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Abstract

Network management systems play an important role to deal with the large size and complexity of current mobile

networks. Thus, operators and vendors focus much of their efforts on developing new techniques and tools for this

management. One of the most critical processes in network management is fault management, since a failure in a

network element might have a strong impact on user satisfaction due to service degradation. Unfortunately, mobile

networks generate thousands of alarms daily, which have to be checked manually by operator personnel. With the latest

advances in big data analytics, different methods for reducing the number of alarms to be monitored have been presented.

In this work, an automatic method for prioritizing alarms based on the need for specialized personnel is presented. The

core of the method is a model built with supervised machine learning techniques that estimates the probability that

an alarm generates a trouble ticket. For this purpose, the model is trained with trouble ticket data from the network

operation center. The model is tested with a real alarm and trouble ticket dataset taken from a live mobile network.

Results show that the proposed model correctly flags those alarms that need further analysis by the operator and filter

out those alarms that do not have impact on network performance.
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1. Introduction

Over the last years, the number of users and services in

mobile networks has increased dramatically. By 2021, a

tenfold increase of mobile traffic is expected and around

fifty billion of devices will be connected to mobile net-5

works (Cisco Systems Inc., 2017a). Likewise, the deploy-

ment of new radio access technologies (e.g., 5G) in the

coming years will pave the way for new use cases (5G In-

frastructure Association, 2016). The price to be paid is an

increase of network heterogeneity due to the co-existence10
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of multiple radio access technologies, base stations of very

different ranges and disparate devices (Hossain & Hasan,

2015). Such diversity will increase the complexity of mo-

bile networks, creating new problems in network manage-

ment.15

To deal with network complexity, mobile operators and

vendors have focused their efforts on developing automa-

tion techniques to manage their networks (NGMN, 2015).

These efforts have resulted in Self-Organizing Networks

(SON), standardized by the Third Generation Partnership20

Project (3GPP) (3rd Generation Parthnership Project,

2012), which provide intelligence inside the network and

network adaptability by simplifying configuration and op-

timization procedures. SON techniques can be divided

into three main categories, depending on the stage in25
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the network life cycle, namely self-configuration, self-

optimization and self-healing (Aliu et al., 2013). Self-

configuration defines the process whereby Base Station

(BS) configuration parameters are automatically set when

a new base station is deployed. Once the system has been30

correctly configured, self-optimization guarantees optimal

network performance by continuous monitoring and tun-

ing of system parameters to cope with changes in the en-

vironment. In parallel to self-optimization, self-healing is

triggered whenever a fault or a failure is detected to di-35

agnose the cause (i.e., root-cause analysis) and execute

proper compensation mechanisms (Klaine et al., 2017).

In a market where networks and services are quite sim-

ilar between operators, a differentiating factor is the way

operators manage their networks to increase user satisfac-40

tion. A key goal in this process is to reduce the impact of

network failures, which is the role of Fault Management

(FM) (Cisco Systems Inc., 2017b). FM comprises prob-

lem recognition, problem notification, problem diagnosis,

launch of corrective actions and restoration of initial set-45

tings after fixing the problem (Ramiro & Hamied, 2011).

Some of these tasks are labor intensive. FM starts by col-

lecting performance statistics from network devices and

links in real-time, notifying failures and/or service degra-

dation by different sequences of alarms. Once a fault is50

identified, network administrators try to fix the failure re-

motely. Traditionally, this process has been performed by

a group of experts, located in the Network Operation Cen-

ter (NOC), that use their experience and intuition to trou-

bleshoot, localize and solve faults by checking all alarms55

collected in the different network segments. Thus, FM

is currently the most time and expertise demanding pro-

cess of all network management areas (Awad & Hamdoun,

2016). The size and complexity of mobile networks, where

equipment from different vendors and technologies coexist,60

result in a vast amount of alarms (tens of thousands per

day). Besides, most of these alarms do not provide useful

information for network administrators, being only a low

percentage of them related to active operation problems.

This makes FM extremely unreliable when done manu-65

ally, causing that it can no longer be effectively managed

by human administrators (Bouillard et al., 2013).

With recent advances in information technologies, it is

now possible to process massive volumes of information by

big data analytic (BDA) techniques (Zheng et al., 2016).70

‘Big Data’ refers to data that cannot be processed by tra-

ditional means due to its volume, velocity and variety (e.g.,

alarms). By analyzing this data, operators are more aware

of the current state of the network, allowing corrective ac-

tions in a proactive way (Gupta & Jha, 2015). One of the75

most pursued goals is to make data available in (near)

real time to reduce reaction time (Bange et al., 2015).

Thus, an increasing number of frameworks have emerged

for real-time BDA (e.g., Hadoop Online, Storm, Spark,

...) (Liu et al., 2014). These frameworks take advantage of80

the huge and reliable computing power provided by cloud

computing. In parallel, specifying BDA assets and systems

has become a priority for standardization bodies (ITU-T,

2016).

FM systems are critical in providing valuable informa-85

tion to minimize physical and economic loss in response

to abnormal situations (Mehta & Reddy, 2014). How-

ever, typical FM systems have proven to be far away from

the desired performance in respect of number of managed

alarms (VanCamp, 2016). Thus, the design of effective90

FM systems has become a crucial goal not only for mobile

network systems but for all domains. Researchers have

focused on designing methods to reduce the number of

alarms handled by FM processes. The most extended ap-

proach is alarm correlation (Jakobson & Weissman, 1993).95

A single failure can result in multiple alarms referred to

the same issue, which are notified to the management op-

erators for inspection. To avoid overloading management

personnel, alarms can be correlated based on the initial

cause and condensed, thereby reducing the final number100

of alarms to be monitored (Wietgrefe et al., 1997).
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In this context, BDA seems to be a powerful process

providing different mechanisms for knowledge discovery. It

encompasses several interrelated disciplines, from the sim-

plest data visualization steps in Exploratory Data Anal-105

ysis (EDA) to the most sophisticated Machine Learning

(ML) algorithms. The aim here is to build models for

characterizing and classifying alarms for which the most

important features must be selected. Classification models

can be based on heuristic rules or automatic and complex110

algorithms based on unsupervised (e.g., k-means) or super-

vised learning (e.g., support vector machines, neural net-

works). However, selecting the most proper algorithm sup-

poses a challenge. There is no a general classifier that can

deal with all kind of problems. Generally, classifiers show115

strengths and weakness depending on the scenario. In or-

der to solve this, ensemble modeling is nowadays a com-

mon process to reduce the generalization error and the ac-

curacy of predictions obtained by different models. Ensem-

ble modeling has been discussed in different works along120

the years. In (Parvin et al., 2013a), an innovative classifier

ensemble methodology based on subspace learning by ap-

plying genetic algorithm to improve the performance of the

classification is proposed. In (Parvin et al., 2013b), a new

technique for clustering ensemble by boosting sampling125

of original data is introduced. The effectiveness of bag-

ging techniques, comparing the efficacy of sampling with

and without replacement, in conjunction with several con-

sensus algorithms are discussed in (Minaei-Bidgoli et al.,

2014). In this work, non-adaptive and adaptive resam-130

pling schemes for the integration of multiple independent

and dependent clusterings are proposed. In (Parvin et al.,

2015), authors present a novel method for ensemble cre-

ation. In this work, different base classifiers are previously

partitioned by using a clustering algorithm and, finally,135

the proposed method produces a final ensemble by select-

ing one classifier from each cluster.

