples. The first one consisted of 70% (367,920 patterns) used for training.357

The second one included 15% (78,840 patterns) and served as the validation358
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set. Finally, the remaining 15% was reserved for testing purposes. Table 2359

reports the breakdown of pattern classes for the seven cryptocurrencies by360

sample. As it was mentioned before, the class 1 represents appreciation vs361

USD in the relevant one-minute interval, and 0 is used for the rest.362

Table 2: Breakdown of pattern classes for the six cryptocurrencies by sample. Patterns
computed at 1-minute intervals for the period Q3 2018 to Q2 2019. The values for the
test case are used later as baseline classifier accuracy for comparison.

Bitcoin Dash Ether Litecoin Monero Ripple

Train
0 49.86% 70.95% 54.68% 60.47% 74.44% 62.81%
1 50.14% 29.05% 45.32% 38.53% 25.56% 37.19%

Validation
0 49.64% 70.79% 54.55% 60.65% 74.45% 62.74%
1 50.36% 29.21% 44.45% 39.35% 25.55% 37.36%

Test
Baseline 0 50.00% 70.62% 54.67% 60.88% 74.69% 62.81%

1 50.00% 29.38% 45.33% 39.12% 25.31% 37.19%

4.2. Experimental protocol363

In order to perform a fair comparison of the four types of models, we364

shall perform several stages of preliminary testing before selecting the best365

configuration of each model for the final experimental round.366

The first stage is to decide the values for some parameters that affected367

the construction of the data sets themselves. This includes the parameters368

of the technical indicators, and also the number of lags in each pattern (pa-369

rameter l). After these values are selected, we construct the data files that370

contain train, validation and test data and use them for all the subsequent371

experiments. For this stage, the networks will be trained using the train set372

and results will be compared using the validation set.373

The second stage entails identifying appropriate network structures and374

learning hyperparameters for each of the models. To this end, we will run375

exploratory experiments and the best configuration will be selected for each376

model, again using the result on the validation set.377

For MLP we shall test several combinations of number of hidden layers,378

number of neurons in each layer and learning rates. For RBFNN we shall379

15



try several values of the number of neurons and the β parameter. For each380

combination of configuration and cryptocurrency we will run three experi-381

ments. In the final stage we shall use the best performing configurations on382

validation test for each cryptocurrency. That means that we shall keep at383

most 6 different configurations for MLP and 6 for RBFNN.384

For CNN, because of the much higher computational cost of training and385

testing, at this stage we shall explore five different architectures, with four386

values for the Learning rate, but tests will be performed on a single cryp-387

tocurrency, Bitcoin. According to Goodfellow et al. (Goodfellow et al., 2016),388

these two aspects might be the two most important parameters for CNN net-389

works. The best configuration will then be used for all cryptocurrencies.390

Finally, for the CLSTM network we shall use a configuration based on (Stoye,391

2018), which we think is complex enough to adapt to the current application.392

The third and final stage will compare the performance of all four neural393

network types across the six cryptocurrencies. In this case we shall use the394

models of each type with the best configurations selected as defined above,395

but results will be reported on the the accuracy on the test set data (instead396

of the validation set) that had been not been used in the previous stages.397

This separate test is required to ensure the validity of the comparison.398

For statistical validation of the results, in stage 3 we shall perform a399

series of 20 experiments (train and test) for each configuration. Given the400

stochastic component introduced in the initialization of weights, the sta-401

tistical significance for the average performance differences will be formally402

tested. First, we will start testing the normality of the distribution of ac-403

curacy with a Kolmogorov-Smirnov test, using the Lilliefors correction. In404

case the tests of normality were rejected, we would apply a non-parametric405

test, Wilcoxon’s sign ranges. Otherwise, we would test for homoskedasticity406

using Levene test and, depending on the result, we would test for equality of407

means either using a Welch test, or a standard t-test.408

In addition to that, we will test the statistical significance of the relative409

predictive performance of the median models on test sample by cryptocur-410

rency using the Giacomini and White test. Given that data snooping might411

hinder the validity of the results, we will rely on White’s reality check for412

data snooping to safeguard it.413

4.3. Parametrization414

The computation for the technical indicators relies on a number of peri-415

ods, n, that was set to 10 minutes. This parameter was defined at the start416
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and not optimized. For the two indicators that are moving averages, we con-417

sider an extended set of periods of 5, 10, 20, 30 and 60 minutes. The features418

were computed with the technical analysis library TA-lib1 and we used the419

default values for all parameters other than the mentioned time period.420

As we discussed in section 4.2, we performed some preliminary experi-421

ments on the combination of the training and validation samples to determine422

the value of the window size (or the number of lags) l. To that end as initial423

exploratory values, we performed tests with l = 15 and l = 60 as the window424

size. Results are reported in Table A.17. We found an inverse relationship425

between the value of this parameter and performance and, therefore, we set426

l = 15. This lag was used for all the experiments thereafter.427

At that point we proceeded with the exploratory experiments for the428

MLP and RBFNN on the training and validation samples (the test set was429

left untouched) whose results can be found in Appendix A. These tables430

report the sensitivity of these two kinds of neural networks to different com-431

binations of configuration parameters. In the case of MLP, for each of the six432

cryptocurrencies we validated 60 combinations of learning rate, number of433

hidden layers and number of neurons per layer (see Tables A.10, A.11, A.12,434

A.13, A.14 and A.15). For RBFNN, for each cryptocurrency we validated the435

result of 42 combinations of the number of neurons and values of the width436

parameter β (see Table A.16). In all cases we calculated the average accu-437

racy on the validation test over three independent experiments. The result438

of this process was the selection of several sets of best parameters, reported439

in Table 3.440

Regarding CNNs, we also performed an exploratory analysis based on441

the train and validation samples, but only for the Bitcoin cryptocurrency.442

The performance of the different configurations is reported in Table A.18443

(Appendix A), which shows the classification results for five different CNN444

architectures, each of them trained using four learning rate values: 0.1, 0.01,445

