
An intelligent financial portfolio trading strategy using
deep Q-learning

Hyungjun Park

Department of Industrial and Management Engineering, Pohang University of Science and

Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Rep. of Korea

Min Kyu Sim

Department of Industrial and Systems Engineering, Seoul National University of Science

and Technology, 232, Gongneung-Ro, Nowon-Gu, Seoul, 01811, Rep. of Korea

Dong Gu Choi∗

Department of Industrial and Management Engineering, Pohang University of Science and
Technology, 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Rep. of Korea

Abstract

Portfolio traders strive to identify dynamic portfolio allocation schemes so that

their total budgets are efficiently allocated through the investment horizon. This

study proposes a novel portfolio trading strategy in which an intelligent agent

is trained to identify an optimal trading action by using deep Q-learning. We

formulate a Markov decision process model for the portfolio trading process,

and the model adopts a discrete combinatorial action space, determining the

trading direction at prespecified trading size for each asset, to ensure practical

applicability. Our novel portfolio trading strategy takes advantage of three fea-

tures to outperform in real-world trading. First, a mapping function is devised

to handle and transform an initially found but infeasible action into a feasible

action closest to the originally proposed ideal action. Second, by overcoming the

dimensionality problem, this study establishes models of agent and Q-network

for deriving a multi-asset trading strategy in the predefined action space. Last,

this study introduces a technique that has the advantage of deriving a well-

∗Corresponding author
Email address: dgchoi@postech.ac.kr (Dong Gu Choi)

Preprint submitted to Elsevier December 2, 2019

ar
X

iv
:1

90
7.

03
66

5v
4

 [
q-

fi
n.

PM
]

 2
8

N
ov

 2
01

9

fitted multi-asset trading strategy by designing an agent to simulate all feasible

actions in each state. To validate our approach, we conduct backtests for two

representative portfolios and demonstrate superior results over the benchmark

strategies.

Keywords: Portfolio trading, Reinforcement learning, Deep Q-learning,

Deep neural network, Markov decision process

1. Introduction

A goal of financial portfolio trading is maximizing the trader’s monetary

wealth by allocating capital to a basket of assets in a portfolio over the periods

during the investment horizon. Thus, portfolio trading is the most important

investment practice in the buy-side financial industry. Portfolio traders strive to

establish trading strategies that can properly allocate capital to financial assets

in response to time-varying market conditions. Typical objective functions for

trading strategy optimization include expected returns and the Sharpe ratio

(i.e., risk-adjusted returns). In addition to optimizing an objective function, a

trading strategy should achieve a reasonable turnover rate so that it is applicable

to real-world financial trading. If the turnover rate is not reasonable, transaction

costs hurt overall trading performance.

Portfolio trading is an optimization problem that involves a sequential decision-

making process across multiple rebalancing periods. In this process, the stochas-

tic components of time-varying market variables should be considered. Thus,

the problem of deriving an optimal portfolio trading strategy has traditionally

been formulated as a stochastic optimization problem [10, 15, 19]. To handle

these stochastic components over multiple periods, most related studies have

developed heuristic methods [5, 7, 8, 13, 21, 29, 38, 39]. In very recent years,

reinforcement learning (RL) has become another popular approach for financial

portfolio trading problems. In RL methods, a learning agent can understand a

complex financial environment by attempting various trading actions and revis-

ing its trading action policy, and then optimize their trading strategies based

2

on these experiences. In addition, these methods have the important advantage

that learning agents can update their trading strategies based on their experi-

ences on future trading days. Instead of simply maintaining trading strategies

derived from historical data, learning agents can adapt their strategies using

their observed experiences on each real trading day [36]. With these advantages

and the increasing popularity of RL algorithms, many previous studies have

been conducted to apply RL algorithms to various portfolio trading problem

settings [1, 2, 3, 6, 11, 12, 14, 17, 18, 24, 25, 26, 27, 28, 30, 38].

According to the recent evolution of RL methods, some researchers [12, 17,

18] have started to use deep RL (DRL) methods, which is the combination of

RL and deep neural network (DNN), to overcome the unstable performance of

previous RL methods. Nevertheless, we believe that this line of study is yet to

mature in terms of practical applicability because of the following two reasons.

First, most studies based on DRL methods focus on a single-asset trading [12,

17]. Because most traders generally have multiple securities, additional decision-

making steps are necessary even though single asset trading rules are derived.

Second, even if a study dealing with the multi-asset portfolio trading, the actions

determine portfolio weights [18]. The action spaces that determine the portfolio

weights cannot be followed directly because it requires additional decisions on

how to satisfy the target weight. We will explain this issue in more detail in

Section 2.3.

To overcome the current limitations, this study proposes a new approach for

deriving a multi-asset portfolio trading strategy using deep Q-learning, one of

the most popular DRL methods. In this study, we focus on a multi-asset trading

strategy and define an intuitive trading action set that can be interpreted as

direct investment guides to traders. In the action space used in this study, each

action includes trading directions corresponding to each asset in a portfolio,

and each trading direction comprises either holding each asset or buying or

selling each asset at a prespecified trading size. Although a recent study [30]

argues that optimizing a trading strategy based on a discrete action space has

a negative effect, we find that our discrete action space modeling allows for a

3

lower turnover rate and is more practical than continuous action space modeling

is.

To develop a practical multi-asset trading strategy, this study tackles a few

challenging aspects. First, setting a discrete combinatorial action space may

lead to infeasible actions, and, thus, we may derive an unreasonable trading

strategy (i.e., a strategy with frequent and pointless portfolio weight changes

that only leads to more transaction costs). To address this issue, we introduce a

mapping function that enables the agent to prevent the selection of unreasonable

actions by mapping infeasible actions onto similar and valuable actions. By

applying this mapping function, we can derive a reasonable trading strategy in

the practical action space. Second, the action space that determines a trading

direction for each asset in the portfolio has a dimensionality problem [24]. As the

number of assets in portfolio increasing, then the size of action space increases

exponentially because a trading agent must determine a combination of trading

directions for several assets in the portfolio. This is why previous studies related

to this action space have only considered a single asset or a single risky asset with

a risk-free asset trading. Therefore, in this study, we overcome this limitation

and conduct the first study of multi-asset trading in the practical action space by

using DQL. Third, although we use years of financial data, these data may not

provide enough training data for the DRL agent to learn a multi-asset trading

strategy in the financial environment. Because learning a strategy mapping

from a joint state to a joint action is necessary lots of data. There is a given

amount of data, so we need to make the agent gains more experience within the

training data and learns as much as possible. Thus, we achieve sufficient learning

by simulating all feasible actions in each state and then updating the agent’s

trading strategy using the learning experiences from the simulation results. This

technique allows the agent to gain and learn enough experience to derive a well-

fitted multi-asset trading strategy.

The rest of this paper is organized as follows. In Section 2, we first review

the related literature and present the differences between our study and previ-

ous studies. Section 3 describes the definition of our problem, and Section 4

4

introduces our approach for deriving an intelligent trading strategy. In Section

5, we provide experimental results to validate the advantages of our approach.

Finally, we conclude in Section 6 by providing relevant implications and identi-

fying directions for future research.

