
Forecasting with time series imaging

Xixi Lia,1, Yanfei Kanga,1, Feng Lib,∗

aSchool of Economics and Management, Beihang University, Beijing 100191, China.
bSchool of Statistics and Mathematics, Central University of Finance and Economics, Beijing 102206, China.

Abstract

Feature-based time series representations have attracted substantial attention in a wide

range of time series analysis methods. Recently, the use of time series features for forecast

model averaging has been an emerging research focus in the forecasting community. Nonethe-

less, most of the existing approaches depend on the manual choice of an appropriate set of

features. Exploiting machine learning methods to extract features from time series automat-

ically becomes crucial in state-of-the-art time series analysis. In this paper, we introduce an

automated approach to extract time series features based on time series imaging. We first

transform time series into recurrence plots, from which local features can be extracted using

computer vision algorithms. The extracted features are used for forecast model averaging. Our

experiments show that forecasting based on automatically extracted features, with less human

intervention and a more comprehensive view of the raw time series data, yields highly compa-

rable performances with the best methods in the largest forecasting competition dataset (M4)

and outperforms the top methods in the Tourism forecasting competition dataset.

Keywords: Forecasting, Time series imaging, Time series feature extraction, Recurrence

plots, Forecast combination.

1. Introduction

Time series features are a collection of statistical representations of time series character-

istics. Feature-based time series representation has attracted remarkable attention in a vast

majority of data mining tasks for time series. Most of the time series problems, including

time series clustering (e.g., Wang et al., 2006; Bandara et al., 2020), classification (e.g., Fulcher

and Jones, 2014; Nanopoulos et al., 2001) and anomaly detection (e.g., Hyndman et al., 2015;

Talagala, Hyndman, Smith-Miles, Kandanaarachchi and Muñoz, 2019; Corizzo et al., 2020),

∗Corresponding author
Email addresses: lixixi199407@buaa.edu.cn (Xixi Li), yanfeikang@buaa.edu.cn (Yanfei Kang),

feng.li@cufe.edu.cn (Feng Li)
URL: https://orcid.org/0000-0001-5846-3460 (Xixi Li), https://orcid.org/0000-0001-8769-6650

(Yanfei Kang), https://orcid.org/0000-0002-4248-9778 (Feng Li)
1The authors contributed equally.

Preprint submitted to arXiv

ar
X

iv
:1

90
4.

08
06

4v
3

 [
st

at
.M

L
]

 5
 J

un
 2

02
0

are eventually attributed to the quantification of similarity among time series data using time

series feature representations. Fulcher (2018) presents thousands of interpretable features that

can be used to represent a time series, such as global features, subsequence features and other

hybrid features, for classifying time series (Fulcher and Jones, 2014) and labeling the emotional

content of speech (Fulcher et al., 2013). Christ et al. (2018) compute 794 time series features

based on hypothesis tests and illustrate their applications in time series anomaly detection and

classification. Another line of approaches for time series feature extraction is by auto-encoder

models (e.g., Vincent et al., 2008). Corizzo et al. (2020) further exploit time series features

extracted from auto-encoder models for gravitational waves detection. Other recent studies use

auto-encoder models for feature representation in time series forecasting (e.g., Laptev et al.,

2017; Abdollahi et al., 2020).

Instead of the traditional time series forecasting procedure – fitting a model to the historical

data and simulating future data based on the fitted model, selecting the most appropriate

forecasting model or averaging a number of candidate models based on time series features has

been a popular alternative approach. In the last few decades, many attempts have been made on

the feature-based model selection and averaging procedures for univariate time series forecasting.

For example, Collopy and Armstrong (1992) provided 99 rules using 18 features to combine four

extrapolation methods by examining a rule base to forecast annual economic and demographic

time series; Arinze (1994) described the use of artificial intelligence techniques to improve

the forecasting accuracy, built an induction tree to model time series features and developed

the most accurate forecasting method; Shah (1997) constructed several individual selection

rules for forecasting using discriminant analysis based on 26 time series features; Meade (2000)

used 25 summary statistics of time series as explanatory variables in predicting the relative

performances of nine forecasting methods based on a set of simulated time series with known

properties; Petropoulos et al. (2014) proposed “horses for courses” and measured the effects of

seven time series features on the forecasting performances of 14 popular forecasting methods

on the monthly data in the M3 dataset (Makridakis and Hibon, 2000); more recently, Kang

et al. (2017) visualized the performances of different forecasting methods in a two-dimensional

principal component feature space and provided a preliminary understanding of their relative

performances. Talagala et al. (2018) presented a general framework for forecast model selection

using meta-learning in which they utilize a random forest algorithm to select the best forecasting

method based on time series features. Montero-Manso et al. (2020) trained a meta-model to

obtain the weights of various forecasting methods and made a weighted forecasting combination.

The input of the meta-model is a set of features calculated on the training data, while the output

2

is a group of weights assigned to each candidate forecasting method. Their method ranked 2nd

in the M4 competition (Makridakis et al., 2020).

Having revisited the literature on feature-based time series forecasting, we find that (i) al-

though researchers often highlight the usefulness of time series features in selecting the best

forecasting method, most of the existing approaches depend on the manual choice of an ap-

propriate set of features, which makes the forecast process that relies on the data and the

expertise of the forecasters inflexible (Fulcher, 2018), and more importantly (ii) the current

literature on feature-based forecasting focuses on global features of time series, leaving local

characteristics under-emphasized. In some instances, the local dynamics of time series contain

important information such as heart failure in medical signals and irregular weather changes.

Therefore, exploiting automated feature extraction from time series data becomes vital. In-

spired by the recent work of Hatami et al. (2017) and Wang and Oates (2015) in time series

classification tasks, this paper aims to explore time series forecasting based on model averaging

with the idea of time series imaging, from which time series global and local features can be

automatically extracted using computer vision algorithms. The proposed approach also enables

automated feature extraction. This novel approach for time series forecasting is more flexible

than forecasting based on manually curated time series features.

The rest of the paper is organized as follows. Section 2 presents our feature extraction

method for time series imaging. In Section 3, we describe how to assign weights to a group of

candidate forecasting methods using imaging-based time series features and perform forecast

combination accordingly. Section 4 applies our imaging-based time series forecast combination

method to two large collections of real datasets, namely the M4 competition dataset and the

Tourism competition dataset. Section 5 provides our discussions and insights, as well as several

possible future research directions. Section 6 concludes the paper.

2. Time series imaging and feature extraction

In this paper, we extract time series features based on time series imaging in two steps. In

the first step, we encode the time series into images using recurrence plots. In the second step,

time series features are extracted from images using image processing techniques. We consider

two different image feature extraction approaches: spatial bag-of-features (SBoF) model and

convolutional neural networks (CNNs). We describe the details in the following sections.

2.1. Time series imaging

We use recurrence plots (RPs) to encode time series data into images, which provides a way

to visualize the periodic nature of a trajectory through a phase space (Eckmann et al., 1987)

3

and can contain all relevant dynamical information in the time series (Thiel et al., 2004). A

recurrence plot of time series x, showing when the time series revisits a previous state, can be

formulated as

R(i, j) = Θ(ε− ‖ xi − xj ‖),

where R(i, j) is the element of the recurrence matrix R, i indexes time on the x-axis of the

recurrence plot, and j indexes time on the y-axis. ε is a predefined threshold, and Θ(·) is the

Heaviside step function. In short, one draws a black dot when xi and xj are closer than ε.

