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Abstract

Image understanding heavily relies on accurate multi-label classi-
fication. In recent years, deep learning algorithms have become very
successful for such tasks, and various commercial and open-source
APIs have been released for public use. However, these APIs are often
trained on different datasets, which, besides affecting their performance,
might pose a challenge to their performance evaluation. This challenge
concerns the different object-class dictionaries of the APIs’ training
dataset and the benchmark dataset, in which the predicted labels are
semantically similar to the benchmark labels but considered different
simply because they have different wording in the dictionaries. To
face this challenge, we propose semantic similarity metrics to obtain
richer understating of the APIs predicted labels and thus their perfor-
mance. In this study, we evaluate and compare the performance of 13
of the most prominent commercial and open-source APIs in a best-of-
breed challenge on the Visual Genome and Open Images benchmark
datasets. Our findings demonstrate that, while using traditional met-
rics, the Microsoft Computer Vision, Imagga, and IBM APIs performed
better than others. However, applying semantic metrics also unveil
the InceptionResNet-v2, Inception-v3, and ResNet50 APIs, which are
trained only with the simple ImageNet dataset, as challengers for top
semantic performers.
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1 Introduction

Accurate semantic identification of objects, concepts, and labels from images is one
of the preliminary challenges in the quest for image understanding. The race to
achieve accurate label classification has been fierce and became even more so as a
result of public competitions such as the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) (Russakovsky et al [2015)), and the release of benchmark
datasets such as the YFCC100M (Thomee et al., [2016]), Visual Genome (Krishna et
2017), MS-COCO (Lin et al/, [2014), and Open Images (Kuznetsova et al., [2020).
Different learning approaches for multi-label classification have been suggested to
answer this call. Tsoumakas and Katakis (Tsoumakas & Katakis, 2006} [ Tsoumakas|
[Katakis, & Vlahavas|, 2009) divided these approaches into two main categories: 1)
problem transformation methods which transform the problem into one or more
single-label classification problem and then aggregate the results into a multi-label
representation; and 2) algorithm adaptation methods which solve the multi-label
prediction problem as a whole, directly from the data. In 2012, Madjarov et al.
(Madjarov, Kocev, Gjorgjevikj, & Dzeroski, |2012) introduced a third category of
methods, referred to as ensemble methods, which combine several classifiers to solve
the multi-label classification problem. In this approach, each of the base classifiers
in the ensemble can belong to either the problem transformation or algorithm
adaptation method category.

As the research field of multi-label classification advances, more and more
effective approaches have been suggested (Madjarov et all [2012} [Nasierding &
2012). In recent years, deep learning methods, such as convolutional neural
networks (CNN), and their variations, have demonstrated excellent performance (]E
[Gkioxari, Dollar, & Girshick], [2017; [He, Zhang, Ren, & Sun| 2015} [Huang, Wang|
Wang, & Tan|, 2013} [Ren, He, Girshick, & Sunl [2015; [Thomason, Venugopalan|
Guadarrama, Saenko, & Mooney), [Tran et alll 2016}, [Vinyals, Toshev, Bengio)
& Erhan, 2015; Wang et all 2016} [Yeh, Wu, Ko, & Wang], [2017). Some of the
more salient approaches were published as open-source or as commercial APIs,

such as from Imagga (Imagga, [2020), IBM Watson (IBM, [2020)), Clarifai (Clarifai
2020), Microsoft Computer-Vision (Microsoft), [2020)), Wolfram Alpha (Wolfram
2020), Google Cloud Vision (Google, 2020), DeepDetect (DeepDetect, 2020), YOLO

(Redmon, Divvala, Girshick, & Farhadi, [2016]), MobileNet (Howard et all, [2017),
Inception (Szegedy, Vanhoucke, Ioffe, Shlens, & Wojnal [2015)), ResNet (He, Zhang!
[Ren, & Sun, [2016) and InceptionResNet (Szegedy, loffe, Vanhoucke, & Alemi, 2017).
With these recent publications, the need for a best-of-breed performance comparison
has arisen. While some comparisons between multi-label classification methods have
been performed in the past (Madjarov et al [2012; Nasierding & Kouzani, [2012)),
none of them included both open-source and commercial APIs in such extensive
manner.

In this study, we address this need and evaluate the performance of 13 state-
of-the-art deep learning approaches with well-established multi-label evaluation
metrics (Sorower}, 2010} [Tsoumakas et al., 2009)). While these metrics evaluate the
performance based on whether the predicted labels exist in the ground truth list,
they do not consider the semantic similarity between them. With this oversight,
a fair comparison between the various APIs becomes challenging, as each of them
can be trained on different datasets, and therefore include different object class
dictionaries. To comply with this challenge, we propose to use semantic variations




of traditional evaluation metrics, the word mover’s distance metric (WMD) (Kusner!
Sun, Kolkin, & Weinberger, [2015)), and state-of-the-art text embedding methods
such as BERT (Devlin, Chang, Lee, & Toutanova, 2018|), RoBERTa (Liu et al.|
2019)), and XLNet (Z. Yang et al., [2019)) as more insightful evaluation metrics. To
the best of our knowledge, this study provides the most thorough evaluation of
state-of-the-art deep learning multi-label image classification from both commercial
and open-source APIs, and the only study to include semantic evaluation metrics.