On the other hand, due to the nature of data FM sys-

tems have to deal with, these traditional algorithms can

result in an inaccurate performance. Generally, dataset140

collected in mobile networks consists of a mixture of nu-

merical and categorical features which presents limitations

for some algorithms like k-means. In the literature, there

are different works that try to treat with this limitation.

In (Ahmad & Dey, 2007), a clustering algorithm based on145

k-mean paradigm that works well for data with mixed nu-

meric and categorical features is proposed. On the other

hand, authors in (Zhang et al., 2015) present a novel

method to transform categorical data to numerical rep-

resentations, in order to open the possibility of exploiting150

the abundant, numerical learning algorithms. Besides, this

dataset consists of a large number of features that, on one

hand, may increase the complexity of this data processing

and, on the other hand, it may lead to worse performance.

For this reason, feature selection is a process that has been155

mostly used in data mining projects. In (Dy & Brodley,

2004), different issues involved in developing an automated

feature subset selection algorithm for unlabeled data are

analyzed. (Minaei-Bidgoli et al., 2011) improves one of the

existing feature selection algorithm based on fuzzy entropy160

concept by using ensemble methods.

In the literature, there is a wide variety of proposals for

alarm correlation systems. Generally, alarm correlation

methods are divided into three categories: 1) similarity-

based algorithms, generating clusters of similar alarms165

based on simple association rules or complex machine

learning techniques (Smith et al., 2005); 2) knowledge-

based algorithms, relying on causal relationships or Causal

Relation Graphs (CRGs) based on Bayesian networks to

fuse alarms, (Zali et al., 2012); and 3) statistical-based al-170

gorithms, whereby a categorization of alarms is performed

by detecting statistical similarities (Ren et al., 2010).

Over the years, many FM systems based on alarm cor-

relation have been developed in the industry. In (Liu

et al., 2003), a system is described for suppressing val-175

ueless alarms based on their repeatability and providing

advisory information in process plants. In (Noda et al.,
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2011), a data-mining method to detect statistical similar-

ities among discrete occurrence of alarms and then group

them in an ethylene plant is presented. In (Folmer &180

Vogel-Heuser, 2012), an algorithm for identifying the most

frequent alarms and those causal alarms generating alarm

sequences is proposed. The alarm correlation system intro-

duced in (Wang et al., 2015) combines similarity analysis

and causal relationship detection for root alarm analysis.185

In (Lai et al., 2017), a novel online pattern matching based

on reduction of incoming alarm floods is presented. More

recently, a novel framework for alarm causality analysis

based on smart data analytics is proposed in (Hu et al.,

2018).190

Alarm correlation in telecommunication networks is also

discussed in several earlier works. In (Frohlich et al., 1997),

different alarm modeling approaches for explaining moni-

tored resources and associated alarms in cellular networks

are discussed. In (Mannila et al., 1997), the use of frequent195

episode discovery is proposed for finding sequential rules

in a single sequence alarm for several domains. In (Wi-

etgrefe et al., 1997), neural networks are used to find the

root cause alarm by correlating alarms in a cellular net-

work. In (Julisch, 2003), a novel alarm-clustering method200

is proposed to group similar alarms based on root cause.

(Bellec & Kechadi, 2007) introduces the problem of analyz-

ing, interpreting and reducing the number of alarms before

localizing the fault in cellular networks. A programming

language for alarm applications is proposed in (Duarte Jr205

et al., 2008). In Makanju et al. (2012), an alert detection

system that learns from confirmed anomalies and detects

future errors is proposed. In (Çelebi et al., 2014), a novel

alarm correlation, rule discovery and significant rule selec-

tion method based on sequential rule mining with a time-210

confidence parameter is proposed for mobile networks. A

big data framework to analyze network alarms is presented

in (Man et al., 2016).

In spite of these research efforts, none of them have al-

ready succeeded in reducing the number of alarms to a215

single alarm per incident (Mirheidari et al., 2013). Even

if this is case, a manual inspection of the remaining ones

must still be done to prioritize those alarms requiring an

action to restore the service. In this process, NOC staff

needs to identify those alarms derived by an incident that220

require some corrective action and subsequently generate

a ticket (a.k.a. trouble ticket), consisting of a collection

of data about the incident with enough information to ini-

tiate the corresponding repairing activity. Several works

have stressed the role of trouble tickets in FM, as these225

are related to actual incidents identified as network fail-

ures (Dreo & Volta, 1995; Medem et al., 2009). In (Salah

et al., 2019), an automatic method for incorporating se-

mantically rich information in tickets into the alarm cor-

relation process is presented. The proposed correlation230

approach is based on the time alignment of events (alarms

and tickets) that affect common elements in the network.

However, the heuristic model used to correlate alarms and

trouble tickets is simple and depends on previous human

knowledge. Moreover, it has the same limitations in terms235

of alarm reduction capability as previous works.

In this work, a new model to identify and prioritize

alarms based on the need for generating a trouble ticket

is presented. Such a model allows to reduce the number

of alarms to be manually checked by NOC staff, which240

can focus on those alarms that are really the cause of a

network failure . Similarly to (Salah et al., 2019), trouble

tickets and alarm data is crossed to improve the incident

resolution process. However, in this work, this data is

not used for improving the alarm correlation process by245

reducing the number of alarms to a single alarm per in-

cident. Instead, it is used to identify the most priority

alarms that urgently require the generation of a trouble

ticket to initiate some recovery action as soon as possible.

Thus, the main contribution of this work is the propose250

of a supervised machine learning (ML) algorithm for au-

tomatic alarm classification by determining which alarms

will result in the generation of a trouble ticket (i.e., it is
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really associated to an incident) and, thus, it must be pri-

oritized to be handled by NOC staff. Flagging alarms as255

high priority, the recovery process can be speeded up. The

model is trained and tested with a real alarm and trouble

ticket dataset taken from a live mobile network.