Instead of binary output, an un-thresholded RP is not binary but difficult to quantify. We use

the following modified RP, which balances the binary output and un-thresholded RP.

R(i, j) =


ε ‖ xi − xj ‖> ε,

‖ xi − xj ‖ otherwise.

It gives more values than a binary RP and results in colored plots. Fig. 1 shows three typical

examples of recurrence plots. They reveal different patterns of recurrence plots for time series

with randomness, periodicity, chaos, and trend. We can see that the recurrence plots shown

in the right column well depict the pre-defined patterns in the time series shown in the left

column.

2.2. Feature extraction with the SBoF model

We propose an image-based time series feature extraction framework using the SBoF (spatial

bag-of-features) model. As shown in Fig. 2, the framework consists of three steps: (i) detect

key points with the scale-invariant feature transform (SIFT) algorithm (Lowe, 1999) and find

basic descriptors with k-means; (ii) generate the representation based on the locality constrained

linear coding (LLC) method (Wang et al., 2010); and (iii) extract spatial information via spatial

pyramid matching (SPM) and pooling. We interpret the details in each step, respectively.

The original bag-of-features (BoF) model, which extracts features from one-dimensional sig-

nal segments, has achieved great success in time series classification (Baydogan et al., 2013;

Wang et al., 2013). Hatami et al. (2017) transformed a time series into two-dimensional recur-

rence images with a recurrence plot (Eckmann et al., 1987) and then applied the BoF model.

Extracting time series features is then equivalent to identifying key points in images, which

are called key descriptors. A promising algorithm is the SIFT algorithm (Lowe, 1999), which

is used to detect and describe local features in images by identifying the maxima/minima of

the difference of Gaussians (DoG) that occur at the multiscale spaces of an image as its key

descriptors. It consists of the following four steps.

4

Figure 1. Typical examples of recurrence plots (right column) for time series data with different patterns (left

column): uncorrelated stochastic data, i.e., white noise (top), a time series with periodicity and chaos (middle),

and a time series with periodicity and trend (bottom).

5

Figure 2. Image-based time series feature extraction with spatial bag-of-features model. It consists of four steps:

(i) encode a time series as an image with recurrence plots; (ii) detect key points with SIFT and obtain the basic

descriptors with k-means for the codebook; (iii) generate the representation based on LLC; and (iv) extract

spatial information via SPM and max pooling.

1. Detect extreme values in the scale spaces. We search over all the scale spaces and

use the Gaussian differential method to identify the potential interest points and select

those invariant to scale and orientation.

2. Find the key points. The position scale is determined by fitting a model at each

candidate position, and the key points are selected according to their stability.

3. Assign feature directions. This step assigns the key points one or more directions

based on the local gradient direction of the image. All subsequent operations are about

how to transform the direction, scale, and position of the key points to allow for invariance

in the features.

4. Describe key points. Within the neighborhood around each feature point, the local

gradient of the image is measured at selected scales, which is transformed into a repre-

sentation that allows larger local shape deformations and illumination transformations.

The SIFT method uses a 128-dimensional vector to characterize the key descriptors in

an image. First, an 8-direction histogram is established in each 4 × 4 subregion, and 16

subregions around the key points are used. We then calculate the magnitude and direction

of each pixel’s gradient magnitude and add it to the corresponding subregion. In the end,

128-dimensional image data based on histograms are generated.

6

Each descriptor can be projected onto its local coordinate system, and the projected coordi-

nates are integrated by max pooling to generate the final representation with the LLC method,

which utilizes the locality constraints to project each descriptor onto its local coordinate system

(Wang et al., 2010). The projected coordinates are integrated by max pooling to generate the

final representation:

min
c

N∑
i

‖ xi −Bci ‖2 +λ ‖ di � ci ‖2, s.t. 1T ci = 1,∀i, (1)

where di = exp(dist(xi, B)/σ) and xi ∈ R128×1 is the vector of one descriptor. The basic

descriptors B ∈ R128×M are obtained by k-means clustering. The representation parameters

ci are used as time series representations through Equation (1). The locality adaptor di gives

different freedom for each basis vector proportional to its similarity to the input descriptor. We

use σ to adjust the weight decay speed for the locality adaptor, and λ is the adjustment factor.

However, in reality, the number of descriptors obtained by the SIFT algorithm is usually huge.

To address this problem, Wang et al. (2010) proposed an incremental codebook optimization

method for LLC.

The bag-of-features model calculates the distribution characteristics of feature points in the

whole image and then generates a global histogram. As a result, the image’s spatial distribution

information is lost, and the image may not be accurately described. To obtain the spatial

information of images, we apply a spatial pyramid matching (SPM) method, which statistically

distributes image feature points at different resolutions and has achieved high accuracy on a

large dataset of 15 natural scene categories (Lazebnik et al., 2006). The image is divided into

progressively finer grid sequences at each level of the pyramid, and features are derived from

each grid and combined into one large feature vector. Fig. 3 depicts the diagram of the SPM

and max pooling process. In this task, we divide the image by 1 × 1, 2 × 2 and 4 × 4, and

thus obtain 21 subregions. To obtain the representation for each subregion, we first obtain the

descriptors. Suppose that we obtain 12 descriptors denoted by Di ∈ R12×200 for the third region

(the dimension of the local linear representation of the descriptors is equal to 200). We then

can obtain the maximum value of every dimension of Di. After max pooling, we calculate the

feature representation denoted by fi ∈ R200×1 for the third region. The feature representations

of the other twenty regions can be obtained in the same way. Finally, the 21 features are linked

together for the final representation of the time series. In this way, the final size of the feature

vectors is 21× 200 = 4200. More details about the experimental setup in the SoBF model can

be found in Appendix A.

7

Figure 3. Spatial pyramid matching and max pooling. The image is divided into progressively finer grid sequences

at each level of the pyramid, and features are derived from each grid and combined into one large feature vector.

We divide the image by 1 × 1, 2 × 2 and 4 × 4, and thus obtain 21 subregions. We first obtain the descriptors

for each region. Suppose that we obtain 12 descriptors denoted by Di ∈ R12×200 for the third region (200 is the

dimension of the local linear representation of the descriptor). Then, we can obtain the maximum value of every

dimension of Di. After max pooling, we obtain the feature representation denoted by fi ∈ R200×1 for the third

region. The feature representations of the other 20 regions can be obtained in the same way. Finally, the 21

features are linked together for the final representation for the time series.

8

2.3. Feature extraction with fine-tuned deep neural networks

An alternative to SBoF for image feature extraction is to use a deep CNN, which has achieved

great breakthroughs in image processing (Krizhevsky et al., 2012). For example, Berkeley re-

searchers (Donahue et al., 2014) proposed feature extraction methods called DeCAF (a deep

convolutional activation feature for generic visual recognition) and directly used deep convolu-

tional neural networks for feature extraction. Their experimental results show that the extracted

features yield higher accuracy than traditional image features. In addition, some researchers

(e.g., Razavian et al., 2014) use the features acquired by convolutional neural networks as the

input of an image classifier, which significantly improves the image classification accuracy.

