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Highlights

• AHP applied to sustainable supply chain development in the renewable

energy sector.

• The AHP model takes into account both logical and quantitative infor-

mation.

• The proposed approach provides decision makers with main factors and

sub-criteria.

• Main European countries producers of PV energy are compared.

• Results agree with the PV development in the period 2000-2017 in these

countries.
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Abstract

The aim of this paper is to provide a multi-criteria decision making frame-

work based on the Triple Bottom Line principles and Analytic Hierarchy Process

methodology for sustainable supply chain development in the renewable energy

sector. The proposed framework encompasses the whole energy production sup-

ply chain, from raw materials’ suppliers to disposal. In particular, the photo-

voltaic energy sector has been used as case study and represents the focus of

this work. The framework is based on the three Triple Bottom Line dimensions

such as social, economic and environmental. Furthermore, literature review

and expert opinions are used to identify and assess the sub-criteria for each

dimension, followed by pair-wise comparison. Finally, the proposed framework

is used to evaluate the seven European countries that conjointly represent the

86.8% of the total photovoltaic installed capacity in Europe, using both logical

and quantitative information. Results are in agreement with the photovoltaic

development in the period 2000-2017 in these countries. The proposed frame-
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work provides the decision makers with a powerful tool for making sustainable

investment decisions in the photovoltaic energy sector.

Keywords: Analytic Hierarchy Process, Multi-criteria decision making,

Photovoltaic sector, Renewable energy, Sustainable supply chain, Triple

Bottom Line

1. Introduction

The use of fossil energy around the world is one of the main reasons for global

warming. In the last decade, many efforts have been made in order to promote

the production and use of renewable energy (RE). Some policies like the Kyoto

Protocol (United Nations, 1998) and the Fifth Assessment Report (AR5) of the

United Nations Intergovernmental Panel on Climate Change (IPCC, 2014) have

been put in place in order to enhance energy efficiency and to promote the use

of more sustainable energy sources. Moreover, measures aimed at the reduc-

tion of CO2 emissions have been adopted by the European Union (European

Parliament, 2009, 2012b). In particular, Europe 2020 (European Commission,

2010b) is one of the most important strategies for mitigating the greenhouse gas

emissions.

It is now well accepted that the economic, technological, social, and political

development requires to intensify the deployment of both sustainable and diverse

energy (Streimikiene et al., 2012), leading to the use of more efficient renewable

energy sources (RES) while decreasing the use of fossil energy. In such a context,

photovoltaic (PV) energy currently plays a fundamental role and its importance

is expected to grow (European Commission, 2017).

The cumulative installed solar PV power reached 398 GW by the end of

2017, being 113.2 GW the total installed PV capacity in Europe (Solar Power

Europe, 2019). From 2010 to 2017, the total global PV capacity jumped over

970% from less than 41 GW and, looking back ten years, the PV market grew

more than 80 times from 5 GW of the total commissioned PV capacity at the

end of 2005. The total share reached 12.1% of total global power output in 2017
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(Solar Power Europe, 2019). Although the total installed capacity in Europe

represents around 28.4% of the total PV potential in the world, 86.8% of this is

located in seven countries only: Germany, Italy, the United Kingdom, France,

Spain, Belgium and Greece. These countries are used as case study in this

research.

Although PV energy is beginning to play an important role in power gene-

ration in many countries, it is well known that some mistakes have been made

in the adoption of this RE. In fact, the application of policies to promote the

use of PV energy has caused significant imbalances in electricity systems and

distortion of electricity prices in some countries (Avril et al., 2012; Honrubia-

Escribano et al., 2018; Pyrgou et al., 2016; Ramı́rez et al., 2017). Furthermore,

the Triple Bottom Line (TBL) principles (Elkington, 1997), based on the eco-

nomic, social and environmental pillars of sustainability, have put pressure on

governments and businesses to achieve environmental and social sustainability,

in addition to the traditional economic dimension. Therefore, more effective

decision making processes including environmental and social aspects that go

beyond the mere economic perspective are required in the current context, which

can be achieved by putting the TBL principles into practice.

The photovoltaic supply chain (PVSC) involves all activities related to the

transformation flows of materials and energy from raw materials, through sup-

pliers, photovoltaic system assemblers, distributors and end users or consumers,

to the recovery or disposal of power plants, as well as the associated informa-

tion flows. Material, energy and information flows go up and down the PVSC.

It is different from the SCs of consumer or industrial goods mainly because of

its contribution to energy conservation and Green House Gas (GHG) emission

reduction, and also because it is capital- and technology-intensive with a very

high entry barrier, and its construction and operation is not possible without

governments implementing appropriate industry and facilitation policies (Chen

and Su, 2014). Therefore, making sustainable decisions in the PV sector is

challenging because of the many factors involved along the PVSC, from raw

material suppliers to disposal, affecting all the SC stages.
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In the literature, several authors have taken into account economic, environ-

mental, and social factors in the development of RES (Cucchiella et al., 2017;

Govindan et al., 2013; Streimikiene et al., 2012) and the assessment of RE from

a SC perspective (Cucchiella and D’Adamo, 2013; Davies and Joglekar, 2013;

Wee et al., 2012). Considering the different factors involved in the decision

making process at every stage in the SC, it represents a complex multi-criteria

decision making (MCDM) problem (Uygun and Dede, 2016).

MCDM frameworks have been used in recent years to resolve different prob-

lems concerning RE, many of them in the PV context. Section 2 presents a

detailed literature review of the most significant works about it. Three types

of decisions mainly have been addressed: choosing the most suitable produc-

tion site location, the best technology and the most appropriate RE policy.

Different techniques have been proposed in the RE context, including the An-

alytical Hierarchy Process (AHP) (Al-Yahyai et al., 2012; Cucchiella et al.,

2017; Garcia-Cascales et al., 2012; Kahraman and Kaya, 2010; Kahraman et al.,

2009), the Technique to Order Preference by Similarity to Ideal Solution (TOP-

SIS) (Cavallaro, 2010; Gazibey and Çilingir, 2012; Kaya and Kahraman, 2011;

Sanchez-Lozano et al., 2016, 2013), Elimination of Choice Expressing Real-

ity (ELECTRE) (Matulaitis et al., 2015; Sanchez-Lozano et al., 2016, 2014),

Multi-Objective Optimization by Ratio Analysis plus the full multiplicative

form (MULTIMOORA) (Streimikiene et al., 2012), Goal Programming (Khalili-

Damghani and Sadi-Nezhad, 2013), VIsekriterijumsko KOmpromisno Rangi-

ranje (VIKOR) (Kaya and Kahraman, 2010) and others (Figueira et al., 2005).

Among these MCDM techniques, AHP represents the most widely used and

intuitive compared to others, allowing structuring of the problem into different

levels and sub-criteria in a hierarchical manner, making it easy for the decision

maker to rate the different factors and alternatives (Mangla et al., 2015).

