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Abstract

Software requirements selection aims to find an optimal subset of the require-
ments with the highest value while respecting the project constraints. But the
value of a requirement may depend on the presence or absence of other require-
ments in the optimal subset. Such Value Dependencies, however, are imprecise
and hard to capture. In this paper, we propose a method based on integer
programming and fuzzy graphs to account for value dependencies and their im-
precision in software requirements selection. The proposed method, referred to
as Dependency-Aware Software Requirements Selection (DARS), is comprised
of three components: (i) an automated technique for the identification of value
dependencies from user preferences, (ii) a modeling technique based on fuzzy
graphs that allows for capturing the imprecision of value dependencies, and (iii)
an Integer Linear Programming (ILP) model that takes into account user pref-
erences and value dependencies identified from those preferences to reduce the
risk of value loss in software projects. Our work is verified by studying a real-
world software project. The results show that our proposed method reduces the
value loss in software projects and is scalable to large requirement sets.

Keywords: Fuzzy; Integer Programming; Value; Dependencies; Software

1. Introduction

Software requirement selection, also known as Release Planning, is to find a
subset of requirements that delivers the highest value for a release of software
while respecting the project constraints, e.g. budget (Zhang et al., 2018a,b;
de Melo França et al., 2018; Bagnall et al., 2001; Franch & Ruhe, 2016). Select-
ing (ignoring) a requirement, however, may influence the values of other require-
ments (Aydemir et al., 2018; Mougouei, 2016; Mougouei et al., 2017a; Mougouei
& Powers, 2020; Zhang et al., 2013; Robinson et al., 2003); it is important to
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consider value dependencies in requirement selection (Carlshamre et al., 2001; Li
et al., 2010; Zhang et al., 2014; Karlsson et al., 1997; Mougouei & Powers, 2019).
This is further emphasized by the fact that value dependencies widely exist in
software projects Carlshamre et al. (2001); Carlshamre (2002); Pitangueira et al.
(2015). Moreover, as observed by Carlshamre et al. (Carlshamre et al., 2001),
requirement dependencies and value dependencies in particular are fuzzy (Carl-
shamre et al., 2001) as the strengths of those dependencies are imprecise and
vary (Dahlstedt & Persson, 2005; Ngo-The & Ruhe, 2008; Ngo-The & Saliu,
2005; Carlshamre et al., 2001) from large to insignificant (Wang et al., 2012).

Although the need for considering value dependencies and their strengths
was observed as early as in 2001 (Carlshamre et al., 2001), existing require-
ments selection methods have mainly ignored value dependencies by simply
optimizing either the Accumulated Value (AV) (Baker et al., 2006; Li et al.,
2010; Boschetti et al., 2014; Araújo et al., 2016; Greer & Ruhe, 2004a) or the
Expected Value (EV) of the selected requirements (Pitangueira et al., 2017; Li
et al., 2017, 2014). Some methods have attempted considering value dependen-
cies by manually estimating the values of requirement subsets, that may require
up to 2n comparisons for n requirements (van den Akker et al., 2005b). When
estimations are limited to pairs, still O(n2) estimations are needed (Li et al.,
2010; Sagrado et al., 2013; Zhang et al., 2013). Such complexity severely im-
pacts the practicality of these methods, not to mention the issues around the
accuracy of manual estimations.

Finally, requirements selection methods based on manual estimations of val-
ues of requirement subsets do not capture the direction of an influence. In other
words, these methods do not distinguish among three scenarios: (i) requirement
ri influences the value of requirement rj and not the other way, (ii) rj influ-
ences the value of ri and not the other way, and (iii) both ri and rj influence
the values of each other but to different extents. To effectively consider value
dependencies in software requirements selection, we have proposed a method
based on fuzzy graphs and integer programming (Gkioulekas & Papageorgiou,
2019; Tavana et al., 2015) with three major components:

(i) Identification of value dependencies. We have contributed an automated
technique that uses Eells measure of casual strength (Eells, 1991) to extract
value dependencies from significant causal relations among user preferences.
Odds Ratio (Li et al., 2016) is used to specify the significance of such rela-
tions. We have further, demonstrated the use of a Latent Multivariate Gaus-
sian model (Macke et al., 2009) to generate samples of user preferences when
needed (Macke et al., 2009).

(ii) Modeling value dependencies. We have demonstrated the use of fuzzy
graphs (Zahedi et al., 2016; Rosenfeld, 1975) and their algebraic structure (Kalam-
pakas et al., 2013) for modeling strengths and qualities of value dependencies
and capturing the imprecision of those dependencies. On this basis, value depen-
dencies and their strengths are modeled by fuzzy relations (Carlshamre et al.,
2001; Ngo The & Saliu, 2005; Ngo-The & Saliu, 2005; Liu & Yen, 1996) and
their fuzzy membership functions respectively.
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(iii) Considering value dependencies in requirements selection. At the heart
of DARS is an integer linear programming (ILP) model, which maximizes the
Overall Value (OV) of a selected subset of the requirements, where user prefer-
ences and the value dependencies identified from those preferences are consid-
ered. The model further, considers structural and semantic dependencies (e.g.
Requires and Conflicts-With) among software requirements by formulating them
as the precedence constraints of the optimization model.

We have demonstrated practicality and scalability of DARS by studying
a real-world software. Our results show that (a) compared to existing require-
ments selection methods, that ignore value dependencies, DARS provides higher
overall value by mitigating the risk of value loss caused by ignoring (selecting)
requirements with positive (negative) influences on the values of the selected
requirements, (b) maximizing the accumulated value or the estimated value of
a software conflicts with maximizing its overall value, and (c) DARS is scalable
to datasets with large number of requirements for different levels of value depen-
dencies and precedence dependencies among requirements. This is demonstrated
by simulating different scenarios for datasets of up to 3000 requirements.

2. Background and Related Work

It is widely recognized that software requirements influence the values of each
other (Zhang et al., 2013; Brasil et al., 2012; Robinson et al., 2003; Dahlstedt &
Persson, 2005). Such influences are described in the literature as value depen-
dencies (Carlshamre et al., 2001; Li et al., 2010; Zhang et al., 2014; Karlsson
et al., 1997). Value dependencies are fuzzy relations (Carlshamre et al., 2001)
with varying strengths (e.g. weak, moderate, strong) and qualities (positive or
negative) which are imprecise, and hard to specify (Carlshamre et al., 2001;
Mougouei, 2016). Requirement selection methods hence, should consider qual-
ities and strengths of explicit and implicit value dependencies among software
requirements.

Moreover, Precedence Dependencies such as Requires (Dahlstedt & Persson,
2005), Conflicts-With (K, 1996), AND, and OR also have value implications.
For instance, a requirement ri requires (conflicts-with) rj means that ri cannot
give any value if rj is ignored (selected). Hence, it is also important to con-
sider value implications of precedence dependencies in software requirements
selection. On this basis, we have characterized properties (P1)-(P7) for require-
ments selection methods in relation to how they treat value dependencies.

Table 1 categorizes existing requirements selection methods into four groups
based on (P1)-(P7).

(P1) Considering explicit value dependencies.

(P2) Considering implicit value dependencies.

(P3) Considering qualities (positive or negative) of value dependencies.

(P4) Considering strengths of value dependencies.

(P5) Considering directions of value dependencies.
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(P6) Considering precedence dependencies and their value implications.

(P7) Relying on manual estimations of values of requirement subsets.

Table 1: Considering aspects of value dependencies in existing works.

Technique Employed by P1 P2 P3 P4 P5 P6 P7

BK Karlsson & Ryan (1997); Jung (1998); Zhang et al. (2007); Baker et al. (2006); Finkelstein et al. (2009); Zhang et al. (2011); del Sagrado et al. (2010); Kumari et al. (2012) NO NO NO NO NO NO NO

PCBK

Veerapen et al. (2015); Brasil et al. (2012); Sagrado et al. (2013); Bagnall et al. (2001); Greer & Ruhe (2004b); Boschetti et al. (2014); Ruhe & Greer (2003); van Valkenhoef et al. (2011); Zhang & Harman (2010); Tonella et al. (2010); Freitas et al. (2011)
Colares et al. (2009a); Saliu & Ruhe (2007, 2005b); Jiang et al. (2010); van den Akker et al. (2005a); Ngo-The & Ruhe (2009); Chen & Zhang (2013); del Sagrado et al. (2011); Araújo et al. (2016); Colares et al. (2009b); Pitangueira et al. (2016)
van den Akker et al. (2008); Ngo-The & Ruhe (2008); Tonella et al. (2013); Xuan et al. (2012); Saliu & Ruhe (2005a)

NO NO NO NO NO YES NO

Increase-Decrease
Li et al. (2010); Sagrado et al. (2013); Zhang et al. (2013) (subsets of size 2) YES NO YES NO NO YES YES

van den Akker et al. (2005b) (subsets of any size) YES YES NO NO NO YES YES

SBK Pitangueira et al. (2017); Li et al. (2017, 2014) NO NO NO NO NO NO YES

2.1. Binary Knapsack Methods

The first group of selection methods (Table 1), i.e. Binary Knapsack (BK)
methods, are solely based on the classical formulation of binary knapsack prob-
lem (Harman et al., 2014; Carlshamre et al., 2001) as given by (1)-(3). Let R =
{r1, ..., rn} be a set of identified requirements, where ∀ri ∈ R (1 ≤ i ≤ n), vi
and ci in (1)-(3) denote the value and the cost of ri respectively. Also, b in (2)
denotes the available budget. A decision variable xi specifies whether require-
ment ri is selected (xi = 1) or not (xi = 0). The objective of BK methods as
given by (1) is to find a subset of R that maximizes the accumulated value of
the selected requirements (

∑n
i=1 vixi) while entirely ignoring value dependen-

cies as well as precedence dependencies among the requirements (Karlsson &
Ryan, 1997; Jung, 1998; Zhang et al., 2007).