The rest of the work is organized as follows. Section 2

describes the fault management process in a mobile net-260

work. Section 3 discusses the benefits of BDA and ML to

empower fault management. Section 4 introduces the data

mining project developed in this work for alarm prioritiza-

tion. Section 5 shows the results obtained by the developed

model in a real scenario. Finally, Section 6 presents the265

main conclusions of the work.

2. Fault Management Process

In this section, the FM process in mobile networks is de-

scribed. Firstly, a basic network management architecture

is presented to understand system structure and compo-270

nents. Secondly, the main roles involved in FM are intro-

duced. Finally, a generic FM methodology is presented.

2.1. Network Management Architecture

A mobile network management architecture basically

consists of five components (Verma & Verma, 2009): man-275

ager, agent, network management protocols, management

information base (MIB) and communication model.

1. Manager : A manager is a tool with a user interface,

generally located in NOC, that allows to manage the

different network elements in a mobile network. Its280

main functions are: a) to monitor managed devices

and collect data reported by them, used for further

analysis by the management staff; b) to request in-

formation from managed devices and receive their re-

sponses; and c) to configure managed devices by set-285

ting variables and thresholds.

2. Agent : An agent is a program typically embedded

in a network element (e.g., router, switch, server ...)

responsible for monitoring it and communicating with

the manager. The agent provides information about290

the status of a network element to the manager, either

asynchronously or after a query.

3. MIB : A MIB is a database that collects management

information that describes the network element pa-

rameters. This information is provided by the agent295

and shared with the manager. Parameters in the

dataset are generally a set of statistical and config-

uration parameters. In a fault management process,

this information is usually requested for troubleshoot-

ing purposes and further analysis.300

4. Network management protocol : The main role of a

network management protocol is to define a standard

language used by the agent and manager to exchange

information across all network elements. The most

widely adopted protocols for network management305

are (Ersue & Claise, 2012): a) the Simple Network

Management Protocol (SNMP), used for the mon-

itoring of fault and performance data and with its

stateless nature (while SNMP also works well for sta-

tus polling and determining the operational state of310

specific functionality (Case et al., 1990)); b) Remote

Network MONitoring (RMON), which is an exten-

sion of SNMP defining a set of statistics and functions

that can be exchanged between the controllers (Wald-

busser, 2006); and, c) Common Management Interface315

Protocol (CMIP), more complex than the previous

protocols and only used by some information technol-

ogy service providers for network management pur-

poses (ISO/IEC Information Technology Task Force

(ITTF), 1998).320

5. Communication model : The main schemes for ex-

changing information between the manager and the

agent in a Network Management System (NMS)

are poll and push. Poll model is based on re-

quest/response paradigm in which the manager re-325

quests data and the agent replies by sending the re-
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Figure 1: Centralized network management architecture.

quested information. Thus, the data flow is always

initiated by the manager and the polling can be auto-

matic or user-initiated. In a push model, data flow is

initially configured by user and, then, agents individ-330

ually take the initiative to push data to the manager

via scheduler or asynchronously.

The above-described components can be distributed in

different network management architectures, which can

be categorized as centralized, distributed and hierarchi-335

cal (Verma & Verma, 2009; El Brak et al., 2011). In a

centralized architecture, shown in Fig. 1, there is only

one manager controlling the entire network and one agent

per managed device. This architecture is graphically il-

lustrated. In contrast, distributed management splits the340

network into segments and a manager is deployed in each

segment, without interaction between them. Alternatively,

the hierarchical architecture combines both approaches in

which each manager locally manages a subset of network

elements being managed by a higher-level manager that345

act as central.

2.2. Roles in Fault Management

During the FM process, NOC staff is responsible for

monitoring every network element managed by the NMS,

as well as making decisions and performing corrective ac-350

tions. This staff is usually composed of several actors and

roles that work together to ensure optimal network perfor-

mance and productivity. The main roles in a FM process

are:

1. Management staff : It is the main role in the fault355

management process, responsible for solving network

faults and restoring the service as soon as possible.

Their main tasks are to analyze alerts to detect faults,

identify and prioritize the faults, and trigger correc-

tive actions to restore service. In turn, this staff, com-360

posed of engineers and technicians, may be catego-

rized into different levels based on their expertise and

problem-solving ability. A 1st level (L1) technician

(a.k.a. fault reporter) is responsible for monitoring

alarms and discovering and reporting faults. In case a365

fault requires further inspection and corrective action,

a trouble ticket for incident notification is created by

L1 group, which is then escalated to a higher level

technician (i.e., 2nd level, L2, and 3rd level, L3), who

is responsible for troubleshooting the issue and car-370

rying out the required resolution tasks, that usually

result in the creation of a work order to perform some

manual process in the network element. These higher

level technicians are also responsible for checking the

result of the applied solution, and hence their name375

of fault resolver and solution validator.

2. Help desk staff : It is a secondary role used by the

customer as a point of contact for issues and queries.

Help desk staff is focused on receiving and registering

requests from customers or employees (via phone call380

or email) to notify an incident that may not be re-

ported by an alarm but it is detected by the end user.

Among its functions, help desk staff is responsible for

logging and managing end users’ calls, registering the

incident by a trouble ticket that is not associated to385

any alarm, requesting technical support by means of

a work order (if required) and updating the alarm and

trouble ticket logs with the resolution state.

3. Other roles: Additional groups may be required for

an effective FM process, such as dispatcher, responsi-390

ble for taking the required corrective actions by send-
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ing/closing work orders, and field engineers, respon-

sible for doing on-site visits and implementing the

required corrective actions that cannot be done re-

motely (e.g., replacing hardware, updating software395

...)