The novel contributions of this studyﬂ are 1) demonstrating the significance of
the proposed semantic similarity metrics to the APIs’ performance evaluation in
particular when trained with different object class dictionaries, and 2) an extensive
comparison of the predictive performance of 13 of the most prominent commercial
and open-source publicly available APIs for multi-label image classification.

2 Multi-Label Image Classification APIs

We divide the classification APIs into two categories, commercial and open-source
(Table . While the open-source APIs publish their network architecture, training
schemes, and even make pre-trained models available for free use, the constantly
improving commercial APIs do not reveal much about their proprietary algorithm,
other than mentioning that they are based on deep neural networks.
Commercial services: These APIs are provided by various companies such as
Imagga (Imagga, [2020), IBM Watson (Visual Recognition) (IBM, [2020), Clarifai
(Clarifail 2020), Microsoft (Computer Vision) (Microsoft} 2020), Wolfram Alpha
(Image Identification) (Wolframl |2020)), and Google (Cloud Vision) (Google, 2020)).
Among those, only the Microsoft’s Computer Vision API hint that it is based on a
deep residual network (ResNet) (He et al., [2016]), which has shown high performance
in the past, nevertheless, they do not reveal the network size, applied training data
or any other specific variations.

We also include several top performing open-source frameworks with the capa-
bility of multi-label classification.
DeepDetect: The DeepDetect approach (DeepDetect| |2020) is based on the
GoogLeNet architecture with 22 layers network (Szegedy, Liu, et all [2015) also
known as the Inception-vl network. Here, we evaluate the model provided by the
Caffe framework which is pre-trained on the ImageNet dataset.
VGG19 The very deep CNN also know as the ”VGG” network (Simonyan & Zisser{
man), 2014), is consisted of 16-19 CNN layers. Here we included the 19 layer version
trained on the ImageNet dataset (Keras Applications], |2020]).
Inception v3: The Inception-v3 approach (Szegedy, Vanhoucke, et al.| 2015 imple-
ments variations of the inception-v1 blocks for accuracy optimization. We evaluated
the Inception-v3 Keras implementation trained on the ImageNet dataset (Keras
Applications), 2020)).
InceptionResNet v2: The InceptionResNet-v2 approach includes the Inception-
v4 advances together with residual connections (Szegedy et al., [2017). Here, we
used the ImageNet pre-trained model available via Keras implementation (Keras
Applicationsl, |2020)).
ResNet50: The Residual network (ResNet) approach implements residual connec-

!The the APIs inference scripts and metrics applied in this study are available in
https://github.com/Adamkubany/Multilabel _Semantic_API_comparison
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tions along traditional CNN. The ResNet offers various layer depths (50, 101, 152),
here, we evaluated the very popular 50 layers network trained on the ImageNet
dataset (Keras Applications), 2020) and on the COCO dataset
[Olafenwa & Olafenway, 2020) as a performance reference.

MobileNet v2: This is the second version (Sandler, Howard, Zhu, Zhmoginov, &|
of the MobileNet approach for mobile devices (Howard et al., [2017),
it includes compact convolutional building blocks accompanied with residual ideas.
We evaluated its ImageNet pre-trained model (Keras Applications), 2020).

YOLO v3: You Only Look Once (YOLO) third version approach
[2016} [Redmon & Farhadi, 2018) includes 106 convolution layers with residual
connections and classify the image object in three scales. Here, we evaluated the
DarkNet53 version pre-trained on the ImageNet dataset (Redmon & Farhadi, [2020)
and on the COCO dataset (Olafenwa & Olafenwal 2020) for additional performance
reference.

3 Evaluation Metrics

Evaluating the different APIs’ prediction performance requires standardized measures
and metrics. Various metrics have been proposed in the past for such evaluation
(Sorower], [2010} [Tsoumakas et al. 2009); these metrics can be divided into bipartition
and ranking metrics (Tsoumakas et al) 2009). As none of the evaluated APIs
provide a ranking for all of the labels in the ground truth dataset, we focus only on
the bipartition metrics. For the metrics’ definitions let us denote Y; € L = {0,1}¢
as the multi-label binary encoding label set of image ¢ from n images dataset where
L is the ¢ sized label set dictionary, and Z; as the multi-label binary encoding label
set of image i as predicted by the multi-label classifier h; hence, Z; = h (z;) € L,
where x; € X, is defined as the feature vector of image 1.

