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Abstract

Boosting algorithms are frequently used in applied data science and in research.
To date, the distinction between boosting with either gradient descent or second-order
Newton updates is often not made in both applied and methodological research, and
it is thus implicitly assumed that the difference is irrelevant. The goal of this article
is to clarify this situation. In particular, we present gradient and Newton boosting, as
well as a hybrid variant of the two, in a unified framework. We compare these boosting
algorithms with trees as base learners using various datasets and loss functions. Our
experiments show that Newton boosting outperforms gradient and hybrid gradient-
Newton boosting in terms of predictive accuracy on the majority of datasets. We also
present evidence that the reason for this is not faster convergence of Newton boosting.
In addition, we introduce a novel tuning parameter for tree-based Newton boosting
which is interpretable and important for predictive accuracy.
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1 Introduction

Boosting (Freund et al., 1996; Friedman et al., 2000; Friedman, 2001) refers to a type of su-

pervised learning algorithms that enjoy high popularity in applied data science and research,

among other things, due to their high predictive accuracy (Chen and Guestrin, 2016). This

is reflected in statements such as “[i]n general ‘boosted decision trees’ is regarded as the

most effective off-the-shelf nonlinear learning method for a wide range of application prob-

lems” (Johnson and Zhang, 2013). Boosting iteratively adds so-called base learners to an

ensemble of learners. Broadly speaking, there exist three different versions for selecting a

base learner in every boosting iteration: functional gradient descent, a functional version of
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Newton’s method, and a combination of the two. We refer to these three different versions

of boosting as gradient boosting, Newton boosting, and hybrid gradient-Newton boosting ; see

Section 2 for more information.

In both methodological and applied research, the distinction between gradient and New-

ton boosting is often not made and/or it is not declared which version of boosting is used

(e.g. Ahamad et al., 2020; Djeundje et al., 2020; Moscatelli et al., 2020). It is thus im-

plicitly assumed that the difference is not important. For instance, the two recent popular

boosting libraries LightGBM and TF Boosted Trees do not distinguish in their companion

articles (Ke et al., 2017; Ponomareva et al., 2017) between gradient and Newton boosting,

and it is unclear to the reader which version is used. Similarly, Prokhorenkova et al. (2018)

briefly mention in their article on CatBoost that the minimization for finding a boosting

update can be done using the Newton method or with a gradient step, and then continue to

write that “[b]oth methods are kinds of functional gradient descent”. However, Newton’s

method is different from gradient descent. Further, Bühlmann and Hothorn (2007) state

that for gradient boosting “an additional line search ... seems unnecessary for achieving

a good estimator.” For trees as base learners, the additional line search is often done for

each leaf separately by using a Newton step (Friedman, 2001). I.e., this corresponds to

what we denote as hybrid gradient-Newton boosting which is different from plain gradient

boosting also in terms of predictive accuracy. Besides, particular software implementations

of boosting such as XGBoost (Chen and Guestrin, 2016) are sometimes presented as if they

were separate boosting algorithms (e.g. Xia et al., 2017; Ahamad et al., 2020; Djeundje

et al., 2020) when, in fact, they implement a particular version of boosting.

The novel contributions of this article are the following ones. First, we show how gra-

dient, Newton, as well as hybrid gradient-Newton boosting can be derived in a unified

framework. Further, we systematically compare gradient, Newton, and hybrid gradient-

Newton boosting on a large set of both real-world and simulated classification and re-

gression datasets. In our experiments, using trees as base learners, we find that Newton

boosting achieves lower test errors than both gradient boosting and hybrid gradient-Newton

boosting, and hybrid gradient-Newton boosting often has higher predictive accuracy than

gradient boosting. Interestingly, we find that Newton boosting results in both lower in-

sample training losses, which are essentially zero for most classification datasets, and lower

out-of-sample test errors for most datasets. We also present evidence that the higher pre-
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dictive accuracy is not due to a faster convergence speed of Newton boosting. In addition,

we introduce a novel tuning parameter for Newton boosting with trees as base learners.

We argue that this minimum equivalent sample size per leaf parameter is a natural and in-

terpretable tuning parameter which is important for predictive accuracy. In particular, we

present evidence that the unnormalized version of this tuning parameter currently adopted

in popular software implementations such as XGBoost is difficult to tune and thus likely

results in lower predictive accuracy.