2. Literature Review

Portfolio trading is an optimization problem that involves a sequential decision-

making process over multiple rebalancing periods. In addition, the stochastic

components of market variables should be considered in this process. Thus,

traditionally, the derivation of portfolio trading strategies has been formulated

as a stochastic programming problem to find an optimal trading strategy. Re-

cently, much effort has been made to solve this stochastic optimization problem

using a learning-based approach, RL. To formulate this stochastic optimiza-

tion problem, it is necessary to determine how to measure the features of the

stochastic components corresponding to changes in the financial market. Utiliz-

ing technical indicators is more common than utilizing the fundamental indexes

of securities in daily frequency portfolio trading, as in our study.

This section reviews how previous studies have attempted to model stochas-

tic market components to formulate the portfolio trading problem and derive

an optimal trading strategy. Section 2.1 provides a brief description of previ-

ous studies that formulate the stochastic components of the financial market.

Section 2.2 reviews previous studies that discuss heuristic methods for deriving

an optimal trading strategy. Section 2.3 reviews previous studies that address

the stochastic optimization problem to derive an optimal trading strategy using

RL.

2.1. Stochastic programming-based models

Early studies on portfolio trading and, sometimes, management used stochas-

tic programming-based models. Stochastic programming models formulate a

sequence of investment decisions over time that can maximize a portfolio man-

ager’s expected utility up to the end of the investment horizon. Golub et al.

5

[15] modeled an interest rate series as a binomial lattice scenario using Monte

Carlo procedures to solve a money management problem with stochastic pro-

gramming. Kouwenberg [19] solved an asset-liability management problem us-

ing the event tree method to generate random stochastic programming coeffi-

cients. Consigli and Dempster [10] used scenario-based stochastic dynamic pro-

gramming to solve an asset-liability management problem. However, stochastic

programming-based models have the limitation of needing to generate numer-

ous scenarios to solve a complex problem, such as understanding a financial

environment, resulting in a large computational burden.

2.2. Heuristic methods

Because of this limitation of stochastic programming-based models, many

studies have devised heuristic methods (i.e., trading heuristics). One of the

most famous such methods is technical analysis for asset trading. This method

provides a simple and sophisticated way to identify hidden relationships between

market features and asset returns through the study of historical data. Using

these identified relationships, investments are made in assets by taking appro-

priate positions. Brock et al. [5] conducted backtests with real and artificial data

using moving average and trading range strategies. Zhu and Zhou [39] consid-

ered theoretical rationales for using technical analysis and suggested a practical

moving average strategy to determine a portion of investments. Chourmouziadis

and Chatzoglou [9] suggested an intelligent stock-trading fuzzy system based on

rarely used technical indicators for short-term portfolio trading. Another popu-

lar heuristic method is the pattern matching (i.e., charting heuristics) method,

which detects critical market situations by comparing the current series of mar-

ket features to meaningful patterns in the past. Leigh et al. [21] developed a

trading strategy using two types of bull flag pattern matching. Chen and Chen

[8] proposed an intelligent pattern-matching model based on two novel methods

in the pattern identification process. The other well-known heuristic method is

a metaheuristic algorithm that can find a near optimal solution in acceptable

computation time. Derigs and Nickel [13] developed a decision support system

6

generator for portfolio management using simulated annealing, and Potvin et al.

[32] applied genetic programming to generate trading rules automatically. Chen

and Yu [7] used a genetic algorithm to group stocks with similar price series

to support investors in making more efficient investment decisions. However,

these heuristic methods have limited ability to fully search a very large feasible

solution space because they are inflexible. Thus, we need to be careful about

the reliability of obtaining an optimal trading strategy using these methods.

2.3. Reinforcement learning-based methods

A recent research direction is optimizing a trading strategy using RL such

that a learning agent develops a policy while interacting with the financial envi-

ronment. Using RL, a learning-based method, the learning agent can search for

an optimal trading strategy flexibly in a high-dimensional environment. Unlike

supervised learning, RL allows learning from experience, leading to training the

agent with unlabeled data obtained from interactions with the environment.

In the earliest such studies, Neuneier [26, 27] optimized multi-asset portfo-

lio trading using Q-learning, a model-free and value-based RL. In other early

studies, Moody et al. [25] and Moody and Saffell [24] used Direct RL with

Recurrent RL as a base algorithm and derived a multi-asset long-short port-

folio trading strategy and a single-asset trading rule, respectively. Direct RL

is policy-based RL, which optimizes an objective function by adjusting policy

parameters, and Recurrent RL is an RL algorithm in which the last action is

received as an input. These studies introduced several measures, such as the

Sharpe ratio and the Sterling ratio, as objective functions and compared the

trading strategies derived using different objectives. Casqueiro and Rodrigues

[6] derived a single-asset trading strategy using Q-learning, which can maximize

the Sharpe ratio. Dempster and Leemans [11] developed an automated foreign

exchange trading system using an adaptive learning system with a base algo-

rithm of Recurrent RL by dynamically adjusting a hyper-parameter depending

on the market situation. O et al. [28] proposed a Q-learning-based local trading

system that categorized an asset price series into four patterns and applied dif-

7

ferent trading rules. Bertoluzzo and Corazza [3] suggested a single-asset trading

system using Q-learning with linear and kernel function approximations. Eilers

et al. [14] developed a trading rule for an asset with a seasonal price trend using

Q-learning. Zhang et al. [38] derived a trading rule generator using extended

classifier systems combined with RL and a genetic algorithm. Almahdi and

Yang [1] suggested a Recurrent RL-based trading decision system that enabled

multi-asset portfolio trading and compared the performance of the system when

several different objective functions were adopted. Pendharkar and Cusatis [30]

suggested an indices trading rule derived using two different RL methods, on-

policy (SARSA) and off-policy (Q-learning) methods and compared the perfor-

mance of these two methods, and it also compared the performances of discrete

and continuous agent action space modeling. Almahdi and Yang [2] used a hy-

brid method that combined Recurrent RL and particle swarm optimization to

derive a portfolio trading strategy that considers real-world constraints.

More recently, DRL, which combines deep learning and RL algorithms, was

developed, and, thus, studies have suggested using DRL-based methods to de-

rive portfolio trading strategies. DRL methods enable an agent to understand

a complex financial environment through deep learning and to learn a trading

strategy by automatically applying an RL algorithm. Jiang et al. [18] used a

deep deterministic policy gradient (DDPG), an advanced method of combining

policy-based and value-based RL, and introduced various DNN structures and

techniques to trade a portfolio consisting of cash and several cryptocurrencies.

Deng et al. [12] derived an asset trading strategy using a Recurrent RL-based

algorithm and introduced a fuzzy deep recurrent neural network that used fuzzy

representation to reduce uncertainty in noisy asset prices and used a deep recur-

rent neural network to consider the previous action and utilize high-dimensional

nonlinear features. Jeong and Kim [17] derived an asset trading rule that de-

termined actions for assets and the number of shares for the actions taken. To

learn this trading rule, Jeong and Kim [17] used a deep Q-network (DQN) with

a novel DNN structure consisting of two branches, one of which learned action

values while the other learned the number of shares to take to maximize the

8

objective function.