Despite the fact that the SC has been analysed from a sustainability perspec-

tive in the RE sector, there are no contributions in the literature that assess

the complete PVSC in order to make efficient decisions considering the TBL

principles. Therefore, taking into account all the factors involved at each stage
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of the PVSC, this paper aims to provide a MCDM framework based on AHP

and inspired by the TBL principles to assess the suitability of different locations

for PV energy production. Moreover, the proposed framework has been tested

to assess seven European countries using an extensive literature review and the

opinions of three independent experts in the PV sector. The paper makes three

main contributions to the literature. The first is the identification of the sub-

criteria involved in the decision making process at each stage in the PVSC and

the design of the MCDM framework based on the AHP. The second contri-

bution consists of the application of the proposed framework, in combination

with expert opinion, to the assessment of seven European countries. Finally, the

proposed work reinforces the literature on MCDM applications, providing share-

holders with a tool to make more accurate investment decisions when selecting

a suitable location for sustainable deployment of PV energy.

The remainder of this paper is structured as follows. Section 2 gives an ex-

tensive literature review on MCDM models, TBL principles and SSC in the RE

context. Section 3 focuses on the definition of the PVSC framework proposed in

this research, with an explanation of the selected dimensions and sub-criteria.

Section 4 defines the methodology used. Section 5 presents and discusses the

results and, finally, Section 6 summarises the main conclusions and recommen-

dations for investors in PV energy.

2. Literature review

This section reviews the literature on MCDM methods, TBL and SSC. Due

to the large number of publications on these topics, the analysis has focused

mainly on RE in order to identify the gaps between theory and practice and

then develop a framework defining a sustainable supply chain in the PV energy

sector based on the TBL approach.

2.1. Decision making frameworks in the renewable energy context

The recent literature on the assessment of RE systems presents the resolution

of diverse MCDM problems using different approaches. The analysis of these
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works leads us to address different issues, such as the suitable site location,

the distribution and exchange of produced energy, the autonomous production

and self-consumption of energy, the best RE technology alternative or the most

appropriate RE policy selection.

Concerning the site location, most of the contributions deal with the se-

lection of the most suitable locations to build RE facilities. The work of Liu

et al. (2017) proposes a MCDM model to select the optimal alternative for a

PV plant between four cities based on grey cumulative prospect theory for sus-

tainability using AHP methodology. Also, the work of Sanchez-Lozano et al.

(2016) identifies previously the suitable locations of PV power plants by Ge-

ographical Information System (GIS) and uses AHP to obtain the weights of

the different sub-criteria involved in the decisional problem. Afterwards the

suitable locations are evaluated and classified by means of the TOPSIS and

ELECTRE. Other works of the same authors propose the combination of GIS

and ELECTRE-TRI method using the Decision Support System IRIS (Sanchez-

Lozano et al., 2014), and the combination of GIS with AHP and TOPSIS to

evaluate the optimal sites for solar power plants location (Sanchez-Lozano et al.,

2013). Similar works are proposed by Uyan (2013), where the determination of

the most suitable site selection for solar farms is resolved using GIS and AHP,

or the work of Al-Yahyai et al. (2012) with a study using GIS and Analytic Hi-

erarchy Process with Ordered Weigh Averaging (AHP-OWA) to classify lands

in function of some sustainable criteria to make decisions for wind farm instal-

lation. On the other hand, Fichera et al. (2018) proposed an optimisation

strategy to support urban planners in the decision-making process for urban

energy strategies; Volpe et al. (2017) studied the effects of customers with RES

resources that directly exchanged the electrical energy with private connections

among geographically neighbouring users, based on a mathematical model at

the scale of urban territories; and Gonzalez de Durana et al. (2014) investigated

the energy distribution problem from the perspective of agent-based modelling.

In relation with the analysis of the best technology alternative, Garcia-

Cascales et al. (2012) propose TOPSIS to identify the best photovoltaic cell
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using quantitative and qualitative factors affecting the manufacturing of photo-

voltaic cells. Furthermore, the work of Gazibey and Çilingir (2012) implements

TOPSIS to assess different PV technologies according to their level of efficiency.

Streimikiene et al. (2012) proposes the use of MULTIMOORA and TOPSIS to

choose the most sustainable electricity production technology. Energy planning

is also addressed by Kaya and Kahraman (2011) to select the best energy tech-

nology using TOPSIS taking into account technical, economic, environmental

and social criteria, and Cavallaro (2010) proposes and tests the validity and

effectiveness of a multi-criteria TOPSIS fuzzy method to compare different heat

transfer fluids for a sustainable RE project.

Besides, these same methods have been used to analyse, compare and select

RE alternatives and policies. The impact of support policies for domestic PV

systems is addressed by Matulaitis et al. (2015) using ELECTRE III to deter-

mine the most desirable alternative on a multinational level. A multiple criteria

group decision making (FMCGDM) approach is proposed by Khalili-Damghani

and Sadi-Nezhad (2013) for sustainable project selection using goal program-

ming and TOPSIS to perform a comprehensive framework including economic,

environmental and social effects of a RES investment. The selection of the most

appropriate energy policy is addressed by Kahraman and Kaya (2010) using

AHP. The same authors address the selection of the best RE alternative and

production site by means of an integrated VIKOR-AHP methodology (Kaya

and Kahraman, 2010). In another research, Kahraman et al. (2009) propose the

use of fuzzy axiomatic design application to select the best RES alternative and

comparing with fuzzy AHP.

Moreover, a systematic review of MCDM techniques and approaches in sus-

tainable and RE is addressed by Mardani et al. (2015). Despite the fact that

these works contribute with great insights to the literature on MCDM in the RE

context, the performed analysis of the literature reveals that little attention has

been devoted to the analysis of PV energy sector and in particular to assess the

sustainability of the PV supply chain based on the Triple Bottom Line (TBL)

approach.
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2.2. Triple Bottom Line

Elkington (1997) was the first to introduce the Triple Bottom Line (TBL)

concept stressing the differentiation of the three main components of sustain-

ability: economic, social, and environmental, emphasising the importance of

the environmental and social effects of a project as well as its economic fea-

sibility. The importance of social and environmental issues linked to the tra-

ditional economic dimension —widely considered as the main driving force in

most business— has been acknowledged in the last years.

The TBL framework not only focuses on the economical profit, but also em-

phasises the social and environmental profits (Gao and You, 2017; Govindan

et al., 2013; Nikolaou et al., 2013). Therefore, organisations should promote

and be involved into activities that enhance the environment and the society

(Streimikiene et al., 2012). In the extant literature, several authors have fo-

cused on the study of RE topics considering the TBL framework. For instance,

Cucchiella and D’Adamo (2013) presented a thorough survey on the topic of SC

and RE.

Furthermore, other authors address the analysis of the SC in the RE context

from different perspectives: the managerial insights for overcoming the barriers

of the RE development (Wee et al., 2012), the identification and measure of

the SC’s impact on each constituent firm’s market valuation applied to the

solar energy industry (Davies and Joglekar, 2013), the coordination mechanisms

of the PVSC considering consumers, government’s subsidies and stakeholders

decisions (Chen and Su, 2014) and the problem of the installation of PV plants

of different sizes facility rooftops in a green supply chain (Abdallah et al., 2013).

Finally, Davies and Joglekar (2010) analyse 42 supply chains from the PV

energy sector proposing a procedure to disentangle the SC integration effect on

the value of the firm.

2.3. Sustainable Supply Chain

In the recent years, the literature has given a great deal of attention to

sustainability issues. Sustainability has been defined as utilizing resources to
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meet the needs of the present without compromising future generations’ ability

to meet their own needs (WCED, U.N., 1987). Initially, sustainability initiatives

focused mainly on environmental issues but, as the time passes, the research

works are adopting economic and social aspects (Ahi and Searcy, 2013; Mota

et al., 2015).