Nonetheless, the performance of neural networks heavily depends on the setting of the

network structure and the hyper-parameters. A deeper layer is often essential for achieving

higher performance in a task. As a result, extensive computational power is needed. An

appealing feature of our time series imaging approach is that a large number of well pre-trained

neural network models for imaging classification exist. We could easily transfer the model to

our task via transfer learning (Pan and Qiang, 2010), which has been widely used recently in a

variety of fields such as image classification (Han et al., 2018) and natural language processing

(Ahmad et al., 2020). To simplify our task, we use the fine-tuning approach (Ge and Yu, 2017)

from the field of transfer learning. In short, it uses pre-trained networks and makes adjustments

to our tasks. We fix the parameters of the previous layers based on the pre-trained model with

ImageNet data and fine-tune the last few layers for our task. In general, the closer the layer

is to the first layer, the more general features can be extracted; the closer the layer is to the

back layer, the more specific features for classification tasks can be extracted. In this way, the

computational efficiency of network training can be significantly accelerated.

Fig. 4 shows the framework of transfer learning with fine-tuning. In this task, the deep

network is trained on the large ImageNet dataset (Deng et al., 2009), and the pre-trained

network is publicly available. Specifically, we fix the weights of all the previous layers of the pre-

trained network except for the last fully connected layers and then use our time series images

as inputs. Finally, the high-dimensional features of the time series images can be obtained

from the pre-trained network. We consider the following representative architectures in our

experiments: ResNet-v1-101 (He et al., 2016), ResNet-v1-50 (He et al., 2016), Inception-v1

(Szegedy et al., 2015), and VGG-19 (Simonyan and Zisserman, 2014). The dimensions of the

time series features obtained from the pre-trained ResNet-v1-101, ResNet-v1-50 , Inception-v1

and VGG-19 architectures are 2048, 2048, 1024 and 1000, respectively. More details about the

experimental setup in the CNN-based feature extraction can be found in Appendix A.

9

Figure 4. Framework of transfer learning with fine-tuning. Classic CNN models are trained on a large dataset

(ImageNet). For the CNN model, the closer the layer is to the first layer, the more general features can be

extracted; the closer the layer is to the back layer, the more specific features for classification tasks can be

extracted. To extract time series features, we fix the parameters of all the previous layers except for the last

fully connected layer, and fine-tune the last layer for our task. With the trained model, we obtain the final

representation of the time series.

10

3. Time series forecasting with image features

We aim to find the optimal combination of a pool of candidate forecasting methods. The

essence is to link the knowledge of forecasting errors from different forecasting methods to time

series features. Therefore, in this section, we focus on the mapping from the time series image

features to forecasting method performances. We use nine most popular time series forecasting

methods as candidates for forecast combination, which are also used in many recent studies

(Montero-Manso et al., 2020; Talagala, Li and Kang, 2019; Kang et al., 2020). They are the

automated ARIMA algorithm (ARIMA), automated exponential smoothing algorithm (ETS),

feed-forward neural network using autoregressive inputs (NNET-AR), exponential smoothing

state space model with a Box-Cox transformation (TBATS), seasonal and trend decomposition

using LOESS with AR modeling of the seasonally adjusted series (STLM-AR), random walk with

drift (RW-DRIFT), theta method (THETA), näıve (NAIVE), and seasonal näıve (SNAIVE).

They are described in Table 1 and implemented in the R package forecast (Hyndman et al.,

2019).

To validate the effectiveness of our image features of the time series, we follow the work of

Montero-Manso et al. (2020), who proposed a model-averaging method based on 42 manually

curated time series features and won the second place in the M4 competition (Makridakis et al.,

2020), to obtain the weights for forecast combination based on our image features. To make our

proposed method comparable with those in M4, we use the overall weighted average (OWA) to

measure the forecasting accuracies, as used in the M4 competition. OWA is an overall indicator

of two accuracy measures, the mean absolute scaled error (MASE) and the symmetric mean

absolute percentage error (sMAPE). The individual measures are calculated as follows.

sMAPE =
1

h

h∑
t=1

2 | Yt − Ŷt |
| Yt | + | Ŷt |

,

MASE =
1

h

∑h
t=1 | Yt − Ŷt |

1
n−m

∑n
t=m+1 | Yt − Yt−m |

,

OWA =
1

2
(sMAPE/sMAPENaive2 + MASE/MASENaive2),

(2)

where Yt is the real value of the time series at point t, Ŷt is the point forecast, h is the forecasting

horizon, and m is the frequency of the data (e.g., 4 for quarterly series). Näıve2 is equivalent

to the Näıve (NAIVE) method but applied to the time series adjusted for seasonal factors.

Our framework for model averaging is shown in Fig. 6. It consists of two parts. In the

training process, based on the extracted image features and the OWA values of the nine fore-

casting methods, we train a feature-based gradient tree boosting model (XGBoost, Chen and

Guestrin, 2016), to produce nine weights for forecast model averaging by minimizing the OWA

11

Table 1. The methods used for forecast combination. All these methods are implemented using the forecast

package in the R software.

Forecasting

method

Description R implementation

ARIMA The autoregressive integrated moving average model

automatically estimated in the forecast package for

R (Hyndman and Khandakar, 2008).

auto.arima()

ETS The exponential smoothing state space model (Hyn-

dman et al., 2002).

ets()

NNET-AR A feed-forward neural network using autoregressive

inputs.

nnetar()

TBATS The exponential smoothing state space model with

a Box-Cox transformation, ARMA errors, trend and

seasonal components (De Livera et al., 2011).

tbats()

STLM-AR The STL decomposition (Cleveland et al., 1990) with

AR modeling of the seasonally adjusted series.

stlm(..., modelf = ar)

RW-DRIFT The random walk model with drift. rwf(..., drift = TRUE)

THETA The decomposition forecasting model by modifying

the local curvature of the time-series through a co-

efficient ‘Theta’ that is applied directly to the sec-

ond differences of the data (Assimakopoulos and

Nikolopoulos, 2000).

thetaf()

NAIVE The näıve method, which takes the last observation

as the forecasts of all the forecast horizons.

naive()

SNAIVE The seasonal näıve method, which forecasts using the

most recent values of the same season.

snaive()

12

Figure 5. The temporal holdout strategy used to generate the training dataset. Each original time series is

divided into a training period and a testing period. The length of the testing period is equal to the forecasting

horizon (h) given by the M4 competition. We calculate time series image features from the training periods of

the training dataset, generate forecasts, and compute the corresponding OWA values over the test periods for

each candidate forecasting method. We train an XGBoost model on the training dataset and obtain weights for

each candidate forecasting method, which are then used to generate forecasts by forecast combination for the

future data.

error obtained by forecast combination. Let fn be the image features extracted from a time

series, and N is the total number of the time series. Onm is the contribution to the OWA error

of m-th method for the series n-th time series. p(fn)m is the output of the XGBoost algorithm

corresponding to m-th forecasting method, based on the features extracted from the n-th time

series. The gradient tree boosting approach minimizes the weighted average loss function as

arg min
w

N∑
n=1

M∑
m=1

w(fn)mOnm,

where w(fn)m are the softmax-transformed weights for the output p(fn)m of the XGBoost model

defined as

w(fn)m =
exp{p(fn)m}∑
m exp{p(fn)m}

.