1.1 Related work

The first boosting algorithms for classification, including the well known AdaBoost algo-

rithm, were introduced by Schapire (1990), Freund and Schapire (1995), and Freund et al.

(1996). Later, several authors (Breiman, 1998, 1999; Friedman et al., 2000; Mason et al.,

2000; Friedman, 2001) presented the statistical view of boosting as a stagewise optimiza-

tion approach. See Schapire (2003), Bühlmann and Hothorn (2007), Schapire and Freund

(2012), Mayr et al. (2014a), and Mayr et al. (2014b) for reviews on boosting algorithms in

both the machine learning and statistical literature.

To the best of our knowledge, a systematic comparison concerning the predictive ac-

curacy of gradient, Newton, and hybrid gradient-Newton boosting for various choices of

loss functions, including regression and classification losses, has not been done so far. The

LK TreeBoost algorithm (Friedman, 2001) is compared in Friedman (2001) with K-class

LogitBoost (Friedman et al., 2000) for classification with five classes in a simulation study

for one type of random functions. In our terminology, LK TreeBoost is a version of hybrid

gradient-Newton boosting, and K-class LogitBoost corresponds to Newton boosting for the

Bernoulli likelihood. Friedman (2001) finds that the algorithms perform “nearly the same”

with “LogitBoost perhaps having a slight advantage”. In addition, it is mentioned that “it

is likely that when the shrinkage parameter is carefully tuned for each of the three methods

[LK TreeBoost, K-class LogitBoost, AdaBoost], there would be little performance differ-

ential between them.” Our empirical evidence is not in line with this statement. Saberian

et al. (2011) also briefly compare variants of boosting with gradient and second-order up-

dates using three different binary classification datasets and Haar wavelets as base learners.

However, their boosting approach is different from the one usually adopted in practice and

research in the sense that they assume normed based learners, find base learners as maxima
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of inner products of gradients and base learners, and then have to perform an additional

line search to find the step size. Further, tuning parameters such as the learning rate

and the number of boosting iterations are not chosen using cross-validation, and only 25

boosting iterations are performed. Nonetheless, they come to the same conclusion as we

do, i.e., they find that their version of second-order boosting performs better than gradient

boosting. The closest to our empirical analysis are Li (2010) and Zheng and Liu (2012).

Li (2010) compares Newton boosting (“logitboost”) with hybrid gradient-Newton boosting

(“mart”) for several multi-class classification datasets and also finds that Newton results

in lower test errors than hybrid gradient-Newton boosting. Further, Zheng and Liu (2012)

compare gradient and Newton boosting when using the probit link function in a logistic

regression model and find that Newton boosting results in lower error rates than gradient

boosting for several classification applications including face detection, cancer classification,

and handwritten digit recognition. However, both Li (2010) and Zheng and Liu (2012) con-

sider only specific classification tasks, tuning parameters are not chosen using validation

data in their experiments, and it is not investigated whether the observed differences are

statistically significant. Finally, Sun et al. (2014) compare Newton and gradient boosting

for binary classification using the logistic loss. Their focus is on the convergence rate and

their empirical comparison only considers training errors, though.

2 The statistical view of boosting: three approaches for stage-

wise optimization

In this section, we present the statistical view of boosting as finding the minimizer of a

risk functional in a function space using a stagewise, or greedy, optimization approach.

We distinguish between gradient and Newton boosting as wells as a hybrid version of

the two and show how these can be presented in a unified framework. Note that these

boosting algorithms have been proposed in prior research (Breiman, 1998, 1999; Friedman

et al., 2000; Mason et al., 2000; Friedman, 2001; Saberian et al., 2011), but, to the best

of our knowledge, the presentation below in a unified framework and the extension to the

multivariate case is novel.
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2.1 Population versions

We assume that there is a response variable Y ∈ R and a vector of p predictor variables

X ∈ Rp.1 Our goal is to predict the response variable using the predictor variables, where

predictions can be both deterministic or probabilistic. We assume that (Y,X) are random

variables on R× Rp, and both the distribution of X and the conditional distribution Y |X

are absolutely continuous with respect to either the Lebesgue measure, a counting measure,

a mixture of both, or a product measure of the former measures. In particular, this covers

both regression and classification tasks or mixtures of the two such as Tobit regression

(Sigrist and Hirnschall, 2019).