Maximize

n∑
i=1

vixi (1)

Subject to

n∑
i=1

cixi ≤ b (2)

xi ∈ {0, 1}, i = 1, ..., n (3)

2.2. Precedence-Constrained Binary Knapsack Methods

The Precedence-Constrained Binary Knapsack (PCBK) methods, enhance
the BK methods by adding (4) to the optimization model of BK methods to
consider precedence dependencies (requires (Dahlstedt & Persson, 2005) and
conflicts-with (K, 1996)) and their value implications. A positive (negative)
dependency from a requirement rj to rk is denoted by xj ≤ xk (xj ≤ 1 − xk)
in (4). Also, decision variable xi denotes whether a requirement ri is selected
(xi = 1) or not.

{
xj ≤ xk if rj positively depends on rk

xj ≤ 1− xk if rj negatively depends on rk, j 6= k = 1, ..., n
(4)
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2.3. Increase-Decrease Methods

The third group of requirement selection methods i.e. Increase-Decrease
methods consider value dependencies among requirements through estimating
the amount of the increased (decreased) values resulted by selecting different
subsets of requirements. The optimization model for an increases-Decreases
technique proposed by (van den Akker et al., 2005b) is given in (5)-(8). For
a subset sj ∈ S : {s1, ..., sm},m ≤ 2n, with nj requirements, the difference
between the estimated value of sj (wj) and the accumulated value of the re-
quirements in sj (

∑
rk∈sj vk) is considered when computing the value of the

selected requirements. yj in (5) specifies whether a subset sj is realized (yj = 1)
or not (yj = 0). Also, constraint (7) ensures that yj = 1 only if ∀rk ∈ sj , xk = 1.

Maximize

n∑
i=1

vixi +

m∑
j=1

(wj −
∑
rk∈sj

vk) yj (5)

Subject to njyj ≤
∑
rk∈sj

xk (6)

n∑
i=1

cixi ≤ b (7)

xi, yj ∈ {0, 1}, i = 1, ..., n, j = 1, ...,m (8)

Increase-Decrease methods are complex and prone to human error as they
rely on manual estimations for requirement subsets (Mougouei, 2016). For n
requirements, these estimations are at least as complex as O(n2), when only
values of pairs are estimated (Li et al., 2010; Sagrado et al., 2013; Zhang et al.,
2013), and can get as complex as O(2n) in worst case.

Maximize

n∑
i=1

vixi +

n∑
i=1

n∑
j=1

xixjwi,j (9)

Subject to

n∑
i=1

cixi ≤ b (10)

yij ≤ xi (11)

yij ≤ xj (12)

yi,j ≥ xi + xj − 1 (13)

xi, yi,j ∈ {0, 1} i, j = 1, ..., n (14)

Moreover, relying on pairwise estimations results in ignoring implicit value
dependencies as the direction of dependencies are not specified. For instance,
consider requirements R : {r1, r2, r3} with positive value dependencies from r1
to r2 and from r2 to r3. An implicit positive value dependency from r1 to r3
can be inferred. An increase-Decrease model, however, fails to capture this even
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if pairwise estimations identify the value of r1 and r2 (r2 and r3) as a pair is
higher than the accumulated value of r1 and r2 (r2 and r3). If no explicit value
dependency is found between r1 and r3 hence the influence of r3 on the value
of r1 will be ignored.

2.4. Stochastic Binary Knapsack Methods

Stochastic Binary Knapsack (SBK) requirements selection methods maxi-
mize the expected value of a requirement subset based on the formulation of
stochastic knapsack problem (Henig, 1990) as given by (15). In this equation,
E(vi) denotes the expected value of a requirement ri. The work (Pitangueira
et al., 2017) for instance, optimizes the expected value of a software at different
risk levels, where risk is formulated in terms of summation of covariances of
values of requirements as given by (16), where σi,j specifies the covariance of vi
and vj and l specifies the risk level.

Maximize

n∑
i=1

xiE(vi) (15)

Subject to

n∑
i=1

n∑
j=1

xixjσi,j ≤ l (16)

n∑
i=1

xici ≤ b (17)

xi ∈ {0, 1} i = 1, ..., n (18)

One may suggest that the covariance of values of requirements (risk) in (16)
may somehow capture value dependencies. But, there are four major problems
with this. First, covariance is a measure of correlation and does not capture
causality. In other words, by using covariance one is assuming that all value
dependencies are bidirectional and the strengths of dependencies in either di-
rection are equal. Such an assumption, however, may not be realistic. Second,
optimization models based on covariance can only capture linear relations ig-
noring non-linear relations even if they are significant.

Also, limiting or minimizing the risk may contradict with choosing require-
ments that positively influence each other as SBK methods avoid choosing pos-
itively correlated (with respect to value) requirements. On the contrary, SBK
methods tend to choose negatively correlated requirements or independent ones
as such combinations satisfy (16). In other words, risk, which is defined based
on covariances, and value dependencies, which are, by nature, causal relations,
are different and cannot be used interchangeably.

It is also worth mentioning that Value (of the requirement/software) is a
broad concept and has several manifestations as discussed in Mougouei et al.
(2018); Perera et al. (2019a); Hussain et al. (2018); Perera et al. (2019b). In
this paper, however, we only focus on the monetary interpretation of Value.
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1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1

0 0 1 0 0 0 0 1 1 0 1 1 1 0 0 0 0 0 1 1

1 0 1 1 0 1 1 1 0 1 1 1 1 1 0 1 0 1 0 0







r1

r2

r3

r4

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u13 u14 u15 u16 u17 u18 u19 u20

Figure 1: A sample preference matrix M4×20.

3. Identification of Value Dependencies

This section presents an automated technique for identification of value de-
pendencies based on causal relations among user preferences for requirements.
We use the widely adopted Eells measure (Eells, 1991) of causal strength and the
Odds Ratio (Li et al., 2016) to identify the qualities and strengths of significant
causal relations among requirements. A fuzzy membership function will then
be used to estimate the strengths and qualities of value dependencies based on
identified causal relations. Identified value dependencies will be used to identify
implicit dependencies among requirements using the algebraic structure of fuzzy
graphs.

3.1. Gathering User Preferences

User preferences can be gathered in different ways (Leung et al., 2011; Hol-
land et al., 2003; Sayyad et al., 2013) depending on the nature of the release.
For a new software product, preferences may be gathered by conventional mar-
ket research techniques such as conducting surveys and mining user reviews in
social media and online stores (Villarroel et al., 2016). User preferences may
also be gathered by studying similar software and sales records.

When sales/usage records for the requirements of a software product are
available, say from earlier versions, such information can be combined with
market research results to estimate user preferences for a newer version of the
software. This is particularly suitable for reengineering software or releasing
different configurations of a software product line. We capture user preferences
by a Preference Matrix as given by Definition 1.

Proposition 1. Preference Matrix. Let R = {r1, ..., rn} be a requirement set
and U = {u1, ..., uk} be the list of users whose preference are gathered. A
preference matrix M is a binary (0/1) matrix of size n×k where n and k denote
the number of requirements and the number of users respectively. Each element
mi,j specifies whether a user ui has preferred a requirement rj (mi,j = 1) or not
(mi,j = 0). A sample preference matrix M4×20 is shown in Figure 1.
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3.2. Resampling

Resampling may be required to generate samples of user preferences based
on the estimated distribution of the original data (collected user preferences)
to enhance the accuracy of Eells measure. This is particularly useful when
conducting comprehensive market research is not practical.

We use a resampling technique introduced by (Kroese et al., 2014) to gen-
erate larger samples of collected user preferences using a Latent Multivariate
Gaussian model. The process as given in Figure 2 starts with reading the pref-
erence matrix of users (Step 1) and continues with estimating the means (Step
2) and variances of user preferences (Step 3) for each requirement. Then the
covariance matrix of the requirements will be computed (Step 4) to be used for
generating new samples. Thereafter, the number of samples will be specified
(Step 5) and samples will be generated based on the Dichotomized Gaussian
Distribution model discussed in (Kroese et al., 2014), Step 6.

Step 1. Read the Preference Matrix

Step 2. Estimate Means of Preferences

Step 3. Compute Variances of Prefrences

Step 4. Estimate Covariance Matrix of Requirements

Step 5. Specify the Number of Samples

Step 6. Generate Samples from the
Dichotomized Gaussian Distribution Model

Step 7. Evalue precision of resampling

Figure 2: Steps for generating samples from user preferences.