0.001, and 0.0001. The CNN architectures tested in this stage were the446

following:447

• Vertical Filters: it is composed of five similar blocks, each consisting of448

a convolutional layer, together with batch normalization and a ReLU449

activation function. The first four blocks also include dropout regular-450

ization, while a global average pooling layer follows the fifth block to451

1Technical Analysis library—http://ta-lib.org/
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Table 3: Parametrization for the multi-layer perceptrons (MLP) and the radial basis
function neural networks (RBFNN) experiments by cryptocurrency. Bitcoin (BTC), Dash
(DASH), Ether (ETH), Litecoin (LTC), Monero (XMR), Ripple (XRP).

BTC DASH ETH LTC XMR XRP

MLP

Transfer funct. ReLU
Epochs (max.) 100
Hiden layers 1 1 1 1 1 1
Neur. hid. layer 10 10 10 12 14 10
Leaning rate 0.1 0.1 0.1 0.01 0.01 0.1

RBFNN

Initialization K-means
Learning rate 0.001
Neurons 80 80 20 100 100 80
β 2.5 2.5 1 2.5 1.5 3

minimize overfitting by reducing the total number of parameters in the452

model (Lin et al., 2013). The last layer of the network consists of a sin-453

gle neuron that performs the final prediction after applying a sigmoid454

activation function. We would like to highlight that all the filters from455

the convolutional layers have a vertical shape (their shape is Kx1), al-456

lowing each kernel to work on a single indicator over time, and thus457

preventing to perform convolutions that merge multiple indicators. A458

graphical description of this configuration is shown in Figure 7.459
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Figure 7: Convolutional neural network architecture “Vertical Filters” : with five Convo-
lutional layers, monotonic activation functions, batch normalization, average pooling and
dropout. This configuration was selected as our best CNN architecture for the problem.

• Horizontal Filters: It is composed of four similar blocks, each consist-460

ing of a convolutional layer, together with batch normalization and a461
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ReLU activation function. The first three blocks also include dropout462

regularization, while a global average pooling layer follows the fourth463

block as in the previous network. The last layer of the network consists464

of a single neuron that performs the final prediction after applying a465

sigmoid activation function. We would like to highlight that all the fil-466

ters from the convolutional layers have a horizontal shape (their shape467

is 1xK), allowing each kernel to work on a single time instant over468

multiple indicators, and thus preventing to perform convolutions that469

merge multiple time instants.470

• DNN: a custom deep neural network that consists of three convolutional471

layers (with 7x7 filters, 3x3 filters, and 3x3 filters, respectively), and a472

1000-neuron fully connected layer prior to the last layer of the network473

(single neuron).474

We also tested two predefined network architectures submitted to the475

ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC’15):476

• Xception (Chollet, 2016) (by Google): even better results than Inception-477

v3 (Szegedy et al., 2015), which was the first runner up network in478

ILSVRC’15.479

• ResNet50 (He et al., 2015) (by Microsoft): 50-layer version of the net-480

work that won ILSVRC’15.481

As can be seen in Table A.18 (Appendix A), Vertical Filters obtained the482

best results in our tests compared to all the other architectures described483

above. This performs especially better when using a Learning rate of 0.001.484

As a consequence, this was the architecture used for the final stage (Figure 7).485

The Convolutional LSTM architecture selected for the final stage is based486

on the one used in (Stoye, 2018). We performed some small modifications to487

help reducing the computational cost of training and testing: our version of488

this architecture has a first section with five convolutional with 1x1 filters; the489

output of these layers is a vector of learned features with the same dimension490

as the initial input; then, these features are fed to a single LSTM layer with491

150 units. Finally, output is processed by a complex multilayer perceptron492

with 8 layers, where the first one has 200 neurons and the rest 100 (Figure 8).493
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Figure 8: Selected CLSTM neural network architecture with five Convolutional layers plus
a single LSTM layer and 8 fully connected MLP as output (Dense layers) for output.

5. Experimental results and discussion494

In this section we report the outcome of the evaluation of the four ap-495

proaches on the reserved test set using the parameterizations identified in496

the exploratory analysis.497

The main experimental results are illustrated in Fig. 9. There, we can see498

boxplots of accuracy on test sample by cryptocurrency and network structure.499

Results are based on 20 runs of the experiments. In Table 4 we report the500

numeric results for all these experiments. In the boxplots we show as an501

horizontal line the baseline result that corresponds to a trivial classifier that502

always predicted the most frequent class for each currency. These baselines503

are reported in Table 2.504

Results clearly show that the CLSTM architecture clearly outperforms505

the rest for all of the cryptocurrencies. CNN achieves comparable results506

in Bitcoin, Ether and Litecoin, and also Monero to certain extent. Though507

results for RFBNN and MLP are poor in general, MLP seems to be able508

to achieve average results slightly above the baseline in Bitcoin, Dash, Ether509