The goal of boosting is to find a minimizer F ∗ of the risk R(F ) which is defined as the

expected loss

R(F ) = EY,X(L(Y, F (X))), (1)

where F (·) is a function in a Hilbert space H with inner product 〈·, ·〉 given by

〈F, F 〉 = EX
(
F (X)2

)
,

and L(Y, F ) is a loss function. See below and Appendix A for examples of loss functions.

For notational simplicity, we often denote a function F (·) shortly by F in this article. In

general, F can also be a multivariate function in a direct sum Hilbert space. However, for

notational simplicity, we assume in the following that F is univariate. In Section 2.3, we

extend this to the multivariate case.

Boosting assumes that the minimizer F ∗ ∈ ΩS lies in the span ΩS = span(S) of a set

S of base learners fj : Rp → R:

F ∗ = argmin
F∈ΩS

R(F ). (2)

If the risk R(F ) is convex in F , then (2) is a convex optimization problem since ΩS is also

convex. Boosting finds F ∗ in a stagewise way by sequentially adding an update fm to the

current estimate Fm−1,

Fm(x) = Fm−1(x) + fm(x), fm ∈ S, m = 1, . . . ,M, (3)

1For the sake of simplicity, we focus on univariate Y ∈ R. The extension to the case of a multivariate

response variable Y is straightforward. See also Section 2.3 where we present multivariate versions of

boosting.
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such that the risk is minimized

fm = argmin
f∈S

R (Fm−1 + f) . (4)

This minimization can often not be done analytically and an approximation has to be used.

Different boosting algorithms vary in the way the minimization in (4) is done, the loss

function L used in (1), and in the choice of base learners fj ∈ S. Concerning loss functions,

potential choices include the squared loss L(y, F ) = (y−F )2/2 for regression, the negative

Gaussian log-likelihood where both the mean and the scale parameter depend on predictor

variables (see, e.g., Mayr et al., 2012), the negative log-likelihood −yF + log
(
1 + eF

)
of a

binomial model with a logistic link function for binary classification, or the entropy loss with

a softmax function for multiclass classification. Under appropriate regularity assumptions,

one can use the negative log-likelihood of any statistical model as loss function:

L(y, F ) = − log (fF,θ(y)) ,

where fF,θ(y) is the density of Y given X with respect to some reference measure, F is linked

to one or several, possibly transformed, parameters of this density, and θ are additional

parameters. See Appendix A for various examples of loss functions and, in particular, the

ones we consider in the empirical evaluation of this article. As shown by Friedman et al.

(2000), AdaBoost algorithms are versions of Newton boosting for classification with an

exponential loss function.

Concerning base learners, regression trees (Breiman et al., 1984) is the most frequently

adopted choice. Other potential base learners include splines or linear functions (Bühlmann

and Yu, 2003; Bühlmann et al., 2006; Schmid and Hothorn, 2008). In this article, we focus

on trees:

f(x) = ws(x),

where s : Rp → {1, . . . , J}, w ∈ RJ , and J ∈ N denotes the number of terminal nodes,

or leaves, of the tree f(x). The function s represents the structure of the tree, i.e., the

partition of the space Rp, and w contains the values of the leaves. As in Breiman et al.

(1984), we assume that the partition of the space made by s is a binary tree where each

cell in the partition is a rectangle of the form Rj = (l1, u1] × · · · × (lp, up] ⊂ Rp with

−∞ ≤ lm < um ≤ ∞ and s(x) = j if x ∈ Rj .
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For finding an update in (3), either a form of gradient descent, Newton’s method, or a

hybrid variant is used to obtain an approximate solution to the minimization problem in

(4). In the following, we describe these approaches.

2.1.1 Gradient boosting

Assuming that the risk R(F ) is Gâteau differentiable for all F ∈ ΩS , we denote the Gâteau

derivative by

dR(F, f) =
d

dε
R(F + εf)

∣∣∣
ε=0

= lim
ε→0

R(F + εf)−R(F )

ε
, F, f ∈ ΩS .

Gradient boosting then works by choosing fm as the minimizer of a first-order Taylor

approximation around Fm−1 with a penalty on the norm of the base learner:

fm = argmin
f∈S

R(Fm−1) + dR(Fm−1, f) +
1

2
〈f, f〉

= argmin
f∈S

dR(Fm−1, f) +
1

2
〈f, f〉.