8



The precision of the employed resampling technique (Figure 2) can be eval-
uated (Step 7) by comparing the means and covariance matrix of the generated
samples against the covariance matrix of the initial samples gathered from users.
Steps 1 to 7 may be repeated for larger numbers of samples until the means and
covariance matrix of the resampled data and those of the initial sample converge.

Macke’s technique has proved to be computationally efficient and feasible for
a large number of variables (software requirements). The entropy of the Latent
Multivariate Gaussian model is near theoretical maximum for a wide range of
parameters (Macke et al., 2009).

3.3. Extracting Causal Relations among User Preferences

User preferences for a requirement may positively or negatively influence
the preferences of the users for other requirements. Such causal relations can
be identified using measures of causal strength (Halpern & Hitchcock, 2015;
Pearl, 2009; Janzing et al., 2013). Causal relations among user preferences
can then be used to specify the strengths and qualities of value dependencies
among requirements as values of software requirements are determined by user
preferences for those requirements.

As such, we have adopted one of the most widely used measures of causal
strength, referred to as Eells measure (Eells, 1991), to estimate the strengths
and qualities of explicit value dependencies among software requirements as
given by (19). The sign (magnitude) of ηi,j specifies the quality (strength) of
a value dependency from a requirement ri to rj , where selecting (ignoring) rj
may influence, either positively or negatively, the value of ri.

ηi,j = p(ri|rj)− p(ri|r̄j), ηi,j ∈ [−1, 1] (19)

For a pair of requirements (ri, rj), Eells measure captures both positive
and negative value dependencies from ri to rj by subtracting the conditional
probability p(ri|r̄j) from p(ri|rj), where conditional probabilities p(ri|r̄j) and
p(ri|rj) denote strengths of positive and negative causal relations from ri to rj
respectively, that is selecting ri may increase or decrease the value of rj .

Matrix P4×4 (Figure 3(a)) and Matrix P̄4×4 (Figure 3(b)) show the strengths
of positive and negative causal relations among user preferences for requirements
in the preference matrix M4×8 (Figure 1). For a pair of requirements ri and rj
with i 6= j, an off-diagonal element pi,j (p̄i,j) of matrix P4×4 (P̄4×4) denotes the
strength of a positive (negative) causal relation from ri to rj .

For diagonal elements of P4×4 (P̄4×4) on the other hand, we have pi,i =
p(ri|ri) = 1 (p̄i,i = p(ri|r̄i) = 0). Hence, subtracting each element p̄i,j from its
corresponding element pi,j , where i 6= j, gives Eells causal strength ηi,j for the
value dependency from ri to rj . Diagonal elements, however, may be ignored
or set to zero as self-causation is not meaningful here.

Algorithm 1 specifies the steps for computing the measure of causal strength
for a given preference matrix Mn×k. In this algorithm, an element λi,j in matrix
λn×2n counts the number of times that a pair of requirements (ri,rj) are selected
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1.0000 0.8333 0.8750 0.7692

0.5882 1.0000 0.6250 0.6154

0.4118 0.4167 1.0000 0.3846

0.5882 0.6667 0.6250 1.0000







−

r1

r2

r3

r4

r1 r2 r3 r4

(a) P4×4

0.0000 0.8750 0.8333 1.0000

0.6667 0.0000 0.5833 0.5714

0.3333 0.3750 0.0000 0.4286

1.0000 0.6250 0.6667 0.0000







=

r1

r2

r3

r4

r1 r2 r3 r4

(b) P̄4×4

+1.0000 −0.0417 +0.0417 −0.2308

−0.0785 +1.0000 +0.0417 +0.0440

+0.0785 +0.0417 +1.0000 −0.0440

−0.4118 +0.0417 −0.0417 +1.0000







r1

r2

r3

r4

r1 r2 r3 r4

(c) η4×4

Figure 3: Computing Eells measure for the preference matrix of Figure 1.

Algorithm 1: Computing Eells measure of strength.

Input: Matrix of user preferences: Mn×k
Output: Matrix of Eells measure: ηn×n

1: Pn×n ← 0
2: P̄n×n ← 0
3: ηn×n ← 0
4: λn× 2n← 0
5: for each rj ∈ R do
6: for each ri ∈ R do
7: for each ut ∈ U do
8: if mj,t = 1 then
9: if mi,t = 1 then

10: λi,j ← (λi,j + 1)
11: else
12: λi,j+n ← (λi,j+n + 1)
13: end if
14: end if
15: end for
16: pi,j ← (

λi,j

λj,j
)

17: p̄i,j ← (
λi,j+n

λj+n,j+n
)

18: ηi,j ← (pi,j − p̄i,j)
19: end for
20: end for

together by the users. An element λi,j+n on the other hand, gives the number
of times users have selected ri while ignoring rj . It is clear that, λi,i gives the
number of occurrences of ri in Mn×k while λi,i+n = 0.

Given a dataset of n requirements and t user preferences, lines 8 to 14 of
Algorithm 1 will be executed for each pair of requirements and all gathered user
preferences: O(t×n2). Moreover, lines 16 to 18 need to be executed for all pairs
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of requirements. The computational complexity of the algorithm is therefore of
O(n2). The overall complexity of the algorithm, therefore, is of O(t× n2).

3.4. Testing the Significance of Causal Relations

Using measures of interestingness (Geng & Hamilton, 2006) is sometimes not
sufficient to understand the significance of the relations found among the items
of a dataset as explained in (Li et al., 2016). In this regard, we have employed
the widely adopted measure of association referred to as the Odds Ratio to
test if causal relations identified based on the Eells measure are significant or
not. For a positive (negative) causal relation from requirement rj to ri, which
means the presence of rj positively (negatively) influences the value of ri, (20)
computes the Odds ratio denoted by ω(ri, rj) in which the order of ri and rj
does not make any difference. Also, p(ri, rj) denotes the joint probability of ri
and rj . Similarly, p(ri, r̄j) gives the joint probability that ri is selected and rj
is not.

ω(ri, rj) =
p(ri, rj)p(r̄i, r̄j)

p(ri, r̄j)p(r̄i, rj)
, ω(ri, rj) ∈ (0,∞) (20)

To test the significance of a causal relation from a requirement rj to ri, we
use the technique used in (Li et al., 2016) by computing the lower bound (ω−)
and the upper bound (ω+) of the confidence interval of the Odds Ratio as given
by (21)-(22). In these equations z′ is the critical value corresponding to a desired
level of confidence. Also, u denotes the total number of user preferences. When
we find a lower bound ω− ≤ 1 AND an upper bound ω+ ≥ 1 for the Odds ratio
imply the absence of any significant causal relation from rj and ri. To exclude
insignificant relations, the strengths of those relations will be set to zero.

ω−(ri, rj) =

ln
(
ω(ri, rj)

)
− z′√

u

√
1

p(ri, rj)
+

1

p(r̄i, r̄j)
+

1

p(r̄i, rj)
+

1

p(ri, r̄j)
(21)

ω+(ri, rj) =

ln
(
ω(ri, rj)

)
+

z′√
u

√
1

p(ri, rj)
+

1

p(r̄i, r̄j)
+

1

p(r̄i, rj)
+

1

p(ri, r̄j)
(22)

3.5. Computing the Strengths and Qualities of value Dependencies

The strength of an explicit value dependency from a requirement ri to rj is
computed by (23), which gives a mapping from Eells measure of causal strength
ηi,j to the fuzzy membership function ρ : R × R → [0, 1] as given in Figure 4.
Significant causal relations which pass the test in Section 3.4 will be considered.

The fuzzy membership functions, however, may be adjusted to account for
the imprecision of value dependencies and suit a particular needs of decision
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|ηi,j |

ρ(ri, rj)

0

1

1

(a)

|ηi,j |

ρ(ri, rj)

0

1

1

(b)

Figure 4: Sample membership functions for strengths of value dependencies.

makers. For instance, the membership function of Figure 4(a) may be used to
ignore “too weak” value dependencies while “too strong” dependencies are con-
sidered as full strength relations, ρ(ri, rj) = 1. Different membership functions
and measures of causal strength may be used by decision makers resulting in a
set of optimal solutions to choose from.

ρ(ri, rj) = |ηi,j | (23)

σ(ri, rj) =


+ if ηi,j > 0

− if ηi,j < 0

± if ηi,j = 0

(24)

As given by (24), ηi,j > 0 indicates that the strength of the positive causal
relation from ri to rj is greater than the strength of its corresponding negative
causal relation: p(ri|rj) > p(ri|¬rj) and therefore, the quality of (ri, rj) is
positive (σ(ri, rj) = +). Similarly, ηi,j < 0 indicates p(ri|¬rj) > p(ri|rj) →
σ(ri, rj) = −. Also, p(ri|rj) − p(ri|¬rj) = 0 specifies that the quality of the
zero-strength value dependency (ri, rj) is non-specified (σ(ri, rj) = ±).