2.3. Basic Fault Management Methodology

As shown in Fig. 2, FM is broken down into four steps:

fault detection, fault notification, fault diagnosis and fault

resolution.400

1. Fault detection: Fault detection provides the NMS

with the capability to detect and report faults. For

this purpose, all network elements report their sta-

tus to NOC. Two different fault detection modes can

be configured in the NMS: passive and active (Shields,405

2007). In the passive mode, agents notify the manager

when a pre-defined condition, configured by manage-

ment staff, is met. Note that if the agent stops work-

ing, no notification is generated and fault detection

does not work. In contrast, in the active mode, the410

manager checks the status of each agent by sending re-

quest messages. Thus, if some agent does not provide

the required information, the manager can handle it

by generating the corresponding alarm to be investi-

gated later on.415

2. Fault notification: Once a fault occurs, fault informa-

tion is forwarded by the NMS to the manager, which

checks it by comparing it with a set of predefined

rules. In case rules match, the manager generates

a notification message to management staff that will420

be previewed in a console or sent by email and in-

stant message. This notification is usually defined as

an alarm (Jakobson & Weissman, 1993), consisting

of a brief description of the fault in a specific format

defined by the equipment vendor. Such a descrip-425

tion includes the device/service generating the fault,

plain text describing the issue , fault class (equip-

ment, communication, environmental, quality of ser-

vice . . . ), severity of alarm (notification, minor, criti-

cal ...) and information associated to the management430

process (fault identifier, fault creation time, resolution

status. . . ). All these alarms are shown in real-time

and monitored by the management staff in the Alarm

Management (AM) process. Then, alarms are catego-

rized and prioritized so as to identify the most critical435

alarms. L1 technicians check a huge amount of alarms

in real time to identify those requiring further analysis

or corrective actions. In this process, alarm informa-

tion is usually enriched with data from MIB about

the managed device where the fault occurred. Once440

the most critical alarms are detected, a trouble ticket

is generated and escalated to L2 group. At this point,

the alarm has been isolated and a deeper inspection

is required for the fault resolution.

3. Fault diagnosing : Once the trouble ticket is gener-445

ated, L2 group starts a Ticket Management (TM)

process, where a root cause analysis is performed to

diagnose the cause of the fault. On the other hand,

the remaining alarms that do not result in a trouble

ticket generation generally do not affect service and450

are eventually restored by themselves.

4. Fault resolution: Once the root cause of the issue has

been identified, corrective actions are initiated. In

some cases, fault can be solved remotely and no more

actions are required for service restoration. However,455

in some other cases, resolution may involve a physical

action requiring an on-site visit by a field engineer.

In these cases, L2 group generates a work order, han-

dled by the Work Order Management (WOM) pro-

cess. Once a work order is created, a dispatching no-460

tification is sent to the corresponding field engineer

who should accept this notification and initiate the

corrective action (e.g., replace a defective hardware

component). Once the fault is solved and the service

restored, work order information is completed with465

the actions performed by the field engineer and the

7



Figure 2: Workflow of the fault management process.

trouble ticket is closed.

3. Big-Data driven Fault Management

Mobile operators use commercial tools to collect and

process the huge amount of raw data reported by the NMS.470

This data includes not only the information generated by

network elements but additional information required for

an effective network management (e.g., information stored

in MIBs). Unfortunately, legacy tools suffer from limited

scalability and analytical capabilities, which is the reason475

for the reactive maintenance approach adopted so far by

operators. The newest big data techniques can help to

obtain a better understanding of how the mobile network

works, disclosing previously unknown patterns and corre-

lations (Bi et al., 2015). Such a knowledge can be used480

to solve the lack of self-awareness and self-adaptiveness,

which have been recognized as the main drawbacks of cur-

rent SON approaches (Imran et al., 2014; Zheng et al.,

2016; Han et al., 2017).

As a first step, the data collected by the NMS can be485

used off-line for knowledge discovery by data analytics.

The following tasks in FM can be solved by ML:

1. Classification: Alarms can be grouped based on dif-

ferent fields, such as fault type, severity or network el-

ement. Nowadays, this is performed manually. How-490

ever, this can be automated by models built with

heuristic rules or automatic classification algorithms

based on supervised learning (e.g., artificial neural

networks, decision trees) or unsupervised learning

(e.g., k-means clustering).495

2. Regression: A model is needed to characterize a sta-

tistical parameter of a network element that produces

a recurrent alarm when a threshold value is exceeded.

Such a mapping can be derived from measurements

collected by network elements and Key Performance500

Indicators (KPIs) obtained from the network. Then,

model construction can be performed by classical re-

gression techniques (e.g., generalized linear regres-

sion) or supervised learning algorithms (e.g., support

vector machines, neural networks or Bayesian net-505

works algorithms) (Harahap et al., 2010), which bet-

ter approximate non-linear mappings between metrics

and faults.

3. Feature selection: With the huge amount of informa-

tion generated by a NMS, the most relevant fields af-510

fecting the network element functionality have to be

identified. Reducing the number of variables in the

models built with ML decreases the computational

load, speeds up the learning process, improves gen-

eralization capability and makes interpretation easier515
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for the operator.

4. Model for alarm prioritization

A novel predictive model is presented here for prioritiz-

ing alarms based on the need for specialized personnel (i.e.,

the higher priority, the higher the need for a specialist).520

The input of the model is alarm data produced by faults

in managed network elements. The output of the model is

a prediction of whether an alarm would generate a trouble

ticket, so that must be prioritized. During model construc-

tion and assessment, such an output is checked against real525

trouble ticket data generated by L1 technicians.

Model construction is based on the Cross-Industry Stan-

dard Process for Data Mining (CRISP-DM) methodology,

consisting of six stages: business understanding, data un-

derstanding, data preparation, modeling, evaluation and530

deployment. Fig. 3 shows the different building blocks of

the proposed model when implemented in a commercial

data mining tool (International Business Machines Cor-

poration (IBM), 2018). The model consists of intercon-

nected nodes that cover the different stages of CRISP-DM535

methodology. Circles represents import nodes to retrieve

input data, hexagons are nodes for basic operations, such

as data merging, field derivation or data balancing, stairs

are ”super-nodes” used to combine basic nodes in more

complex operations, pentagons are nodes for data ana-540

lytic operations, such as feature selection, decision trees

or artificial neural networks, gold diamonds (a.k.a ”model

nuggets” in this tool) represent the output of each model

once trained, and squares are used for assessment pur-

poses. More details of these operations are given below.545

4.1. Business Understanding

A major constraint in FM is the need for manually

checking a huge amount of alarms by the NOC staff. A

model that automatically prioritizes and flags those alarms

requiring the generation of a trouble ticket would signifi-550

cantly reduce the staff and time needed to handle alarms.

This would lead to large savings for the network operator

and improve the service offered to end users by reducing

the time to fix faults.