(5)

Note that we add the penalty 1
2〈f, f〉 since the functions f are not necessarily normed and

〈f, f〉 is not assumed to be constant.

If we assume that L(Y, F ) is differentiable in F for P-almost all X and that the derivative

is integrable with respect to the measure of (Y,X), then dR(Fm−1, f) is given by

dR(Fm−1, f) = EY,X (gm(Y,X)f(X)) ,

where gm(Y,X) denotes the gradient of the loss function L(Y, F ) with respect to F at the

current estimate Fm−1:

gm(Y,X) =
∂L(Y, F )

∂F

∣∣∣
F=Fm−1(X)

. (6)

Consequently, (5) can be written as

fm = argmin
f∈S

EY,X

(
gm(Y,X)f(X) +

1

2
f(X)2

)
= argmin

f∈S
EY,X

(
(−gm(Y,X)− f(X))2

)
.

(7)

This shows that fm is the L2 approximation to the negative gradient −gm(Y,X) of the loss

function L(Y, F ) with respect to F evaluated at the current estimate Fm−1(X).
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If the following expression is well defined for P-almost all X, then the minimization in

(7) can also be done pointwise

fm(X) = argmin
f∈S

EY |X

(
(−gm(Y,X)− f(X))2

)
.

2.1.2 Newton boosting

For Newton boosting, we assume that R(F ) is two times Gâteau differentiable and denote

the second Gâteau derivative by

d2R(F, f) =
d2

dε2
R(F + εf)

∣∣∣
ε=0

, F, f ∈ ΩS .

Newton boosting chooses fm as the minimizer of a second-order Taylor approximation

around Fm−1:

fm = argmin
f∈S

R(Fm−1) + dR(Fm−1, f) +
1

2
d2R(Fm−1, f). (8)

If we assume the P-almost all existence and integrability of the second derivative of L(Y, F )

with respect to F , then (8) can be written as

fm = argmin
f∈S

EY,X

(
gm(Y,X)f(X) +

1

2
hm(Y,X)f(X)2

)
= argmin

f∈S
EY,X

(
hm(Y,X)

(
− gm(Y,X)

hm(Y,X)
− f(X)

)2
)
,

(9)

where the gradient gm(Y,X) is defined in (6) and hm(Y,X) is the second derivative of

L(Y, F ) with respect to F at Fm−1:

hm(Y,X) =
∂2L(Y, F )

∂F 2

∣∣∣
F=Fm−1(X)

. (10)

The last line in Equation (9) shows that fm is the weighted L2 approximation to negative

ratio of the gradient over the Hessian − gm(Y,X)
hm(Y,X) and the weights corresponds to the second

derivative hm(Y,X).

If the following expression is well defined for P-almost all X, we can again calculate the

pointwise minimizer of (9) as:

fm(X) = argmin
f∈S

EY |X

(
hm(Y,X)

(
− gm(Y,X)

hm(Y,X)
− f(X)

)2)
.

Note that gradient boosting can be seen as a special case of Newton boosting. If the

second derivative of the loss function hm(Y,X) exists and is constant, hm(Y,X) = c ∈
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R\{0}, for P-almost all X, then the Newton boosting update in (9) essentially equals the

gradient update in (7). Specifically, they are exactly equal if hm(Y,X) = 1. Since in practice

the update is usually damped, see Equation (16) in Section 2.4, and the shrinkage parameter

ν is considered a tuning parameter, the two approaches are essentially also equivalent for

hm(Y,X) = c 6= 1.

2.1.3 Hybrid gradient-Newton boosting

A hybrid variant of gradient and Newton boosting proposed in Friedman (2001) is obtained

by first learning part of the parameters of the base learner using a gradient step and

the remaining part using a Newton update. For instance, for trees as bases learners, the

structure s of a tree is learned using a gradient update:

sm = argmin
s:f=ws∈S

EY,X

(
(−gm(Y,X)− f(X))2

)
,

and then, conditional on this, one finds the weights w using a Newton step:

wm = argmin
w:f=ws∈S
s=sm

EY,X

(
gm(Y,X)f(X) +

1

2
hm(Y,X)f(X)2

)
.