3.6. Value Implications of Precedence Dependencies

As explained earlier, precedence dependencies among requirements such as
requires and conflicts-with and their value implications need to be considered in
requirements selection. For instance, a requirement ri requires (conflicts-with)
rj implies that the value of ri fully relies on selecting (ignoring) rj . This may
not be captured by value dependencies identified from user preferences.

Hence, it is important to not only consider user preferences in the identifi-
cation of explicit value dependencies but to take into account the value implica-
tions of precedence dependencies and consider them in a requirements selection.

12



This can be achieved by modeling the precedence dependencies using a Prece-
dence Dependency Graph (PDG) as introduced in Definition 2.

Proposition 2. The Precedence Dependency Graph (PDG). A PDG is a signed
directed graph G = (R,W ) in which R = {r1, ..., rn} denotes the graph nodes
(requirements) and W (ri, rj) ∈ −1, 0, 1 specifies the presence or absence of a
precedence dependency from ri to rj . W (ri, rj) = 1 (W (ri, rj) = −1) specifies a
positive (negative) precedence dependency from ri to rj meaning that ri requires
(conflicts-with) rj . Finally W (ri, rj) = 0 specifies the absence of any precedence
dependency from requirement ri to rj .

PDL(G) =
k
nP2

=
k

n(n− 1)
(25)

NPDL(G) =
j

k
(26)

Hence, precedence dependencies of a software project can be captured by a
PDG and mathematically modeled in terms of the precedence constraints of the
optimization model used for a requirements selection. It is clear that increasing
the precedence dependencies among requirements limits the number of choices
and therefore reduce the number of feasible solutions (requirement subsets). To
measure the level of precedence dependencies among requirements of a PDG, we
have defined the Precedence Dependency Level (PDL) and the Negative Prece-
dence Dependency Level (NPDL) as given by (25) and (26) respectively.

The PDL of a precedence dependency graph G with n nodes (requirements)
is computed by dividing the total number of the precedence dependencies (k)
among the nodes of G by the maximum number of the potential precedence
dependencies in G (n(n − 1)). Also, the NPDL of G is computed by dividing
the number of negative precedence dependencies (j) by the total number of the
positive and negative precedence dependencies.

4. Modeling Value Dependencies by Fuzzy Graphs

Fuzzy logic and Fuzzy graphs Mathew & Sunitha (2013) have been widely
adopted in decision making and expert systems (Rosenfeld, 1975) as they con-
tribute to more accurate models by taking into account the imprecision of
real-world problems (Mathew & Sunitha, 2013; Mougouei et al., 2012a,b,c;
Mougouei, 2013; Mougouei & Nurhayati, 2013). Fuzzy logic has been adopted
in requirement selection for capturing the partiality of requirements Mougouei
et al. (2019, 2015). Also, Fuzzy graphs have, particularly, demonstrated use-
ful in capturing the imprecision of dependency relations in software (Ngo The
& Saliu, 2005; Ngo-The & Saliu, 2005; Mougouei & Powers, 2017; Mougouei,
2018). Ngo-The et al., exploited fuzzy graphs for modeling dependency satisfac-
tion in release planning (Ngo The & Saliu, 2005) and capturing the imprecision
of coupling dependencies among requirements (Ngo-The & Saliu, 2005).
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Moreover, Wang et al. (Wang et al., 2012) adopted linguistic fuzzy terms
to capture the variances of strengths of dependencies among software require-
ments. In this section we discuss modeling value dependencies by fuzzy graphs
and identification of implicit value dependencies among requirements. We fur-
ther use the algebraic structure of fuzzy graphs to compute the influences of
requirements on the values of each other.

4.1. Value Dependency Graphs

To account for the imprecision of value dependencies, we have introduced
Value Dependency Graphs (VDGs) based on fuzzy graphs for modeling value
dependencies and their characteristics. We have specially modified the classical
definition of fuzzy graphs to consider not only the strength but also the quality
(positive or negative) of value dependencies as given by Definition 3.

Proposition 3. The Value Dependency Graph (VDG) is a signed directed
fuzzy graph (Wasserman & Faust, 1994) G = (R, σ, ρ) where, requirements
R : {r1, ..., rn} constitutes the graph nodes. Also, the qualitative function
σ(ri, rj) → {+,−,±} and the membership function ρ : (ri, rj) → [0, 1] de-
note the quality and the strength of the explicit value dependency (edge of the
graph) from ri to rj receptively. Moreover, ρ(ri, rj) = 0 denotes the absence of
any explicit value dependency from ri to rj . In that case we have σ(ri, rj) = ±,
where ± denotes the quality of the dependency is non-specified.

r1r2

r3

r4
ρ(r1, r2) = 0.4, σ(r1, r2) = +

ρ(r1, r3) = 0.8, σ(r1, r3) = +

ρ(r1, r4) = 0.1, σ(r1, r4) = −

ρ(r2, r4) = 0.3, σ(r2, r4) = +

ρ(r3, r1) = 0.7, σ(r3, r1) = +

ρ(r
3,
r2)

=
0.6
, σ
(r3
, r2

) =
+

ρ(r
3 , r

4 ) =
0.8, σ(r

3 , r
4 ) =

+

ρ(r4 , r3 ) =
0.2, σ(r4 , r3 ) =

+

Figure 5: A sample value dependency graph.

For instance, in the value dependency graph of Figure 5 σ(r1, r2) = + and
ρ(r1, r2) = 0.4 specifies a positive value dependency from r1 to r2 with strength
0.4. That is selecting r2 has an explicit positive influence on the value of r1.

14



4.2. Value Dependencies in VDGs

In Section 3 we introduced an automated technique for identification of ex-
plicit value dependencies and their characteristics (quality and strength) from
user preferences. Definition 4 provides a more comprehensive definition of value
dependencies that includes both explicit and implicit value dependencies among
the requirements of software based on the algebraic structure of fuzzy graphs.

Proposition 4. Value Dependencies. A value dependency in a value depen-
dency graphG = (R, σ, ρ) is defined as a sequence of requirements di :

(
r(0), ..., r(k)

)
such that ∀r(j) ∈ di, 1 ≤ j ≤ k we have ρ

(
r(j − 1), r(j)

)
6= 0. j ≥ 0 is the

sequence of the jth requirement (node) denoted as r(j) on the dependency path.
A consecutive pair

(
r(j − 1), r(j)

)
specifies an explicit value dependency.

∀di :
(
r(0), ..., r(k)

)
: ρ(di) =

k∧
j=1

ρ
(
r(j − 1), r(j)

)
(27)

∀di :
(
r(0), ..., r(k)

)
: σ(di) =

k∏
j=1

σ
(
r(j − 1), r(j)

)
(28)

Equation (27) computes the strength of a value dependency di :
(
r(0), ..., r(k)

)
by finding the strength of the weakest of the k explicit dependencies on di.
Fuzzy operator ∧ denotes Zadeh’s (Zadeh, 1965) AND operation (infimum).
The quality (positive or negative) of a value dependency di :

(
r(0), ..., r(k)

)
is

calculated by qualitative serial inference (De Kleer & Brown, 1984; Wellman &
Derthick, 1990; Kusiak & Wang, 1995) as given by (28) and Table 2. Inferences
in Table 2 are informally proved by Wellman (Wellman & Derthick, 1990) and
Kleer (De Kleer & Brown, 1984).

Table 2: Qualitative serial inference in VDGs.

σ
(
r(j − 1), r(j), r(j + 1)

) σ
(
r(j), r(j + 1)

)
+ − ±

σ
(
r(j − 1), r(j)

) + + − ±
− − + ±
± ± ± ±

Let D = {d1, d2, ..., dm} be the set of all value dependencies from ri ∈ R to
rj ∈ R in a VDG G = (R, σ, ρ), where positive and negative dependencies can
simultaneously exist from ri to rj . The strength of all positive value depen-
dencies from ri to rj , denoted by ρ+∞(ri, rj), is calculated by (29), that is to
find the strength of the strongest positive dependency (Rosenfeld, 1975) from
ri to rj . Fuzzy operators ∧ and ∨ denote Zadeh’s (Zadeh, 1965) fuzzy AND
and OR operations respectively. Analogously, the strength of all negative value
dependencies from ri to rj is denoted by ρ−∞(ri, rj) and calculated by (30).
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ρ+∞(ri, rj) =
∨

dm∈D,σ(dm)=+

ρ(dm) (29)

ρ−∞(ri, rj) =
∨

dm∈D,σ(di)=−

ρ(dm) (30)

A brute-force approach to computing ρ+∞(ri, rj) or ρ−∞(ri, rj) needs to cal-
culate the strengths of all paths from ri to rj , which is of complexity of O(n!) for
n requirements (VDG nodes). To avoid such complexity, we devised a modified
version of Floyd-Warshall (Floyd, 1962) algorithm (Algorithm 2) that computes
ρ+∞(ri, rj) and ρ−∞(ri, rj) for all pairs of requirements (ri, rj), ri, rj ∈ R :
{r1, ..., rn} in polynomial time: O(n3). For each pair of requirements (ri, rj)
in a VDG G = (R, σ, ρ), lines 18 to 35 of Algorithm 2 find the strength of all
positive (negative) value dependencies from ri to rj .