Sustainability and supply chain management (SCM) are two concepts thor-

oughly studied in the literature in an independent way (Seuring, 2013; Seuring

and Müller, 2008) but have been integrated to build the concept of sustain-

able supply chain management (SSCM) due to they exhibit explicit interac-

tions (Wilding et al., 2012b). In the latest literature, some reviews have been

published on SSCM from different approaches but with the aim to analyse these

concepts in a combined way (Ahi and Searcy, 2013; Carter and Rogers, 2008;

Crum et al., 2011; Sarkis et al., 2011; Seuring, 2013; Seuring and Müller, 2008;

Wilding et al., 2012a,c).

The research work of Ahi and Searcy (2013) proposes a new definition of

SSCM as ”The creation of coordinated supply chains through the voluntary in-

tegration of economic, environmental, and social considerations with key inter-

organizational business systems designed to efficiently and effectively manage

the material, information, and capital flows associated with the procurement,

production, and distribution of products or services in order to meet stakeholder

requirements and improve the profitability, competitiveness, and resilience of the

organization over the short- and long-term.” Additionally, the work of Mota

et al. (2015) aims to shed light on the question of how can sustainability be

integrated into supply chains’ design and planning decisions.

It is accepted that the SC is a complex network from suppliers to customers,

which involves people, technologies, activities, information and resources. Its

design and management has the purpose of obtaining the best global perfor-

mances under specific operating criteria (Aslam and Amos, 2010; Yuce et al.,

2014). In addition, the literature highlights that social, environmental and

economic factors must be taken into account in addition to other commonly

considered performance criteria (quality, cost, flexibility) (Ageron et al., 2012).
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The literature also analyses the SSCM on the emerging RE sectors (Garcia

and You, 2015). RE and sustainability issues have reframed SCM and design.

Currently, RE companies are to a great extent under legislative, political and

social requirements to improve the environmental and social performance of

their businesses. Therefore, the design of SC taking into account the TBL is a

research topic with high interest in the RE sectors. Some research works have

been published aiming at the design of SC for RE, such as bioelectricity (Yue

et al., 2014) and biofuels (Akgul et al., 2012; Bowling et al., 2011; Yue and You,

2014; Zamboni et al., 2009), but there is a lack of contributions related to PV

energy.

In order to recognize the research gap and define our work, Table 1 summa-

rizes and compares the related studies found in the literature. Despite there are

many of them addressing the above mentioned topics, a lack of works assessing

the SC in the PV sector considering the TBL approach is observed. This paper

attempts to cover this gap for the first time. We also provide a framework to

make efficient decisions contributing to the sustainable deployment of the PV

energy.

3. Factors affecting sustainable PV supply chain development

PVSC is complex and different from other sectors (Chen and Su, 2014), cap-

turing the attention of both public and private actors (Cucchiella and D’Adamo,

2013). The main differences with other supply chains lie first in the attention

and support of the public players in the contribution to reach the 2020 RE

quota (European Parliament, 2009, 2012b) and the Kyoto Protocol (United Na-

tions, 1998), but also in the disposal and recovery policies, subsidies and support

schemes to the industry, and the role of PV investors and prosumers (producer

and consumer) to gain economic opportunities and recover the investments. In

this sense, although prosumers install RE plants with the primary objective of

satisfying their own energy demands, the energy produced but not consumed

is also distributed to closer neighbours (Fichera et al., 2018). These consid-
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Table 1: Summary of the main contributions found in the literature.
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erations, linked to the fact that there are a mix of major and minor players

along the SC, make the analysis and evaluation of the PVSC a complex and

multi-variable problem.

Considering the sustainable SC as a wheel composed of six spokes exempli-

fying the most relevant functions in the SC (sourcing, transformation, delivery,

value proposition, customers, and recycling) (Hassini et al., 2012), we can iden-

tify the major factors that have an impact on them. On the other hand, and

based on the literature review, we grouped these factors into the three dimen-

sions of sustainability, according to the TBL. As the result, a framework of the

PVSC with its main tiers, players, and the selected sub-criteria associated with

the SC levels is proposed in Figure 1.

To select our portfolio of the different countries alternatives to investigate, we

relied on the top seven countries that have carried out the largest development

of the photovoltaic sector in the last fifteen years in Europe: Germany, Italy,

UK, France, Spain, Belgium, and Greece.

3.1. Sub-criteria for sustainable PVSC development

This subsection focuses on the sub-criteria selection affecting sustainable

supply chain development for PV energy production. Table 2 shows the sub-

criteria associated with social, economic and environmental dimensions that

have been selected to evaluate the PV sustainable supply chain, with their

corresponding data sources and measure units.
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Suppliers Assemblers PV 
plants

Electricity 
distribution network Consumers

Disposal 
and recovery 
plants

Raw materials

PV cell
PV crystalline module
PV thin-film module
PV panel

Tracking system
Inverter
MPP tracker

Electrical junction box
Surge protection
Wiring 

Metallic structure

Concrete

Residential

Industrial

Governments
(Policies, support schemes and subsidies)

Substation transformer
Transmission lines
Distribution lines

DEMAND
SUPPLY

(multi-tier) GENERATION DISTRIBUTION

PV array
Mounting system
Electrical installation
Assembly facility
Commissioning

PV fixed system

PV tracking system

DISPOSAL

A1. Stakeholders influence

A2. R&D governmental support

A3. Social acceptability

B1. Cost of capital

B2. Sourcing costs

B3. Upfront costs

B4. O&M costs

B6. Final energy yield

C3. Disposal policies

B5. Tariffs

C2. GHG emissions red.

Recycling firms

C4. Tech. for disposal

SO
C

IA
L

EC
O

N
O

M
IC

EN
V

IR
O

N
M

EN
TA

L

A4. Employment and job opportunities

C1. Compliance 2020 

Figure 1: Photovoltaic Supply Chain
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3.1.1. Social sub-criteria

The social dimension of sustainability concerns the impacts the organisation

has on the social system within which it operates (GRI, 2013). Social sub-criteria

include the impacts on the public perception, employment creation and govern-

mental support. The main social indicators selected for sustainable PV supply

chain development in this research are stakeholders influence, R&D governmen-

tal support, social acceptability and employment and job opportunities.

• Stakeholders influence (A1) measures the relationship with suppliers, cus-

tomers, local communities and non-governmental organisations (NGOs)

inside the SC. Several authors have adopted this criterion in the assess-

ment of the social dimension of sustainable SCM considering specific ref-

erences to stakeholders, and including (but not limited to) governments,

customers, consumers and suppliers (Ahi and Searcy, 2013; Carter and

Rogers, 2008; Govindan et al., 2013; Seuring, 2013). The criterion is mea-

sured in qualitative terms by means of linguistic labels using the experts

opinion and make up a criterion to maximise.

• R&D governmental support (A2) assesses the impact of economic incen-

tives that contribute to technology growth, job creation and regional de-

velopment. These subsidies are focused on the development of new PV

installations aiming to improve and promote the solar energy and stim-

ulate the market (Avril et al., 2012). Authors agree that this criterion

should be considered when deciding on facility location (Mota et al., 2015;

Sovacool and Lakshmi Ratan, 2012) and that in order to have a successful

PV project there must be a link between the financial support and the

location where the PV system is installed (Dusonchet and Telaretti, 2015).