and Ripple (where it outperforms CNN slightly). RFBNN shows poor results510

in all but the Dash currency.511

In order to provide more soundness to the study, we formally tested the512

statistical significance of the relative predictive performance of the median513

models on test sample by cryptocurrency. To that end, we used both the514

Diebold and Mariano (Diebold & Mariano, 1995) and Giacomini and White515

(Giacomini & White, 2006) tests. These evaluate the null hypothesis that the516

two forecasts have the same accuracy (the metric of the models is different or517

not). The p-values, reported in Tables 5 and 6, respectively, show the results518

as set of six double-entry tables that compare the performance of the neural519

network architectures in rows with the ones in columns.520
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Figure 9: Boxplots of accuracy on test data sets. Convolutional neural network (CNN),
hybrid CNN-LSTM network (CLSTM), multilayer perceptron (MLP) and radial basis
function neural network (RBFNN). Results over 20 experiments. Red lines show the
baseline accuracy of a trivial most frequent class classifier.

Something that is apparent when we look at Tables 5 and 6 is that, gen-521

erally speaking, Bitcoin seems to be more predictable than the rest. In order522

to gain a better understanding of this possibility, we assess the predictabil-523

ity of each cryptocurrency in Table 8, where we show the amount by which524

the mean of both methods or the best method are able to improve over the525

baseline accuracy.526

Once again the strongest indication of predictability is obtained for Bit-527

coin, followed by Ether, while results for the other three Bitcoins show less528

than a 1% improvement.529

Something to consider in the previous analysis is the potential presence530

of data mining biases. More specifically, the risk of data snooping introduced531

by repeated testing of models on the same data set. In order to safeguard532

the validity of the results, we relied on the Model Confidence Set proce-533

dure defined by Hansen et al. (Hansen et al., 2011) as implemented in R534
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by Bernardi & Catania (Bernardi & Catania, 2018). Given a collection of535

models, this generalization of White’s reality check (White, 2000) discards536

sequentially the worst-performing ones until the null hypothesis of equal pre-537

dictive ability cannot be rejected. Once the elimination process is completed,538

the remaining subset contains the best models at a given confidence level.539

In order to obtain more informative results, we added two models to the540

initial collection of artificial neural networks. The first one was a series of541

random predictions matching the distributions observed in train and valida-542

tion samples. The second naive prediction method used as prediction for the543

whole test set the most frequent class in train and validation samples.544

Table 9 reports the model elimination order on test sample by cryptocur-545

rency based on 1000 resamples and a significance level α = 0.05. As we can546

see, CLSTM is identified across cryptocurrencies as the only component of547

the Superior Set Model. In all six cases, the p-values were well below 0.01.548

6. Limitations549

This study on the suitability of artificial neural networks to predict trends550

in high frequency cryptocurrency data using technical indicators adds new551

relevant evidence on the importance of convolution and deep learning in this552

domain. However, even though the results of the experiments are promising,553

it is important to point out that there are several reasons why trend pre-554

diction efforts, like the ones described in this study, might not necessarily555

translate into profits. Among them, we could mention response times, large556

trends, liquidity issues or transaction costs.557

Concerning response time, it is worth noting that all the mentioned algo-558

rithms are able to predict the trend in reasonable times considering the data559

1-minute time step. More specifically, RBFNN, MLP, CNN and CLSTM560

required 0.034, 0.279, 0.757 and 1.967 seconds, respectively, on a 16GB561

NVIDIA Tesla V100 GPU, leaving, in the worst-case scenario, 58 seconds.562

However, besides the time required for prediction, there are other factors to563

be considered. For instance, we require an online calculation of the indicators,564

a process that was executed as a batch task in our test environment. In an565

operational environment, indicator computation should be streamlined. In566

addition to this, we would have to consider some additional internal factors,567

like the time consumed by the system that feeds on the trend predictions to568

generate the trading signals, and external ones such as propagation time for569

orders, that depends on the structure of the market considered.570
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Exchange rates are dominated by larger trends. Given the frequency571

chosen and the computational cost of the techniques used in the study, the572

period considered was limited to one year. This means that good results573

might not be guaranteed for other periods.574

There are problems of a different nature. Liquidity, for instance, is known575

to differ widely among cryptocurrencies. Wei (Wei, 2018) recently analysed576

456 of them and, while the main ones like Bitcoin and Ether are very liquid,577

there are many others that are very thinly traded. This poses a challenge578

to exploit profitably trend predictions. Regarding transaction costs. Even579

though the one associated with Bitcoin is lower than that of retail foreign580

exchange markets Kim (2017), that is not the case for all cryptocurrencies581

. These costs should be factored into the trading strategy built on top of582

the trend predictions to make sure that these costs do not end up eroding583

completely the gains that might be derived from the ability to predict, to a584

certain extent, the direction of short-term market movements.585

Our proposal makes no assumption on whether these issues can be ef-586

fectively solved. Overall, cryptocurrency trading should operate on the as-587

sumption of fast links, low transaction costs and high liquidity, assumptions588

that may not hold in particular situations.589

7. Summary and conclusions590

The purpose of this work is to explore the suitability of convolutional591

neural networks with convolutional components to make intraday trend clas-592

sification for cryptocurrency exchange rates vs USD based on technical indi-593

cators, and studying whether these models add value over traditional alter-594

natives like multilayer perceptrons or radial basis function neural networks.595

In addition to that, we analyze whether some cryptocurrencies are more pre-596

dictable than others using the mentioned approaches.597

The analysis was based on 1-minute exchange rates over an entire year598

period (July 1st, 2018, to June 30rd, 2019), and the problem was defined as599

the prediction of the trend (increase or neutral/decrease) for a given time step600