The above studies used various RL-based methods in different problem set-

tings. All of the methods performed well in each setting, but some issues limit

the applicability of these methods to the real world. First, some problem set-

tings did not consider transaction costs [3, 14, 17, 28, 30]. A trading strategy

developed without assuming transaction costs is likely to be impractical for ap-

plication to the real world. The second issue is that some strategies consider

trading for only one asset [1, 3, 6, 11, 14, 12, 17, 24, 38]. A trading strategy

of investing in only one risky asset may have high risk exposure because it has

no risk diversification effect. Finally, in previous studies deriving multi-asset

portfolio trading strategies using RL, the agent’s action space was defined as

the portfolio weights in the next period [1, 2, 18, 25]. The action spaces of these

studies do not provide portfolio traders with a direct guide that is applicable

to a real-world trading scenario that includes transaction costs. This is because

there are many different ways to transition from the current portfolio weight to

the next portfolio weight. Thus, previous studies using portfolio weights as the

action space required finding a way to minimize transaction costs at each rebal-

ancing moment. Rebalancing in a way that reduces both transaction costs and

dispersion from the next target portfolio is not an easily solved problem [16].

In addition, a portfolio trading strategy derived based on the action spaces of

the previous studies may be difficult to apply to real-world trading because

the turnover rate is likely to be high. An action space that determines portfo-

lio weights can result in frequent asset switching because the amount of asset

changes has no upper bound. Thus, we contribute to the literature by deriving

a portfolio trading strategy that has no such issues.

3. Problem definition

In this study, we consider a portfolio consisting of cash and several risky

assets. All assets in the portfolio are bought using cash, and the value gained

from selling assets is held in cash. That is, the agent cannot buy an asset without

9

holding cash and cannot sell an asset without holding the asset. This type of

portfolio is called a long-only portfolio, which does not allow short selling. Our

problem setting also has a multiplicative profit structure in that the portfolio

value accumulates based on the profits and losses in previous periods. We

consider proportional transaction costs that are charged according to a fixed

proportion of the amount traded in transactions involving buying or selling. In

addition, we allow the agent to partially buy or sell assets (e.g., the agent can

buy or sell half of a share of an asset).

We set up some assumptions in our problem setting. First, transactions can

only be carried out once a day, and all transactions in a day are made at the

closing price in the market at the end of that day. Second, the liquidity of the

market is high enough that each transaction can be carried out immediately for

all assets. Third, the trading volume of the agent is very small compared to the

size of the whole market, so the agent’s trades do not affect the state transition

of the market environment.

To apply RL to solve our problem, we need a model of the financial environ-

ment that reflects the financial market mechanism. Using the notations sum-

marized in Table 1, we formulate a Markov decision process (MDP) model that

maximizes the portfolio return rate in each period by selecting sequential trad-

ing actions for the individual assets in the portfolio according to time-varying

market features (Table 2).

3.1. State space

The state space of the agent is defined as the weight vector of the current

portfolio before the agent selects an action and the tensor that contains the

market features (technical indicators) for the assets in the portfolio. This type

of state space is similar to that used in a previous study [18]. That is, the state

in period t can be represented as below (Equations (1)-(3)):

st = (Xt, w
′
t), (1)

w′t = (w′t,0, w
′
t,1, w

′
t,2, ..., w

′
t,I)

T , (2)

10

Table 1: Summary of notations

Decision variables

at = (at,1, at,2, ..., at,I) agent’s action at the end of period t {at∈ZI : at,i∈{−1, 0, 1} ∀i}

Set and indices

i = 0, 1, 2, ..., I portfolio asset index (i=0 represents cash)

t time period index

S−(at)
set of an index of selling assets when an agent takes action at

(i.e., {i∈Z | 0 < i ≤ I, at,i = −1})

S+(at)
set of an index of buying assets when an agent takes action at

(i.e., {i∈Z | 0 < i ≤ I, at,i = 1})

Parameters

n size of the time window containing recent previous market features

Pt portfolio value changed by the action at the end of period t

P ′t portfolio value before the agent takes an action at the end of period t

P s
t

portfolio value at the end of period t when the agent takes no action at the

end of the previous period t− 1 (static portfolio value in period t)

wt,i proportion of asset i changed by the action at the end of period t

w′t,i proportion of asset i before the agent takes an action at the end of period t

ŵ′t,i auxiliary parameter used to derive wt,i

ct decay rate of transaction costs at the end of period t

c− transaction cost rate for selling

c+ transaction cost for buying

δ trading size for selling or buying

(
0 < δ <

P ′t
I

)
ρt return rate of the portfolio in period t

(
=

Pt−Pt−1

Pt−1

)
ot,i opening price of asset i in period t

pt,i closing price of asset i in period t

ht,i highest price of asset i in period t

lt,i lowest price of asset i in period t

vt,i volume of asset i in period t

11

Table 2: Summary of market features

Features

kct,i rate of change of the closing price of asset i in period t

(
=

pt,i−pt−1,i

pt−1,i

)
kot,i

ratio of the opening price in period t to the closing price in period t − 1 for

asset i

(
=

ot,i−pt−1,i

pt−1,i

)

kht,i

ratio of the closing price to the highest price of asset i in period t

(
=

pt,i−ht,i

ht,i

)
klt,i ratio of the closing price to the lowest price of asset i in period t

(
=

pt,i−lt,i
lt,i

)
kvt,i rate of change of the volume of asset i in period t

(
=

vt,i−vt−1,i

vt−1,i

)

Xt = [Kc
t ,K

o
t ,K

h
t ,K

l
t,K

v
t], (3)

where w′t denotes the weight vector of the current portfolio and Xt represents

the technical indicator tensor for the assets in the portfolio. For this tensor, we

use five technical indicators for the assets in the portfolio, as below (Equations

(4)):

kxt = (kxt,1, k
x
t,2, ..., k

x
t,I)

T ∀x ∈ {c, o, h, l, v}, (4)

Every set of five technical indicators can be expressed as a matrix (Equations

(5)), where the rows represent each asset in the portfolio and the columns rep-

resent the series of recent technical indicators in the time window. Here, if we

set a time window of size n (considering n-lag autocorrelation) and a portfolio

of I assets, the technical indicator tensor is an (I, n, 5)-dimensional tensor, as

in Figure 1.

Kx
t = [kxt−n+1|kxt−n+2|...|kxt] ∀x ∈ {c, o, h, l, v}, (5)

3.2. Action space

We define the action space to overcome the limitations of the action spaces in

previous studies. Agent actions determine which assets to hold and which assets

12

Figure 1: Market feature tensor (Xt)

to sell or buy at prespecified a constant trading size. For example, if a portfolio

includes two assets and the trading size is 10,000 USD, then the agent can select

the action of buying 10,000 USD of asset1 and selling 10,000 USD of asset2.

The action space includes the trading directions of buying, selling, or holding

each asset in the portfolio, so the action space contains 3I different actions.

These actions are expressed in a vector form that includes trading directions for

each asset in a portfolio. In addition, each trading direction (sell, hold, buy) is

encoded as (−1, 0, 1), respectively. For example, an action that involves selling

asset1 and buying asset2 can be encoded into the vector (−1, 1).

Because the trading actions for individual assets are carried out in fixed

trading size, this action space is modeled as a discrete type. Although this

discrete action space may not be able to derive a trading strategy that outper-

forms trading strategies derived using a continuous action space [30], this action

space can provide a direct trading guide that a portfolio trader can follow in

the real world. Furthermore, this discrete action space can derive a portfolio

trading strategy with lower turnover relative to the strategies developed in pre-

vious studies. In previous studies, if a portfolio with a very large amount of

capital is changed by a small amount in portfolio weight then the trader may

pay significant transaction costs. In addition, the losses from these transaction

costs can be very high because portfolio weight changes have no upper bound.