Ii,j = ρ+∞(ri, rj)− ρ−∞(ri, rj) (31)

The overall strength of all positive and negative value dependencies from ri
to rj is referred to as the Influence of rj on the value of ri and denoted by Ii,j .
Ii,j as given by (31) is calculated by subtracting the strength of all negative
value dependencies from ri to rj (ρ−∞(ri, rj)) from the strength of all positive
value dependencies from ri to rj (ρ+∞(ri, rj)). It is clear that Ii,j ∈ [−1, 1].
Ii,j > 0 states that rj positively influences the value of ri whereas Ii,j < 0
indicates a negative influence from rj on ri.

Example 1. Let D = {d1 : (r1, r2, r4), d2 : (r1, r3, r4), d3 : (r1, r4)} specify
value dependencies from requirement r1 to r4 in Figure 5. Using (28), quali-
ties of d1 to d3 are computed as: σ(d1) = Π(+,+) = +, σ(d2) = Π(+,+) =
+, and σ(d3) = Π(−) = −. Strengths are calculated by (27) as: ρ(d1) =
∧
(
ρ(r1, r2), ρ(r2, r4)

)
= min(0.4, 0.3), ρ(d2) = ∧

(
ρ(r1, r3), ρ(r3, r4)

)
= min(0.8, 0.8),

ρ(d3) = min(0.1). Using (29)and (30) then we have ρ(r1, r4)+∞ = ∨(ρ(d1), ρ(d2)) =
max(0.3, 0.8) and ρ−∞(r1, r4) = max(ρ(d3)). Therefore, we have I1,4 = ρ(r1, r4)+∞−
ρ(r1, r4)−∞ = 0.7 which means the positive influence of r4 on the value of r1
prevails. Table 3 lists influences of requirements in the VDG of Figure 5 on the
value of each other.

Proposition 5. Value Dependency Level (VDL) and Negative Value Depen-
dency Level (NVDL). Let G = (R, σ, ρ) be a VDG with R = {r1, ..., rn}, k be
the total number of explicit value dependencies in G, and m be the total num-
ber of negative explicit value dependencies. Then the VDL and NVDL of G are
derived by (32) and (33) respectively.

V DL(G) =
k
nP2

=
k

n(n− 1)
(32)

NVDL(G) =
m

k
(33)
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Algorithm 2: Calculating the strengths of value dependencies.

Input: VDG G = (R, σ, ρ)
Output: ρ+∞, ρ−∞

1: for each ri ∈ R do
2: for each rj ∈ R do
3: ρ+∞(ri, rj)← ρ−∞(ri, rj)← −∞
4: end for
5: end for
6: for each ri ∈ R do
7: ρ(ri, ri)

+∞ ← ρ(ri, ri)
−∞ ← 0

8: end for
9: for each ri ∈ R do

10: for each rj ∈ R do
11: if σ(ri, rj) = + then
12: ρ+∞(ri, rj)← ρ(ri, rj)
13: else if σ(ri, rj) = − then
14: ρ−∞(ri, rj)← ρ(ri, rj)
15: end if
16: end for
17: end for
18: for each rk ∈ R do
19: for each ri ∈ R do
20: for each rj ∈ R do
21: if min

(
ρ+∞(ri, rk), ρ+∞(rk, rj)

)
> ρ+∞(ri, rj) then

22: ρ+∞(ri, rj)← min(ρ+∞(ri, rk), ρ+∞(rk, rj))
23: end if
24: if min

(
ρ−∞(ri, rk), ρ−∞(rk, rj)

)
> ρ+∞(ri, rj) then

25: ρ+∞(ri, rj)← min(ρ−∞(ri, rk), ρ−∞(rk, rj))
26: end if
27: if min

(
ρ+∞(ri, rk), ρ−∞(rk, rj)

)
> ρ−∞(ri, rj) then

28: ρ−∞(ri, rj)← min(ρ+∞(ri, rk), ρ−∞(rk, rj))
29: end if
30: if min

(
ρ−∞(ri, rk), ρ+∞(rk, rj)

)
> ρ−∞(ri, rj) then

31: ρ−∞(ri, rj)← min(ρ−∞(ri, rk), ρ+∞(rk, rj))
32: end if
33: end for
34: end for
35: end for
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Table 3: Overall influences computed for VDG of Figure 5.

Ii,j = ρ(ri, rj)
+∞ − ρ(ri, rj)

−∞ r1 r2 r3 r4

r1 0.0− 0.0 = 0.0 0.6− 0.1 = 0.5 0.8− 0.1 = 0.7 0.8− 0.1 = 0.7
r2 0.2− 0.0 = 0.2 0.0− 0.0 = 0.0 0.2− 0.0 = 0.2 0.3− 0.0 = 0.3
r3 0.7− 0.1 = 0.6 0.6− 0.1 = 0.5 0.0− 0.0 = 0.0 0.8− 0.1 = 0.7
r4 0.2− 0.0 = 0.2 0.2− 0.0 = 0.2 0.2− 0.0 = 0.2 0.0− 0.0 = 0.0

Example 2. For the value dependency graph G of Figure 5 we have n = 4,
k = 8, and m = 1. V DL(G) is derived by (32) as: V DL(G) = 8

4×3 = 8
12 u 0.67.

Also we have from Equation (33), NVDL(G) = 1
8 = 0.125.

5. Integrating Value Dependencies into Requirements Selection

5.1. Overall Value of a Subset of Requirements

This section details our proposed measure for the economic worth of a se-
lected subset of requirements (software product) i.e. overall value (OV) as an
alternative to the accumulated value (AV) and the expected value (EV) of that
subset. The formulation of overall value in this section takes into account user
preferences for selected requirements as well as the impacts of value dependen-
cies on the values of requirements.

Value dependencies as explained in Section 3 are identified based on causal
relations among user preferences. Section 3 presented an automated technique
for identification of value dependencies among requirements. Then, algorithm 2
was used to infer implicit value dependencies and compute the influences of
requirements on the values of each other based on the algebraic structure of
fuzzy graphs.

To compute the overall values of selected requirements, (34)-(35) give the
penalty of ignoring (selecting) requirements with positive (negative) influence
on the values of selected requirements. θi in this equation denotes the penalty
for a requirement ri, n denotes the number of requirements, and xj specifies
whether a requirement rj is selected (xj = 1) or not (xj = 0). Also, Ii,j , as in
(31), gives the positive or negative influence of rj on the value of ri.

θi =

n∨
j=1

(
xj
(
|Ii,j | − Ii,j

)
+ (1− xj)

(
|Ii,j |+ Ii,j

)
2

)
=

n∨
j=1

( |Ii,j |+ (1− 2xj)Ii,j
2

)
, i 6= j = 1, ..., n (34)

xj ∈ {0, 1}, j = 1, ..., n (35)

We made use of the algebraic structure of fuzzy graphs for computing the
influences of requirements on the values of each other as explained in Section 4.
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Accordingly, θi is computed using the fuzzy OR operator which is to take supre-
mum over the strengths of all ignored positive dependencies and selected neg-
ative dependencies of ri in its corresponding value dependency graph. Overall
values of selected requirements thus can be computed by (37), where v′i de-
notes the overall value of a requirement ri, E(vi) specifies the expected value of
ri, and θi denotes the penalty of ignoring (selecting) positive (negative) value
dependencies of ri.

Equation (38) derives the overall value of a software product with n re-
quirements, where cost and expected value of a requirements ri are denoted by
ci and E(vi) respectively. Decision variable xi specifies whether ri is selected
(xi = 1) or not (xi = 0). E(Vi) is computed by (36), where vi denotes the
estimated (nominal) value of ri. Also p(ri)/p(r̄i) specify the probability that
users select/ignore a requirement ri.

E(vi) = p(ri)× vi + p(r̄i)× 0 = p(ri)× vi (36)

For a requirement ri, θi specifies the penalty of ignoring (selecting) require-
ments with positive (negative) influence on the expected value of ri as explained
earlier. θivi in (38) therefore, gives the value loss for a requirement ri as a re-
sult of ignoring (selecting) requirements that positively (negatively) impact user
preferences for ri and consequently its expected value.

v′i = (1− θi)E(vi) (37)

OV =

n∑
i=1

xi(1− θi)E(vi), xi ∈ {0, 1} (38)

Example 3. Consider finding penalties for requirements of Figure 5, where
r4 is not selected (x1 = x2 = x3 = 1, x4 = 0). From Table 3 we have
I1,4 = I3,4 = 0.7, I2,4 = 0.3, I4,4 = 0.0. As such, based on (34) penalties

are computed: θ1 = ∨( |0.0|+(1−2(1))(0.0)
2 , |0.45|+(1−2(1))(0.5)

2 , |0.7|+(1−2(1))(0.7)
2 ,

|0.7|+(1−2(0))(0.7)
2 ) = 0.7. Similarly, we have θ2 = 0.3, θ3 = 0.7. Therefore,

the overall value of the selected requirements r1, r2, r3 is derived by (38) as:
OV (s1) = (1− 0.7)E(v1) + (1− 0.3)E(v2) + (1− 0.7)E(v3).