by using indicator information on a predefined number of time steps. Data601

was captured and processed for six of the most popular cryptocurrencies:602

Bitcoin, Dash, Ether, Litecoin, Monero, and Ripple.603

Our work was performed in two phases: first, a preliminary study was604

able to identify appropriate values for four different types of experimental605

variables: indicator setup, pattern lag, network architecture, and network606
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training hyperparameters. The study considers four types of network: Con-607

volutional neural network, hybrid Convolutional LSTM, radial basis function608

neural network, and conventional multilayer perceptron.609

Secondly, in order to assess whether the former classifiers are suited for610

trend prediction on cryptocurrencies, these architectures were tested for each611

of the six cases.612

Our experimental results support the conclusion that CNNs and specially613

Convolutional LSTM are suitable as predictors for the price trend when us-614

ing the defined indicators and parameters on most cryptocurrencies. This615

was especially true for Bitcoin, Ether and Litecoin. Results of the CLSTM616

architecture were always significantly better than the rest, and this network617

was the only one that could predict the trends of Dash and Ripple with some618

margin (about 4%) over the trivial classifier.619

The performance of the rest of the models was quite limited for Dash620

and Ripple. This can be explained by the fact that those series may have621

intrinsically more noise, but it may also be a result of a different temporal622

behavior that our data generation process failed to capture. There is still623

a wide range of possibilities to improve these results: we may select more624

specific data generation parameters for these data sets, with different values625

for the time period of indicators, window size and/or network structure.626

Even though the results show that the two network architectures with con-627

volutional components, specially CLSTM, can be useful predictors of market628

trends at high frequencies, it is worth noting that the study relies on a limited629

number of technical indicators. Increasing their range would probably reveal630

that this performance can be improved and, therefore, our results might be631

considered a lower-bound. For this reason, future lines of research should632

consider exploring this possibility.633

Despite the promising performance of the deep neural network architec-634

tures, the study is focused on short-term trend prediction and is subject to635

limitations that should be addressed to operate in production in a trading636

setting. The practical application would require the implementation of a de-637

cision component and control for additional aspects like time management,638

market liquidity, or transaction costs.639

Further research may also take into consideration the use of higher fre-640

quency data (higher resolutions than 1-min intervals). We also plan on per-641

forming a comparison between our approach, based on technical indicators,642

and an approach based on raw prices; studying dynamic trading strategies vs643

the current analysis based on single point static predictions, or extending the644
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number of classes to identify sizable price movements that could potentially645

cover transaction costs and, therefore, could be interpreted as buy or sell646

signals.647
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Appendix A. Exploratory parameterization tests653

The tables on this appendix report the results of the exploratory analysis654

on train and validation sample. For MLP, every combination of four learning655

rates, three different number of hidden layers and five different numbers of656

hidden neurons per layer. We show the average accuracy over three exper-657

iments. We provide one table per cryptocurrency. For RBFNN we tested658

seven different numbers of neurons (20 to 300) with six different values for659

the β parameter (1.0 to 3.5), and we also show the average result of three660

independent runs on the validation sample. Finally, for CNN we show the661

results of the tests performed with different number of lags for all the cur-662

rencies, and experiments with five different architectures with four different663

learning rates.664
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Table 4: Descriptive statistics of prediction accuracy by cryptocurrency and network ar-
chitecture. Boxplots of accuracy on test data sets. Convolutional neural network (CNN),
hybrid CNN-LSTM network (CLSTM), Multilayer Perceptron (MLP) and Radial Basis
Function Neural Network (RBFNN). Test results based on 20 experiments.

Mean Median Var. Max. Min.

Bitcoin CNN 0.5822 0.5824 < 0.001 0.5857 0.5774
CLSTM 0.6106 0.6109 < 0.001 0.6136 0.6056
MLP 0.5192 0.5188 < 0.001 0.5229 0.5156
RFBNN 0.5021 0.5019 < 0.001 0.5049 0.4988
Baseline 0.5000

Dash CNN 0.7116 0.7120 < 0.001 0.7153 0.7071
CLSTM 0.7412 0.7411 < 0.001 0.7452 0.7378
MLP 0.7088 0.7089 < 0.001 0.7156 0.7049
RFBNN 0.7106 0.7112 < 0.001 0.7144 0.7055
Baseline 0.7062

Ether CNN 0.5797 0.5797 < 0.001 0.5855 0.5738
CLSTM 0.5899 0.5900 < 0.001 0.5939 0.5853
MLP 0.5512 0.5512 < 0.001 0.5581 0.5444
RFBNN 0.5478 0.5476 < 0.001 0.5514 0.5428
Baseline 0.5467

Litecoin CNN 0.6565 0.6563 < 0.001 0.6606 0.6505
CLSTM 0.6763 0.6768 < 0.001 0.6805 0.6724
MLP 0.6084 0.6086 < 0.001 0.6124 0.6047
RFBNN 0.6097 0.6093 < 0.001 0.6137 0.6069
Baseline 0.6088