In contrast, our action space has an upper bound for portfolio weight changes,

and, thus, the issue of massive changes in portfolio weights and the resulting

large losses from transaction costs do not arise. Our agent action space has

these advantages, and the only disadvantage of the fixed trading amount is sim-

13

ilar to the restrictions of hedge funds that allow portfolio traders to trade below

a certain amount each day. Thus, our discrete agent action space is not too

unrealistic to apply to real-world trading.

3.3. MDP modeling

With the state space and action space defined in the previous subsections,

we can define the MDP model as follows. The financial market environment

operates according to this model during the investment horizon. To define the

transitions in the financial market environment (i.e., the system dynamics in

the MDP model), we need to define following parameters and equations:

wt = (wt,0, wt,1, wt,2, ..., wt,I)
T , (6)

wt ·~1 = w′t ·~1 = 1 ∀t, (7)

P ′t = Pt−1wt−1 · φ(kct) ∀t, (8)

w′t =
wt−1 � φ(kct)

wt−1 · φ(kct)
∀t, (9)

where wt denotes the portfolio weight after the agent takes an action at the

end of period t (Equation (6)). Equation (7) provides the constraint that the

portfolio weight elements sum to one in all periods. Equations (8) and (9)

represent the change in the portfolio value and the change in the proportions

of the assets in the portfolio given the changes in the value of each asset in

the portfolio, respectively. Here, � represents the elementwise product of two

vectors, and ~1 is a vector of size I+1 with all elements equal to one. φ(·) is

an operator that not only increases a vector’s dimension by positioning zero

as the first element but also adds it to the ~1 vector (φ : (e1, e2, ..., eI)
T →

(1, e1 + 1, e2 + 1, ..., eI + 1)T).

Now, we can define the state changes after the agent takes an action as

follows:

ct =
δ

P ′t

(
c−|S−(at)|+ c+|S+(at)|

)
∀t, (10)

14

Pt = P ′t (1− ct) ∀t, (11)

ŵ′t = (ŵ′t,0, ŵ
′
t,1, ŵ

′
t,2, ..., ŵ

′
t,I)

T , (12)

ŵ′t,i =


w′t,i − δ

P ′t
if i ∈ S−(at),

w′t,i + δ
P ′t

if i ∈ S+(at),

w′t,i otherwise

∀i=1...I , (13)

ŵ′t,0 = w′t,0 +
δ

P ′t

(
(1− c−)|S−(at)| − (1 + c+)|S+(at)|

)
, (14)

wt =
ŵ′t

ŵ′t ·
−→
1

, (15)

After the agent takes an action, transaction costs arise, and the portfolio value

is then decayed (Equations (10)-(11)). Here, |S| is the size of set S. ŵ′t,i denotes

the auxiliary weight of the portfolio that is needed to connect the change in the

portfolio weights before and after the agent takes an action at the end of period

t (Equation (12)). The procedure by which the action selected by the agent

is handled for trading in the financial environment is as follows. The auxiliary

weight of an asset in the portfolio increases (or decreases) as a proportion of the

trading size when buying (or selling) the asset. On the contrary, the auxiliary

weights of the assets do not change when the agent holds the assets (Equation

(13)). As a result of selling asset, the proportion of cash increases by the pro-

portion of the trading size discounted by the selling transaction cost rate. As

a result of buying asset, the proportion of cash decreases by the proportion of

the trading size multiplied by the buying transaction cost rate (Equation (14)).

To ensure that the sum of the portfolio weight elements equals one after the

agent takes an action, a process for adjusting the auxiliary weights is required

(Equation (15)). In summary, the financial market environment transition is

illustrated by Figure 2.

Last, the reward in the MDP model should reflect the contribution of the

agent’s action to the portfolio return. This reward can be simply defined as the

portfolio return. However, if the portfolio return is defined only as a reward,

then different reward criteria can be given depending on the market trend.

15

Figure 2: Financial environment transition

For example, when the market trend is sufficiently improving, then no matter

how poor the agent’s action is, a positive reward is provided to the agent. In

contrast, if the market trend is sufficiently negative, then no matter how helpful

the agent’s action is, a negative reward is provided to the agent. Thus, the

reward must be defined as the rate of change in the portfolio value by which the

market trend is removed. Therefore, we define the reward as the change in the

portfolio value at the end of the next period relative to the static portfolio value

(Equation (16)). The static portfolio value is the next portfolio value when the

agent takes no action at the end of the current period (Equation (17)).

rt =
P ′t+1 − P st+1

P st+1

, (16)

P st+1 = P ′tw
′
t · φ(kct+1), (17)

4. Methodology

In this section, we introduce our proposed approach for deriving the portfolio

trading strategy using DQL. In our action space, some issues may prohibit a

DQL agent from deriving an intelligent trading strategy. We first explain how

to resolve these issues by introducing some techniques and applying existing

methodologies. Then, we describe our DQL algorithm with these techniques.

4.1. Mapping function

In our action space, some actions are infeasible in some states (e.g., the

agent cannot buy assets because of a cash shortage or cannot sell assets because

16

of a shortage of held assets). To handle infeasible actions, we first set the ac-

tion values (i.e., Q-values) of infeasible actions to be very low to mask these

actions [20]. Thus, we need to define a rule for selecting the appropriate action

from the remaining actions when infeasible actions are excluded. For this rule,

a simple way in which the agent selects the largest Q-valued one among remain-

ing actions can be considered [37]. However, this simple rule can result in an

unreasonable trading strategy. For example, when an agent’s strategy selects

the action of selling both asset1 and asset2 but this action is infeasible owing

to a lack of asset2, the action of buying both asset1 and asset2, which is the

largest Q-value action in the remaining action space, is selected. Because learn-

ing the similarity between actions is difficult for an RL agent, the agent will take

this action without any doubt even though this selected action is the opposite

of the original action determined by the agent’s strategy. This issue leads to

the selection of unreasonable actions, which degrades the trading performance.

A mapping rule is required to map infeasible actions to similar and valuable

actions in the feasible action set. Thus, we resolve this issue by introducing a

mapping function that contains several mapping rules.

The mapping function is a type of constraint on action space in RL that

allows the agent to derive a reasonable trading strategy. Pham et al. [31], Bha-

tia et al. [4] handled constrained action space by adding an optimization layer,

so-called OptLayer, for solving quadratic programming at the last layer of the

agent’s policy network, determining an action that minimizes differences from

the output at the previous layer while satisfying constraints. However, the

method cannot be applied directly to our situation because they can only deal

with continuous action space. Although OptLayer can be applied for handling

our constrained action space by revising the integer quadratic programming

(IQP) version, the solution of IQP suffers multiple-choice issue in this situa-

tion because there are tied actions which have the smallest distance from the

original action. To overcome the limitation of the OptLayer, we devise the

mapping function based on a heuristic searching method. The function maps

to one feasible action which has the largest Q-value among tied actions that

17

have the smallest distance from the original action. Moreover, the computation

costs of the mapping function are lower than those of OptLayer. Therefore,

the mapping function is an extended efficient method from the line of study to

handle infeasible action using the concept of distance between actions, such as

OptLayer.

The mapping function contains two mapping rules, each of which is required

for mapping infeasible actions, that are divided into two cases. In the first case,

the amount of cash is not sufficient to take an action that involves buying assets.