3.1 Bipartition Metrics

There are two types of bipartition evaluation metrics. Example-based bipartition
evaluation metrics refer to various average differences of the predicted label set
from the ground truth label set for all the dataset samples, whereas the label-based
evaluation metrics evaluate each label separately and then average for all the labels.

3.1.1 Example-Based

The following Accuracy, Precision, Recall, and F; metrics are standard metrics
adapted for multi-label classification (Godbole & Sarawagi, [2004; Madjarov et al.l
. Accuracy is defined as the Jaccard similarity between the predicted label set
Z; and the ground truth label set Y;, which is then averaged over all n images.
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Precision and Recall are defined as the average proportion between the number of
correctly predicted labels (|Y, N Z;|) and either the number of predicted labels Z;



or the number of ground truth labels Y;.
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3.1.2 Label-Based

Label-based metrics evaluate the performance of a classifier by first evaluating each
label and then obtaining an average of all of the labels. Such averaging can be
achieved by one of two conventional averaging operations, namely macro and micro
averaging (Y. Yang [1999). For that purpose, any binary evaluation metric can be
applied, but usually Precision, Recall, and their harmonic mean Fj are applied in
information retrieval tasks (Tsoumakas et al.l [2009)).

For each label A; : j =1...¢q, the summation of true positives (tpj), true negatives
(tn;), false positives (fp;), and false negatives (fn;) are calculated according to
the classifier applied. Then, the binary performance evaluation metric B can be
calculated with either macro or micro-averaging operations:
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Therefore, the definitions of Precision (P), Recall (R), and F; are easily derived as
(Madjarov et al., 2012):
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where Macro Fj is the harmonic mean of Precision and Recall based on first
averaging each label \; and then averaging over all labels. On the other hand, Micro
F} is the harmonic mean of Micro Precision and Micro Recall as defined above.

For all of the above metrics, they score on a scale of zero to one, where a higher
score implies better alignment between the predicted label set and the ground truth
set.

3.2 Semantic Similarity

The current formulations of the above metrics share a significant drawback as
they consistently overlook the inherent semantic similarity between each label.
For example, let’s assume the ground truth multi-label set is {"bicycle,” ”child,”
"helmet,” "road,” "tree” }, and the predicted set is {"bike,” "boy,” "trail,” ”tree,”
"grass,” "flower” }. Evaluating the similarity between the two label sets with the
above metrics will consider only the label “tree” as a true positive and overlook the
close semantic similarity between the labels {“child,” “boy”}, {“bicycle,” “bike”}
and {“road,” “trail”}.

To overcome this misrepresentation, a straightforward adjustment can be made.
For each of the above example-based metrics (Accuracy, Precision, Recall, and F}),
the correct predictions can be decided not by the exact predicted label, but rather
the semantic similarity between the predicted and true labels. Here, we use the
cosine similarity (p - r/||p||||7]]) between the word2vec embeddings (Mikolov, Chen|
Corrado, & Dean 2013) of the predicted (p) and real (r) labels, where the correct
prediction is considered above certain thresholdﬂ

Additionally, we applied the word mover’s distance (WMD) metric (Kusner
et al., [2015)), which is an earth mover’s distance based method (Pele & Werman,
2008l [2009), and aimed at evaluating the semantic distance between two documents.
Let us denote Y;* =y; 5 : j =1,...,r as the ground truth label set of image ¢, and
Z} = zs:58=1,...,p as the label set of image 4 predicted by the multi-label
classifier h, Z} = h(x;). Note that Y;* and Z; include the explicit label set (e.g.,
{"bike,” "boy,” "trail,” "tree,” ”grass,” ”flower” }), where r and p don’t have to be
on the same size. Defining the two label sets as two bag-of-words (BOW) allows us to
apply the WDM method to evaluate their semantic distance. The WDM algorithm
requires that the two BOW are represented as a normalized BOW (nBOW) vector
d € R, where n =rUp, and d; = t;/ Y _;_, tx : t; is the number of times that the
word [ of n appears in the BOW. Let d be the nBOW representation of Y;* and
d' of Z¥. The second requirement of the WDM is a semantic distance evaluation
between every two labels, where ¢(l,k) is referred to as the cost of “traveling” from
word [ to word k. Therefore, Let W € R%™X" bhe the word2vec embedding matrix,
where wy, € R¥™ is the dim-dimensional embedding representation of word & from
the vocabulary of n words. Hence, the “traveling cost” from word [ to word k is
defined as their Euclidean distance, c(l, k) = ||w; — wg||. Next, let us define a sparse
flow matrix T € R™™", where #; ;, > 0 represents the ratio of participation of word
[ from d to travel to word k from d’. It is clear that a word can participate in
traveling as much as its nBOW ¢; ratio, therefore the Y, ¢, = d; and ), t; = d,

2Here, the threshold is set to 0.4.