2.1.4 Line search

The update step in (3) is sometimes presented in the form Fm(x) = Fm−1(x)+ρmfm(x) with

ρm ∈ R, where ρm is found by doing an additional line-search ρm = argminρ∈RR
e (Fm−1 + ρfm).

For gradient boosting, this has the advantage that the length of the gradient does not de-

pend on the scaling of the loss function. However, we are not considering this approach

explicitly here since, first, we assume that the set of base learners S is rich enough to

include not just normalized base learners but base learners of any norm and, second, the

line-search often cannot be done analytically and a second-order Taylor approximation is

used instead. I.e., the latter case corresponds to a version of hybrid gradient-Newton or

Newton boosting.

2.1.5 Applicability of Newton boosting

As mentioned in Section 2.1.2, there is no difference between the three above presented

optimization approaches for loss functions with non-zero and constant second derivatives

in F . In particular, this holds true for the squared loss function. Further, for loss functions
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where the second derivative is zero on a non-null set of the support of X, such as the least

absolute deviation (LAD), any other quantile regression loss function, and the Huber loss,

Newton and also hybrid gradient-Newton boosting are not applicable. In these cases, the

above-mentioned line-search can be useful in addition to a pure gradient step. Similarly,

if a loss function is not P-almost everywhere twice differentiable in F , Newton boosting

is also not applicable. However, the majority of commonly used loss functions are twice

differentiable.

2.2 Sample versions

In the following, we assume that we observe n samples (yi, xi), i = 1, . . . , n, from the

same distribution as the one of (Y,X), and approximate the risk R(F ) in (1) with the

empirical risk Re(F ) obtained by replacing the population distribution with the empirical

distribution:

Re(F ) =
1

n

n∑
i=1

L(yi, F (xi)). (11)

For gradient boosting, the sample version of (7) can be written as

fm = argmin
f∈S

n∑
i=1

gm,if(xi) +
1

2
f(xi)

2

= argmin
f∈S

n∑
i=1

(−gm,i − f(xi))
2 ,

(12)

where gm,i is the gradient of the loss function for observation i

gm,i =
∂

∂F
L(yi, F )

∣∣∣
F=Fm−1(xi)

.

This means that the stagewise minimizer fm can be found as the least squares approximation

to the negative gradient −gm,i.

Similarly, the sample version of the Newton update in (9) is given by

fm = argmin
f∈S

n∑
i=1

gm,if(xi) + hm,i
1

2
f(xi)

2

= argmin
f∈S

n∑
i=1

hm,i

(
− gm,i
hm,i

− f(xi)

)2

,

(13)

where hm,i is the Hessian of the loss function for observation i:

hm,i =
∂2

∂F 2
L(yi, F )

∣∣∣
F=Fm−1(xi)

. (14)
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I.e., fm can be found as the weighted least squares approximation to the ratio of the negative

gradient over the Hessian − gm,i
hm,i

with weights given by hm,i.

The sample version of the hybrid gradient-Newton algorithm first finds the structure s

of a tree using a gradient step:

sm = argmin
s:f=ws∈S

n∑
i=1

(−gm,i − f(xi))
2 ,

and then determines the weights w using a Newton step:

wm = argmin
w:f=ws∈S,s=sm

n∑
i=1

hm,i

(
− gm,i
hm,i

− f(xi)

)2

.

2.3 Multivariate case

In this section, we briefly present gradient and Newton boosting when the function F is

multivariate. In this case,

F (X) = (F 1(X), F 2(X), . . . , F d(X))T

is assumed to be a function in a direct sum Hilbert space H = H1⊕H2⊕· · ·⊕Hd, where the

Hk’s are Hilbert spaces with inner products 〈·, ·〉k given by 〈F k, F k〉k = EX
(
F k(X)2

)
, and

the inner product for H is given by 〈F ,F 〉 =
∑d

k=1〈F k, F k〉k. For the sake of readability,

we use boldface in this subsection to distinguish vector-valued functions from scalar-valued

functions. Examples of loss functions where F is multivariate include the entropy loss with

a softmax function for multiclass classification or generalized additive models for location,

scale, and shape (GAMLSS) where location, scale, and shape parameters are modeled as

functions of predictor variables X (Rigby and Stasinopoulos, 2005; Mayr et al., 2012).