The hyper-parameter settings for XGBoost are available in Appendix B.

In the testing process, we use the trained model and the image features extracted from the

testing data to obtain the weights of different forecasting models. Finally, based on the weights

and forecasts of different models, we can obtain the final forecasts for the testing data.

4. Experiments

4.1. Forecasting with M4 competition data

The first dataset we use to evaluate our proposed method is a collection of general-purpose

data from the M4 competition that consists of 100, 000 time series diversely from the economic,

13

Figure 6. Framework of forecast model averaging based on automatic feature extraction. In the training process,

nine weights are obtained for the forecast model combination using XGBoost. Based on the weights, we obtain

the forecasts for the testing data in the testing process.

finance, demographics, and industry domains. In the training process, we divide the original

time series in M4 into training and testing periods following the strategy in Fig. 5. The lengths

of the testing periods are equal to the forecasting horizon (h), i.e., 6 for yearly, 8 for quarterly,

18 for monthly, 13 for weekly 14 for daily, and 48 for hourly data, which are given by the M4

competition. For each time series in M4, we calculate time series features from the training

period, generate forecasts, and compute the corresponding OWA values over the test period for

each candidate forecasting method. We then train an XGBoost model to produce the weights

for each forecasting method described in Table 1. In the testing process, we use the trained

model to forecast the original M4 time series, and evaluate the forecasts based on the future

M4 data, which are public after the M4 competition.

We now apply our imaging-based time series forecasting method to the M4 data. To illustrate

that the extracted image features are diverse and can be used to characterize the original time

series, we project the features of the time series with different periods into two-dimensional

feature space using t-distributed stochastic neighbor embedding (t-SNE, Maaten (2014)). From

Fig. 7, we notice that yearly, quarterly, monthly, daily and hourly data can be well distinguished

in the feature spaces, although the features are automatically extracted from time series images.

Following the framework in Fig. 6, we obtain the forecasts of M4 based on time series

imaging. Our model averaging results are compared with the results of the top ten ranked

14

Figure 7. Two-dimensional feature spaces of the M4 time series with different periods. The blue points highlight

areas where the time series instance (orange points) with the corresponding seasonal pattern lie.

Table 2. Description of the top ten forecasting methods in M4 competition (Makridakis et al., 2020).

Ranking Description

1 A hybrid model mixing Exponential Smoothing (ES) with a black-box Recurrent Neural

Network (RNN) forecasting engine (Smyl, 2020).

2 Weighted forecast combination of nine standard forecasting methods in Table 1 (Montero-

Manso et al., 2020).

3 Weighted average of multiple statistical methods using hold-out tests (Pawlikowski and

Chorowska, 2020).

4 Combination of multiple statistical methods as described in Armstrong (2001).

5 Weighted average of the standard ARIMA, ETS and THETA methods described in Table 1

(Fiorucci and Louzada, 2020).

6 Median of ETS, CES (Complex exponential smoothing, Svetunkov and Kourentzes, 2018),

ARIMA, and THETA methods (Petropoulos and Svetunkov, 2020).

7 Combination of two THIEF (Temporal Hierarchical Forecasting, Athanasopoulos et al.,

2017) forecasts (with the base model of ARIMA and THETA, respectively) (Shaub, 2020).

8 THETA method with data deseasonalization and Box-Cox Transformation.

9 A calibrated average of Rho and Delta (Card) forecasting methods (Doornik et al., 2020).

10 Forecast combination of seven benchmarks.

15

methods (Table 2) from the M4 competition, which are available in the concluding paper of

M4 (Makridakis et al., 2020). Detailed descriptions and the code for replicating the top ten

methods are available in the M4 GitHub repository (https://github.com/Mcompetitions/M

4-methods). Note that the replication results may slightly differ due to the updates of related

R packages. However, since the concluding paper of M4 competition (Makridakis et al., 2020)

is publicly available at the same time of this work, the possible code changes in the R packages

used by the competitors are negligible. Tables 3, 4 and 5 depict the MASE, sMAPE, and OWA

values for our time series imaging method with model-averaging, and the top ten methods from

the M4 competition. The optimal parameters of XGBoost on the M4 competition dataset can

be found in Table 7 of Appendix B.

Overall, our model averaging method with automated time series image features can achieve

highly comparable performances with the top methods from the M4 competition. From Table 5,

our method ranks the sixth overall. But our approach has the advantages: (1) limited human

interaction is required during feature extraction, (2) both global and local features are uti-

lized, (3) the fine-tuned results from existing CNN models in the computer vision tasks can be

seamlessly transferred to our model, and (4) it sheds the potential improvements of forecasting

performance with the advances of neural networks for the computer vision tasks.

4.2. Forecasting with the Tourism competition data

To validate our method’s generality and robustness in even specific forecasting domains,

we now apply the proposed method to the Tourism competition dataset that consists of 366

monthly series, 427 quarterly series, and 518 yearly series (Athanasopoulos et al., 2011). In

the training process, we use the M4 competition data as training data to train the XGBoost

model and produce the optimal weights for each candidate forecasting method, which are used

to forecast the Tourism data. Since the Tourism dataset has smaller size compared to the M4

competition data, we use M4 monthly data as the training data for the Tourism monthly data

to obtain the optimal weights from XGBoost. The same strategy is applied to the quarterly

and yearly datasets.

We apply the same accuracy metrics as in the Tourism competition (Athanasopoulos et al.,

2011) to make the results comparable with the literature, which are the mean absolute per-

centage error (MAPE) and the mean absolute scaled error (MASE). MASE is calculated as

Equation (2), and MAPE is calculated as follows.

MAPE =
1

h

h∑
t=1

| Yt − Ŷt |
| Yt |

,

16

https://github.com/Mcompetitions/M4-methods
https://github.com/Mcompetitions/M4-methods

Table 3. Benchmarking the MASE performance of our proposed forecasting method based on time series imaging

against the top 10 methods in the M4 competition.

Yearly Quarterly Monthly Weekly Daily Hourly Total

Ranking M4 competition

1 2.980 1.118 0.884 2.356 3.446 0.893 1.536

2 3.060 1.111 0.893 2.108 3.344 0.819 1.551

3 3.130 1.125 0.905 2.158 2.642 0.873 1.547

4 3.126 1.135 0.895 2.350 3.258 0.976 1.571

5 3.046 1.122 0.907 2.368 3.194 1.203 1.554

6 3.082 1.118 0.913 2.133 3.229 1.458 1.565

7 3.038 1.198 0.929 2.947 3.479 1.372 1.595

8 3.009 1.198 0.966 2.601 3.254 2.557 1.601

9 3.262 1.163 0.931 2.302 3.284 0.801 1.627

10 3.185 1.164 0.943 2.488 3.232 1.049 1.614

Method Forecasting with time series imaging

SIFT 3.135 1.125 0.908 2.266 3.463 0.849 1.579

CNN

Inception-v1+XGBoost 3.096 1.139 0.947 2.479 3.289 1.015 1.592

ResNet-v1-101+XGBoost 3.106 1.147 0.927 2.579 3.377 0.970 1.591

ResNet-v1-50+XGBoost 3.104 1.143 0.917 2.441 3.363 0.965 1.583

VGG-19+XGBoost 3.098 1.133 0.931 2.355 3.235 0.991 1.581

17

Table 4. Benchmarking the sMAPE performance of our proposed forecasting method based on time series imaging

against the top 10 methods in the M4 competition.