participation ratio restrictions are applied. Finally, the distance between the two
BOW can be defined as the minimum sum of the weighted traveling cost from d to
d/
n
wdm = min Z tike (1, k) (13)
1k=1

subject to the participation ratio restrictions. Since the wmd calculate the minimum
traveling distance a score of 0 is considered as a perfect match. For our purposes,
we average the wmds for all of the n images in the tested dataset for every API:

1 n
WMD =~ > wdm; (14)
=1

The above metrics are based on a single word embedding to evaluate the labels’
semantic similarity; while the semantic example-based metrics use the embeddings
within known metrics, the WMD takes it one step further, and considers the
aggregated similarity between the ground-truth and predicted BOWs. As aggre-
gated understanding can be beneficial for semantic similarity (Kubany, Rokach, &
Shmilovici, 2020)), we propose to leverage the aggregated embeddings of the BOWs
as a means to find their aggregated similarityﬂ The BERT (Devlin et al., [2018)),
RoBERTa (Liu et al., 2019), and XLNet (Z. Yang et al., 2019) are bidirectional
transformer-based methods and considered as the state-of-the-art approaches to
embed an entire text to a single embedding (Wolf et al. 2019). We also consider
the semantic similarity fine-tuned versions of BERT and RoBERTzﬁ methods as
they demonstrate superior performance in semantic similarity tasks (Reimers &
Gurevychl, 2019).

4 Results and Discussion

4.1 Experiment Setup

Testing Dataset: The testing dataset should include images from multiple domains,
as well as multiple semantic annotations of objects, concepts, or labels, to ensure as
close to real-life evaluation as possible. Some of the commercial APIs apply limits
regarding the number of image requests for multi-label classification during a period
of time and in total. Given these limitations, we evaluated the APIs’ performance
with the first 1,000 imageﬁﬂ from each dataset, which, to our understanding, are
sufficient for satisfactory performance evaluation of the examined APIs.

e Visual Genome dataset: The Visual Genome (VG) datasetﬂ (Krishna et
al., 2017)) consists of 108,077 everyday multi-domain images, which represent
the intersection between the MS-COCO (Lin et al. 2014) and the YFCC100M
(Thomee et al.|[2016]) datasets. Each image in the dataset is associated with an
average of 21 objects (out of 75,729 possibilities) for multi-label classification

3Calculated by the cosine similarity.

4Here we used the *bert-base-nli-stsb-wkpooling’ and ’roberta-base-nli-stsb-mean-tokens’
pretrained versions.

5Sorted in name ascending order. We selected the first 1,000 images that have objects,
as some of the images do not have them.

5We used the 1.0 version of the dataset.



purposes. Within the 1000 images subset, there are 3728 possible objects, an
average of 14.1 objects per image, and 1.05 labels per object, where 8.5% of
the used labels are unknown to the word2vec embedding model.

e Open Images dataset: The Open Images (OI) datasetﬂ (Krasin et al., |2017;
Kuznetsova et al., 2020) incorporate ~9M images of diverse sceneries collected
from the ”Flickr” online service. For multi-label classification, each image
includes an average of 8.3 objects out of 600 classes. Within the 1000 subset,
each image includes an average of 3.9 objects out of 263 object classes, where
16.5% of the 3.9 average objects are unknown to the word2vec embedding
model.

It is essential to consider the applied training data for the various APIs. We assume
that the commercial APIs vendors continuously attempt to improve their services.
Since the commercial APIs’ training data is unknown, selecting widely accessible
and popular datasets makes it more likely to be considered, and therefore should
confine the predicament of biased evaluation. For the open-source APIs, we chose
the ImageNet pre-trained models, which is well-known simple scenery dataset and
should provide as an adequate baseline.

APIs’ Evaluated Objects: Some of the commercial APIs restrict the number of
predicted objects per image, while others predict only a few object labels with high
confidence and low confidence for others. Evaluating with different top levels allow
a fair comparison between the APIs. In this study, we perform the APIs evaluation
based on three object levels: the top five, three, and one label(s) according to their
confidence level (see Tables . Also, for a fair comparison, we queried all the
APIs using their vanilla versions without any specific fine-tuning.

API Type Training Unknown Labels Mean
Data out of Top Five Labels
Objects (%) Per Object
(VG / O1) (VG / O1)
Clarifai Commercial — unknown 0.5/6.5 1/1
Google Cloud Vision Commercial ~ unknown 10 / 154 1/1
IBM Watson Commercial — unknown 0.8 /81 1/1
Immaga Commercial — unknown 5.6 /5.7 1/1
Microsoft Computer Vision Commercial —unknown 11/27 1/1
Wolfram Commercial ~ unknown 42.3 / 23.8 1/1
DeepDetect Open Source ImageNet 104 /11 1.95 / 1.89
InceptionReNet-v2 Open Source ImageNet 11.9 / 11.1 1.98 / 1.95
Inception-v3 Open Source ImageNet 12.1 /114 1.97 / 1.94
MobileNet-v2 Open Source ImageNet 11.4 / 10.6 1.97 / 1.93
ResNet50 Open Source ImageNet 10.3 / 9.2 1.99 / 1.95
ResNet50 Open Source  COCO 5.2 /39 1/1
VGG19 Open Source ImageNet 9.6 / 10.2 2/1.93
YOLO-v3 Open Source ImageNet 19.6 / 16 1/1
YOLO-v3 Open Source ~ COCO 5.5 /4 1/1

Table 1: APIs’ metadata.