In this research, this criterion is valued in million of euro, measuring the

total R&D support per year in each country and constitute an indicator

to be maximised.

• Social acceptability (A3) is a significant criterion in the assessment of the

PVSC since public opposition and reluctance to the development of the
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PV sector is currently a barrier in some countries, such as UK and oth-

ers (Troldborg et al., 2014; West et al., 2010). The literature recognises

the assessment of the social acceptability of PV energy in not simple and

“has multiple dimensions –socio-political, community, and market– that

must be met holistically in order for investors and users to embrace re-

newable energy” (Sovacool and Lakshmi Ratan, 2012). Some studies are

based on surveys that in general exhibit high levels of acceptability at

country level but, in contrast, show disagreement at local level (Troldborg

et al., 2014). The assessment of social acceptability is measured here as

PV market penetration due to the relationship between the acceptabil-

ity and the rapid acceleration of solar panels in countries like Germany

(Sovacool and Lakshmi Ratan, 2012). It is a criterion to be maximised.

• Employment and job opportunities (A4) is a key factor in the social pil-

lar of the TBL approach. Different authors have used this indicator to

measure how sustainability is integrated into the SC design and plan-

ning decisions referred to objective and quantifiable metrics (Hutchins

and Sutherland, 2008; You et al., 2012). In this research, this is a quan-

titative indicator assessed with the data from the International Energy

Agency (IEA) (IEA, 2015a,b, 2016) measuring the average amount of

labour places in the PV sector per year in each selected country. This

is a criterion to be maximised.

3.1.2. Economic sub-criteria

The economic dimension of the TBL approach is a key issue as economic

profitability of the RE projects and the main driver for the energy technolo-

gies penetration in the markets (Streimikiene et al., 2012). In the literature,

economic dimension is mainly evaluated using the indicators that most directly

impact on the profitability of the project investments: cost of capital, sourcing

and upfront costs, operation and maintenance cost, governmental subsidies and

final energy yield (Barboza, 2015; Gao and You, 2017; Govindan et al., 2013;

Ramı́rez et al., 2017).
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• Cost of capital (B1) is the minimum rate of return that an investor expects

to obtain considering the best investment alternative with equivalent risk.

Generally, it is measured by means of the weighted average cost of capital.

In our work, this quantitative indicator has been selected by country (DIA-

CORE Project, 2016) and constitute a criterion to minimize. The values

are detailed in Table 3.

• Sourcing costs (B2) refers to the costs of raw materials and commodities

purchased in the country or in foreign countries. These are significant costs

in the PV installations because the cost of panels and inverters constitute

more than half of the total plant cost in most countries (IRENA, 2012; Os-

senbrink et al., 2013; Ventre et al., 2001; Wirth, 2016; Wiser et al., 2009).

During the last years, the research and development efforts made in the

field of materials science have motivated the materials cost reduction for

solar cells manufacturing, improving the total upfront costs and allowing

for the adoption of PV energy (Ramı́rez et al., 2017). In the SC assessment

the sourcing costs are directly related to the supplier selection (Ageron

et al., 2012; Freeman and Chen, 2015; Lima-Junior and Carpinetti, 2016;

Liou et al., 2014; Zhang et al., 2014). In this research, sourcing costs is an

indicator to minimise and the values, in e/Wp, have been obtained from

the literature (IEA, 2015b, 2016; IRENA, 2012; Ossenbrink et al., 2013;

Wirth, 2016) for the selected countries, Table 3.

• Upfront costs (B3) are measuring the total expenses charged at the onset

of a PV power plant project. The non-sourcing costs (mounting hard-

ware, installation labour, fees, shipping, overhead, taxes) have a different

value depending on the country as well (IEA, 2015b). In this line, Ta-

ble 3 presents the PV upfront costs considered in the present work, in

e/Wp, which are based on the review conducted recently by the authors

in (Ramı́rez et al., 2017). Actually, this price-per-watt (peak) metric has

the virtue of simplicity and availability of data (Bazilian et al., 2013). It

constitutes an indicator to be minimised.
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• Operation and maintenance (O&M) costs (B4) include a wide variety of

expenses in the operation of a PV plant, as general site management

costs, electrical maintenance costs, panel washing costs, vegetation control

costs, insurance costs and others. These are not significant costs due to

the distinctive feature of the PV plants having high upfront costs but

low operation costs (Jäger-Waldau et al., 2011; Ramı́rez et al., 2017), in

contrast to other conventional energy sources. In this research, this is a

criterion to be minimised. The data of the O&M costs have been obtained

from the literature for the selected countries (Campoccia et al., 2014;

Dusonchet and Telaretti, 2015; Enbar and Weng, 2015; Keating et al.,

2015). The values are detailed in Table 3.

• Tariffs and incentives (B5) have been adopted in the last decade to stim-

ulate the development of long-term PV projects in the most of European

countries. Feed-in tariffs are, by far, the most extensively support scheme

adopted all over the world (Dusonchet and Telaretti, 2015). Under this

scheme, the utilities are mandatory to purchase the produced PV energy

at a fixed-tariff price. In addition, this payment must be guaranteed for a

fixed period, typically between 20 and 25 years. Due to the dependence of

this support scheme on PV energy adoption, it is mandatory to consider

this in the economic assessment of the PVSC. So, this research includes

it measuring the total payment in e/kWh in the selected countries. The

values have been obtained from the literature (Dusonchet and Telaretti,

2015; IEA, 2015b, 2016; Pyrgou et al., 2016; Ramı́rez et al., 2017). This

indicator needs to be maximised.

• Final energy yield (B6) is a key factor for the economic evaluation of a

PV plant because it determines the production of PV energy. This fac-

tor depends on the solar irradiation level and, in turn, the plant location.

Solar irradiation data are widely used in the estimation of PV energy pro-

duction. Several radiation databases are available. This research uses the

information provided by the Photovoltaic Geographical Information Sys-
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tem (PVGIS) (European Commission, 2016). It is a criterion to maximise

in this research. The values are measured in kWh/kWp and presented in

Table 3.

3.1.3. Environmental sub-criteria

This subsection analyses the main environmental dimension indicators for

the PVSC development. Literature on sustainable SC is comprehensive and

diverse and there are a plenty of works studying and evaluating its environmental

impacts (Mota et al., 2015; Zhang et al., 2014). Beyond the available methods, it

is accepted that environmental impact analysis must take into account the entire

life of the SC, from the extraction of resources, through production, use, disposal

and recycling (European Commission, 2012). From the literature review, four

sub-criteria are selected in this research to assess the environmental impact of

the PVSC, as follows:

• Compliance of 2020 RES target share (C1) is based on the directive

2009/28/EC (European Parliament, 2009) of the European Commission

setting an overall goal across the EU for a 20% share of energy consump-

tion to be derived from RES by 2020. All the EU members have their own

national target 2020 for all the RES (European Commission, 2010a). The

PV national target 2020 and the evolution of the PV power installed in the

selected countries is available in Eurostat (2017) and Dehler et al. (2015).

It constitutes a criterion to be maximised, whose values are presented in

Table 3.