4.2. Data Understanding555

Understanding data involves a preliminary collection of

data to identify attributes, explore data structure and

check data quality. In this work, two main data sources are

used: alarm and trouble ticket data. Both data sources are

usually stored in databases that can be accessed by NOC560

staff. At this stage, each database has to be explored to

identify the different fields and their nature. This task is

performed in Fig. 3 by the nodes in the dashed red-lined

box. In general, the alarm database consists of three types

of data: a) categorical data with information related to565

alarm type (e.g., fault type, severity, summary with basic

information about the fault...) and its origin (i.e., network

element identifier), b) numerical data, specifying the num-

ber of occurrences of the alarm and numerical codes, gen-

erally with similar information to categorical fields, that570

may be mapped by NOC staff for further analysis, and c)

date-time data to register the different status of the alarm

(i.e., alarm creation, alarm notification, alarm closure and

alarm deletion). Likewise, trouble ticket database shows

similar data fields, but enriched with information intro-575

duced by L1 technicians. Specifically, in a trouble ticket

database, the following information can be found: a) cate-

gorical data with information regarding the alarm associ-

ated to the trouble ticket (obtained from alarm database)

and information regarding the trouble ticket (e.g., trouble580

ticket description, solution that is filled once the incident is

solved, name of L2 group taking care of the trouble ticket

...), b) numerical fields with codes mapped by NOC staff

and the associated alarm identifier, and c) date-time data

to log different status of the trouble ticket.585

From a preliminary analysis of real alarm and trouble

ticket data, several conclusions can be drawn:

� A new record is generated in the database whenever

9



Figure 3: Alarm Prioritization model.

an alarm/trouble ticket status changes (e.g., open,

cleared, closed, deleted) to add the new status. How-590

ever, older records that contain the same basic infor-

mation, but different status, are kept. As a conse-

quence, both alarm and trouble tickets may be du-

plicate in the dataset. Thus, a preliminary filtering

process is required to eliminate duplicates that can595

affect model training.

� One alarm that is not closed yet may generate a trou-

ble ticket in the future and, thus, be considered as

of a high priority. However, if this data is used to

train the model, the latter would consider this alarm600

as not ticketed, since a trouble ticket has not been

generated yet. As a result, the model may misclas-

sify future alarms. Thus, it is necessary to filter those

alarms that are still not closed to avoid incomplete

data for model training.605

� Eventually, some fields may have wrong data (i.e., cor-

rupt data, missing data ...). To build a robust model,

data quality must be as high as possible, for which

only data that is correctly populated must be consid-

ered and, thus, corrupt records must be removed.610

� Some trouble tickets may not be associated to an

alarm (e.g., those created by help desk staff based

on a customer complaint). Moreover, some trouble

tickets may not show the alarms originating the trou-

ble ticket due to malpractice of NOC staff. Therefore,615

a trouble ticket enrichment process is required in or-

der to, firstly, remove those trouble tickets that are

not associated to any alarm and, secondly, associate

those alarms and trouble tickets that were not cor-

rectly associated due to malpractice.620

4.3. Data Preparation

Preparation includes integrating, formatting, cleaning,

constructing and selecting data. These tasks can be time

consuming, but are critical for the success of data mining.

Firstly, trouble ticket information needs to be enriched,625

since there may be trouble tickets without an associated
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alarm due to a customer request or due to malpractices in

the way of using the NMS. In this process, referred to in

Fig. 3 as Trouble ticket enrichment, trouble ticket data is

explored to find trouble tickets associated to customer re-630

quests or trouble tickets associated to an alarm without an

identifier. Trouble tickets associated to a customer request

are out of scope and they are excluded from the dataset. In

contrast, trouble tickets originated by an alarm, but with

missing data, are enriched by crossing alarm and trouble635

ticket data to find matches (Salah et al., 2019). Fields

used for this purpose are the network element identifier,

site identifier and creation and closure times. Thus, if a

trouble ticket was created for the same network element

and site as an alarm and the life range of the trouble ticket640

(i.e., from creation to closure) is within the life range of

the alarm, that alarm is candidate to be associated to the

trouble ticket. This association is validated by exploring

the alarm information field in trouble ticket (if available)

with text mining techniques. It is important to clarify that645

this process is only focused on correlating alarms and trou-

ble tickets data. Thus, if several alarms are produced by

the same incident and it requires the creation of a trouble

ticket, each alarm will be associated to the same trouble

ticket (i.e., alarms will be treated independently).650

After the enrichment process, alarm and trouble ticket

data sources are merged to combine both in a single

dataset used for training purposes . Then, a data clean-

ing process is performed to solve issues discovered dur-

ing the data understanding process. Once the dataset is655

cleaned, the next step is to derive the target variable used

to train the model. In this work, the target variable is a

binary field identifying those alarms that generated a trou-

ble ticket (hereafter named as Ticketed) and those closed

without generating a trouble ticket (named as Not Tick-660

eted). Later, the dataset is split into training and testing

data for the modeling stage.

Before training any classification model, it is necessary

to check how imbalanced the dataset is. FM datasets of-

ten contain very few cases of alarms that needed further665

actions. In this situation, some ML classifiers (e.g., ran-

dom forest or support vector machine) tend to favor the

class with the largest proportion of observations, leading

to predictions that, even if correct in most cases, do not

make the most of the values of attributes (Witten et al.,670

2011). This problem can be solved by changing the class

proportion and the size of the dataset (He & Garcia, 2009).

In this work, an under-sampling method is used to delete

instances of the majority class to obtain a 50/50 ratio be-

tween classes (i.e., Ticketed and Not Ticketed).675

Finally, field reduction is carried out by automatic fea-

ture selection. This process aims to reduce the number

of variables in the model, identifying those fields (predic-

tors) with the largest impact on the probability that an

alarm generates a trouble ticket (dependent variable). In680

this work, a filter method based on pearson correlation is

used for feature selection. Thus, relevant fields are selected

based only on their correlation with the outcome variable.

As a result, the same set of predictors is used for all ML

algorithms tested.685

4.4. Modeling

In live networks, a large set of labeled data including

alarms and trouble tickets is often available for operators.

Thus, supervised learning algorithms can be used to derive

the model that predicts if a combination of alarms will lead690

to a trouble ticket. In this work, four ML classification

algorithms are tested:

� Random Forest (RF) (Breiman, 2001): This ensem-

ble learning method builds multiple decision trees and

merges their outcome to get more robust estimations.695

Different decision trees are built by randomly select-

ing training subsets from the original dataset. Then,

tree outputs are combined by taking the most frequent

prediction of all decision trees. The resulting model

is not easy to interpret, but, unlike classical decision700
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trees, RF prevents overfitting, which makes it one of

the most powerful supervised learning algorithms.