"We used the sixth version of the dataset.



4.2 Example-Based Metrics

One of the first observations is that in general, the examined APIs have relatively
low scores. A few factors can explain this observation; first, there is the issue of
model settings and training data, and although we apply well-known datasets to
reduce testing bias, we do not know which training data was used by the commercial
APIs, on the other hand, the open-source APIs behave as expected as they all were
pre-trained with the simple ImageNet dataset. Nevertheless, since the commercial
APIs achieve higher scores than the open-source APIs, it might suggest that at least
some images of the datasets were in their training data. Additionally, although the
commercial APIs’ out of the box configurations also contribute to the low scores,
they are necessary if we wish for a fair comparison without prior knowledge of its
structure. Hence, we analyze the commercial and open-source APIs separately.

Second, the VG dataset holds an average of 14.1 objects per image, while we

account for a maximum of five predictions, this explains the low scores of the
Accuracy, Recall, and F| metrics, as they consider the number of the ground truth
objects’ labels. On the other hand, the OI dataset holds an average of 3.9 objects
per image, thus, provide a larger scale of Accuracy, Recall, and F; metrics’ scores,
with the same scale for the Precision metric.
Commercial APIs: The commercial APIs’ performance is consistent on both
datasets, and reveal that four APIs stand out with high scores: Microsoft Computer
Vision (MCV), Imagga, IBM and Google APIs consistently hold top places, with
the MCV API dramatically outperform others (inhabit the most of green cells in
Tables . It is worth noting that the Google API performance is not consistent
between the datasets, as it holds a higher place in the OI dataset. We might explain
this top performance to the fact that Google also manufactures the OI dataset, and
it could have been used in its training. Having a high Precision score means that
most of the predictions made by the MCV API are relevant, with only a few false
positives. It also has a high Recall scores, indicating it predicted relatively more
of the ground truth labels (with only a few false negatives); this is also reflected
in the relatively high Accuracy score. The MCV’s top F} score also reassures its
dominance as it is the harmonic mean of its high scores in the Precision and Recall
metrics. Since the number of true labels is higher than the predicted ones, in our
view, the Precision metric gives a more reliable indication of the APIs performance.
Here, the MCV’s Precision dramatically outperforms others, which means that its
order of predictions is closer to the true labels than other APIs.

Another perspective is the score dynamic between the different top predicted
levels. As expected, as the number of predicted labels rise, the Precision scores
decrease (Figures |5| and [8]) as it is more likely to be correct in one label than in five,
and the Recall scores increase (Figures |4|and [7)) as it more likely to find more labels
in common with the true labels. The increasing F; scores (Figures 3| and @ teach
us that the Recall dynamic change is stronger than the Precision one.
Open-Source APIs: As expected, the open-source APIs produce much lower
results than the commercial APIs. These relatively low results can be explained
by their training data, as they are all trained on the ImageNet dataset, which
includes much simpler sceneries and different labels than the datasets. With
that saying, the APIs consisted of more elaborated network architecture yield
better performance, usually in relation to their specific engineering advances, with
the general performance order of InceptionResNet-v2, Inception-v3, MobileNet-v2,
ResNet50, YOLO-v3, and VGG19. As before, we particularly notice the performance



differences within the Precision metric, which demonstrate the InceptionResNet-v2
and Inception-v3 dominance. We will revisit the analysis of these APIs within the
semantic analysis (section [4.4]).