• Reduction of GHG emissions (C2) is one of the most common used cri-

terion in the evaluation of RE and sustainability (Kucukvar et al., 2014;

Troldborg et al., 2014). Most of studies assess the reduction of GHG

emissions comparing the use of RE technologies with the non-RE ones

that are replacing. PV energy is a zero emissions energy system (Euro-

pean Commission, 1998; Owusu and Asumadu-Sarkodie, 2016). During

the operation of the PV plants there are zero emissions of CO2, NOx and
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SO2 gases (Hosenuzzaman et al., 2015). In addition, PV energy does not

contribute to global warming. Table 3 includes the GHG emissions re-

duction rates in the selected countries. These values have been calculated

based on the reduction of CO2 emissions on the energy mix related to

each country. It is a criterion to be minimised.

• Disposal green policies (C3) refers to the measures aiming at protecting

the environment and human health by preventing or reducing the adverse

impacts of the generation and management of waste from electrical and

electronic equipment and by reducing the overall impacts of resource use

and improving the efficiency of such use. In the PV energy context, the

treatment and disposal of the PV waste has emerged as a concern in the

EU members (Bilimoria and Defrenne, 2013). The huge quantity on PV

panels that will need to be disposed by 2025 forced the European Union

to address this environmental impact by the Directive 2012/19/EU (Eu-

ropean Parliament, 2012a). For this aim, the PV panels must be ap-

propriately collected and treated to more effectively control the disposal

and promote the recovery and recycling of materials. Some authors have

contributed on this issue: the study of the potential opportunity for en-

ergy savings from recycling PV (Goe and Gaustad, 2014), the analysis

of the waste flows to enhance the appropriate disposal of the hazardous

materials as well as the importance of the recovery and recycling of these

resources (Paiano, 2015), or the review of feasible recycling technologies

and ways of PV modules as well as the potential environmental benefits

and economic viability of PV module recycling (Tao and Yu, 2015). In

this research, this is a criterion to be maximised and has been evaluated

for the selected countries by the experts’ opinion, and using a qualitative

scale.

• Technology for disposal (C4) concerns the technologies and recycling ways

including manufacturing waste recycling, end-of-life or used module ma-

terial recycling, re-manufacturing and reuse. The current recycling tech-

23

                  



Table 3: Values of the sub-criteria for sustainability assessment of the PVSC in the selected

countries

Sub-criteria Unit
Country

Germany Italy UK France Spain Belgium Greece

S
o
c
ia

l

A1 Logical L L L L L L L

A2 Me/year 49.76 7.28 11.19 8.46 21.74 3.82 1.08

A3 % 7.10 8.00 2.60 1.50 3.40 4.10 7.40

A4 Lplaces/year 60000 12000 16900 9400 7500 3000 2000

E
c
o
n

o
m

ic

B1 % 4.5 9.0 6.5 5.7 8.0 6.0 12.0

B2 e/Wp 0.59 0.53 0.58 0.60 0.55 0.65 0.50

B3 e/Wp 1.00 1.03 1.16 1.30 1.20 1.30 1.00

B4 e/kWyear 37.00 38.11 42.92 48.10 44.40 48.10 37.00

B5 e/kWh 0.119 0.052 0.129 0.186 0.059 0.049 0.110

B6 kWh/kWp 1122 1481 1081 1317 1895 1128 1729

E
n
v
ir

o
n

-

m
e
n
ta

l

C1 % 76.6 100.5 46.6 62.2 81.0 61.5 85.0

C2 % 13.78 11.96 5.82 35.40 11.94 16.94 12.53

C3 Logical L L L L L L L

C4 Logical L L L L L L L

nologies for PV materials and end-of-life modules have been thoroughly

explored and most of them are commercially available. Nowadays, new

challenges lie in increasing the process efficiency and reducing the process

complexity, energy requirements, and the use of chemicals. This is a cri-

terion to be maximised and has been assessed by means of the experts’

opinion.

4. Research methodology

This section details the methodology used, starting from the MCDM frame-

work based on AHP to the data collection.

24

                  



Sustainable supply chain

A
Social

B
Economic

C
Environmental

A1. Stakeholders influence 

A2. R&D governmental support 

A3. Social acceptability

A4. Employment and job opportunities 

C1. Compliance of 2020 PV target share 

C2. CO2 emissions reduction 

C3. Disposal green policies 

C4. Technology for disposal 

B1. Cost of capital 

B2. Sourcing costs 

B3. Upfront cost 

B4. O&M costs 

B5. Tariffs and incentives 

B6. Solar irradiation level 

Germany

Italy

UK

France

Spain

Belgium

Greece

GOAL

Dimensions
Sub-criteria

ALTERNATIVES

Figure 2: AHP framework for sustainable supply chain.

4.1. AHP technique

AHP (Saaty, 1980), is one of the most widely used MCDM techniques be-

cause it is easy to implement (Luthra et al., 2016). It has recently been employed

to solve several complex decision making problems. Balfaqih et al. (2017) have

employed AHP to assess the environmental and economic performance of de-

salination supply chain, Zimmer et al. (2017) to assess social risks of global

supply chains and supplier selection in Germany, Dweiri et al. (2016) proposed

an AHP decision support model for supplier selection in automotive industry

in Pakistan, de Oliveira Moura Santos et al. (2017) used AHP for suppliers

segmentation, Asgari et al. (2015) for sustainability ranking of UK major ports.

AHP consists of structuring the decisional problem into different hierarchi-

cal levels such as a main goal, main dimensions, sub-criteria and alternatives,

followed by a pairwise comparison at each level. Figure 2 represents the AHP

structure for our sustainable supply chain decision making problem.

Once the framework has been defined, experts compare each main dimension

against the others using a nine-point Saaty’s scale shown in Table 4.
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Table 4: Saaty’s scale (adapted from (Saaty, 1980)).

Scores Equivalent linguistic judgment

1 Equally important

3-1/3 Moderately more/less important

5-1/5 Fairly more/less important

7-1/7 Strongly more/less important

9-1/9 Extremely more/less important

2-1/2,4-1/4,6-1/6,8-1/8 Intermediate values

The same procedure is repeated for the sub-criteria which are this time com-

pared with respect to the corresponding main dimension. Finally, the different

alternatives are compared with respect to each sub-criterion.

Next step consists of calculating the eigenvalues and eigenvectors of the

pairwise comparison matrices in order to determine the weights and rank the

different sub-criteria and alternatives. As an illustrative example, consider the

following matrix M :

M =




1 3 9

1/3 1 5

1/9 1/5 1




According to (Saaty, 2008), the steps to calculate the exact priorities consist

of raising the matrix to a large power, summing up the matrix along the rows

and finally dividing each by the sum of all the rows in order to normalise the

weights. The priorities of M are [0.672, 0.265, 0.063]T .

Finally, a consistency ratio (CR) needs to be computed for each matrix in

order to assess the consistency of the experts’ judgement. CR is given by CI/RI,

with CI = (λmax − n)/(n − 1), where λmax is the maximum Eigen value and

n is the size of the matrix. RI represents a random index depending on n and

it can be found in table 5. The value of CR must be lower than 0.10 for an

acceptable level of consistency.
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Table 5: Random Index (adapted from (Saaty, 1980)).

n 1 2 3 4 5 6 7 8 9

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45

In our example, CR associated to matrix M is equal to 0.0251, which means

the judgement is consistent.

The overall weights for the alternatives are obtained by multiplying their

priorities by its sub-criteria’s and dimensions’ priorities and finally summing up

the resulting values for each alternative.

4.2. Data collection

In order to test and validate our framework, three independent experts in the

photovoltaic sector were approached, in line with (Garcia-Cascales et al., 2012).