A gradient boosting update fm ∈ S ⊕ · · · ⊕ S in Equation (3) is then obtained as

fm = argmin
f∈S⊕···⊕S

dR(Fm−1,f) +
1

2
〈f ,f〉. (15)

Under appropriate regularity conditions, dR(Fm−1,f) is given by

dR(Fm−1,f) = EY,X
(
gm(Y,X)Tf(X)

)
,

where

gm(Y,X) =

(
∂

∂F 1
L(Y,F ), . . . ,

∂

∂F d
L(Y,F )

)T ∣∣∣
F=Fm−1(X)

.
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It follows that the solution in (15) can be determined for each k, k = 1, . . . , d, separately

as

fkm = argmin
fk∈S

EY,X

((
−gkm(Y,X)− fk(X)

)2
)
,

where

gkm(Y,X) =
∂

∂F k
L(Y,F )

∣∣∣
F=Fm−1(X)

.

The sample version of this gradient boosting update is given by

fkm = argmin
fk∈S

n∑
i=1

(
−gkm,i − fk(xi)

)2
,

where gkm,i = gkm(yi, xi).

Newton boosting obtains an update fm ∈ S ⊕ · · · ⊕ S as

fm = argmin
f∈S⊕···⊕S

dR(Fm−1,f) +
1

2
d2R(Fm−1,f),

where, again under appropriate conditions, this can also be written as

fm = argmin
f∈S⊕···⊕S

EY,X

(
gm(Y,X)Tf(X) +

1

2
f(X)Thm(Y,X)f(X)

)
with hm(Y,X) = [hm(Y,X)]k,l, k, l = 1, . . . , d, and

[hm(Y,X)]k,l =
∂2

∂F k∂F l
L(Y,F )

∣∣∣
F=Fm−1(X)

.

The sample version of the Newton update is given by

fm = argmin
f∈S⊕···⊕S

n∑
i=1

gTm,if(xi) +
1

2
f(xi)

Thm,if(xi),

where gm,i = gm(yi, xi) and hm,i = hm(yi, xi). In practice, one often approximates hm,i

by a diagonal matrix

hm,i ≈ diag

(
∂2

∂F k
2L(yi,F )

∣∣∣
F=Fm−1(xi)

)
.

In this case, the updates can be determined independently as

fkm = argmin
fk∈S

n∑
i=1

hkm,i

(
−
gkm,i

hkm,i
− fk(xi)

)2

,

where hkm,i = hkm(yi, xi).

12



2.4 Tuning parameters and regularization

It has been empirically observed that damping the update in (3) results in increased pre-

dictive accuracy (Friedman, 2001). This means that the update in (3) is replaced with

Fm(x) = Fm−1(x) + νfm(x), ν > 0, (16)

where ν is a shrinkage parameter or learning rate. The parameter ν can be thought of as

a regularization parameter. Under additional assumptions, one can show for linear base

learners that when the parameter ν goes to zero, the obtained solutions correspond to the

set of Lasso solutions (Efron et al., 2004; Zhao and Yu, 2007).

The main tuning parameters of boosting algorithms are thus the number of boosting

iterations M and the shrinkage parameter ν. These tuning parameters and also the ones

for the base learners presented in the following can be chosen by minimizing a performance

measure on a validation dataset, using cross-validation, or using an appropriate model

selection criterion.

2.4.1 The minimum equivalent sample size per leaf parameter

Depending on the choice of base learners, there are additional tuning parameters. For

instance, if trees are used as base learners, the depth of the trees L and the minimum number

of samples per leaf are tuning parameters. Since Newton boosting solves the weighted

least squares problem in (13) in each update step, the raw number of samples per leaf is

not meaningful, and we argue that instead, one should consider what we denote as the

equivalent sample size per leaf per leaf. As we show below on real-world and simulated

data, this parameter can be important for predictive accuracy.

Specifically, we first normalize the weights

w̃m,i = n · hm,i∑n
j=1 hm,j

,

such that the sum of all normalized weights w̃m,i equals the number of data points n. We

then denote the sum of all normalized weights
∑

i∈Lj w̃m,i per leaf Lj as the equivalent

sample size per leaf, or equivalent number of weighted data points, and require that this is

larger than a certain constant S: ∑
i∈Lj

w̃m,i ≥ S. (17)
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The constant S is considered as a tuning parameter analogous to the minimum sample size

per leaf in gradient boosting.