The superior performance of the commercial APIs, and in particular, of the MCV

API raises the question of whether their top performance is due to their network
structure, training data, or both. We can only partially answer this question since
the complete details of commercial APIs is unknown; fortunately, we know that the
top-performing MCV API is based on the ResNet architecture (He et al.| [2016)), but
unsure of its specific network details and training data. Therefore, to confine this
question, we compare its performance on the VG dataset with the ResNet50 and
YOLO-v3 APIs trained on both ImageNet and COCqﬂ datasets (Table @ We can
see that the performance change of the ResNet50 and YOLO-v3 APIs between the
ImageNet and the COCO pre-trained models are consistent in scale. Let us analyze
the MCV API performance under the assumption that Microsoft would offer the
best possible network architecture they have in their arsenal for their payable API.
Considering that, if the MCV would have been trained only on the COCO dataset,
it needed to outperform the COCO pre-trained ResNet50, as it is the leanest flavor
of ResNet with 50 layers, where deeper and better-performing networks with 101
and 152 layers exist (He et all |2016). Since, in general, the MCV yield scores
higher than than the ImageNet pre-trained ResNet50 and lower than the COCO
pre-trained ResNet50, in particular within the top one and three predictions, we are
left to conclude that it is not trained solely on the COCO dataset, and can remain
in the evaluation. Also, we perform the same analysis of the MCV, ResNet50, and
YOLO-v3 performance on the OI dataset (Table . Since, as far as we know,
the OI does not include the COCO dataset, and the MCV API dominant over the
ResNet50 COCO API, it reassures our previous conclusion that the MCV API is
trained on more images than those inhabit the COCO dataset.
There is an immense performance jump when training with the COCO dataset for
the ResNet50 and YOLO-v3 APIs on both datasets. The performance turnover is
so significant for the YOLO-v3 API on the OI dataset, that it changes its rank from
the last place to among top performers, especially in the top predicted label. This
performance change highlights the drawback of training with a simple dataset as the
ImageNet and makes us wonder about the potential performance improvement of
the other open-source APIs, which demonstrate better performance than YOLO-v3
when trained only on the ImageNet dataset.

From the example-based metrics perspective, the MCV is the top all-around
performer; nevertheless, if other APIs are needed, the Imagga and IBM are excellent
options.

4.3 Label-Based Metrics

Within this type of metrics, we evaluate the performance of the various APIs
from the label perspective (see Tables . In the Macro family of metrics, we
evaluate the performance of predicting each label separately and then averaging
them all, whereas, in the Micro metrics, we evaluate the performance of all the
labels’ predictions together. Furthermore, since the Macro metrics does not account
for the false predictions (fp for Precision and fn for Recall) when the true positive

8The VG dataset in the intersection between the MS-COCO and the YFCC100M
datasets.
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is zero, and the Micro metrics does, we can evaluate the prediction balance between
the labels. We notice low Macro scores for the VG dataset, whereas the OI dataset
allows much higher scores. The VG low scores suggest that many labels have zero
true positives, which agree with a higher number of object classes (3728 in the
VG, and 263 in the OI) and a long tail object class distribution (Figure [1)). The
score difference of the Recall metric in between the VG and OI datasets, continue
to support this line of thinking. The same score scale of the Recall Micro and Recall
Macro metrics, with even a slightly higher Recall Micro score in the VG dataset,
further indicates that the zero true positives are of infrequent labels. On the other
hand, while the score scale of the Precision metrics in the OI dataset is about the
same, in the VG dataset, it is not. As before, The VG’s low Precision Macro score is
due to the many zero true positives, while the higher Precision Micro score indicates
that there are less false positives. Still, the Precision Micro score in the VG dataset
is lower than in the OI dataset due to the division in dataset’s object class number.
Commercial APIs: Like with the example-based metrics, the MCV, IBM, and
Imagga APIs, stand out on both datasets. However, the Google Cloud Vision APIs,
which demonstrate only occasional good performance on the VG dataset, outperform
all APIs in the OI dataset. As before, we suspect that the exceptional top scores of
Google Cloud Vision API on the OI dataset might suggest that the Google published
dataset is part of its training set.

Open-Source APIs: For these APIs, besides within the Micro Precision metric,
the performing differences between the best and worst APIs are marginal, making
it very hard to gain any knowledge. Nevertheless, there are two points worthy of
pointing out; first, within the Macro Recall metric, for the first time, although in
a small margin, the InceptionResNet-v2 and the Inception-v3 APIs consistently
outperform all others in the VG dataset, meaning that on average they are slightly
more capable of predicting the correct label. Second, for the Micro Precision metric,
the YOLO-v3 API performs better than other open-source APIs on the VG dataset,
following by the InceptionResNet-v2, Inception-v3, and ResNet50 APIs.

The MCV, Imagga, IBM, and Google APIs are ahead with the MCV outperform-
ing all other considering the scores from both the example and label-based metrics.
Additionally, the InceptionResNet-v2 and the Inception-v3 APIs demonstrate some
good performance, and it would be wise to give them further consideration.
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Figure 2: Example image ’'1.jpg’ from the Visual Genome dataset

API Labels Recall ~ Recall  Precision Precision WMD Fine-Tuned Fine-Tuned
(Semantic) (Semantic) BERT  RoBERTa
Clarifai city, vehicle, people, road, street 0.04 0.08 0.2 04 3.19 0.28 0.13
Google Cloud Vision ian, street, signage, walking 0.04 0.08 0.2 0.4 3.48 0.27 0.19
IBM Watson street, city, crowd, people 0.04 0.04 0.25 025 335 0.13 -0.02
Imagga sidewalk, walk, street, road, city 0.08 0.08 04 04 330 0.29 0.20
Microsoft Computer Vision outdoor, building, street, road, sidewalk 0.12 0.12 0.6 0.6 3.20 0.28 0.29
Wolfram road, path, container, conveyance, vehicle 0 0.04 0 02 3.62 0.25 0.02
DeepDetect ski, crutch, [prison, prison house], sliding door, shovel 0 0 0 0 3.69 0.25 0.21
InceptionResNet-v2 parking meter, [traffic light, traffic signal, stoplight], 0.04 0.08 0.2 04 3.80 0.35 0.25