The Expert 1 is a technical manager with 16 years of experience in photovoltaic

and wind energy. He works for a multinational company of RE with operations

in the entire world. The company employs 3,700 people and has facilities in 22

countries. Expert 2 is a highly regarded academic and senior researcher in RE

with 25 years of experience. He works in a university and manages a RE research

center. Expert 3 is an expert on photovoltaic energy. She is a technical manager

of a multinational company with operations in Spain, USA, India, Mexico, Chile

and South Africa, employing 550 people. At the initial stage of this research,

after the literature review, experts’ opinions were used to refine our model and

consider the factors more relevant to the PV supply chain.

AHP is often combined with Delphi method for participatory decision-making

processes for consensus building, as proposed by (Le Pira et al., 2017). In this

paper, a Pseudo-Delphi technique was used to collect the knowledge from the

experts as per (Garcia-Cascales et al., 2012) since they did not interact at any

time neither in the data collection nor in the decision-making process. A ques-

tionnaire was sent to the three experts with the different alternatives to select
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Table 6: Expert 1 pairwise comparison matrices of sub-criteria with respect to main dimen-

sions.

A A1 A2 A3 A4

A1 1 7 1/2 1/3

A2 1/7 1 1/8 1/9

A3 2 8 1 1/2

A4 3 9 2 1

(a) Social dimension

B B1 B2 B3 B4 B5 B6

B1 1 2 1/3 3 1/2 1/4

B2 1/2 1 1/4 2 1/3 1/5

B3 3 4 1 5 2 1/2

B4 1/3 1/2 1/5 1 1/4 1/6

B5 2 3 1/2 4 1 1/3

B6 4 5 2 6 3 1

(b) Economic dimension

C C1 C2 C3 C4

C1 1 1/3 1/2 5

C2 3 1 1/2 6

C3 2 2 1 7

C4 1/5 1/6 1/7 1

(c) Environmental dimension

the most appropriate answer for each question. In addition to the questionnaire,

an explanation of the multi-criteria decision-making problem, main dimensions

and related sub-criteria, diagrams of the PVSC and the hierarchical structure

were added so that the three experts had the same information. This process

demanded two months to complete the questionnaires. The questionnaire was

designed in two parts:

1. The first part of the survey lied in rating the sub-criteria for each dimen-

sion, by filling in three matrices, as shown in Table 6 for Expert 1.

2. The second one was focused on the assessment of the alternatives countries

for the qualitative sub-criteria A1, C3 and C4. The experts were asked to

rate the seven European countries under study with respect to each sub-

criterion. As an example, Table 7 shows the Expert 1 pairwise comparison
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Table 7: Expert 1 pairwise comparison matrix of alternatives with respect to A1 sub-criterion.

A1 Germany Italy UK France Spain Belgium Greece

Germany 1 8 5 8 7 9 9

Italy 1/8 1 1/4 1 1/2 2 2

UK 1/5 4 1 4 3 5 5

France 1/8 1 1/4 1 1/2 2 2

Spain 1/7 2 1/3 2 1 3 3

Belgium 1/9 1/2 1/5 1/2 1/3 1 1

Greece 1/9 1/2 1/5 1/2 1/3 1 1

matrix of alternatives with respect to A1 sub-criterion.

Concerning the quantitative sub-criteria, the assessment of the alternatives

was made with the data from the peer-reviewed literature and summarised in

Table 3. Each country was compared against each other using a nine point

Saaty’s scale shown in Table 4, and for each of the quantitative sub-criteria A2,

A3, A4, B1, B2, B3, B4, B5, B6, C1 and C2. With regard to A2 sub-criteria,

R&D governmental support, and based on the literature review, Germany car-

ried out the highest effort in the total expense on solar energy research in 2014,

with 49.76 Million of e, in front of Greece with a yearly expense of 1 Million

of e. Therefore, we scored Germany as 9 over 1 with respect to Greece. The

same procedure was performed with the other countries having into account

the yearly expenses in R&D in each country by 2014: Spain (21.74 Me), UK

(11.19 Me), France (8.46 Me), Italy (7.28 Me) and Belgium (3.82 Me). We

have incorporated these arguments in Table 8.

In terms of the other quantitative sub-criteria, the same procedure and anal-

ysis based on the peer-reviewed literature was applied, obtaining the correspond-

ing pairwise comparison matrices. Once all the matrices were filled, weights,

Eigen values and Consistency Ratio were calculated.

Finally, four scenarios were analysed, each giving a different importance to

29

                  



Table 8: Pairwise comparison matrix of alternatives with respect to A2 sub-criterion.

A2 Germany Italy UK France Spain Belgium Greece

Germany 1 8 7 8 6 9 9

Italy 1/8 1 1/2 1 1/3 2 2

UK 1/7 2 1 2 1/3 2 3

France 1/8 1 1/2 1 1/3 2 2

Spain 1/6 3 3 3 1 4 4

Belgium 1/9 1/2 1/2 1/2 1/4 1 2

Greece 1/9 1/2 1/3 1/2 1/4 1/2 1

Table 9: Definition of weights for each dimension depending on the scenario.

Social dimension Economic dimension Env. dimension

Scenario 1 0.33 0.33 0.33

Scenario 2 0.50 0.25 0.25

Scenario 3 0.25 0.50 0.25

Scenario 4 0.25 0.25 0.50

the three dimensions, economic, social and environmental, in order to cover the

main range of priorities for the dimension, Table 9. In the first scenario, the three

dimensions had the same importance; in the second scenario, double importance

was given to social dimension compared to environmental and economic; in the

third scenario economic dimension was the most important, while in the fourth

scenario environmental dimension was the priority.

Finally, in order to combine the judgements of the three experts and the

assessment of the quantitative sub-criteria, the geometric mean of the final pri-
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orities for the alternatives was calculated according to (Saaty, 2008) as follows.

n

√√√√
n∏

i=1

Pi

With n number of experts and Pi final priority for the alternatives of each

expert.

As a matter of fact, a consensus vote is used when the experts are able

to agree on the values of the matrices or on the priority vectors; vice versa,

mathematical aggregation is adopted (Ignaccolo et al., 2017). Moreover, the

experts may not wish to combine their judgements but only their final outcomes

obtained by each from their own hierarchy (Saaty, 2008).

Under this framework, Figure 3 shows the sequence of steps of the adopted

methodology for sustainable supply chain development.

5. Results and discussion

Based on the methodology defined in Section 4, a total of twenty-nine ma-

trices were obtained: nine for sub-criteria comparisons (three for each expert),

nine for comparison of alternatives with respect to logical (or qualitative) sub-

criteria (three for each expert), eleven for the comparison of the alternatives with

respect to quantitative sub-criteria. The maximum CR value estimated among

the twenty-nine filled matrices is 0.099, which means the experts’ judgments

have an acceptable level of consistency.

Table 10 shows the priorities of the sub-criteria with respect to the corre-

sponding main dimension. Sub-criterion A4 “Employment and job opportuni-

ties” was recognised as the most relevant for the social dimension by Experts

1 and 2, while Expert 3 prioritised A1 “Stakeholders influence” and A4 was

evaluated with the lowest weight. Regarding the economic dimension, Experts

1 and 2 give the same result again, providing the highest weight to B6 “Final

energy yield”, while for Expert 3 this B6 would be in the second position, giving

the highest priority to B1 “Cost of capital”. Finally, under the environmental
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Figure 3: Proposed sustainable supply chain evaluation methodology
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Table 10: Priorities of sub-criteria from Experts opinion.