Yearly Quarterly Monthly Weekly Daily Hourly Total

Ranking M4 competition

1 13.176 9.679 12.126 7.817 3.170 9.328 11.374

2 13.528 9.733 12.639 7.625 3.097 11.506 11.720

3 13.943 9.796 12.747 6.919 2.452 9.611 11.845

4 13.712 9.809 12.487 6.814 3.037 9.934 11.695

5 13.673 9.816 12.737 8.627 2.985 15.563 11.836

6 13.669 9.800 12.888 6.726 2.995 13.167 11.897

7 13.679 10.378 12.839 7.818 3.222 13.466 12.020

8 13.366 10.155 13.002 9.148 3.041 17.567 11.986

9 13.910 10.000 12.780 6.728 3.053 8.913 11.924

10 13.821 10.093 13.151 8.989 3.026 9.765 12.114

Method Forecasting with time series imaging

SIFT 13.896 9.863 12.596 7.899 3.063 11.772 11.816

CNN

Inception-v1+XGBoost 13.899 9.962 12.659 8.228 3.047 12.521 11.891

ResNet-v1-101+XGBoost 13.917 9.991 12.714 8.277 3.110 12.480 11.914

ResNet-v1-50+XGBoost 13.918 9.973 12.723 8.086 3.123 12.396 11.914

VGG-19+XGBoost 13.872 9.912 12.652 8.294 3.049 12.598 11.853

18

Table 5. Benchmarking the OWA performance of our proposed forecasting method based on time series imaging

against the top 10 methods in the M4 competition.

Yearly Quarterly Monthly Weekly Daily Hourly Total

Ranking M4 competition

1 0.778 0.847 0.836 0.851 1.046 0.440 0.821

2 0.799 0.847 0.858 0.796 1.019 0.484 0.838

3 0.820 0.855 0.867 0.766 0.806 0.444 0.841

4 0.813 0.859 0.854 0.795 0.996 0.474 0.842

5 0.802 0.855 0.868 0.897 0.977 0.674 0.843

6 0.806 0.853 0.876 0.751 0.984 0.663 0.848

7 0.801 0.908 0.882 0.957 1.060 0.653 0.860

8 0.788 0.898 0.905 0.968 0.996 1.012 0.861

9 0.836 0.878 0.881 0.782 1.002 0.410 0.865

10 0.824 0.883 0.899 0.939 0.990 0.485 0.869

Method Forecasting with time series imaging

SIFT 0.820 0.858 0.863 0.839 1.009 0.498 0.848

CNN

Inception-v1+XGBoost 0.814 0.867 0.885 0.895 1.002 0.552 0.854

ResNet-v1-101+XGBoost 0.816 0.872 0.877 0.916 1.025 0.542 0.855

ResNet-v1-50+XGBoost 0.816 0.869 0.873 0.881 1.025 0.538 0.853

VGG-19+XGBoost 0.814 0.863 0.876 0.877 0.994 0.549 0.850

19

Table 6. Model-averaging results compared with the top methods in the Tourism competition in terms of the

MAPE and MASE values.

MAPE MASE

Forecasting method Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

ARIMA 30.639 16.172 21.746 23.444 3.197 1.595 1.495 2.200

ETS 25.065 15.316 20.965 20.745 3.000 1.592 1.526 2.130

THETA 23.409 15.927 22.390 20.688 2.730 1.661 1.649 2.080

SNAIVE 23.610 16.459 22.562 20.988 3.007 1.699 1.631 2.197

DAMPED 27.975 35.830 47.192 35.898 3.061 3.221 3.404 3.209

Forecasting with time series imaging

SIFT 24.164 15.236 19.984 20.089 2.760 1.570 1.444 2.005

CNN

Inception-v1+XGBoost 24.633 15.333 20.261 20.383 2.834 1.560 1.467 2.037

ResNet-v1-101+XGBoost 24.288 15.047 20.221 20.142 2.779 1.555 1.468 2.014

ResNet-v1-50+XGBoost 24.347 15.101 19.981 20.117 2.750 1.563 1.454 2.002

VGG-19+XGBoost 23.616 15.599 20.055 20.010 2.689 1.638 1.476 2.008

where Yt is the real value of the time series at point t, Ŷt is the point forecast, and h is the

forecasting horizon.

The top methods in the competition that include ARIMA, ETS, THETA, SNAIVE, and

DAMPED are discussed in Athanasopoulos et al. (2011). The first four methods are described

in Table 1. DAMPED is a variation of Holt-Winters method that “dampens” the trend to a flat

line sometime in the future, and is implemented using forecast::holt(..., damped=TRUE)

in R. We reproduce these top methods and use them as our benchmarks.

Following the framework in Fig. 6, we obtain the forecasts of the Tourism time series based

on time series imaging. Our model averaging results outperforms the top methods from Tourism

competition (Athanasopoulos et al., 2011) with high distinctions. Table 6 reports the MASE and

MAPE values for our model-averaging method and the top methods from Tourism competition.

The numbers in bold indicate that our method is better than the benchmark. Especially, our

method performs exceptionally well on monthly and quarterly data. For the yearly dataset,

our method is slightly worse, which may be due to the inadequacy of historical data. The

optimal parameters of XGBoost on the Tourism competition dataset can be found in Table 8

of Appendix B.

20

5. Discussions

Feature-based time series forecasting has been proved highly promising, primarily through

the extraction and selection of an appropriate set of features. Nonetheless, traditional time series

feature extraction requires manual design of feature metrics, which is typically complicated to

time series forecasting practitioners. Known features used in time series forecasting literature

are global characteristic of a time series, which may ignore important local patterns. Evidence

from the literature further indicates that feature-based forecast combination might not perform

as well as simple averaging when the feature extraction and selection are not properly conducted.

We propose an automated time series imaging feature extraction approach with computer

vision algorithms, and our experiment results show that our approach works well for forecast

combination. An innovative point of our approach over other feature-based time series forecast-

ing methods is that time series features are extracted automatically from time series imaging,

which are obtained using recurrence plots. In principle, any image feature extraction algorithm

is applicable to our proposed framework. We employ two widely used algorithms to extract

features from time series images, namely the spatial bag-of-features (SBoF) model and the deep

convolutional neural networks (CNN).

The SBoF model, combining the scale-invariant feature transform (SIFT) algorithm, the

locality constrained linear coding (LLC) method, and spatial pyramid matching (SPM) and

max pooling, can capture both global and local characteristics of images. The traditional SBoF

model is a fast industry level model in computer vision applications. One may notice that

the features extracted based on the traditional SIFT model performs better than the deep

CNN model in some scenarios with our testing data. But it is worth to mention that SIFT

method is not a fully automated image feature extraction processing because it requires a

careful specification of four steps, namely (1) detecting extreme values in the scale spaces, (2)

finding the key points, (3) assigning feature directions, and (4) describing key points. Moreover,

SIFT algorithm is patent protected (Lowe, 2004), which means other open source program could

not incorporate it without the patent owner’s permission. Having an alternative approach with

highly comparable performance but without patent restrictions is important to time series

forecasters.