[pay-phone, pay-station], [mailbox, letter box],
[cash machine, cash dispenser, automated teller machine]
Inception-v3 [jinrikisha, ricksha, rickshaw], 0 0.04 0 0.2 3.77 0.48 0.30
ashcan, trash can, garbage can, wastebin],
[streetcar, tram tramcar, trolley, trolley car],
bookshop, bookstore, bookstall], plastic bag
MobileNet-v2 parking meter, [jinrikisha, ricksha, rickshaw], 0.04 0.12 0.2 0.6 3.57 0.45 0.26
[police van, police wagon, paddy wagon],
[cab, hack, taxi, taxicab], crutch
Resnet50 parking meter, [mailbox, letter box], 0.04 0.12 0.2 0.6 3.69 0.47 0.29
[ashcan, trash can, garbage can, wastebin],
[traffic light, traffic signal, stoplight]

[jinrikisha, ricksha, rickshaw]
Resnet50 (COCO) person, car, bicycle, traffic light, truck 0.04 0.12 0.2 0.6 3.20 0.35 0.24
VGG19 parking meter, [jinrikisha, ricksha, rickshaw]. 0.04 0.08 0.2 0.4 3.78 0.34 0.25
[zas pump, gasoline pump, petrol pump], ski, ambulance
YOLO-v3 pole, cash machine, guillotine, plastic bag, jean 0 0.02 0 0.2 3.83 0.26 0.07
YOLO-v3 (COCO) person, car, truck, bicycle, parking meter 0.08 0.16 04 0.8 3.26 0.36 0.17
Ground Truth arm, back, bike, bikes, building, car, chin, clock, glasses, guy,

headlight, jacket, lamp post, man, pants, parking meter, shade,
shirt, shoes, sidewalk, sign, sneakers, street, tree, tree trunk

Table 2: The APIs’ top five labels for image '1.jpg’ from the Visual Genome
dataset (Figure The table’s annotations refer to bold labels as tp and
the underline labels as semantic similar p.
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4.4 Semantic Metrics

To demonstrate the importance of semantic metrics within the multi-label evaluation,
we refer to the APIs’ top five predicted labels of image 1 from the VG dataset as
an example (Figure 2] Table [2). Within this image, let us take the first API as an
example, in human prospective the Clarifai API includes many valid labels, but only
the ”street” label is correct according to the ground-truth labels list. For instance,
the ”wehicle” label is not included in the ground-truth label set, and traditionally not
considered as a true positive prediction. Obviously, it has the same meaning as the
ground-truth ”car” label, and a similarity score of (.78, and therefore, is considered
as semantic true positive, as it should be. Since we are more interested in the
semantic meaning of the labels rather than their exact wording, this example, like
many others, showcase the necessity of semantic metrics for multi-label evaluation,
in particular when the APIs are trained on a different object class list from the
examined dataset.

The word2vec embedding model is well-known to be an accurate and compre-

hensive word representation. Nevertheless, despite our eﬂortsﬂ some of the APIs’
predicted labels are not found within the model and considered as the ”"unknown”
label (see Table [1] for APIs’ ”unknown” rates). We further discuss the effect of these
settings with regard to semantic example-based and WMD metrics.
Semantic Example-Based Metrics: Evaluating the APIs’ performance with the
classic approach stated the MCV, IBM, and Imagga APIs as top performers with
the MCV outperforming all, the semantic evaluation on the VG dataset shed a new
light of the APIs performance. In this evaluation, the MCV is still a high performer,
but now the InceptionResNet-v2, Inception-v3, and frequently the ResNet50 and
MobileNet-v2 APIs demonstrate top performance, meaning they can predict more
closely semantically related labels. These findings are even more dramatic as they
are trained on the ImageNet dataset and have about ten percent of ”unknown”
labels (Table , even if considering that they predict about twice the labels per
object, their rate of unknowns is still higher. A higher percentage of ”unknowns’
makes it harder to recognize a predicted label as true positive, which lowers the
performance metrics score. These findings demonstrate the performance advantage
of a more elaborated network structure over simpler and shallower networks (like
the DeepDetect API); moreover, it highlights the importance of the residual ideas
as it exists in three of the five top semantic performers (InceptionResNet-v2, MCV,
and ResNet50). The semantic evaluation on the OI dataset incline to less dramatic
results for the open-source APIs in terms of top performers. Nevertheless, the
simple dataset trained APIs, which naturally achieve much lower scores than the
commercial APIs with the traditional metrics, now measure on the same semantic
score scale. We relate the lower open-source semantic scores in the OI dataset to its
lower average objects per image (14.1 in the VG vs. 3.9 in the OI), as the semantic
metrics benefit from more labels to be potentially semantically similar. These results
further demonstrate the benefits of the semantic metrics, which can compare APIs
with a lesser effect of their training dataset.