Sub-criteria
Priorities

Expert 1 Expert 2 Expert 3

A1 0.185 0.159 0.522

A2 0.038 0.039 0.200

A3 0.296 0.248 0.200

A4 0.481 0.553 0.078

B1 0.101 0.206 0.268

B2 0.064 0.052 0.206

B3 0.250 0.056 0.077

B4 0.043 0.026 0.029

B5 0.160 0.228 0.199

B6 0.383 0.432 0.222

C1 0.182 0.131 0.066

C2 0.334 0.161 0.103

C3 0.435 0.354 0.324

C4 0.049 0.354 0.508

dimension, Expert 1 prioritised C3 “Disposal green policies”, Expert 3 consi-

dered C4 “Technology for disposal” as the most relevant sub-criterion, while

Expert 2 rated equally C3 and C4.

Priorities of the alternative countries with respect to the sub-criteria, both

qualitative and quantitative, are given in Tables 11 and 12, respectively. With

regard to the qualitative sub-criteria, Table 11, experts have provided a similar

assessment. Germany has obtained the highest priority for Experts 1 and 3 with

regard to sub-criterion A1 “Stakeholders influence”. The three experts prioritise

Germany with respect to sub-criterion C3 “Disposal green policies”. Experts

1 and 2 prioritise Germany with respect to sub-criterion C4 “Technology for

33

                  



disposal” as well. A similar result is obtained from the quantitative sub-criteria

evaluation, Table 12, where Germany has obtained the highest priority for sub-

criteria A2, A4, B1, B3, B4. Italy presents the highest priority for sub-criterion

A3 due to its largest PV market penetration. Greece holds the highest priority

for sub-criteria B2, B3 and B4 due to the reduced sourcing, upfront and O&M

costs experienced by this country. France poses a remarkable largest priority

for sub-criterion B5 due to the high French FiT value, while Spain presents the

largest priority for sub-criterion B6 due to the extraordinary final energy yield

found in this Mediterranean country.

By analysing the priorities of the sub-criteria with respect to the main di-

mensions (Table 10) and the priorities of the alternatives with respect to the

sub-criteria (Tables 11 and 12) it is possible to identify possible areas of im-

provement for each of the considered countries in terms of sustainability of their

PV supply chain. As a matter of fact, it is suggested to spend more effort first

on increasing the scores for the highest ranked sub-criteria rather than the low-

est ones, in order to improve the overall sustainability of the PV supply chain.

Thus, Germany should focus first on improving the score on B6, Italy on A4,

B1, B5, C4, UK on A3, B6, France on A1, A3, A4, B6, Spain on A3, A4, B1,

B5, C3, Belgium on A1, A3, A4, B5, B6, and finally Greece on A1, A4, B1, C3,

C4. Each country should adopt appropriate measures to improve their scores on

the identified sub-criteria, which may represent a future research opportunity.

In addition, Figure 4 shows the overall ranking for the alternative countries

for each considered scenario. It is observed that country 1 (Germany) represents

the highest rated alternative and country 3 (UK) and 6 (Belgium) the lowest

ones in all scenarios. Scenarios 1 and 2 show almost the same ranking for

the alternatives. However, when double importance is given to the economic

dimension (Scenario 3), country 7 (Greece) becomes the third and country 2

(Italy) the fifth option. With regard to scenario 4, which represents the highest

weight to the environmental dimension, country 4 (France) becomes the second

most suitable alternative, followed by countries 2, 5 and 7.
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Table 11: Priorities of alternatives with respect to qualitative sub-criteria from Experts opin-

ion.

Sub-criteria Alternatives
Priorities

Expert 1 Expert 2 Expert 3

A1

Germany 0.520 0.117 0.302

Italy 0.059 0.356 0.157

UK 0.196 0.053 0.147

France 0.059 0.053 0.082

Spain 0.095 0.356 0.158

Belgium 0.036 0.033 0.104

Greece 0.036 0.033 0.050

C3

Germany 0.461 0.507 0.273

Italy 0.097 0.058 0.161

UK 0.149 0.161 0.064

France 0.074 0.101 0.157

Spain 0.156 0.055 0.047

Belgium 0.037 0.098 0.273

Greece 0.026 0.021 0.026

C4

Germany 0.464 0.484 0.187

Italy 0.060 0.079 0.086

UK 0.133 0.175 0.080

France 0.089 0.068 0.124

Spain 0.196 0.093 0.232

Belgium 0.029 0.080 0.245

Greece 0.029 0.021 0.047

35

                  



Table 12: Priorities of alternatives with respect to quantitative sub-criteria.

Alternatives A2 A3 A4 B1 B2 B3 B4 B5 B6 C1 C2

Germany 0.536 0.237 0.562 0.346 0.064 0.298 0.299 0.144 0.032 0.108 0.098

Italy 0.062 0.350 0.084 0.047 0.224 0.221 0.219 0.033 0.128 0.422 0.093

UK 0.092 0.033 0.128 0.136 0.083 0.080 0.080 0.188 0.029 0.025 0.031

France 0.062 0.024 0.074 0.198 0.049 0.023 0.023 0.458 0.071 0.049 0.519

Spain 0.168 0.048 0.068 0.070 0.154 0.057 0.057 0.039 0.440 0.153 0.069

Belgium 0.045 0.071 0.042 0.181 0.023 0.023 0.024 0.029 0.036 0.049 0.116

Greece 0.035 0.237 0.042 0.021 0.404 0.298 0.299 0.109 0.265 0.196 0.076

Figure 4: Overall ranking of alternatives for each considered scenario.

36

                  



41.8%

21.0%

6.3%

6.0%

5.5%

3.5%
2.7%
2.4%
1.2%

1.5%
1.0% 0.7% 0.4% 6.2%

Germany
Italy
UK
France
Spain
Belgium
Greece
Czech Republic
Netherlands
Romania
Bulgaria
Austria
Denmark
Rest of Europe

41.8%

21.0%

6.3%

6.0%

5.5%

3.5%
2.7%
2.4%
1.2%

1.5%
1.0% 0.7% 0.4% 6.2%

Germany
Italy
UK
France
Spain
Belgium
Greece
Czech Republic
Netherlands
Romania
Bulgaria
Austria
Denmark
Rest of Europe

Figure 5: European solar PV cumulative installed capacity 2000–2017 (in percentage by coun-

try).

5.1. Justification of results

The results obtained in terms of ranking of the considered countries were

compared against data concerning the PV sector evolution in all European

countries in the period 2000-2016. Figure 5 shows the cumulative percentage

installed PV capacity in the European countries in the mentioned period (IEA,

2016; REN21, 2016; SPE, 2017). It can be seen that Germany, Italy and France

are the countries with the higher photovoltaic development, followed by UK,

Spain, Belgium and Greece.

Analysing and comparing the results obtained in figure 4 with figure 5, it

is observed that the results are in good agreement, with Germany and Italy in

the top position in both analysis and Greece and Belgium in the lower places.

However, it is shown that UK came sixth in the ranking of the countries accord-

ing to the applied methodology (figure 5), while it occupies the third place for

PV development (figure 4). This difference could be explained from the yearly

analysis of the PV sector evolution in this country during the period 2000-2014.