In this case, a similar action set is derived by holding rather than buying a subset

of the asset group to be bought in the original action. Thereafter, infeasible

actions are mapped to the most valuable feasible actions in the similar action

set. For example, if the action of buying both asset1 and asset2 is infeasible

owing to a cash shortage, this action is mapped to the most valuable feasible

action within the set of similar actions, which includes the action of buying

asset1 and holding asset2, the action of holding asset1 and buying asset2, and

the action of holding both asset1 and asset2. In the second case, an action that

involves selling assets is infeasible because of a shortage of the assets. In this

case, the original action is simply mapped to an action in which the assets that

are not enough to sell are held. These examples are illustrated in Figure 3.

We provide the details of the two mapping rules and the mapping function in

the following pseudocode in Algorithm (1). In the Algorithm, the last part (i.e.,

Lines (26)-(27)) of the mapping rule for the second case(Rule2) is necessary.

Because, in the second case, converting the original action of selling assets that

cannot be sold into an action that holds the selling assets which cannot be sold,

then the cash amount gained from selling assets is removed, causing the first

infeasible action case to arise. Furthermore, this part of the code can handle the

special case in which an asset shortage and a cash shortage occur simultaneously.

Next, the RL flow chart with the mapping function technique is shown in Figure

4.

18

Algorithm 1 Mapping function

1: st: state of the agent

2: at: infeasible action in state st

3: Q(st, at): Q-value for state action pair (st, at)

4: procedure Map(st, at)

5: if asset shortage for action at in state st then

6: amap ← Rule2(st, at)

7: else if cash shortage for action at in state st then

8: amap ← Rule1(st, at)

9: return amap

10: procedure Rule1(st, at)

11: MAXQ← −inf

12: subset of buying asset index: S = {C1, ...}

13: for each subset C in S do

14: replicate action ât ← at

15: for each asset j in C do

16: ât,j ← 0

17: if converted action ât is feasible in state st then

18: if Q(st, ât) > MAXQ then

19: MAXQ← Q(st, ât)

20: abest ← ât

21: return abest

22: procedure Rule2(st, at)

23: for asset i = 1,2... do

24: if action at to asset i in state st infeasible then

25: at,i ← 0

26: if converted action at is infeasible in state st then

27: at ← Rule1(st, at)

28: return at

19

(a)

(b)

Figure 3: Mapping examples of (a) a cash shortage and (b) an asset shortage

Figure 4: RL flow chart with mapping function

4.2. DQN algorithm

We optimize the multi-asset portfolio trading strategy by applying the DQN

algorithm. DQN is the primary algorithm for DQL. Mnih et al. [22] developed

the DQN algorithm, and Mnih et al. [23] later introduced additional techniques

20

and completed this algorithm. The base algorithm for DQN, Q-learning, is

value-based RL, which is a method that approximates an action value (i.e., a Q-

value) in each state. Further, Q-learning is a model-free method such that even

if the agent does not have knowledge of the environment, the agent can develop a

policy using repeated experience by exploring. In addition, Q-learning is an off-

policy algorithm, that is, the action policy for selecting the agent’s action is not

the same as the update policy for selecting an action on the target value. An

algorithm based on Q-learning that approximates the Q-function using DNN

is the basis of DQN [22]. To prevent DNN from learning only through the

experience of a specific situation, experience replay was introduced to sample a

general experience batch from memory. Additionally, the DQN algorithm used

two separate networks: a Q-network that approximates the Q-function and a

target network that approximates the target value needed for the Q-network

updated to follow a fixed target [23]. Based on this algorithm, we introduce

several techniques to support the derivation of an intelligent trading strategy.

The existing DQN algorithm updates the Q-network with experience by

allowing the agent to take only one action in each stage. Because the agent has

no information about the environment, only one action is taken then proceeding

to the next state. Thus, it is impossible to take multiple actions in the existing

DQN. However, for this problem, we use historical technical indicator data of

the assets in the portfolio as training data. Thus, our agent can take multiple

actions in one state in each stage and observe all of their experiences based on

those actions. To utilize this advantage, we introduce a technique that simulates

all feasible actions in one state at each stage and updates the trading strategy

by using the resulting experiences from conducting these simulations.

Motivated by Tan et al. [35], we utilize a simulation technique that takes all

feasible actions virtually to force to the agent learns about many experiences

efficiently for deriving a fully searched multi-asset trading strategy. Thus, this

technique can relax the data shortage issue that arises when deriving a multi-

asset trading strategy. Although simulating all feasible actions can result in

a huge computational burden, using multi-core parallel computing can prevent

21

this computational burden from greatly increasing. Moreover, even if the agent

takes multiple actions in the current state, the next state only depends on the

action selected by the action policy (epsilon-greedy) with the mapping rule.

The application of this technique requires a change in the data structure of

the element in replay memory for storing a list of experiences in a state. The

concepts related to this technique are illustrated in Figure 5. In this figure, ajt

means that the j − th action of the agent is taken at the end of period t. rjt is

the reward obtained by taking action ajt , and sjt+1 is the next state that results

from taking action ajt .

(a)

(b)

Figure 5: (a) Simulating feasible actions, (b) Data structure for experience list

22

In DQN, a multiple output neural network is commonly adopted as the Q-

network structure. In this network structure, the input of the neural network

is the state, and the output is the Q-value of each action. Using the above

technique, we can approximate the Q-value of all feasible actions by updating

this multiple output Q-network in parallel with the experience list. To maintain

Q-values of infeasible actions, the current Q-value of an infeasible state-action

pair is assigned to the target value of the Q-network output of the corresponding

infeasible action to set a temporal difference error of zero. Furthermore, as in

DQN, several experience lists are sampled from replay memory, and the Q-

network is updated using the experience list batch. A detailed description of

the process for updating the Q-network is shown in Figure 6.

Figure 6: Updating a multiple output Q-network using an experience list

In addition, to apply RL, learning episodes must be defined for the agent

to explore and experience the environment. Rather than defining all of the

training data, which cover several years, as one episode, we divide the training

data into several episodes. If we define a much longer training episode than the

investment horizon of the test data that will be used to test the trading strategy,

this difference in the lengths of the training and test data can produce negative

results. For example, in our experiment, the training and testing processes

begin with the same portfolio weights. In this case, the farther the agent is

23

from the beginning of the long training episode, the farther the agent is from

the initial portfolio weights. Thus, it is difficult for the agent to utilize the

critical experience obtained from the latter half of the long episode in the early

testing process. Therefore, we divide training data into sets of the same length

as the investment horizon of the test data (i.e., one year, as the investment

horizon of the test data is a year in our experiment). Thus, the criteria for

dividing the training data are defined in yearly units so that the episodes do

not overlap (e.g., episode1 contains data from 2016, and episode2 contains data

from 2015). In each training epoch, the agent explores and learns in an episode

sampled from the training data.