The alternative feature extraction algorithm based on deep CNN is an automated process

once the source task is confirmed. We use transfer learning to borrow the information of well

pre-trained neural network models for imaging classification, which can avoid the complication of

settings the network structure and tuning the hyper-parameters. Unlike traditional CNN tasks

that require the fine-tuning and massive computation, we transfer the convolutional layers and

21

fully-connected lays from the ImageNet competition results to our task. Hence only one new

adaption layer needs to train, which significantly saves the computational power.

Although the aims of source task in ImageNet and the target task of time series forecasting

are naturally different, the image features generated from time series share similar shapes and

angles with the image of real objects. This explains why we could transfer a different task

to time series forecasting. In practice, the forecasting practitioners may train a customized

CNN model to further improve the forecasting performance if a rich collection of time series are

available.

Another significant merit of using deep CNN and transfer learning for time series feature

extraction is that, the pre-trained neural network models (e.g., on ImageNet) are continuously

updated and improved in the image processing literature. Thus, we believe that this line of

automated time series feature extraction approaches has great potential in the future.

In this paper, we use the features extracted from recurrence plots to reveal the characteristics

of the corresponding time series. The recurrence plot for a given time series displays its dynamics

based on the distance correlations within the time series. However, other features such as

cross-correlation coefficients can also be used to generate cross-correlation recurrence plots.

Thus, multi-channel images, with more comprehensive information, can be obtained for each

time series, which can potentially improve the feature extraction and feature-based forecast

combination performances. Therefore, time series forecasting based on multi-channel imaging

can be one potential extension of our current work.

The forecasting framework based on time series image features is in line with the work in

(Montero-Manso et al., 2020), where they use 42 manual time series features and nine forecast-

ing methods to optimize the weights for forecast combination. Montero-Manso et al. (2020)

won the second place in the M4 competition (Makridakis et al., 2020). To be consistent and

comparable, in our study, we employ the same set of forecasting methods in the M4 dataset.

However, we want to mention that the choice of candidate forecasting methods for forecast

combination also requires expert knowledge and practical experience. The performance of fore-

cast combinations depends on the accuracy of individual forecasting methods and the diversity

among them since the merits of forecast combination stem from the independent information

across multiple forecasts (Thomson et al., 2019). How to automatically select an appropriate

set of candidate methods for combination is another interesting direction for future research.

In our experiments, all the time series are independent data. Therefore we treat the time

series features as independent images and apply them to the CNN framework which is also used

for classifying objects in ImageNet. A further extension of our work is to extend time series

22

forecasting with imaging to (1) forecasting with time varying image features, and (2) hierarchical

time series or multivariate time series with recurrent dependence. In both scenes, hierarchical

image classification framework mixtures with CNN and RNN could be further explored.

We make our code publicly available at https://github.com/lixixibj/forecasting-

with-time-series-imaging. Making it open-source can enrich the toolboxes of forecasting

support systems by providing a competitive alternative to the existing feature-based time series

forecasting methods.

6. Concluding remarks

In this paper, we propose to use image features for forecast model combination. First, time

series are encoded into images. Computer vision algorithms are then applied to extract features

from the images, which are used for forecast model averaging. The proposed method enables

automated feature extraction, making it more flexible than using manually selected time series

features. Besides, our image features can depict local features of time series as well as global

features. Our paper is the first attempt that applies imaging to time series forecasting to the

best of our knowledge.

We examined the performance of our approach on two widely-used time series competition

datasets (M4 and Tourism), and compared it with the top methods in the two competitions. Our

experiments show that the proposed method can produce highly comparable forecast accuracies

with the top-ranked benchmarks in the competitions. Moreover, forecasting based on time series

imaging offers an automatic tool for time series feature extraction, in the sense that it does not

reply on many manual inputs for feature selection, which is crucial for forecast practitioners.

Acknowledgments

We are thankful to Dr. Slawek Smyl from Uber and Professor Christoph Bergmeir from

Monash University for their insightful suggestions on a previous version of this paper presented

at the 39th International Symposium on Forecasting.

Yanfei Kang is supported by the National Natural Science Foundation of China (No. 11701022)

and the National Key Research and Development Program (No. 2019YFB1404600). Feng Li

is supported by the National Natural Science Foundation of China (No. 11501587) and the

Beijing Universities Advanced Disciplines Initiative (No. GJJ2019163).

23

https://github.com/lixixibj/forecasting-with-time-series-imaging
https://github.com/lixixibj/forecasting-with-time-series-imaging

References

Abdollahi, M., Khaleghi, T. and Yang, K. (2020), ‘An integrated feature learning approach using

deep learning for travel time prediction’, Expert Systems with Applications 139, 112864.

Ahmad, Z., Jindal, R., Ekbal, A. and Bhattachharyya, P. (2020), ‘Borrow from rich cousin:

transfer learning for emotion detection using cross lingual embedding’, Expert Systems with

Applications 139, 112851.

Arinze, B. (1994), ‘Selecting appropriate forecasting models using rule induction’, Omega-

international Journal of Management Science 22(6), 647–658.

Armstrong, J. S. (2001), Combining forecasts, in ‘Principles of forecasting’, Springer, pp. 417–

439.

Assimakopoulos, V. and Nikolopoulos, K. (2000), ‘The theta model: a decomposition approach

to forecasting’, International Journal of Forecasting 16(4), 521–530.

Athanasopoulos, G., Hyndman, R. J., Kourentzes, N. and Petropoulos, F. (2017), ‘Forecasting

with temporal hierarchies’, European Journal of Operational Research 262(1), 60–74.

Athanasopoulos, G., Hyndman, R. J., Song, H. and Wu, D. C. (2011), ‘The tourism forecasting

competition’, International Journal of Forecasting 27(3), 822–844.

Bandara, K., Bergmeir, C. and Smyl, S. (2020), ‘Forecasting across time series databases using

recurrent neural networks on groups of similar series: a clustering approach’, Expert Systems

With Applications 140, 112896.

Baydogan, M. G., Runger, G. and Tuv, E. (2013), ‘A bag-of-features framework to classify time

series’, IEEE transactions on pattern analysis and machine intelligence 35(11), 2796–2802.

Chen, T. and Guestrin, C. (2016), Xgboost:a scalable tree boosting system, in ‘ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining’, pp. 785–794.

Christ, M., Braun, N., Neuffer, J. and Kempa-Liehr, A. W. (2018), ‘Time Series FeatuRe

Extraction on basis of Scalable Hypothesis tests (tsfresh a Python package)’, Neurocomputing

307, 72 – 77.

Cleveland, R. B., Cleveland, W. S., McRae, J. E. and Terpenning, I. (1990), ‘STL: A seasonal-

trend decomposition procedure based on loess’, Journal of Official Statistics 6(1), 3–73.

Collopy, F. and Armstrong, J. S. (1992), ‘Rule-based forecasting: development and validation

of an expert systems approach to combining time series extrapolations’, Management Science

38(10), 1394–1414.

Corizzo, R., Ceci, M., Zdravevski, E. and Japkowicz, N. (2020), ‘Scalable auto-encoders for grav-

itational waves detection from time series data’, Expert Systems with Applications p. 113378.