Monero CNN 0.7597 0.7600 < 0.001 0.7633 0.7538
CLSTM 0.7994 0.7994 < 0.001 0.8029 0.7956
MLP 0.7483 0.7480 < 0.001 0.7548 0.7447
RFBNN 0.7474 0.7476 < 0.001 0.7503 0.7451
Baseline 0.7469

Ripple CNN 0.6313 0.6314 < 0.001 0.6374 0.6269
CLSTM 0.6704 0.6706 < 0.001 0.6738 0.6667
MLP 0.6335 0.6339 < 0.001 0.6375 0.6257
RFBNN 0.6288 0.6288 < 0.001 0.6328 0.6256
Baseline 0.6281
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Table 5: Statistical significance of the differences in predictive performance of median
models on test sample by cryptocurrency. P-values computed using the Diebold and Mar-
iano test. Convolutional neural network (CNN), hybrid CNN-LSTM network (CLSTM),
multilayer perceptron (MLP) and radial basis function neural network (RBFNN).

Bitcoin Dash
CNN CLSTM MLP CNN CLSTM MLP

CLSTM <0.01 <0.01
MLP <0.01 <0.01 0.777 <0.01
RBFNN <0.01 <0.01 <0.01 0.087 <0.01 0.047

Ether Litecoin
CLSTM <0.01 <0.01
MLP <0.01 <0.01 <0.01 <0.01
RBFNN <0.01 <0.01 0.871 <0.01 <0.01 0.192

Monero Ripple
CLSTM <0.01 <0.01
MLP <0.01 <0.01 0.272 <0.01
RBFNN <0.01 0.024 <0.01 <0.01 <0.01 <0.01
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Table 6: Statistical significance of the differences in predictive performance of median
models on test sample by cryptocurrency. P-values computed using the Giacomini and
White test. Convolutional neural network (CNN), hybrid CNN-LSTM network (CLSTM),
multilayer perceptron (MLP) and radial basis function neural network (RBFNN).

Bitcoin Dash
CNN CLSTM MLP CNN CLSTM MLP

CLSTM <0.01 <0.01
MLP <0.01 <0.01 0.307 <0.01
RBFNN <0.01 <0.01 <0.01 0.035 <0.01 0.134

Ether Litecoin
CLSTM <0.01 <0.01
MLP <0.01 <0.01 <0.01 <0.01
RBFNN <0.01 <0.01 0.277 <0.01 <0.01 0.016

Monero Ripple
CLSTM <0.01 <0.01
MLP <0.01 <0.01 0.073 <0.01
RBFNN <0.01 0.079 <0.01 0.014 <0.01 <0.01

Table 7: Statistical significance of the differences in predictive performance of median
models vs. benchmarks on test sample by cryptocurrency. P-values computed using
the White reality check for data snooping with 500 simulations. Benchmark 1: random
predictions following the distributions in train and validation sample. Benchmark 2: use as
prediction the most frequent class in train sample. Bitcoin (BTC), Dash (DASH), Ether
(ETH), Litecoin (LTC), Monero (XMR), Ripple (XRP). Convolutional neural network
(CNN), hybrid CNN-LSTM network (CLSTM), multilayer perceptron (MLP) and radial
basis function neural network (RBFNN).

CNN CLSTM MLP RBFNN
Base 1 Base 2 Base 1 Base 2 Base 1 Base 2 Base 1 Base 2

BTC <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.948 0.444
DASH <0.01 0.066 <0.01 <0.01 <0.01 0.040 <0.01 0.830
ETH <0.01 <0.01 <0.01 <0.01 <0.01 0.708 <0.01 0.566
LTC <0.01 <0.01 <0.01 <0.01 <0.01 0.934 <0.01 1.000
XMR <0.01 <0.01 <0.01 <0.01 <0.01 0.404 <0.01 0.906
XRP <0.01 0.084 <0.01 <0.01 <0.01 0.002 <0.01 1.000
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Table 8: Average excess prediction accuracy vs. most prevalent class by cryptocurrency.
Test results based on 20 experiments. Mean result considers the four architectures. Max.
corresponds to the best performing of the four methods.

Bitcoin Dash Ether Litecoin Monero Ripple

Mean 5.354% 1.187% 2.046% 2.894% 1.681% 1.292%
Best 11.064% 3.504% 4.324% 6.754% 5.254% 4.234%

All figures are statistically different from 0 at 1%.

Table 9: Model elimination order according to the Model Confidence Set procedure defined
Hansen et.al.. Test results by cryptocurrency based on 1000 resamples and a significance
level α = 0.05. Base 1: random predictions following the distributions in train and
validation sample. Base 2: use as prediction the most frequent class in train and validation
sample. Convolutional neural network (CNN), hybrid CNN-LSTM network (CLSTM),
multilayer perceptron (MLP) and radial basis function neural network (RBFNN).