� Artificial Neural Network (ANN) (Schmidhuber,

2015): A ANN is a collection of processing units (neu-

rons) connected by links (edges). Neurons are aggre-705

gated into layers that perform different kinds of trans-

formations on their inputs. Signals travel from the

input layer to the output layer, possibly after travers-

ing intermediate layers multiple times. Learning is

carried out by adjusting the weight of neurons and710

edges to minimize the output error. Thus, ANN has

the ability to model non-linear complex relationships

and infer unseen relationships. Its main drawbacks

are their black-box approach, the need for very large

labeled datasets and its large computational load.715

� Support Vector Machine (SVM) (Cortes & Vapnik,

1995): SVM performs classification by representing

cases as points in a multidimensional space and con-

structing hyperplanes that separate cases in classes

with a gap as wide as possible. New cases are then720

mapped into the same space and classified based on

which side of the gap they fall. SVM can capture

non-linear relationships by mapping data to higher

dimensions with kernels (Witten et al., 2011). More

importantly, SVM is defined as a convex optimization725

problem, for which there are very efficient solution

methods.

� Naive Bayes (NB) (Witten et al., 2011): NB is a prob-

abilistic binary classifier based on Bayes’ theorem. It

computes two types of probabilities from the training730

data, namely the probability of each class and the con-

ditional probability for each class given each previous

class value. Once trained, the algorithm makes new

predictions by using Bayes Theorem. Although this

algorithm considers the unrealistic assumption that735

each feature is independent, it is very effective on a

large range of complex problems.

Each of the above-described algorithms results in a

model adjusted with the training dataset (labeled as

”trained” in Fig. 3). A fifth method is developed by com-740

bining the models with a higher accuracy. Ensemble learn-

ing is an approach that combines several algorithms into

a single predictive model in order to decrease variance

(bagging), reduce bias (boosting) or improve predictions

(stacking) (Witten et al., 2011). To combine models, a745

stacking technique (Wolpert, 1992) is used. Unlike bag-

ging and boosting (used, e.g., in RF), stacking is used

to merge models of different type (e.g., SVM and ANN).

Roughly, stacking discovers how best to combine the out-

put of base models by using another learning algorithm750

(the metalearner).

For the construction model, SVM and ANN have been

selected as base models for ensemble learning. As it will be

shown later, these two models present a higher accuracy

than the two other algorithm and, thus, their outputs are755

combined by stacking them based on an ensemble learning

technique. Stacking defines a meta-model that is formed

by SVM and ANN algorithms that is trained on the out-

puts of the base models as features.

4.5. Evaluation760

Each model is evaluated to check its accuracy. In this

work, a true positive (negative) denotes a case when the

binary classifier correctly labeled the alarm as ‘ticketed’

(‘not ticketed’). Conversely, a false positive (negative) de-

notes a case when the binary classifier incorrectly labeled765

the alarm as ‘ticketed’ (‘not ticketed’). Based on these

statistics, the following metrics are calculated:

� Classification accuracy (a.k.a. accuracy): It is the

ratio of the number of correct predictions to the total

number of samples, computed as770

Accuracy =
TP + TN

P + N
, (1)

where TP and TN are the number of true positives

and true negatives, and P and N are the total num-
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ber of positive and negative values, respectively. This

metric is a true reflection of accuracy only when the775

classes in the dataset are balanced (i.e., same percent-

age of positive and negative classes).

� Sensitivity (a.k.a. probability of detection): It mea-

sures the proportion of positive values (i.e., ticketed)

that are correctly predicted (i.e., the true positive ra-780

tio).

� Specificity : It measures the proportion of negative

values (i.e., not ticketed) that are correctly predicted

(i.e., the true negative ratio).

� Receiver Operating Characteristic (ROC)785

curve (Fawcett, 2006): It is a graphical plot

representing the true positive ratio against the false

positive ratio with different threshold parameter for

the classifier. A perfect ROC curve takes the form of

a unit step function.790

� Area Under Curve (AUC): It represents the proba-

bility that a randomly chosen positive sample ranks

above a randomly chosen negative sample in a binary

classifier, computed as the area under the ROC curve.

The higher (i.e., the closer to 1), the better.795

5. Performance assessment

In this section, the proposed model for alarm prioriti-

zation based on the need of generating a trouble ticket is

assessed in a live mobile network. For clarity, the analysis

set-up is first described and results are presented later.800

5.1. Analysis set-up

Assessment is done in a real mobile network consisting

of 7,758 sites covering a geographical area of 705,589 km2

with different radio access technologies (GSM, UMTS and

LTE). The dataset includes: a) alarm data generated by805

network elements in the whole network, taken from the

NMS, and b) trouble ticket data generated by NOC staff.

The data collection period is 3 months, during which a to-

tal set of 5,877,444 alarms and 44,637 trouble tickets were

registered. These figures clearly show that only a very810

small share of alarms (i.e., less than 0.8%) generate a trou-

ble ticket. During the analysis, the dataset is split in two

exclusive subsets, the training dataset with the first two

months and the testing dataset with the last month. The

main input used for prediction is the alarm dataset. Each815

alarm includes 32 fields. After automatic feature selection,

only 15 out of 32 fields are considered to be related to the

outcome variable. Specifically, these fields provide infor-

mation regarding: a) the alarm (type of alarm, severity or

number of occurrences), b) the affected network element820

(type, vendor), and c) the domain where alarm was gen-

erated (radio access network, operations support systems,

packet switch core). This subset of features is shared by all

ML algorithms tested. Five binary ML classifiers are com-

pared. Four of them are built with individual algorithms825

(RF, ANN, SVM and NB) and a fifth one is the ensem-

ble of two (ANN+SVM). Model performance is evaluated

with the metrics detailed in Section 4.

As mentioned before, IBM SPSS Modeler is used for

the creation of the proposed model. SPSS Modeler is a830

data mining tool that allows users to build data mining

algorithms without the need for programming them. It

is based on a drag-and-drop methodology by using nodes

with different functionalities that are connected to each

other to perform operations.835

5.2. Results

Table 1 shows the performance of individual models

in the training and testing datasets. Results prove that

ANN and SVM outperform the other methods in terms of

classification accuracy. Specifically, ANN and SVM clas-840

sify nearly 90% of cases correctly, showing similar values

for ‘ticketed’ (sensitivity) and ‘not ticketed’ (specificity)

alarms. Moreover, similar values are obtained with both

datasets, showing their generalization capability (i.e., lack
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of overfitting).845

The same conclusions can be drawn from the analysis of

ROC curves for the training and testing datasets, shown

in Fig. 4 (a)-(b). In both figures, the x-axis represents

the False Positive Rate (i.e., 1 − Specificity), whereas

the y-axis represents True Positive Rate (i.e., Sensitivity).850

The four lines represent the ROC curves of base models.