To the best of our knowledge, other software implementations that use Newton boosting

such as XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017) handle this

tuning parameter differently by requiring that the sum of all raw weights hm,i per leaf

is larger than a certain constant which is by default one.2 According to the authors of

XGBoost, the motivation for this is that for linear regression, “this simply corresponds to

minimum number of instances needed to be in each node”.3 We argue that this is not a

good choice for the following reasons.

First, the second derivative hm,i of the loss function of a linear regression model with

Gaussian noise L(Y, F ) = (Y−F )2

2σ2 equals one only if the noise variance σ2 equals one σ2 = 1.

Otherwise, the second derivative hm,i equals σ−2. This means that the analogy to the

linear regression case does not hold true in general. In contrast, our proposed normalized

weights w̃m,i do indeed equal one for the linear regression case no matter what the noise

variance is, and thus the sum of normalized weights
∑

i∈Lj w̃m,i equals the number of

samples per leaf for the linear regression model also when σ2 6= 1. In general, the sum of

normalized weights w̃m,i corresponds to the number of weighted samples, and one has thus

good intuition concerning reasonable candidate values or ranges for this. If the raw weights

are not normalized, this is not the case. I.e., the sum of raw weights cannot be interpreted

as the number of weighted samples, and its interpretation changes depending on the loss

function used. Consequently, the minimum sum of raw weights
∑

i∈Lj hm,i is a parameter

that is difficult to tune in practice and we obtain inferior predictive accuracy for the large

majority of datasets in our experiments in Section 3. Further, in Section 4.2 we provide

empirical evidence that the minimum number of weighted samples per leaf is an important

tuning parameter and that the unnormalized version of this tuning parameter is difficult

to tune.

In addition to the above-presented tuning parameters, one can consider further tuning

parameters such as L1 and/or L2 regularization penalties on the tree weights, or an L0

penalty on the number of leaves. Finally, boosting algorithms can also be made stochastic

2This constant is denoted by min child weight in XGBoost (as of September 10, 2020).
3Unfortunately, this is not documented in the corresponding companion article

(Chen and Guestrin, 2016) We gather this information from the online documentation

https://xgboost.readthedocs.io/en/latest/parameter.html (retrieved on September 10, 2020).
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(Friedman, 2002) by (sub-)sampling data points in each boosting iteration and variables in

the tree algorithm as it is done for random forests.

2.5 Numerical stability and computational cost

Friedman et al. (2000) observed for the LogitBoost algorithm, i.e. Newton boosting for a

Bernoulli likelihood with a logistic link function, that numerical stability can be an issue

for Newton boosting. Similarly as in Friedman et al. (2000), we enforce a lower bound

on the second derivatives hm,i at 10−20 such that they are always strictly positive in our

implementation of Newton boosting.4

Concerning computational cost, the main cost of a boosting algorithm with trees as

base learners results from growing the regression trees (Ke et al., 2017). Consequently, the

differences in computational times are marginal for the three versions of boosting presented

in this article. Tree boosting implementations that are designed to scale to large data use

computational efficient algorithms for growing trees; see, e.g., Chen and Guestrin (2016).

2.6 Software implementations

The methodology presented in this article, i.e., gradient, Newton, and hybrid gradient-

Newton boosting is implemented in the Python package KTBoost, which is openly available

from the Python Package Index (PyPI) repository.5

We briefly summarize which types of boosting algorithms are used by existing soft-

ware implementations. The R package gbm (Ridgeway, 2007) and the Python library

scikit-learn (Pedregosa et al., 2011) follow the approach of Friedman (2001) and use

gradient descent steps for finding the structures of trees with Newton updates for the tree

leaves (if applicable, see Section 2.1.5). XGBoost (Chen and Guestrin, 2016) uses Newton

boosting with Newton steps for finding both the tree structure and the tree leaves. The

R package mboost (Hothorn et al., 2010) uses gradient boosting. In addition to trees, it

also supports other base learners which include linear functions, one- and two-dimensional

smoothing splines, spatial terms, as well as user-defined ones. Other recent implementa-

4We have not done a comprehensive study on the impact of this lower bound. However, when we choose

the bounds at 10−16 and 10−30, we have not observed any noticeable differences in the outcomes (results

not tabulated).
5The parameter update step of the functions BoostingClassifier and BoostingRegressor takes as

arguments gradient, hybrid, or newton. See https://github.com/fabsig/KTBoost for more information.
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tions such as LightGBM (Ke et al., 2017), TF Boosted Trees (Ponomareva et al., 2017) and