Base 1 Base 2 CNN CLSTM MLP RBFNN

Bitcoin 3 2 5 4 1
Dash 1 3 4 5 2
Ether 1 4 5 2 3
Litecoin 1 3 4 5 2
Monero 1 3 5 4 2
Ripple 1 3 4 5 2
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Table A.10: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Bitcoin.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.5120 0.5106 0.5132 0.5141 0.5124
0.01 0.5120 0.5132 0.5074 0.5132 0.5097
0.001 0.5208 0.5162 0.5217 0.5179 0.5213
0.0001 0.5071 0.5121 0.5085 0.5089 0.5077

2

0.1 0.5040 0.5015 0.5009 0.4980 0.5011
0.01 0.4996 0.5043 0.5011 0.5003 0.4993
0.001 0.4952 0.4996 0.5012 0.5000 0.4991
0.0001 0.5048 0.5096 0.5105 0.5124 0.5102

3

0.1 0.5016 0.5037 0.5047 0.5051 0.5072
0.01 0.5074 0.5083 0.4984 0.5036 0.5043
0.001 0.5064 0.5053 0.5045 0.5025 0.5057
0.0001 0.5156 0.5163 0.5167 0.5156 0.5130

Table A.11: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Dash.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.6999 0.6987 0.6999 0.7030 0.6974
0.01 0.7014 0.7028 0.7016 0.7046 0.7044
0.001 0.6996 0.6987 0.6961 0.7010 0.6989
0.0001 0.7097 0.7090 0.7080 0.7110 0.7119

2

0.1 0.6834 0.6889 0.6917 0.6904 0.6889
0.01 0.6926 0.6900 0.6933 0.6916 0.6915
0.001 0.6925 0.6919 0.6968 0.6874 0.6919
0.0001 0.7068 0.7042 0.7014 0.7016 0.7008

3

0.1 0.6881 0.6894 0.6899 0.6911 0.6920
0.01 0.6891 0.6866 0.6943 0.6886 0.6843
0.001 0.7006 0.6986 0.6972 0.6982 0.6974
0.0001 0.6841 0.6851 0.6847 0.6845 0.6872
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Table A.12: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Ether.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.5371 0.5429 0.5407 0.5442 0.5383
0.01 0.5537 0.5549 0.5494 0.5517 0.5516
0.001 0.5378 0.5421 0.5401 0.5434 0.5412
0.0001 0.5461 0.5387 0.5396 0.5427 0.5449

2

0.1 0.5276 0.5320 0.5300 0.5293 0.5257
0.01 0.5308 0.5303 0.5294 0.5291 0.5317
0.001 0.5418 0.5377 0.5391 0.5409 0.5410
0.0001 0.5325 0.5314 0.5320 0.5310 0.5318

3

0.1 0.5274 0.5284 0.5273 0.5314 0.5301
0.01 0.5309 0.5318 0.5354 0.5337 0.5280
0.001 0.5417 0.5437 0.5406 0.5405 0.5361
0.0001 0.5316 0.5311 0.5321 0.5289 0.5311

Table A.13: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Litecoin.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.5978 0.6014 0.6023 0.6013 0.6032
0.01 0.6096 0.6111 0.6103 0.6107 0.6082
0.001 0.5980 0.5941 0.5970 0.5956 0.6002
0.0001 0.5998 0.6063 0.6059 0.5983 0.5987

2

0.1 0.5898 0.5930 0.5955 0.5890 0.5941
0.01 0.5917 0.5943 0.5955 0.5932 0.5917
0.001 0.6048 0.6039 0.6041 0.6044 0.6022
0.0001 0.5944 0.5964 0.5949 0.5939 0.5952

3

0.1 0.5928 0.5911 0.5937 0.5944 0.5931
0.01 0.5908 0.5932 0.5934 0.5948 0.5939
0.001 0.5911 0.5920 0.5939 0.5938 0.5934
0.0001 0.6065 0.6046 0.6080 0.6047 0.6078
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Table A.14: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Monero.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.7394 0.7395 0.7349 0.7370 0.7438
0.01 0.7373 0.7383 0.7405 0.7392 0.7395
0.001 0.7450 0.7464 0.7477 0.7444 0.7439
0.0001 0.7363 0.7362 0.7362 0.7390 0.7392

2

0.1 0.7283 0.7290 0.7297 0.7313 0.7292
0.01 0.7384 0.7410 0.7406 0.7427 0.7398
0.001 0.7301 0.7308 0.7302 0.7267 0.7284
0.0001 0.7266 0.7203 0.7260 0.7325 0.7271

3

0.1 0.7304 0.7337 0.7284 0.7275 0.7364
0.01 0.7380 0.7399 0.7379 0.7358 0.7379
0.001 0.7311 0.7290 0.7234 0.7279 0.7294
0.0001 0.7278 0.7269 0.7265 0.7269 0.7243

Table A.15: Sensitivity of multilayer perceptron (MLP) to the number of neurons in the
hidden layer and the choice of the learning rate for the backpropagation training algorithm.
Average over three runs on Ripple.

Hidden Learning Neurons Hidden Layers
Layers Rate 6 8 10 12 14

1

0.1 0.6262 0.6278 0.6267 0.6260 0.6272
0.01 0.6209 0.6246 0.6163 0.6241 0.6241
0.001 0.6312 0.6341 0.6311 0.6325 0.6297
0.0001 0.6181 0.6191 0.6168 0.6209 0.6182

2

0.1 0.6142 0.6162 0.6126 0.6131 0.6165
0.01 0.6180 0.6182 0.6178 0.6156 0.6169
0.001 0.6240 0.6289 0.6260 0.6231 0.6243
0.0001 0.6140 0.6177 0.6133 0.6159 0.6148

3

0.1 0.6152 0.6128 0.6171 0.6153 0.6145
0.01 0.6134 0.6147 0.6133 0.6150 0.6099
0.001 0.6094 0.6079 0.6105 0.6113 0.6063
0.0001 0.6178 0.6185 0.6196 0.6166 0.6222
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Table A.16: Sensitivity of radial basis function neural networks (RBFNN) to the number
of neurons and width β. Accuracy on validation sample. Average over three runs.