5.2. The Integer Linear Programming Model

This section presents our proposed integer linear programming (ILP) model
for optimizing the overall value of a software product. The overall value of a
requirement subset, as given by (38), considers user preferences and the impacts
of value dependencies on the expected values of the selected requirements. The
proposed ILP model hence embeds user preferences and value dependencies into
requirements selection by optimizing the overall value of a software product.

Equations (39)-(44) give our proposed integer programming model as a main
component of DARS. In these equations, xi is a selection variable denoting
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whether a requirement ri is selected (xi = 1) or ignored (xi = 0). Also θi
in (34) specifies the penalty of a requirement ri, which is the extent to which
the expected value of ri is impacted by ignoring (selecting) requirements with
positive (negative) influences on the value of ri. Constraint (41) on the other
hand accounts for precedence dependencies among requirements and the value
implications of those dependencies.

Maximize

n∑
i=1

xi(1− θi)E(vi) (39)

Subject to

n∑
i=1

cixi ≤ b (40)

xi ≤ xj rj precedes ri

xi ≤ 1− xj ri conflicts with rj , i 6= j = 1, ..., n
(41)

θi ≥
( |Ii,j |+ (1− 2xj)Ii,j

2

)
, i 6= j = 1, ..., n (42)

xi ∈ {0, 1}, i = 1, ..., n (43)

0 ≤ θi ≤ 1, i = 1, ..., n (44)

Moreover, for a requirement ri, θi depends on the selection variable xj and
the strength of positive (negative) value dependencies as given by (34).

Since Ii,j is computed by (31) we can restate θi as a function of xj : θi =
f(xj). The objective function (39), thus, can be restated as Maximize

∑n
i=1 xiE(vi)−

xif(xj)E(vi) where xif(xj)E(vi) is a quadratic non-linear expression (Boyd &
Vandenberghe, 2004). Equations (39)-(42), on the other hand, denote a convex
optimization problem as the model maximizes a concave objective function with
linear constraints.
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Maximize

n∑
i=1

xiE(vi)− yiE(vi) (45)

Subject to

n∑
i=1

cixi ≤ b (46)

xi ≤ xj rj precedes ri

xi ≤ 1− xj ri conflicts with rj , i 6= j = 1, ..., n
(47)

θi ≥
( |Ii,j |+ (1− 2xj)Ii,j

2

)
, i 6= j = 1, ..., n (48)

− gi ≤ xi ≤ gi, i = 1, ..., n (49)

1− (1− gi) ≤ xi ≤ 1 + (1− gi), i = 1, ..., n (50)

− gi ≤ yi ≤ gi, i = 1, ..., n (51)

− (1− gi) ≤ (yi − θi) ≤ (1− gi), i = 1, ..., n (52)

0 ≤ yi ≤ 1, i = 1, ..., n (53)

0 ≤ θi ≤ 1, i = 1, ..., n (54)

xi, gi ∈ {0, 1}, i = 1, ..., n (55)

Convex optimization problems are solvable (Boyd & Vandenberghe, 2004).
However, for problems of moderate to large sizes, integer linear programming
(ILP) models are preferred (Luenberger & Ye, 2015; Mougouei et al., 2017b)
as they can be efficiently solved, despite the inherent complexity of NP-hard
problems, due to the advances in solving ILP models and availability of efficient
tools such as ILOG CPLEX for that purpose. This motivates us to consider
developing an ILP version of the model as given by (45).

In doing so, non-linear expression xiθi is substituted by linear expression yi
(yi = xiθi). As such, either a : (xi = 0, yi = 0), or b : (xi = 1, yi = θi) occur.
To capture the relation between θi and yi in a linear form, we have made use of
an auxiliary variable gi = {0, 1} and (49)-(53) are added to the original model.
As such, we have either (gi = 0) → a, or (gi = 1) → b. Therefore, (45)-(55) is
linear and can be efficiently solved (Boyd & Vandenberghe, 2004), even for large
scale requirement sets, by existing commercial solvers such as IBM CPLEX.

6. Case Study

This section discusses the practicality and validity of DARS by studying a
real-world software project. We demonstrate why software vendors should take
care with value dependencies among requirements, and how to employ DARS
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to assist decision makers to comprehend the results, thus raising the following
research questions.

(RQ1) How effective is DARS in considering value dependencies?

(RQ1.1) How similar are the solutions found by DARS to those found by other
selection methods?

(RQ1.2) What is the impact of using DARS on the overall value of software?

(RQ1.3) What is the relationship between maximizing the accumulated value,
expected value, and overall value of a software product?

(RQ1.4) How effective is DARS in mitigating value loss?

6.1. Description of Study

To demonstrate the practicality of DARS, we studied a real-world software
project. Table 4 lists the requirements of the project and their estimated and
expected values in [1, 20]. The expected value of each requirement ri, denoted
by E(vi) was computed by multiplying the frequency of the presence of ri in
the configurations of the project sold in the earlier versions of software (p(ri))
by its estimated value vi.

Table 4: The estimated and expected values of the requirements.

ri p(ri) vi E(vi) ri p(ri) vi E(vi)

r1 00.94 10.00 09.43 r15 00.58 08.00 04.64
r2 01.00 20.00 20.00 r16 00.82 10.00 08.24
r3 00.37 05.00 01.85 r17 00.12 10.00 01.19
r4 00.98 17.00 16.61 r18 00.51 15.00 07.59
r5 00.88 06.00 05.28 r19 00.67 20.00 13.41
r6 00.91 20.00 18.30 r20 00.20 20.00 04.09
r7 00.82 15.00 12.36 r21 00.14 15.00 02.05
r8 01.00 09.00 09.00 r22 00.33 20.00 06.59
r9 00.97 20.00 19.43 r23 00.88 20.00 17.61
r10 00.76 16.00 12.18 r24 01.00 01.00 01.00
r11 00.57 20.00 11.36 r25 00.24 05.00 01.19
r12 01.00 12.00 12.00 r26 00.36 01.00 00.36
r13 00.76 08.00 06.09 r27 00.97 05.00 04.86
r14 00.45 14.00 06.28

Sum - 192.00 160.17 - - 150.00 72.82

Our study began with the identification of value dependencies and modeling
those dependencies as depicted in Figure 6. Then we performed requirements
selection using PCBK, SBK, and DARS based on the sales records of the pre-
viously released configurations of software. For the configurations found by
PCBK, SBK, and DARS (Figure 10 and Figure 11), the accumulated value
(AV), expected value (EV), and overall value (OV) were computed to compare
the performance of those methods for different price levels. This helped stake-
holders to find, for different price levels, configurations with lower risk of value
loss.
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Figure 6: The case study design.
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6.2. Identifying and Modeling Value Dependencies

To account for the precedence dependencies among the requirements of the
project, dependencies of type Requires and Conflicts-With were extracted (Fig-
ure 7) from the development artifacts of the project and formulated as (57)-(69)
in the optimization models of PCBK, SBK, and DARS. Moreover, (56) was
added to account fo the constraint that the presence of either r2 or r6 is always
essential. xi denotes whether ri is selected (xi = 1) or not (xi = 0).
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Figure 7: The precedence dependency graph of the requirements.

x2 + x6 = 1 (56)

x4 ≤ x1 + x2 (57)

x5 ≤ x1 + x2 (58)

x8 ≤ x1 + x2 (59)

x8 ≤ x25 (60)

x17 ≤ (1− x18) (61)

x18 ≤ (1− x17) (62)

x19 ≤ x2 (63)

x19 ≤ x6 (64)

x20 ≤ x2 (65)

x20 ≤ x6 (66)

x26 ≤ x27 (67)

x27 ≤ x1 (68)

x27 ≤ x6 (69)

To find value dependencies among the requirements of the project, we first
collected sales records of different configurations of the project as explained
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earlier. Then the Eells measure of causal strength was computed for all pairs
of requirements using Algorithm 1 to identify the strengths and qualities of
causal relations among the requirements as explained in Section 3.3. The sig-
nificances of the identified relations were subsequently tested using the Odds
Ratio at confidence level 95% as explained in Section 3.4. The strengths and
qualities of explicit value dependencies were finally computed using the signifi-
cant causal relations found and the fuzzy membership function of Figure 4(a) as
given by (23)-(24). Algorithm 2 was used to infer implicit value dependencies
and compute the overall strengths of positive and negative value dependencies
in the value dependency graph (VDG) of the requirements. The influences of
the requirements on the values of each other were then computed by (31).

Figure 8: Explicit value dependencies among the requirements. Row i and column j
denotes quality and strength of a value dependency from requirement ri to rj .

Figure 8 shows the qualities and strengths of explicit value dependencies.
The color of a cell at row i and column j specifies the quality and the strength
of a value dependency from ri to rj . Colors associated with positive (negative)
numbers denote positive (negative) dependencies. Also, zero denotes the ab-
sence of any value dependency. Similarly, the positive or negative influences of
the requirements on the values of each other are depicted in Figure 9.