It is well known that more recent historical data have more explainable

for predicting future data than less recent historical data have. Thus, it is

reasonable to assign higher sampling probabilities to episodes that are closer to

the test data period [18]. We use a truncated geometric distribution to assign

higher sampling probabilities to episodes that are closer to the test period. This

truncated geometric sampling distribution is expressed in Equation (18). Here,

y is the year of the episode, yv is the year of the test data, and N is the number

of total training episodes. β is a parameter for this sampling distribution that

ranges from zero to one. If this parameter is closer to one, episodes closer to

the test period are sampled frequently.

gβ(y) =
β(1− β)yv−y−1

1− (1− β)N
, (18)

To implement DQN, we need to model the neural network structure for

approximating the Q-function of an agent’s state and action. We construct a

hybrid encoder LSTM-DNN neural network that enables us to approximate the

Q-value of an agent’s action in our predefined state and action space. First,

we train LSTM autoencoder, an unsupervised learning method for compressing

sequence data, for identifying latent variables of the historical sequence of pre-

defined technical indicators of assets in the portfolio [34]. Then the autoencoder

is fitted in the historical pattern of technical indicators of assets, the decoder is

24

removed and the encoder keeps as a standalone model that encodes the technical

indicator sequences for assets to lower dimension latent variables. Each asset

in the portfolio shares the same encoder LSTM to take the sequence encoding

procedure because it is known that a single deep learning model is more effective

for learning the feature patterns of different assets than multiple deep learning

models that learning individual assets [33]. Then, the encoded outputs for each

asset are concatenated to create the intermediate output, and this intermediate

output is then combined again with the current portfolio weights to use as the

input to the DNN. Through this DNN layers, we can obtain the Q-value of

each action of the agent. Because these DNN layers extract meaningful features

through nonlinear mapping using a multi-layer neural network and conducts a

regression for the Q-value, we refer to these layers as the DNN regressor. The

overall Q-network structure is as shown in Figure 7. In summary, the overall

DQN algorithm for our approach for deriving the portfolio trading strategy is

as follows Algorithm (2). In offline learning, we use this algorithm to build an

initial trading strategy fitted on historical data and in online learning, adapt the

trading strategy by updating based on the daily observed data in the trading

process.

5. Experimental results

In this section, we demonstrate that the DQN strategy (i.e., the trading

strategy derived using our proposed DQN algorithm for portfolio trading) can

outperform in real-world trading. We conduct a trading simulation for two

different portfolio cases using both our DQN strategy and traditional trading

strategies as benchmarks, and we verify that the DQN strategy is relatively su-

perior to the other benchmark strategies based on several common performance

measures.

5.1. Performance measures

We use three different output performance measures to evaluate trading

strategies. The first measure is the cumulative return based on the increase in

25

Figure 7: Q-network structure

the portfolio value at the end of the investment horizon relative to the initial

portfolio value, as defined as Equation (19):

CR =
Ptf − P0

P0
× 100(%), (19)

where tf is the final date of the investment horizon and P0 is the initial portfolio

value.

The second measure is the Sharpe ratio, as defined in Equation (20):

SR =
E[ρt − ρf]

std(ρt)
×
√

252, (20)

where std(ρt) is the standard deviation of the daily return rate, ρf is the daily

risk-free rate (assumed to be 0.01%), and annualization term (square root of the

number of annual trading days) is multiplied. This ratio is a common measure

of the risk-adjusted return, and it is used to evaluate not only how high the risk

premium is but also how small the variation in the return rate is.

For the last measure, we use the customized average turnover rate defined

26

Algorithm 2 DQN algorithm for portfolio trading

1: F (s) : feasible action set in state s

2: Initialize replay memory D

3: Initialize weights of Q-network θ randomly

4: Initialize weights of target network θ′ ← θ

5: for episode is sampled by sampling distribution y ← gβ(·) do

6: Initialize state s0

7: for period t=0...T in episode y do

8: With probability ε select random at∈F (st)

otherwise, at =


argmax

a
Q(st, a; θ) if argmax

a
Q(st, a; θ) ∈ F (st),

Map(st, argmax
a

Q(st, a; θ)) o/w

9: Take action at and then observe reward rt and next state st+1

10: Simulate all actions a ∈ F (st), then observe experience list L

11: Store L in replay memory D

12: Sample random batch of experience list K from D

13: (st, at, rt, st+1) is element of experience list in batch,

update Q-network from current prediction Q(st, at; θ) to target

zt =


rt + γmax

a′
Q̂(st+1, a

′; θ′) if argmax
a′

Q̂(st+1, a
′; θ′) ∈ F (st+1),

rt + γmax
a′
Q̂(st+1,Map(st+1, argmax

a′
Q̂(st+1, a

′; θ′)); θ′) o/w

14: Update θ by minimizing the loss:

L(θ) = 1
|K|
∑
L∈K

∑
j∈L(zj −Q(sj , aj ; θ))

2

15: θ′ ← θ

as in Equation (21):

AT =
1

2tf

tf∑
t=0

I∑
i=1

|ŵ′t,i − w′t,i | × 100(%). (21)

The average turnover measures the average rate of change of the portfolio weight

vector during the investment horizon. We do not have to consider changes in the

cash proportion, so we customize this measure by excluding the change in the

weight on cash before and after the agent takes an action. This rate can evaluate

27

the change in the proportions of asset investments. Considering transaction

costs, this measure should be low to better apply the trading strategy in the

real world.

5.2. Data summary

We experiment with two different three-asset portfolios. The first consists of

three exchange traded funds (ETFs) in the US market that track the S&P500

index, the Russell 1000 index, and the Russell Microcap Index. This type of

portfolio was tested in a previous study [1]. The second portfolio is a Korean

portfolio consisting of the KOSPI 100 index, the KOSPI midcap index, and the

KOSPI microcap index. More information for these test portfolios is provided

in Table 3.

Table 3: Test portfolios

Assets Portfolio

US Portfolio (US-ETF) Korean Portfolio (KOR-IDX)

Asset 1 SPDR S&P 5001 KOSPI 100 index

Asset 2 iShares Russell 1000 Value2 Midcap KOSPI index

Asset 3 iShares Microcap3 Microcap KOSPI index

1 ETF tracks the S&P500 index

2 ETF tracks the Russell 1000 (mid- and large-cap US stocks) index

3 ETF tracks the Russell microcap index

We obtain data on the three US ETFs from Yahoo Finance and data on the

Korean indices from Investing.com. Both cases are tested in 2017. The trading

strategy for the US portfolio is derived by training on data from 2010 to 2016,

and the trading strategy for the Korean portfolio is derived by training on data

from 2012 to 2016.

5.3. Experiment setting

Through several rounds of tuning, we derive appropriate hyper-parameters.

In particular, the time window size(n) is the most important hyper-parameter,

28

and we adopt the value of 20 among the candidates (5,20,60,120). This time

window size and the other tuned hyper-parameters are summarized in Table 4.

hyper-parameter value hyper-parameter value

time window size (n) 20 replay memory size 2000

learning rate (α) 1e-7 number of epochs 500

distribution parameter (β) 0.3 discount factor (γ) 0.9

DNN input dimension 64 batch size 32

DNN layer 2 encoder LSTM layer 1

DNN 1st layer dimension 64 hidden dim of encoder LSTM 128

DNN 2nd layer dimension 32 output dim of encoder LSTM 20

Table 4: hyper-parameter summary

In the experiment, we also need to set trading parameters, such as the initial

portfolio value and the trading size. We set the initial portfolio value as one

million in both portfolio cases (e.g., 1M USD for the US portfolio and 1M KRW

for the Korean portfolio). Similarly, we set the trading size as ten thousand in

both portfolio cases (e.g., 10K USD trading size for the US portfolio case and

10K KRW for the Korean portfolio case). We set the transaction cost rate for

buying and selling in both the US and Korean markets as 0.25%. In both cases,

the initial portfolio is set up as an equally weighted portfolio, in which every

asset and cash has the same proportion.