Currency β
Neurons

20 40 60 80 100 200 300

Bitcoin

1.0 0.5024 0.5005 0.5008 0.5004 0.5005 0.4944 0.4992
1.5 0.4974 0.5003 0.4999 0.5009 0.5016 0.4986 0.4992
2.0 0.4985 0.5000 0.5009 0.4978 0.4983 0.4993 0.4988
2.5 0.5007 0.5008 0.5008 0.5028 0.5000 0.4992 0.4979
3.0 0.4969 0.4993 0.5008 0.4998 0.4992 0.4991 0.5005
3.5 0.5003 0.5002 0.5002 0.5001 0.5009 0.4967 0.4999

Dash

1.0 0.7072 0.7102 0.709 0.7039 0.7081 0.7097 0.7094
1.5 0.7086 0.7102 0.7087 0.7066 0.7100 0.7118 0.7099
2.0 0.7113 0.7071 0.7064 0.7068 0.7093 0.7092 0.7086
2.5 0.7083 0.7093 0.7062 0.7129 0.7095 0.7077 0.7094
3.0 0.7076 0.7093 0.7108 0.7106 0.7098 0.7099 0.7082
3.5 0.7099 0.7070 0.7096 0.7058 0.7092 0.7086 0.7104

Ether

1.0 0.5489 0.5483 0.5444 0.5452 0.5454 0.546 0.5459
1.5 0.5458 0.5461 0.5463 0.5449 0.5448 0.5469 0.5474
2.0 0.5458 0.5460 0.5454 0.5454 0.5454 0.5466 0.5467
2.5 0.5435 0.5470 0.5450 0.5471 0.5446 0.5458 0.5465
3.0 0.5472 0.5448 0.5445 0.5460 0.5449 0.5446 0.5462
3.5 0.5470 0.5471 0.5459 0.5457 0.5432 0.5463 0.5461

Litecoin

1.0 0.6078 0.6038 0.6065 0.6047 0.6072 0.6079 0.6064
1.5 0.6071 0.6072 0.6076 0.6084 0.6068 0.6062 0.6084
2.0 0.6053 0.6082 0.6066 0.6062 0.6077 0.6070 0.6065
3.0 0.6079 0.6076 0.6069 0.6081 0.6056 0.6075 0.6066
2.5 0.6065 0.6079 0.6061 0.607 0.6094 0.6073 0.6079
3.5 0.6075 0.6071 0.6084 0.6058 0.6057 0.6066 0.6069

Monero

1.0 0.7433 0.746 0.7434 0.7455 0.7448 0.7442 0.7451
1.5 0.7448 0.7444 0.7454 0.7444 0.7477 0.7446 0.7446
2.0 0.7453 0.7455 0.7457 0.7461 0.7459 0.7460 0.7439
2.5 0.7468 0.7463 0.7453 0.7480 0.7437 0.7401 0.7455
3.0 0.7446 0.7450 0.7442 0.7459 0.7453 0.7447 0.7456
3.5 0.744 0.7444 0.742 0.7451 0.7442 0.7452 0.7439

Ripple

1.0 0.6275 0.628 0.6267 0.6294 0.6288 0.6261 0.6276
1.5 0.6300 0.6281 0.6279 0.6287 0.6287 0.6264 0.6287
2.0 0.6264 0.6276 0.6285 0.6280 0.6276 0.6284 0.6277
2.5 0.6267 0.6292 0.6281 0.6257 0.6263 0.6287 0.6289
3.0 0.6268 0.6287 0.6288 0.6306 0.6277 0.6286 0.6278
3.5 0.6283 0.6292 0.6305 0.6276 0.6290 0.6281 0.6288
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Table A.17: Sensitivity of convolutional neural networks to number of lags. Accuracy on
validation data.

Time period Bitcoin Dash Ether Litecoin Monero Ripple

15 min 0.5821 0.7120 0.5795 0.6563 0.7580 0.6312
60 min 0.5245 0.7088 0.5582 0.6109 0.7511 0.6303

Table A.18: Sensitivity of convolutional neural networks to parameter configurations for
Bitcoin. Experiments based on training and validation samples.

Learn. Rate Vert. Filters Horiz. Filters DNN Xception ResNet50

0.1 0.4955 0.4888 0.5091 0.5101 0.5005
0.01 0.4990 0.5052 0.5087 0.5111 0.5102
0.001 0.5822 0.4912 0.5011 0.5144 0.5089
0.0001 0.5123 0.5001 0.5014 0.5143 0.4924
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Dańıelsson, J., & Love, R. (2006). Feedback trading. International Journal705