6.3. Performing Requirements Selection

This section demonstrates the effectiveness of DARS in considering value
dependencies compared to BK, PCBK and SBK methods. As discussed in Sec-
tion 2.2, PCBK considers the estimated values of requirements while SBK, as
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Figure 9: Influences among the requirements: cell i, j gives the influence of rj on ri.

in Section 2.4, accounts for user preferences for requirements by considering the
expected values of requirements rather than their estimated values. Finally,
DARS method factors in both user preferences and value dependencies among
requirements as explained in Section 5.2. The expected values of the require-
ments and value dependencies among them are computed based on the user
preferences achieved from the sales records of the project.

27∑
i=1

vixi ≤ γ (70)

Price was determined as a major constraint for requirements selection as
different configurations of the project had been released at different price levels
earlier to cope with the needs of different users (Karpoff, 1987). Constraints
(70) hence was added to the optimization models of PCBK, SBK, and DARS
respectively to contain the price of different configurations of software within
their corresponding price limits. This converted the problem to a variation of
Bounded Knapsack Problem. γ ∈ IR+ denotes the price limit and vi specifies
the estimated value of a requirement ri. Also xi specifies whether a requirement
ri is selected (xi = 1) or not (xi = 0). We omitted (16) from the optimization
model of SBK as considering the sales diversification is beyond the scope of this
paper. The concept of diversification was explained in detail in Section 2.

Selection tasks were performed for different price levels (%Price = {1, ..., 100},
Price = %Price

100 ×342) using the optimization models of PCBK, SBK, and DARS
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Figure 10: Requirement subsets found by DARS and PCBK for different price levels.

Figure 11: Requirement subsets found by DARS and SBK for different price levels.
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with (56)-(69) to find optimal subsets of the requirements (optimal configura-
tions). Optimal configurations found by PCBK, SBK, and DARS were com-
pared based on their similarities, accumulated values, expected values, and
overall values to answer (RQ1) and its subquestions. Binary knapsack (BK)
method (Section 2.1) and the Increase-Decrease method (Section 2.3) were not
used in the requirements selection tasks as the former ignores precedence de-
pendencies resulting in violation of the precedence constraints while the latter
does not provide any formal way to specify the amounts of the increased or de-
creased values of the requirement subsets as detailed in Section 2.3. Selections
were performed using the callable library ILOG CPLEX 12.6.2 on a windows
machine with a Core i7-2600 3.4 GHz processor and 16 GB of RAM.

6.3.1. Similarities of the Solutions

In this section, we compare PCBK, SBK, and DARS based on their selec-
tion patterns to answer (RQ1.1). Figure 12 depicts dissimilarities between the
requirement subsets found by the DARS and those found by PCBK/SBK based
on Euclidean Distance. While notable at all price levels, these dissimilarities
decreased for highly expensive (%Price → 100) or very cheap (%Price → 0)
configurations of the project. The reason is expensive configurations of software
comprise most requirements thus reducing the chances that requirements with
positive influences on the values of the selected requirements are ignored.

(a) DARS vs. PCBK (b) DARS vs. SBK

Figure 12: Dissimilarities of the solutions found by DARS and PCBK/SBK.

Moreover, there are no negative influences among requirements (Figure 9).
Hence, similarities between solutions found by the DARS method and those
found by PCBK and SBK increase for expensive configurations of software. For
cheaper configurations, price constraint limits the solution space for PCBK,
SBK, and DARS especially preventing the DARS method from utilizing its
advantage in considering value dependencies. This resulted in more similarities
between the solutions found by the DARS method and those found by PCBK
and SBK for very cheap configurations of software.
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Finally, we observed from Figure 13(a) and Figure 13(b) that the require-
ment subsets (solutions) found by DARS were more similar to the solutions
found by SBK than similar to the solutions found by PCBK. The reason is as
explained before both DARS and SBK consider user preferences while PCBK
ignores those preferences.

Figure 13 provides more insights into (RQ1.1) by comparing the selection
patterns of PCBK, SBK, and DARS in 100 different selection tasks performed
at different price levels (%Price = {1, 2, ..., 100}). For a given requirement ri,
%Fi(mj) specifies the percentages of the selection tasks in which ri is selected
by requirements selection method mj . Hence, %∆Fi(mj ,mk) = %Fi(mj) −
%Fi(mk) > 0 states that the percentages of the selection tasks where ri is
selected by mj is higher than the percentages of the selection tasks where ri is
selected by mk. Similarly, %∆Fi(mj ,mk) = %Fi(mj) − %Fi(mk) < 0 states
that ri is more frequently selected by mk compared to mj . mj and mk can be
any of the selection methods used in our selection tasks.

We observed (Figure 13) that requirements with significant influence on the
values of pricey requirements were more frequently preferred by DARS compared
to PCBK and SBK. This was more visible for requirements r8, r12, r24, and r27
when in Figure 13(a) and for requirements r8, r12, r24 in Figure 13(b).

Requirement r8, for instance, was more frequently preferred by DARS com-
pared to PCBK and SBK as the optimization model of DARS considers the
fact that r8 has a significant positive influence on the values of several valuable
requirements including r2, r4, r6, and r12 (Figure 9). Similarly, r24 has a sig-
nificant (positive) influence on the values of requirements r2, r6, r8, andr12. r25
however, was more frequently selected by DARS as r8 requires r25 (Figure 7)
and r8 is frequently selected by DARS due to its significant impact on valuable
requirements. As such, selecting r8 requires the presence of r25 in software.
DARS and SBK however were frequently selected r12 and r27 as these two re-
quirements are almost always preferred by users. This was not the case for
PCBK as it ignores user preferences.

Selection patterns in Figure 13 showed that when a decision was to be made
regarding the presence or absence of a requirement ri in a configuration of
software, PCBK only took into account the estimated value of ri ignoring user
preferences. SBK on the other hand, considered user preferences for ri by
evaluating the expected value of ri rather than merely its accumulated value.

DARS, however, considered the expected value of ri and the impact of ri
on the values of other requirements. More similarities were, therefore, observed
among the configurations found by SBK and DARS as both methods took into
account user preferences. On the contrary, dissimilarities were more visible
when SBK and DARS/PCBK were compared as demonstrated in Figure 13(a)
and Figure 13(c).

6.3.2. Impact of DARS on the Overall Value

(RQ1.2) is answered by comparing the percentages of overall values (%OV =
(OV/342)× 100), accumulated values (%AV = (AV/342)× 100), and estimated
values (%EV = (EV/342)× 100) provided by PCBK, SBK, and DARS for 100
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(a) DARS vs. PCBK

(b) DARS vs. SBK

(c) SBK vs. PCBK

Figure 13: Selection patterns of PCBK, SBK, and DARS at different price levels. For
a requirement ri, denoted by i on the x-axis, and requirements selection methods mj

and mk, %∆Fi(mj ,mk) = %Fi(mj) − %Fi(mk), where %Fi(mj) and %Fi(mk) give
the percentage of the selection tasks in which ri is selected by mj and mk respectively.
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selection tasks, each performed at a specific price level (%Price = {1, 2, .., 100}),
as shown in Figures 14-18. Our results show (Figure 14) that requirement
subsets found by DARS provided higher or equal %OV in all selection tasks
compared to the PCBK method. The reason is that the optimization model of
PCBK ignores user preferences and value dependencies among the requirements.

(a) (b)

(c) (d)

Figure 14: Comparing the overall values at different price levels. %∆OV(mj ,mk) =
%OV(mj)−%OV(mk), where mj denotes a selection method (DARS, PCBK, or SBK).

For a given price, %OV of the requirement subset (solutions) found by the
SBK method was, for most price levels, higher than %OV of the solution pro-
vided by the PCBK method but still less than or equal to the overall value of the
solution found by DARS. The reason is that even though the SBK method does
not consider value dependencies, it still accounts for user preferences, similar to
DARS, by optimizing the expected values of selected requirements. This results
in more similarities between the configurations found by the SBK method and
those found by DARS as discussed in Section 6.3.1.

We observed in Figure 14(b) that the gap between the %OV achieved from
DARS and the PCBK/SBK method was notable in almost all selection tasks
performed at different price levels. But the gap reduced to almost negligible for
highly expensive (%Price → 100) or very cheap (%Price → 0) configurations.
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The reason is, on one hand, there are no negative influences among the require-
ments (Figure 9) and, on the other hand, expensive configurations of software
comprise most requirements, which reduces the chances that requirements with
positive influence are ignored by PCBK/SBK.

(a) (b)

(c) (d)

Figure 15: Comparing the accumulated values at different price levels.
%∆AV(mj ,mk) = %AV(mj) − %AV(mk), where mj denotes a selection method
(DARS, PCBK, or SBK).

That increases similarities between the expensive configurations found by
PCBK/SBK and DARS as discussed in Section 6.3.1. For cheaper configura-
tions, the price-constraint limited the solution space in all the PCBK, SBK, and
DARS and specially prevented DARS from utilizing its advantage in considering
value dependencies. The price constraint further reduced the gap between %AV
provided by DARS and PCBK/SBK (Figures 15) in the selection tasks.