From both subfigures, it can be concluded that ANN and

SVM present the highest estimation accuracy, since their

ROC curves are the furthest away from the reference line

(dashed line), corresponding to a random model. Specifi-855

cally, the AUC of ANN and SVM is 0.95 and 0.94, whereas

the AUC of the next model is that of NB, with 0.90. A

comparison of both figures shows that the ROC curve of

each method has the same shape in both datasets, which

is a clear indication of the absence of overfitting.860

Table 1 also shows the same metrics for the ensemble

method. It is observed that, by combining several models,

a more accurate classification of alarms is obtained. Specif-

ically, the accuracy of ANN+SVM is 91.45% compared to

89.12% and 85.69 for ANN and SVM, respectively.865

Based on these results, the following conclusions can be

drawn:

� The number of alarms in a live mobile network

deemed to require further investigation after a pre-

liminary analysis is really small (0.8%). Thus, an au-870

tomatic alarm ticketing system would save much time

and effort for NOC personnel.

� After feature selection, the number of predictors is

still large (15). This is clear indication that decid-

ing whether to generate a trouble ticket or not for an875

alarm is not a trivial task and it is based on complex

rules that relate predictors to target variable, justify-

ing the need for a data mining project.

� The sensitivity figure obtained by the best of methods

indicates that only 7% of the alarms that required880

a trouble ticket are misclassified, and would not be

prioritized with the automated approach. Likewise,

specificity (i.e., the complement of the probability of

false alarm) is 90%. Keeping this figure as high as

possible is key to avoid triggering unnecessary actions885

by L2-L3 group personnel. Nonetheless, these false

trouble tickets are more than compensated for by the

large savings introduced by automatically discarding

89% of alarms that actually did not require a trouble

ticket.890

5.3. Implementation issues

The model is designed as a centralized scheme that can

be integrated in the NOC of a real mobile network. De-

spite its complexity, its computational load is relatively

low. In practice, the most time consuming processes are895

data preparation and model training, which can be done

once and offline. Specifically, the execution time for the

considered dataset in a 2.6-GHz quad-core processor lap-

top is 7,000 s for data preparation, 2,035 s for ANN, 1,370

s for SVM, 1,820 s for RF model, 1,275 s for NB and 4055900

s for ANN+SVM.

6. Conclusions

In this work, a supervised machine learning classifier for

prioritizing alarms in a live mobile network based on the

need for generating a trouble ticket has been described.905

Model inputs are alarm data available in the NOC. How-

ever, trouble ticket data is also required in a first training

stage. The model has been tested with a real dataset taken

from a live mobile network consisting of several radio ac-

cess technologies. During assessment, different machine910

learning algorithms have been compared. Results have

shown that, in the considered real scenario, neural net-

works and support vector machines slightly outperform

random forest and naive Bayes classifiers in terms of es-

timation accuracy (89.12 and 85.69% against 83.92 and915

81.15%, respectively). These figures are slightly improved
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Table 1: Base models comparison.

Base model Partition Accuracy Sensitivity Specificity

ANN
Training 89.90 % 92.38 % 88.56 %

Testing 89.12 % 92.31 % 88.39 %

SVM
Training 88.75 % 93.07 % 85.71 %

Testing 85.69 % 94.03 % 85.51 %

NB
Training 85.30 % 88.05 % 82.28 %

Testing 83.92 % 89.94 % 84.05 %

RF
Training 82.84 % 86.12 % 80.51 %

Testing 81.15 % 85.66 % 80.01 %

ANN+SVM
Training 91.45 % 93.41 % 89.02 %

Testing 89.90 % 94.19 % 88.45 %

(a) Training dataset (b) Testing dataset

Figure 4: Base models comparison based on ROC curves
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when neural networks and support vector machines are

combined.

The proposed big-data driven approach can be used to

reduce reaction time, which is a major issue of current920

self-healing schemes. Execution times are reasonably low,

since model construction is done once and offline. Then,

the resulting model can be used in production to ticket

alarms in real time without human intervention, minimiz-

ing the time to repair and, ultimately, improving system925

availability. Equally important, the model can be shared

by different network operators, provided that the same

alarm information is available.
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sequence rule mining extended with a time confidence parameter.

In IEEE International Conference on Data Mining (ICDM).

Cisco Systems Inc. (2017a). Cisco Visual Networking Index: Global

Mobile Data Traffic Forecast Update. White Paper.

Cisco Systems Inc. (2017b). Network Management System: Best970

Practices. White Paper.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine

Learning, 20 , 273–297.

Dreo, G., & Volta, R. (1995). Using master tickets as a storage for

problem-solving expertise. In Integrated Network Management IV975

(pp. 328–340). Springer.

Duarte Jr, E. P., Musicante, M. A., & Fernandes, H. D. H. (2008).

Anemona: a programming language for network monitoring ap-

plications. International Journal of Network Management , 18 ,

295–302.980

Dy, J. G., & Brodley, C. E. (2004). Feature selection for unsupervised

learning. Journal of machine learning research, 5 , 845–889.

El Brak, S., Bouhorma, M., & Boudhir, A. A. (2011). Network

management architecture approaches designed for mobile ad hoc

networks, .985

Ersue, M., & Claise, B. (2012). An Overview of the IETF Network

Management Standards. Technical Report No. RFC 6632.

Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recog-

nition Letters, 27 , 861–874.

Folmer, J., & Vogel-Heuser, B. (2012). Computing dependent in-990

dustrial alarms for alarm flood reduction. In Systems, Signals

and Devices (SSD), 9th International Multi-Conference (pp. 1–

6). IEEE.

Frohlich, P., Nejdl, W., Jobmann, K., & Wietgrefe, H. (1997). Model-

based alarm correlation in cellular phone networks. In Modeling,995

Analysis, and Simulation of Computer and Telecommunication

Systems (MASCOTS)., Proceedings 5th International Symposium

(pp. 197–204). IEEE.

Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architec-

ture and emerging technologies. IEEE access, 3 , 1206–1232.1000

Han, S., Chih-Lin, I., Li, G., Wang, S., & Sun, Q. (2017). Big

data enabled mobile network design for 5g and beyond. IEEE

Communications Magazine, 55 , 150–157.

Harahap, E., Sakamoto, W., & Nishi, H. (2010). Failure predic-

tion method for network management system by using bayesian1005

16



network and shared database. In Information and Telecommuni-

cation Technologies (APSITT), 8th Asia-Pacific Symposium (pp.

1–6). IEEE.

He, H., & Garcia, E. A. (2009). Learning from imbalanced data.

IEEE Transactions on knowledge and data engineering, 21 , 1263–1010

1284.

Hossain, E., & Hasan, M. (2015). 5G cellular: key enabling tech-

nologies and research challenges. IEEE Instrumentation & Mea-

surement Magazine, 18 , 11–21.