Specifically, the development of the PV sector in UK began in 2011 and it was

not until 2013 (1.07 GW) and 2014 (2.41 GW) when occurred the main in-
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creasing in the PV installed capacity. A more detailed explanation of the PV

evolution in the European countries are analysed in the works of (Campoccia

et al., 2014), (Dusonchet and Telaretti, 2015) and (Ramı́rez et al., 2017).

Furthermore, we have presented the resulting rankings to the experts and

asked them the following questions:

• Q1: Could you please explain why you prioritised some sub-criteria instead

of others?

– Expert 1: Regarding the social and environmental dimensions, he is

in agreement with the highest ranked sub-criteria. However, regard-

ing the economic dimension, he would consider all the sub-criteria

being closer in terms of priorities. Moreover, he considers social

dimension as the most important dimension and A4 “Employment

and job opportunities” as the main sub-criterion because it enables

social development and better life conditions. Regarding the eco-

nomic dimension, he believes that B6 “Solar irradiation level” is the

most important sub-criterion as it allows the energy production to

be efficient and profitable. The remaining sub-criteria are important,

however they depend on the level of maturity of the technology and

policies, and thus they are subject to changes, while solar level irra-

diation is fixed according to the PV power plant location. Finally,

he considers C3 “Disposal green policies” as most relevant factor be-

cause it is necessary to promote the development and growth of such

technologies to increase sustainability.

– Expert 2: A4 “Employement and job opportunities” is judged as the

most important sub-criterion for social dimension because of the jobs

created during the construction and running phases of the PV plants,

specially in the countries where the unemployement is high, such as

Greece and Spain. Regarding the economic dimension, B6 “Solar

irradiation level” is the starting point for setting up a PV plant and

as such it is the most important sub-criterion. Finally, C3 “Disposal
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green policies” and C4 “Technology” are significant sub-criteria for

the expert due to the relation that these criteria have with the end-

of-life of a PV plant (e.g. the disposal of PV modules is currently a

great concern for the governments).

– Expert 3: According to Expert 3, A1 “Stakeholders influence” is cru-

cial for the social dimension, because of the cost of the technology

and the absence of subsidies and regulated tariffs. Also, A3 “So-

cial acceptability” is a significant sub-criterion for the expert due to

the acceptance on the use and promotion of PV energy moves the

investment decisions that drive in turn the development of this sec-

tor. Finally, she believes that installation costs and tariffs are more

important than solar irradiation for the economic dimension.

• Q2: Is the country overall ranking in agreement with what you would

expect?

– Expert 1: According to Expert 1, the final ranking obtained for the

countries is in agreement with his expectation, in particular for Spain,

Italy and Greece.

– Expert 2: Yes. Since the judgement of Expert 2 is based on the cur-

rent PV installed capacity, the compliance with the expected goals on

RE, as well as the industrial level of the countries, he is in agreement

with the results obtained.

– Expert 3: Yes, and also highlighting that stakeholders influence is

very important for all the countries, except for Greece. It is an

expensive technology and the coordination of all the stakeholders

that take part in some part of the supply chain is a key issue for

the development of this sector. Regarding disposal and recycling,

Belgium is the readier country with a great concern in the disposal

technology and policies, in opposition to Greece. Other countries,

like Spain, have the most advanced technologies for all processes,
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however there is not sufficient support by governments.

According to the experts’ answers and judgements, it emerges how they

have similar as well as contrasting opinions which are combined together by the

proposed framework in order to achieve a balanced and fair options ranking.

5.2. Managerial implications

The proposed MCDM framework and results have relevant managerial im-

plications. Firstly, we provided decision makers with the main factors and

sub-criteria to take into account to design a PV supply chain according to TBL.

Moreover, the selected sub-criteria have been linked to the different stages in

the PV supply chain. Secondly, the way the framework has been designed by

means of AHP will provide the decision maker with a fast and easy tool for

solving such a complex decision problem. The MCDM framework will allow the

decision maker to rank and identify the most suitable locations for a sustainable

supply chain in the PV sector. Finally, the framework will help decision makers

to explore different scenarios based on the importance given to the three TBL

dimensions. For example, the development of new European regulations might

lead to prioritising social and environmental rather than economic targets.

6. Conclusions and future research opportunities

In this paper a MCDM framework based on AHP has been proposed to pri-

oritise the factors characterising a sustainable supply chain in the PV sector and

ultimately rank different suitable PV energy production locations. According to

the TBL, social, economic and environmental factors have been taken into ac-

count as the main dimensions. Following a thorough literature review, the main

stages of the PV supply chain and the sub-criteria affecting the main dimensions

have been identified. Subsequently, the main dimensions and sub-criteria have

been organised in a hierarchical structure according to AHP. Three experts in

the PV sector have been asked to rate the sub-criteria against one another with

respect to the corresponding dimension and then to rate seven main European
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countries with respect to each sub-criterion, following the AHP procedure. The

ranking of sub-criteria and alternatives was computed and discussed.

Moreover, four different scenarios in terms of different combinations of im-

portance given to the main dimensions (social, economic and environmental)

were analysed, showing some remarkable differences in the ranking of the al-

ternatives. Germany represents the highest rated alternative, while UK and

Belgium the lowest in every scenario. Scenarios 1 and 2 show a very similar

ranking for the considered countries, with the following order: Germany, Italy,

Spain, France, Greece, UK and Belgium. Nevertheless, Greece becomes the

third country and Italy the fifth option under the scenario 3, which is given

when the economic dimension is considered the most relevant. With regard

to scenario 4, which represents the highest weight given to the environmental

dimension, France becomes the second most suitable alternative, followed by

Italy, Spain and Greece.

This research may represent an initial step towards the design of a sustain-

able supply chain in the PV sector. Future research directions may include

modelling the uncertainty of the judgement within the MCDM framework using

fuzzy logic. Moreover, the proposed framework might be modified to address

other decisions such as supplier or technology selection, as well as other sectors.

Furthermore, once the most suitable country for developing a sustainable PV

supply chain has been identified, a mathematical model based on quantitative

information may be developed to make decisions regarding the actual design

of the PV supply chain. Those decisions could inter alia concern in terms of

facility location, supplier selection, technology selection, delivery and recycling

options and could be directed at finding a desired balance of social, economic

and environmental objectives.
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Appendix

Abbreviation Definition

AHP Analytic Hierarchy Process

AHP-OWA Analytic Hierarchy Process with Ordered Weigh Averaging

ELECTRE Elimination of Choice Expressing Reality

FMCGDM Fuzzy multi-criteria group decision-making

GHG Green House Gas

GIS Geographical Information System

IEA International Energy Agency

IPCC Intergovernmental Panel on Climate Change

MCDM Multi-criteria decision making

MILFP Multi-objective mixed-integer linear fractional program

MILP Mixed integer linear programming

MULTIMOORA Multi-Objective Optimisation by Ratio Analysis

plus the full multiplicative form

O&M Operation and maintenance

PV Photovoltaic

PVGIS Photovoltaic Geographical Information System

PVSC Photovoltaic supply chain

RE Renewable energy

RES Renewable energy sources

SC Supply chain

SSC Sustainable supply chain

SSCM Sustainable supply chain management

TBL Triple Bottom Line

TOPSIS Technique to Order Preference by Similarity to Ideal Solution

VIKOR VIsekriterijumsko KOmpromisno Rangiranje
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