De Livera, A. M., Hyndman, R. J. and Snyder, R. D. (2011), ‘Forecasting time series with

24

complex seasonal patterns using exponential smoothing’, Journal of the American statistical

association 106(496), 1513–1527.

Deng, J., Dong, W., Socher, R., Li, L. J., Li, K. and Li, F. F. (2009), Imagenet: A large-

scale hierarchical image database, in ‘IEEE Conference on Computer Vision and Pattern

Recognition’.

Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Ning, Z., Tzeng, E., Darrell, T., Donahue, J., Jia,

Y. and Vinyals, O. (2014), Decaf: A deep convolutional activation feature for generic visual

recognition, in ‘International Conference on International Conference on Machine Learning’.

Doornik, J. A., Castle, J. L. and Hendry, D. F. (2020), ‘Card forecasts for m4’, International

Journal of Forecasting 36(1), 129–134.

Eckmann, J.-P., Kamphorst, S. O. and Ruelle, D. (1987), ‘Recurrence plots of dynamical sys-

tems’, EPL (Europhysics Letters) 4(9), 973.

Fiorucci, J. A. and Louzada, F. (2020), ‘Groec: combination method via generalized rolling

origin evaluation’, International Journal of Forecasting 36(1), 105–109.

Fulcher, B. D. (2018), Feature-based time-series analysis, in ‘Feature engineering for machine

learning and data analytics’, CRC Press, pp. 87–116.

Fulcher, B. D., Little, M. A. and Jones, N. S. (2013), ‘Highly comparative time-series analy-

sis: the empirical structure of time series and their methods’, Journal of the Royal Society

Interface 10(83), 20130048.

Fulcher, B. and Jones, N. (2014), ‘Highly comparative feature-based time-series classification’,

IEEE Transactions on Knowledge and Data Engineering 26(12), 3026–3037.

Ge, W. and Yu, Y. (2017), Borrowing treasures from the wealthy: Deep transfer learning

through selective joint fine-tuning, in ‘Computer Vision and Pattern Recognition’.

Han, D., Liu, Q. and Fan, W. (2018), ‘A new image classification method using cnn transfer

learning and web data augmentation’, Expert Systems With Applications 95, 43–56.

Hatami, N., Gavet, Y. and Debayle, J. (2017), ‘Bag of recurrence patterns representation for

time-series classification’, Pattern Analysis and Applications pp. 1–11.

He, K., Zhang, X., Ren, S. and Sun, J. (2016), Deep residual learning for image recognition, in

‘Proceedings of the IEEE conference on computer vision and pattern recognition’, pp. 770–

778.

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M.,

Petropoulos, F., Razbash, S., Wang, E. and Yasmeen, F. (2019), forecast: Forecasting func-

tions for time series and linear models. R package version 8.5.

URL: http://pkg.robjhyndman.com/forecast

25

Hyndman, R. J. and Khandakar, Y. (2008), ‘Automatic time series forecasting: the forecast

package for R’, Journal of Statistical Software 26(3), 1–22.

Hyndman, R. J., Koehler, A. B., Snyder, R. D. and Grose, S. (2002), ‘A state space framework

for automatic forecasting using exponential smoothing methods’, International Journal of

Forecasting 18(3), 439–454.

Hyndman, R. J., Wang, E. and Laptev, N. (2015), Large-scale unusual time series detection, in

‘Proceedings of the IEEE International Conference on Data Mining’, Atlantic City, NJ, USA.

14–17 November 2015.

Kang, Y., Hyndman, R. J. and Li, F. (2020), ‘GRATIS: GeneRAting TIme Series with diverse

and controllable characteristics’, Statistical Analysis and Data Mining (in press).

URL: https://doi.org/10.1002/sam.11461

Kang, Y., Hyndman, R. J. and Smith-Miles, K. (2017), ‘Visualising forecasting algorithm perfor-

mance using time series instance spaces’, International Journal of Forecasting 33(2), 345–358.

Krizhevsky, A., Sutskever, I. and E. Hinton, G. (2012), ‘Imagenet classification with deep

convolutional neural networks’, Neural Information Processing Systems 25.

Laptev, N., Yosinski, J., Li, L. E. and Smyl, S. (2017), Time-series extreme event forecasting

with neural networks at uber, in ‘International Conference on Machine Learning’, Vol. 34,

pp. 1–5.

Lazebnik, S., Schmid, C. and Ponce, J. (2006), Beyond bags of features: Spatial pyramid match-

ing for recognizing natural scene categories, in ‘2006 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR’06)’, Vol. 2, IEEE, pp. 2169–2178.

Lowe, D. G. (1999), Object recognition from local scale-invariant features, in ‘Computer vi-

sion, 1999. The proceedings of the seventh IEEE international conference on’, Vol. 2, IEEE,

pp. 1150–1157.

Lowe, D. G. (2004), ‘Method and apparatus for identifying scale invariant features in an image

and use of same for locating an object in an image’. US Patent 6,711,293.

Maaten, L. v. d. (2014), ‘Accelerating t-SNE using tree-based algorithms’, The Journal of

Machine Learning Research 15(1), 3221–3245.

Makridakis, S. and Hibon, M. (2000), ‘The M3-Competition: results, conclusions and implica-

tions’, International Journal of Forecasting 16(4), 451–476.

Makridakis, S., Spiliotis, E. and Assimakopoulos, V. (2020), ‘The M4 competition: 100,000 time

series and 61 forecasting methods’, International Journal of Forecasting 36(1), 54–74.

Meade, N. (2000), ‘Evidence for the selection of forecasting methods’, Journal of Forecasting

19(6), 515–535.

26

Montero-Manso, P., Athanasopoulos, G., Hyndman, R. J. and Talagala, T. S. (2020),

‘FFORMA: Feature-based forecast model averaging’, International Journal of Forecasting

36(1), 86 – 92.

Nanopoulos, A., Alcock, R. and Manolopoulos, Y. (2001), ‘Feature-based classification of time-

series data’, International Journal of Computer Research 10(3).

Pan, S. J. and Qiang, Y. (2010), ‘A survey on transfer learning’, IEEE Transactions on Knowl-

edge and Data Engineering 22(10), 1345–1359.

Pawlikowski, M. and Chorowska, A. (2020), ‘Weighted ensemble of statistical models’, Interna-

tional Journal of Forecasting 36(1), 93–97.

Petropoulos, F., Makridakis, S., Assimakopoulos, V. and Nikolopoulos, K. (2014), “Horses for

courses’ in demand forecasting’, European Journal of Operational Research 237(1), 152–163.

Petropoulos, F. and Svetunkov, I. (2020), ‘A simple combination of univariate models’, Inter-

national journal of forecasting 36(1), 110–115.

Razavian, A. S., Azizpour, H., Sullivan, J. and Carlsson, S. (2014), ‘Cnn features off-the-shelf:

An astounding baseline for recognition’.

Shah, C. (1997), ‘Model selection in univariate time series forecasting using discriminant anal-

ysis’, International Journal of Forecasting 13(4), 489–500.

Shaub, D. (2020), ‘Fast and accurate yearly time series forecasting with forecast combinations’,

International Journal of Forecasting 36(1), 116–120.