of Finance & Economics , 11 , 35–53.706

Das, S., Mokashi, K., & Culkin, R. (2018). Are markets truly efficient? ex-707

periments using deep learning algorithms for market movement prediction.708

Algorithms , 11 , 138.709

Dempster, M. A. H., & Leemans, V. (2006). An automated fx trading system710

using adaptive reinforcement learning. Expert Syst. Appl., 30 , 543–552.711

Diebold, F. X., & Mariano, R. S. (1995). Comparing predictive accuracy.712

Journal of Business & Economic Statistics , 13 , 253–263.713

Diler, A. (2003). Predicting direction of ISE national-100 index with back714

propagation trained neural network. Journal of Istanbul Stock Exchange,715

7,, 65–81.716

Ding, X., Zhang, Y., Liu, T., & Duan, J. (2015). Deep learning for event-717

driven stock prediction. In Proceedings of the 24th International Confer-718

ence on Artificial Intelligence IJCAI’15 (pp. 2327–2333). AAAI Press.719

Dresp-Langley, B., Ekseth, O. K., Fesl, J., Gohshi, S., Kurz, M., & Sehring,720

H.-W. (2019). Occam’s razor for big data? on detecting quality in large721

unstructured datasets. Applied Sciences , 9 .722

Dyhrberg, A. H., Foley, S., & Svec, J. (2018). How investible is Bitcoin? An-723

alyzing the liquidity and transaction costs of Bitcoin markets. Economics724

Letters , 171 , 140–143.725

36



Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory726

networks for financial market predictions. European Journal of Operational727

Research, 270 , 654–669.728

Giacomini, R., & White, H. (2006). Tests of conditional predictive ability.729

Econometrica, 74 , 1545–1578.730

Glaser, F., Zimmermann, K., Haferkorn, M., Weber, M., & Siering, M.731

(2014). Bitcoin - asset or currency? revealing users’ hidden intentions.732

In ECIS 2014 Proceedings - 22nd European Conference on Information733

Systems .734

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning . MIT735

Press.736

Guresen, E., Kayakutlu, G., & Daim, T. U. (2011). Using artificial neural737

network models in stock market index prediction. Expert Systems with738

Applications , 38 , 10389 – 10397.739

Hansen, P. R., Lunde, A., & Nason, J. M. (2011). The model confidence set.740

Econometrica, 79 , 453–497.741

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for742

image recognition. CoRR, abs/1512.03385 .743

Hiransha, M., Gopalakrishnan, E. A., Menon, V. K., & Soman, K. P. (2018).744

Nse stock market prediction using deep-learning models. Procedia Com-745

puter Science, 132 , 1351 – 1362. International Conference on Computa-746

tional Intelligence and Data Science.747

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural748

computation, 9 , 1735–1780.749

Hoseinzade, E., & Haratizadeh, S. (2019). CNNpred: CNN-based stock mar-750

ket prediction using a diverse set of variables. Expert Systems with Appli-751

cations , 129 , 273–285.752

Hsu, M. W., Lessmann, S., Sung, M. C., Ma, T., & Johnson, J. E. (2016).753

Bridging the divide in financial market forecasting: machine learners vs.754

financial economists. Expert Systems with Applications , 61 , 215–234.755

37



Huang, B., Huan, Y., Xu, L. D., Zheng, L., & Zou, Z. (2019). Automated756

trading systems statistical and machine learning methods and hardware757

implementation: a survey. Enterprise Information Systems , 13 , 132–144.758

Huang, C. L., & Tsai, C. Y. (2009). A hybrid SOFM-SVR with a filter-759

based feature selection for stock market forecasting. Expert Systems with760

Applications , 36 , 1529–1539.761

Huang, W., Nakamori, Y., & Wang, S.-Y. (2005). Forecasting stock market762

movement direction with support vector machine. Computers & Operations763

Research, 32 , 2513–2522.764

Kara, Y., Acar Boyacioglu, M., & Baykan, O. K. (2011). Predicting direction765

of stock price index movement using artificial neural networks and support766

vector machines: The sample of the Istanbul Stock Exchange. Expert767

Systems with Applications , 38 , 5311–5319.768

Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of769

GARCH models. Economics Letters , 158 , 3–6.770

Kim, K.-J., & Han, I. (2000). Genetic algorithms approach to feature dis-771

cretization in artificial neural networks for the prediction of stock price772

index. Expert Systems with Applications , 19 , 125–132.773

Kim, T. (2017). On the transaction cost of Bitcoin. Finance Research Letters ,774

23 , 300–305.775

Kristjanpoller, W., & Minutolo, M. C. (2018). A hybrid volatility forecasting776

framework integrating GARCH, artificial neural network, technical analy-777

sis and principal components analysis. Expert Systems with Applications ,778

109 , 1–11.779

Kwon, D.-H., Kim, J.-B., Heo, J.-S., Kim, C.-M., & Han, Y.-H. (2019). Time780

Series Classification of Cryptocurrency Price Trend Based on a Recurrent781

LSTM Neural Network. Journal of Information Processing Systems , 15 ,782

694–706.783

Lahmiri, S., & Bekiros, S. (2019). Cryptocurrency forecasting with deep784

learning chaotic neural networks. Chaos, Solitons & Fractals , 118 , 35 –785

40.786

38



Li, X., & Wang, C. A. (2017). The technology and economic determinants787

of cryptocurrency exchange rates: The case of bitcoin. Decision Support788

Systems , 95 , 49 – 60.789

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. CoRR,790

abs/1312.4400 .791

Liu, D., & Zhang, L. (2010). China stock market regimes prediction with792

artificial neural network and markov regime switching. WCE 2010 - World793

Congress on Engineering 2010 , 1 , 378–383.794

Liu, W. (2019). Portfolio diversification across cryptocurrencies. Finance795

Research Letters , 29 , 200–205.796

Lo, A. W., Mamaysky, H., & Wang, J. (2000). Foundations of Technical797

Analysis: Computational Algorithms, Statistical Inference, and Empirical798

Implementation. The Journal of Finance, 55 , 1705–1765.799
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