M

9For example, the label ” parking meter” for image 1, which is first lowercased and cleaned
from unwanted chars, does not exist in the word2vec model. We try different permutation
of the label: without space (”parkingmeter”), with an underscore (”parking-meter”), with
first caps and underscore (”Parking -Meter”). In this case, the ”Parking-Meter” label
permutation exists in the word2vec model.
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It is important to note that these findings of the performance dominance of the more
elaborated APIs (InceptionResNet-v2, Inception-v3, and frequently the ResNet50)
found here are consistent with prior ImageNet evaluations (Silberman & Guadar-
ramal, [2016)), and further validate our findings.

Additionally, the high "unknown” rates of the Wolfram (42.3% / 23.8%), and YOLO-
v3 (19.6% / 16%) APIs can partially explain their semantic low scores. When such
a significant portion of the labels predicted as "unknown” and different from the
actual labels, it makes no surprise they have such low scores.

WMD Metric: Following the superior performance of the InceptionResNet-v2,
Inception-v3, ResNet50 APIs in the semantic example-based metrics, we are some-
what surprised as to their lower scores with the WMD metric. Nevertheless, in
our view, a simple explanation exists. If we take the top five level case as an
example, each of the open-source APIs predicts about ten labels per image (two
labels per object, see Table , except for the YOLO-v3 API which predicts five
labels. Considering their "unknown” rates, on average, all of the open-source APIs
include one "unknown” label, which is much rarer in the commercial APIs. As
the WMD metric calculates the minimum traveling distance between the true and
predicted nBOW label vectors, the inclusion of the ”unknown” label in the nBOW
is forcing the semantic distance to be much higher, hence lowering the open-source
APIs scores.

Labels’ BOW Embedding: Considering a BOW aggregated embedding allows
us to overcome the issue of "unknown” labels and to estimate the aggregated labels’
semantic similarity directly. Within this evaluation, the vanilla version of the BERT,
RoBERTa, and XLNet methods produced poor results with ~0.007 standard devia-
tion between the APIs scores. These results are consistent with previous findings
in which their vanilla versions are prone to poor sentence embeddings (Reimers
& Gurevych, 2019)). In contrast, the semantic similarity scores of the fine-tuned
versions of the BERT and RoBERTa methodd™ demonstrate conclusive results on
the VG dataset. These findings demonstrate that the results of both embeddings
agree with each other, and strongly supports the previous semantic example-based
metrics results, in which the InceptionResNet-v2, Inception-v3, and ResNet50 APIs
consistently demonstrate top performance. As with the Semantic Fxample-Based
metrics, the open-source APIs perform better with VG dataset than with the OI
dataset. The BERT and RoBERTa methods benefit from more input words to
produce more accurate embeddings (up to a point) and the lesser amount of the OI
objects per image, in particular in the face of a large amount of BOW predicted
labels of the open-source APIs harm their semantic similarity score. Therefore, the
performance evaluation of the open-source APIs with the OI dataset is less infor-
mative than with the VG dataset. Within this context, it is essential to remember
that the issue of input word number is critical for accurate embeddings for every
use in such methods.

Whereas the non-semantic metrics exhibit the dominance of the MCV, Imagga,
and IBM APIs, The semantic metrics challenge their dominance and allow the simpler
dataset trained APIs to be considered as equals, and even weigh the InceptionResNet-
v2, Inception-v3, and ResNet50 APIs as the top semantic performers.

10We have not found the semantic similarity fine-tuned version of XLNet.
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5 Conclusions

In this study, we compared the performance of some of the most prominent deep
learning multi-label classification APIs. Throughout our evaluations using the
traditional metrics approaches, the MCV, IBM, and Imagga APIs consistently
demonstrate top performance with the MCV API as the top performer; obviously,
their performance is no match for the open-source APIs which are trained with
a much simpler dataset. However, the semantic metrics allow these low starting
point APIs to be evaluated as equals and ever consider the InceptionResNet-v2,
Inception-v3, and ResNet50 APIs among the top semantic performers. These
evaluations demonstrate the capabilities and added value of the semantic metrics in
obtaining profound insights regarding the labels meaning even when training with a
simple dataset and a different object-class dictionary, insights, which are unavailable
otherwise.

As the field of multi-label classification advances, we believe that the proposed
semantic metrics and the performance comparison performed in this study can be
beneficial for both researchers and users in the quest for image understanding.
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