Simonyan, K. and Zisserman, A. (2014), ‘Very deep convolutional networks for large-scale image

recognition’, Computer Science .

Smyl, S. (2020), ‘A hybrid method of exponential smoothing and recurrent neural networks for

time series forecasting’, International Journal of Forecasting 36(1), 75–85.

Svetunkov, I. and Kourentzes, N. (2018), ‘Complex exponential smoothing for seasonal time

series’.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V. and Rabinovich, A. (2015), Going deeper with convolutions, in ‘Proceedings of the IEEE

conference on computer vision and pattern recognition’, pp. 1–9.

Talagala, P. D., Hyndman, R. J., Smith-Miles, K., Kandanaarachchi, S. and Muñoz, M. A.

(2019), ‘Anomaly detection in streaming nonstationary temporal data’, Journal of Computa-

tional and Graphical Statistics (In press), 1–28.

Talagala, T., Li, F. and Kang, Y. (2019), ‘FFORMPP: Feature-based forecast model perfor-

mance prediction’, arXiv 1908.11500.

URL: https://arxiv.org/abs/1908.11500

27

Talagala, T. S., Hyndman, R. J. and Athanasopoulos, G. (2018), Meta-learning how to fore-

cast time series, Working paper 6/18, Monash University, Department of Econometrics and

Business Statistics.

Thiel, M., Romano, M. C. and Kurths, J. (2004), ‘How much information is contained in a

recurrence plot?’, Physics Letters A 330(5), 343–349.

Thomson, M. E., Pollock, A. C., Onkal, D. and Gonul, M. S. (2019), ‘Combining forecasts:

Performance and coherence’, International Journal of Forecasting 35(2), 474–484.

Vincent, P., Larochelle, H., Bengio, Y. and Manzagol, P.-A. (2008), Extracting and compos-

ing robust features with denoising autoencoders, in ‘Proceedings of the 25th international

conference on Machine learning’, pp. 1096–1103.

Wang, J., Liu, P., She, M. F., Nahavandi, S. and Kouzani, A. (2013), ‘Bag-of-words repre-

sentation for biomedical time series classification’, Biomedical Signal Processing and Control

8(6), 634–644.

Wang, J., Yang, J., Yu, K., Lv, F., Huang, T. and Gong, Y. (2010), Locality-constrained linear

coding for image classification, in ‘Computer Vision and Pattern Recognition (CVPR), 2010

IEEE Conference on’, IEEE, pp. 3360–3367.

Wang, X., Smith, K. A. and Hyndman, R. J. (2006), ‘Characteristic-based clustering for time

series data’, Data Mining and Knowledge Discovery 13(3), 335–364.

Wang, Z. and Oates, T. (2015), Imaging time-series to improve classification and imputation,

in ‘Proceedings of the 24th International Conference on Artificial Intelligence’, AAAI Press,

pp. 3939–3945.

Appendices

A. Experimental setup in the SoBF model and CNN model

In the traditional image processing method with SIFT, we need to obtain the basic de-

scriptors before the linear coding. We choose k = 200 as the number of clusters, 200 centroid

coordinates are used as the coordinates of basic descriptors. We select 5 close descriptors from

200 basic descriptors for each descriptor with the K-nearest neighbors (KNN) algorithm and

the adjustment factor λ = e−4 in LLC. We set 1, 2, and 4 as the SPM parameters. In the

end, we split the image into 1× 1, 2× 2 and 4× 4 subimages, respectively. To eliminate range

differences of time series, we further adopt the minimax transformation for time series before

applying the recurrence plot. The parameter of ε for recurrence plot generation is 0.5.

28

Table 7. Optimal parameters of XGBoost on M4 competition dataset.

Method max depth learning rate sample proportion feature proportion

SIFT 14.000 0.575 0.916 0.767

CNN

Inception-v1+XGBoost 15.000 0.600 0.920 0.810

ResNet-v1-101+XGBoost 20.000 0.660 0.892 0.871

ResNet-v1-50+XGBoost 18.000 0.640 0.960 0.850

VGG-19+XGBoost 12.000 0.530 0.940 0.830

The parameters for the pre-trained CNN models are set as follows.

• Dimension of the output of the pre-trained Inception-v1 model: 1024.

• Dimension of the output of the pre-trained ResNet-v1-101 model: 2048.

• Dimension of the output of the pre-trained ResNet-v1-50 model: 2048.

• Dimension of the output of the pre-trained VGG model: 1000.

B. Experimental setup for XGBoost

To set optimal parameters for XGBoost, we perform a search in subspaces of the hyper-

parameter spaces, by measuring the OWA via 10-fold cross-validation of the training data. We

describe the hyper-parameters and the searching ranges of the cross-validation procedure as

follows.

• max depth: The maximum depth of a tree ranges from 6 to 25.

• learning rate: The learning rate and the scale of contribution of each tree ranges from

0.01 to 1.

• sample proportion: The proportion of the training set used to calculate the trees in each

iteration ranges from 0.7 to 1.

• feature proportion: The proportion of features used to calculate the trees in each iter-

ation ranges from 0.7 to 1.

Table 7 reports the optimal parameters of XGBoost on the M4 competition dataset. In the

experiment, we train the XGBoost with all data of different periods and as a result get one set

of optimal parameters.

Table 8 shows the optimal parameters of XGBoost for yearly, quarterly and monthly, respec-

tively on the Tourism competition dataset. Due to the small size of Tourism dataset, we use

29

Table 8. Optimal parameters of XGBoost on Tourism competition dataset.

Method max depth learning rate sample proportion feature proportion

Yearly

SIFT 25.000 1.000 0.747 1.000

CNN

Inception-v1+XGBoost 12.000 0.907 0.700 1.000

ResNet-v1-101+XGBoost 6.000 1.000 0.967 0.866

ResNet-v1-50+XGBoost 7.000 0.872 0.747 0.976

VGG-19+XGBoost 8.000 0.877 0.960 0.710

Quarterly

SIFT 12.000 0.880 0.851 0.861

CNN

Inception-v1+XGBoost 17.000 0.856 1.000 0.700

ResNet-v1-101+XGBoost 8.000 0.985 0.985 0.947

ResNet-v1-50+XGBoost 14.000 0.581 0.921 0.781

VGG-19+XGBoost 11.000 0.872 0.858 0.764

Monthly

SIFT 14.000 0.575 0.916 0.767

CNN

Inception-v1+XGBoost 25.000 1.000 0.861 0.700

ResNet-v1-101+XGBoost 25.000 1.000 1.000 1.000

ResNet-v1-50+XGBoost 14.000 1.000 1.000 0.705

VGG-19+XGBoost 17.000 0.842 0.935 0.913

M4 data with the corresponding periods as the training data. Hence, we obtain three groups of

optimal parameters for yearly, quarterly and monthly data, respectively.

30

	1 Introduction
	2 Time series imaging and feature extraction
	2.1 Time series imaging
	2.2 Feature extraction with the SBoF model
	2.3 Feature extraction with fine-tuned deep neural networks

	3 Time series forecasting with image features
	4 Experiments
	4.1 Forecasting with M4 competition data
	4.2 Forecasting with the Tourism competition data

	5 Discussions
	6 Concluding remarks
	Appendices
	A Experimental setup in the SoBF model and CNN model
	B Experimental setup for XGBoost