5.4. Benchmark strategy

To evaluate our DQN strategy, we compare it to some traditional portfolio

trading strategies. The first strategy is a buy-and-hold strategy (B&H) that

does not take any action but rather holds the initial portfolio until the end of the

investment horizon. The second strategy is a randomly selected strategy (RN)

that takes action within the feasible action space randomly in each state. The

third strategy is a momentum strategy (MO). This strategy buys assets whose

values increased in the previous period and sells assets whose values decreased in

29

the previous period. However, if it cannot buy all assets with increased values,

it gives buying priority to assets whose values increased more. If it is unable to

sell assets whose values decreased, it simply holds the assets. The last strategy

is a reversion strategy (RV), which is the opposite of the momentum strategy.

This strategy sells assets whose values increased in the previous period and buys

assets whose values decreased in the previous period. However, if it cannot buy

all of the assets whose values decreased, it gives buying priority to the assets

whose values decreased more. If it is unable to sell the assets whose values

increased, then it simply holds the assets.

5.5. Result

We derive a trading strategy for both portfolio cases using DQN. For both

cases, we identify the increase in the cumulative return over the investment

horizon of the test period as episode learning continues. Figure 8 shows the

trend in the cumulative return performance over the learning episodes in both

cases.

Table 5 shows the number of changes in the phase of trading direction (i.e.,

the number of changes from selling to buying or vice versa, except for holding)

before and after applying the mapping function. A trading strategy that has

frequent changes in the phase of trading action implies an unreasonable trading

strategy because these changes deteriorate trading performance by incurring

meaningless transaction costs. Through the experimental result, we identify

that when the mapping function is applied to the DQN strategy, the number

of changes in the phase of the trading direction decreases relative to when it

is not applied. Following by decreasing the number of changes in the phase of

the trading direction, the cumulative return of the trading strategy increases

by 6.68% relative to the one without applied the mapping function in the US

portfolio case. Likewise, in the Korean portfolio case, the cumulative return

of the trading strategy increases by 10.83% relative to the one without applied

the mapping function. Therefore, we demonstrate that the mapping function

contributes to deriving a reasonable trading strategy.

30

(a)

(b)

Figure 8: Cumulative return rate as the learning episode continues (a) US portfolio, (b)

Korean portfolio

31

US portfolio Korean portfolio
mapping function

asset 1 asset 2 asset 3 asset 1 asset 2 asset 3

without 83 107 64 74 128 63

with 54 40 37 42 68 40

difference -34.9% -62.6% -42.1% -43.2% -46.8% -36.5%

Table 5: The number of changes in the phase of trading direction for DQN strategy with-

out/with the mapping function in the two test portfolio cases

Figure 9 shows the portfolio value trend when applying the DQN strategy

and the benchmark strategies in the US and Korean portfolio cases. In the US

portfolio case, we observe that the DQN strategy outperforms the benchmark

strategies for most of the test period. The final portfolio value of the DQN

strategy is 15.69% higher than that of the B&H strategy, 33.74% higher than

that of the RN strategy, 21.81% higher than that of the MO strategy, and

114.47% higher than that of the RV strategy. Likewise, in the Korean portfolio

case, we observe that the DQN strategy outperforms the benchmark strategies

for most of the test period. The final portfolio value of the DQN strategy is

25.52% higher than that of the B&H strategy, 34.99% higher than that of the

RN strategy, 13.22% higher than that of the MO strategy, and 247.91% higher

than that of the RV strategy.

Table 6 summarizes the output performance measure results when using

DQN and the benchmark strategies in both portfolio cases. This table shows

that the DQN strategy has the best cumulative return and Sharpe ratio per-

formances for the US portfolio, and this strategy has the lowest turnover rate

except for the B&H strategy, which has no turnover rate. In the Korean portfo-

lio case, the DQN strategy also has the best cumulative return and Sharpe ratio

performances. Moreover, the DQN strategy has the lowest turnover rate except

for the B&H strategy. Given that the B&H strategy does not incur any trans-

action costs during the investment horizon, it is a remarkable achievement that

the DQN strategy outperforms the B&H strategy in terms of the cumulative

32

return and Sharpe ratio.

(a)

(b)

Figure 9: Comparative portfolio value results for the DQN and benchmark strategies for (a)

US portfolio, (b) Korean portfolio

33

US portfolio Korean portfolio
strategy

CR SR AT CR SR AT

B&H 10.921% 1.308 0.000% 7.913% 0.890 0.000%

RN* 9.446% 1.143 1.029% 7.358% 0.381 1.032%

MO 10.372% 1.114 1.368% 8.773% 0.840 1.233%

RV 5.891% 0.642 1.404% 2.855% 0.147 1.370%

DQN 12.634% 1.382 0.954% 9.933% 0.946 0.989%

*performance of RN is average from 30 samples

Table 6: Output performance measure values for our DQN strategy and the benchmark strate-

gies in the two test portfolio cases

6. Conclusion

The main contribution of our study is applying the DQN algorithm to derive

a portfolio trading strategy on the practical action space. However, applying

DQN to portfolio trading has some challenges. To overcome these challenges,

we devise a DQL model for trading and several techniques. First, we introduce

a mapping function for handling infeasible actions to derive a reasonable trad-

ing strategy. Trading strategies derived from RL agents can be unreasonable to

apply in the real world. Thus, we apply a domain knowledge rule to develop a

trading strategy with an infeasible action mapping constraint. As a result, this

function works well, and we can derive a reasonable trading strategy. Second,

we design DQL agent and Q-network for considering multi-asset features and

derive a multi-asset trading strategy in the practical action space, determining

the trading direction of the asset, by overcoming the dimensionality problem.

Third, we relax the data shortage issue for deriving well-fitted multi-asset trad-

ing strategies by introducing a technique that simulates all feasible actions and

then updating the trading strategy based on the experiences of these simulated

actions.

The experimental results show that our proposed DQN strategy is a superior

trading strategy relative to benchmark strategies. Based on the results of the

34

cumulative return and the Sharpe ratio, the DQN strategy is more profitable

with lower risk than other benchmark strategies. In addition, based on the

results of the average turnover rate, the DQN strategy is more suitable for

application in real-world trading than benchmark strategies.

However, our proposed methodology still has a limit of scalability, arising

the dimensionality problem if the number of assets in the portfolio very large.

Furthermore, in our study, the reward of the MDP model is optimized only for

returns and not for risk. Nevertheless, the contributions of this study are still

valuable because of the novel techniques for expressing the practical applicability

of the portfolio trading strategy. By responding to the limit of the current study,

we will try to devise the method for resolving these limitations in future research.

References

[1] S. Almahdi and S. Y. Yang. An adaptive portfolio trading system: A risk-

return portfolio optimization using recurrent reinforcement learning with

expected maximum drawdown. Expert Systems With Applications, 87:267–

279, 2017.

[2] S. Almahdi and S. Y. Yang. A constrained portfolio trading system us-

ing particle swarm algorithm and recurrent reinforcement learning. Expert

Systems With Applications, 130:145–156, 2019.

[3] F. Bertoluzzo and M. Corazza. Testing different Reinforcement Learning

configurations for financial trading: Introduction and applications. Procedia

Economics and Finance, 3:68–77, 2012.

[4] A. Bhatia, P. Varakantham, and A. Kumar. Resource constrained deep

reinforcement learning. Proceedings of the International Conference on Au-

tomated Planning and Scheduling, 29:610–620, 2018.