Hu, W., Shah, S. L., & Chen, T. (2018). Framework for a smart1015

data analytics platform towards process monitoring and alarm

management. Computers & Chemical Engineering, 114 , 225–244.

Imran, A., Zoha, A., & Abu-Dayya, A. (2014). Challenges in 5G: how

to empower SON with big data for enabling 5G. IEEE Network ,

28 , 27–33.1020

International Business Machines Corporation (IBM) (2018).

IBM SPSS software. URL: https://www.ibm.com/analytics/

spss-statistics-software[Lastaccessed:2018-06-22].

ISO/IEC Information Technology Task Force (ITTF) (1998). Infor-

mation Processing Systems - OSI, ISO standard 9596-1: Common1025

Management Information Protocol, part1: Specification.

ITU-T (2016). Big data standardization roadmap. Recommendation

Y.3600 International Telecommunication Union.

Jakobson, G., & Weissman, M. (1993). Alarm correlation. IEEE

Network , 7 , 52–59.1030

Julisch, K. (2003). Clustering intrusion detection alarms to support

root cause analysis. ACM Transactions on Information and Sys-

tem Security (TISSEC), 6 , 443–471.

Klaine, P. V., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A

survey of machine learning techniques applied to self-organizing1035

cellular networks. IEEE Communications Surveys & Tutorials,

19 , 2392–2431.

Lai, S., Yang, F., & Chen, T. (2017). Online pattern matching and

prediction of incoming alarm floods. Journal of Process Control ,

56 , 69–78.1040

Liu, J., Lim, K. W., Ho, W. K., Tan, K. C., Srinivasan, R., &

Tay, A. (2003). The intelligent alarm management system. IEEE

Software, 20 , 66–71.

Liu, X., Iftikhar, N., & Xie, X. (2014). Survey of real-time processing

systems for big data. In Proceedings of the 18th International1045

Database Engineering & Applications Symposium (pp. 356–361).

ACM.

Makanju, A., Zincir-Heywood, A. N., & Milios, E. E. (2012). In-

teractive learning of alert signatures in high performance cluster

system logs. In Network Operations and Management Symposium1050

(NOMS), IEEE (pp. 52–60). IEEE.

Man, Y., Chen, Z., Chuan, J., Song, M., Liu, N., & Liu, Y. (2016).

The study of cross networks alarm correlation based on big data

technology. In International Conference on Human Centered

Computing (pp. 739–745). Springer.1055

Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of

frequent episodes in event sequences. Data Mining and Knowledge

Discovery, 1 , 259–289.

Medem, A., Teixeira, R., Feamster, N., & Meulle, M. (2009). De-

termining the causes of intradomain routing changes. Technical1060

Report University Pierre and Marie Curie.

Mehta, B. R., & Reddy, Y. J. (2014). Industrial process automation

systems: design and implementation. Butterworth-Heinemann.

Minaei-Bidgoli, B., Asadi, M., & Parvin, H. (2011). An ensemble

based approach for feature selection. In Engineering applications1065

of neural networks (pp. 240–246). Springer.

Minaei-Bidgoli, B., Parvin, H., Alinejad-Rokny, H., Alizadeh, H., &

Punch, W. F. (2014). Effects of resampling method and adapta-

tion on clustering ensemble efficacy. Artificial Intelligence Review ,

41 , 27–48.1070

Mirheidari, S. A., Arshad, S., & Jalili, R. (2013). Alert correlation

algorithms: A survey and taxonomy. In Cyberspace Safety and

Security (pp. 183–197). Springer.

NGMN (2015). 5G White paper . White Paper.

Noda, M., Higuchi, F., Takai, T., & Nishitani, H. (2011). Event1075

correlation analysis for alarm system rationalization. Asia-Pacific

Journal of Chemical Engineering, 6 , 497–502.

Parvin, H., Alinejad-Rokny, H., Minaei-Bidgoli, B., & Parvin, S.

(2013a). A new classifier ensemble methodology based on sub-

space learning. Journal of Experimental & Theoretical Artificial1080

Intelligence, 25 , 227–250.

Parvin, H., Minaei-Bidgoli, B., Alinejad-Rokny, H., & Punch, W. F.

(2013b). Data weighing mechanisms for clustering ensembles.

Computers & Electrical Engineering, 39 , 1433–1450.

Parvin, H., MirnabiBaboli, M., & Alinejad-Rokny, H. (2015).1085

Proposing a classifier ensemble framework based on classifier se-

lection and decision tree. Engineering Applications of Artificial

Intelligence, 37 , 34–42.

Ramiro, J., & Hamied, K. (2011). Self-Organizing Networks: Self-

Planning, Self-Optimization and Self-Healing for GSM, UMTS1090

and LTE . New York, NY, USA: John Wiley & Sons.

Ren, H., Stakhanova, N., & Ghorbani, A. A. (2010). An online

adaptive approach to alert correlation. In International Confer-

ence on Detection of Intrusions and Malware, and Vulnerability

Assessment (pp. 153–172). Springer.1095
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Nejdl, W., & Steinfeld, S. (1997). Using neural networks for alarm

correlation in cellular phone networks. In International Work-

shop on Applications of Neural Networks to Telecommunications

(IWANNT) (pp. 248–255).1120

Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2011). Data

Mining: Practical Machine Learning Tools and Techniques. San

Francisco, USA: Morgan Kaufmann.

Wolpert, D. H. (1992). Stacked generalization. Neural Networks, 5 ,

241–259.1125

Zali, Z., Hashemi, M. R., & Saidi, H. (2012). Real-time intrusion

detection alert correlation and attack scenario extraction based

on the prerequisite consequence approach. The iSC international

Journal of information Security, 4 , 125–136.

Zhang, K., Wang, Q., Chen, Z., Marsic, I., Kumar, V., Jiang, G., &1130

Zhang, J. (2015). From categorical to numerical: Multiple tran-

sitive distance learning and embedding. In Proceedings of the

2015 SIAM International Conference on Data Mining (pp. 46–

54). SIAM.

Zheng, K., Yang, Z., Zhang, K., Chatzimisios, P., Yang, K., & Xi-1135

ang, W. (2016). Big data-driven optimization for mobile networks

toward 5G. IEEE network , 30 , 44–51.

18


	Introduction
	Fault Management Process
	Network Management Architecture
	Roles in Fault Management
	Basic Fault Management Methodology

	Big-Data driven Fault Management
	Model for alarm prioritization
	Business Understanding
	Data Understanding
	Data Preparation
	Modeling
	Evaluation

	Performance assessment
	Analysis set-up
	Results
	Implementation issues

	Conclusions