We further, observed insignificant differences amongst the accumulated val-
ues provided by the selection methods experimented in this study as shown in
Figure 15. The reason is that the price constraint in the optimization models
of the PCBK, SBK, and DARS contain the accumulated values of the solutions
found by those models. The price constraint is needed to factor out the inter-
play between the price and sales as explained earlier. Moreover, the expected
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values of the requirement subsets found by the SBK method were higher than
those found by DARS and PCBK in all selection tasks (for all price levels) as
shown in Figure 16(c) and Figure 16(d) respectively.

(a) (b)

(c) (d)

Figure 16: Comparing the accumulated values at different price levels.
%∆EV(mj ,mk) = %EV(mj) − %EV(mk), where mj denotes a selection method
(DARS, PCBK, or SBK).

The expected values of requirement subsets found by DARS were higher than
those of the requirement subsets found by the PCBK method in most selection
tasks (Figure 16(b)). In some of the selection tasks, however, the expected
values of the requirement subsets found by the PCBK method were higher than
those found by DARS even though the PCBK method does not account for
user preferences. The reason is that DARS optimizes the overall value of a
requirement subset (solution), which accounts for both user preferences and
value dependencies. Hence in some cases DARS may find solutions with lower
expected values as taking into account value dependencies may be in conflict
with maximizing the expected values of a requirement subset.
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6.3.3. Understanding the Conflicting Objectives

To answer (RQ1.3), we compared the overall values (Figure 14), accumu-
lated values (Figure 15), and expected values (Figure 18) of the requirement
subsets found by the PCBK, SBK, and DARS in different requirements selec-
tion tasks performed at different price levels. From Figure 14 and Figure 15 it
can be seen that maximizing the accumulated value (AV) of a selected subset of
requirements conflicts with maximizing the overall value (OV) of that subset.
This can be specially seen in Figure 14(b) and Figure 15(b), where in several
selection tasks, choosing requirement subsets with higher %AV by the PCBK
method (Figure 15) reduced the overall value.

Maximizing the expected value of a requirement subset also conflicts with
optimizing its overall value as the former may result in ignoring requirements
with lower expected values even if they have a significant influence on the values
of other requirements. That will increase the penalty of ignoring requirements
with positive influences on the values of selected requirements, as given by (34),
resulting in lower overall value. This can be seen by comparing Figure 14(c)
and Figure 16(c).

6.3.4. Mitigating the Value Loss

Ignoring value dependencies can pose a risk to the economic worth of software
configurations and eventually result in value loss as given by (34). This risk can
be be measured by the gap between the expected value of software and its overall
value, which accounts for value dependencies, as depicted in Figure 17. As shown
in this figure, for each selection task performed at a specific price level, the
gap between the expected value and the overall value of software configuration
found by DARS was notably smaller than the gaps between the %EV and %OV
provided by the PCBK method. Hence, using DARS contributed to a smaller
risk of value loss in different configurations of software.

Figure 17: Risk of value loss at different price levels.
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We observed (Figure 17) that the risk of value loss for the configurations
found by DARS was under 5% while this fluctuated from almost negligible to
around 37% in PCBK and SBK. In most configurations found by PCBK and
SBK, an inconsistent pattern of “the higher the price the higher the risk of
value loss” was observed suggesting a higher risk for expensive configurations
of software. The risk of value loss for the configurations found by the SBK
method, however, converged to those found by DARS for %Price ≥ 88 as both
methods chose more similar configurations ((RQ1.4)).

7. Complexity and Scalability Analysis

This section evaluates the scalability of DARS for identification and mod-
eling value dependencies as well as considering those dependencies in software
requirements selection. We specially generate random datasets with different
numbers of requirements (up to 3000) to investigate the scalability of the ILP
model of DARS for different scenarios in relation to value and precedence de-
pendencies among requirements. Simulations thus were designed to answer the
following questions.

(RQ2) What is the overhead of identifying and modeling dependencies?

(RQ3) How scalable is the ILP model of DARS?

(RQ3.1) Is the ILP model scalable to large scale requirement sets?

(RQ3.2) What is the impact of budget on runtime?

(RQ3.3) What is the impact of precedence dependencies on runtime?

(RQ3.4) What is the impact of value dependencies on runtime?

7.1. The Overhead of using DARS

Our proposed DARS method relies on the identification and modeling of
value dependencies – that constitutes the main overhead of DARS. Identifi-
cation of value dependencies from causal relations among user preferences is
automated in DARS as explained in Section 3. The process, nevertheless, re-
lies on computing the Eells measure (Eells, 1991) for pairs of the requirements.
Algorithm 2 computes the Eells measure in O(t× n2) for n requirements and t
records of user preferences. Precedence dependencies among requirements (re-
quires, conflicts-with, AND, OR) on the other hand, are identified as part of
the requirement analysis and inferred from the structure and/or semantic of a
software product using automated or semi-automated techniques (Zhang et al.,
2005; Dahlstedt & Persson, 2005). This is an inevitable aspect of software re-
quirement analysis and is not specific to DARS. Moreover, construction of a
value dependency graph of requirements, inferring implicit value dependencies,
and computing the influences of requirements using Algorithm 2 is of the com-
putational complexity of O(n3) as discussed earlier in Section 4. This concluded
our answer to (RQ2).
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7.2. Scalability of the Optimization Model of DARS

The optimization model of the DARS method as given by (45)-(53) is scalable
to datasets with a large number of requirements, different budget constraints,
and various degrees of precedence/value dependencies. To demonstrate this,
runtime simulations in Table 5 were carried out. To simulate value dependencies
for a desired VDL and NVDL, uniformly distributed random numbers in [−1, 1]
were generated, where the sign and magnitude of each number specified the
quality and the strength of its corresponding explicit value dependency. We
used Precedence Dependency Level (PDL) and Negative Precedence Dependency
Level (NPDL) as given by (71) and (72) to specify the degree of precedence
dependencies in a precedence graph G with n nodes (requirements). k gives the
total number of precedence dependencies while j denotes the number of negative
precedence dependencies in (71) and (72) respectively.

Table 5: Runtime Simulations for the optimization model of DARS

Simulation Size %Budget VDL NVDL PDL NPDL

1 [0,3000] 50 0.15 0.00 0.02 0.00

2 200 [0,100] 0.15 0.00 0.02 0.00

3 200 50 0.15 0 [0,1] 0.00

4 200 50 0.15 0.00 0.02 [0,1]

5 200 50 [0,1] 0.00 0.02 0.00

6 200 50 0.15 [0,1] 0.02 0.00

PDL(G) =
k
nP2

=
k

n(n− 1)
(71)

NPDL(G) =
j

k
(72)

For a given PDL and NPDL, random numbers in {−1, 0, 1} were generated
where 1 (−1) specified a positive (negative) precedence dependency and 0 de-
noted the absence of any precedence dependency from a requirement ri to rj .
Simulations were carried out using the callable library ILOG CPLEX 12.6.2 on
a windows machine with a Core i7-2600 3.4 GHz processor and 16 GB of RAM.

(RQ3.1) is answered by runtime simulation 1, which evaluates the run-
time of the optimization model of DARS for different numbers of requirements
(Figure 18(a)). We observed that increasing the number of requirements in-
creased, as expected, the runtime of the optimization model of the DARS
method. Nonetheless, for requirement sets with up to 750 (n ≤ 750) require-
ments, the model managed to find the optimal solution in less than a minute.
For 750 < n ≤ 2000 the runtime was above one minute but did not exceed
two hours. Finally, for 2000 < n ≤ 3000 it took hours before the selection was
completed. On the other hand, our results for Simulation 2 demonstrated (Fig-
ure 18(b)) that the runtime of the optimization model of the DARS method
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(a) Simulation 1 (b) Simulation 2

(c) Simulation 3 (d) Simulation 4

(e) Simulation 5 (f) Simulation 6

Figure 18: Runtime of DARS.
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increased with a budget increase. The reason is with more budget, more re-
quirements can be selected which results in a larger solution space.

As such, it may take longer for the optimization model of DARS to find
the optimal subset. This answers (RQ3.2). To answer (RQ3.3), we simu-
lated requirements selection for various precedence dependency levels (PDLs).
Our results (Figure 18(c)) demonstrated, that, in general, the runtime of the
optimization model of DARS increased when PDL increased. The reason is
increasing PDL limits the number of choices for the optimization model of the
DARS method as the model needs to respect precedence dependencies; it takes
longer for the selection task to complete. Increasing NPDL, on the other hand,
had no significant impact on the runtime of the optimization model of DARS
in most places. Nonetheless, for larger NPDLs (NPDL → 1), runtime was
increased. The reason is at such high NPDL, the optimization model of DARS
cannot find a feasible solution with some values as each requirement conflicts
with almost every other requirement. Hence, it takes longer for the optimization
to complete and return the null set (%OV=0) as the only feasible solution.

Simulation 5 was carried out to answer (RQ3.4) by measuring the run-
time of the selection models in the presence of various value dependency levels
(VDLs). Our results demonstrate (Figure 18(e)) that increasing (decreasing)
VDL has an inconsistent impact of negligible magnitude on the runtime of the
optimization model of the DARS method. In a similar way, our simulations for
various negative value dependency levels (NVDLs) showed (Figure 18(f)) that
the impact of increasing (decreasing) NVDL on the runtime of the optimization
model of the DARS method was unpredictable.
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