[5] W. Brock, J. Lakonishok, and B. Lebaron. Simple Technical Trading Rules

and the Stochastic Properties of Stock Returns. The Journal of Finance,

47:1731–1764, 1992.

35

[6] P. X. Casqueiro and A. J. L. Rodrigues. Neuro-dynamic trading methods.

European Journal of Operational Research, 175:1400–1412, 2006.

[7] C. H. Chen and H. Y. Yu. A series based group stock portfolio optimization

approach using the grouping genetic algorithm with symbolic aggregate

Approximations. Knowledge-Based Systems, 125:146–163, 2017.

[8] T. Chen and F. Chen. An intelligent pattern recognition model for sup-

porting investment decisions in stock market. Information Sciences, pages

261–274, 2016.

[9] K. Chourmouziadis and P. D. Chatzoglou. An intelligent short term stock

trading fuzzy system for assisting investors in portfolio management. Expert

Systems With Applications, 43:298–311, 2016.

[10] G. Consigli and M. A. H. Dempster. Dynamic stochastic programming

for assetliability management. Annals of Operations Research, 81:131–161,

1998.

[11] M. A. H. Dempster and V. Leemans. An automated FX trading system

using adaptive reinforcement learning. Expert Systems With Applications,

30:543–552, 2006.

[12] Y. Deng, B. Feng, Y. Kong, Z. Ren, and Q. Dai. Deep Direct Reinforce-

ment Learning for Financial Signal Representation and Trading. IEEE

Transactions on Neural Networks and Learning Systems, 28:653–664, 2016.

[13] U. Derigs and N. H. Nickel. Meta-heuristic based decision support for

portfolio optimization with a case study on tracking error minimization in

passive portfolio management. OR Spectrum, 25:345–378, 2003.

[14] D. Eilers, C. L. Dunis, H. J. Mettenheim, and M. H. Breitner. Intelli-

gent trading of seasonal effects: A decision support algorithm based on

reinforcement learning. Decision Support Systems, 64:100–108, 2014.

36

[15] B. Golub, M. Holmer, R. Mckendall, L. Polhlman, and S. A. Zenios. A

stochastic programming model for money management. European Journal

of Operations Research, 85:282–296, 1995.

[16] R. C. Grinold and R. N. Khan. Active portfolio management: A quantita-

tive approach for producing superior returns and controlling risk. McGraw-

Hill, 2, 2000.

[17] G. Jeong and H. Y. Kim. Improving financial trading decisions using deep

Q-learning: Predicting the number of shares, action strategies, and transfer

learning. Expert system with applications, 117:125–138, 2019.

[18] Z. Jiang, D. Xu, and J. Liang. A Deep Reinforcement Learning Frame-

work for the Financial Portfolio Management Problem. arXiv preprint

arXiv:1706.10059, 2017.

[19] R. Kouwenberg. Scenario generation and stochastic programming models

for asset liability management. European Journal of Operational Research,

134:279–292, 2001.

[20] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat,

D. Silver, and T. Graepel. A Unified Game-Theoretic Approach to Multi-

agent Reinforcement Learning. arXiv preprint arXiv:1711.00832, 2017.

[21] W. Leigh, N. Modani, R. Purvis, Q. Wu, and T. Robert. Stock market

trading rule discovery using technical charting heuristics. Expert Systems

with Applications, 23:155–159, 2002.

[22] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,

and M. Riedmiller. Playing Atari with Deep Reinforcement Learning. arXiv

preprint arXiv:1312.5602, 2013.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. Rusu, J. Veness, M. Bellemare,

A. Graves, M. Riedmiller, A. Fidjeland, G. Ostrovski, and et al. Human-

level control through deep reinforcement learning. Nature, 518:529–533,

2015.

37

[24] J. Moody and M. Saffell. Learning to Trade via Direct Reinforcement.

IEEE TRANSACTIONS ON NEURAL NETWORKS, 12:875–889, 2001.

[25] J. Moody, L. WU, Y. Liao, and M. Saffell. Performance Functions and

Reinforcement Learning for Trading Systems and Portfolios. Journal of

Forecasting, 17:441–470, 1998.

[26] R. Neuneier. Optimal Asset Allocation using Adaptive Dynamic Program-

ming. Advances in Neural Information Processing Systems, pages 952–958,

1996.

[27] R. Neuneier. Enhancing Q-Learning for Optimal Asset Allocation. Ad-

vances in Neural Information Processing Systems, pages 936–942, 1998.

[28] J. O, J. Lee, J. W. Lee, and B. T. Zhang. Adaptive stock trading with dy-

namic asset allocation using reinforcement learning. Information Sciences,

176:2121–2147, 2006.

[29] F. Papailias and D. D. Thomakos. An improved moving average technical

trading rule. Physica A, 428:458–469, 2015.

[30] P. C. Pendharkar and P. Cusatis. Trading financial indices with reinforce-

ment learning agents. Expert Systems with Applications, 103:1–13, 2018.

[31] T. H. Pham, G. D. Magistris, and R. Tachibana. Optlayer-practical con-

strained optimization for deep reinforcement learning in the real world.

2018 IEEE International Conference on Robotics and Automation (ICRA),

pages 6236–6243, 2018.

[32] J. Y. Potvin, P. Soriano, and M. Vallee. Generating trading rules on the

stock markets with genetic programming. Computers & Operations Re-

search, 31:1033–1047, 2004.

[33] J. Sirignano and R. Cout. Universal features of price formation in

financial markets: Perspectives from Deep Learning. arXiv preprint

arXiv:1803.06917, 2018.

38

[34] N. Srivastava, E. Mansimov, and R. Salakhudinov. Unsupervised Learn-

ing of Video Representations using LSTMs. International conference on

machine learning, pages 843–852, 2015.

[35] Y. Tan, W. Liu, and Q. Qiu. Adaptive Power Management Using Rein-

forcement Learning. ICCAD, pages 461–467, 2009.

[36] Y. Wang, D. Wang, S. Zhang, Y. Feng, S. Li, and Q. Zhou. Deep Q-trading.

http://cslt.riit.tsinghua.edu.cn, 2016.

[37] J. Xiong, Q. Wang, Z. Yang, P. Sun, L. Han, Y. Zheng, H. Fu, T. Zhang,

J. Liu, and H. Liu. Parametrized Deep Q-Networks Learning: Rein-

forcement Learning with Discrete-Continuous Hybrid Action Space. arXiv

preprint arXiv:1810.06394, 2018.

[38] X. Zhang, Y. Hu, K. Xie, W. Zhang, L. Su, and M. Liu. An evolutionary

trend reversion model for stock trading rule discovery. Knowledge-Based

Systems, 79:27–35, 2015.

[39] Y. Zhu and G. Zhou. Technical analysis: An asset allocation perspective on

the use of moving averages. Journal of Financial Economics, 92:519–544,

2009.

39

	1 Introduction
	2 Literature Review
	2.1 Stochastic programming-based models
	2.2 Heuristic methods
	2.3 Reinforcement learning-based methods

	3 Problem definition
	3.1 State space
	3.2 Action space
	3.3 MDP modeling

	4 Methodology
	4.1 Mapping function
	4.2 DQN algorithm

	5 Experimental results
	5.1 Performance measures
	5.2 Data summary
	5.3 Experiment setting
	5.4 Benchmark strategy
	5.5 Result

	6 Conclusion