Spark MLLib (Meng et al., 2016), do not explicitly mention in their companion articles (Ke

et al., 2017; Ponomareva et al., 2017) or in their online documentation6 whether gradient

descent or Newton updates are used in the stagewise boosting updates. We infer from the

corresponding source code that LightGBM uses Newton boosting. To the best of our knowl-

edge, none of the existing solutions allows the user to explicitly choose between a gradient

or a Newton step for calculating the boosting updates.

3 Empirical evaluation and comparison

In the following, we compare the three different boosting algorithms presented in the pre-

vious section for different loss functions on various datasets using regression trees as base

learners.7 Specifically, we use the CART version of Breiman et al. (1984) with the mean

squared error as splitting criterion. Note that we use trees (Breiman et al., 1984) as base

learners as these are the most widely adopted base learners in applied data science and ma-

chine learning research (Ridgeway, 2007; Pedregosa et al., 2011; Chen and Guestrin, 2016;

Meng et al., 2016; Ke et al., 2017; Ponomareva et al., 2017). Besides Newton boosting

with the novel equivalent sample size per leaf parameter, we also consider Newton boost-

ing as implemented in XGBoost for which the sum of Hessians in each leaf acts as tuning

parameter.8

3.1 Real-world data

We consider the following datasets: adult, bank, (breast) cancer, ijcnn, ionosphere, titanic,

sonar, car, covtype, digits, glass, letter, satimage, smartphone, usps, insurance, birthweight,

and (childhood) malnutrition. Poisson regression is used for the insurance dataset. For the

birthweight and malnutrition datasets, we use mean-scale regression assuming a normal

likelihood where both the mean and the log-transformed scale parameter, i.e. the log-

transformed standard deviation, are modeled as functions of the predictor variables; see

6https://spark.apache.org/docs/latest/mllib-ensembles.html#gradient-boosted-trees-gbts (retrieved on

September 10, 2020).
7The code to reproduce the results can be found on https://github.com/fabsig/GradientNewtonBoosting
8We use XGBoost version number 0.7 in Python with the options tree method=‘exact’,

updater=‘grow colmaker’, lambda=0, and all other parameters at the default values unless otherwise men-

tioned.
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Appendix A for more details. Note that the mean-scale regression model is an example of

a GAMLSS model (Rigby and Stasinopoulos, 2005; Mayr et al., 2012). For the remaining

datasets, binary or multiclass classification is used. The insurance dataset is obtained

from Kaggle9. The birthweight (Schild et al., 2008) and malnutrition (Fenske et al., 2011)

datasets are obtained from the tbm R package10. The covtype, ijcnn, and usps datasets

are LIBSVM datasets11. All other datasets are obtained from the UCI Machine Learning

Repository12. A summary of the datasets can be found in Table 1. If a dataset contains

categorical predictor variables, these are converted to binary dummy variables using one-hot

encoding.

Data Type / nb. classes Nb. samples Nb. features

adult 2 48842 108

bank 2 41188 62

cancer 2 699 9

ijcnn 2 141691 22

ionosphere 2 351 34

sonar 2 208 60

car 4 1728 21

covtype 7 581012 54

digits 10 5620 64

glass 7 214 9

letter 26 20000 16

satimage 6 6438 36

smartphone 6 10299 561

usps 10 9298 256

insurance Poisson regr. 50999 117

birthweight Mean-scale regr. 150 5

malnutrition Mean-scale regr. 24166 42

Table 1: Summary of datasets.

9https://www.kaggle.com/apex51/poisson-regression
10Available on https://r-forge.r-project.org
11https://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/
12http://archive.ics.uci.edu/ml/datasets/
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We randomly split the data into three equally sized datasets: training, validation, and

test data. Learning is done on the training data, tuning parameters are chosen on the

validation data, and model comparison is done on the test data. For the two largest

datasets (ijcnn and covtype) we limit the size of the training, validation, and test data to

20000 data points. This is done for computational reasons. We note that there are various

strategies so that tree-based boosting scales to large data (Chen and Guestrin, 2016; Ke

et al., 2017), but this is not the scope of this article. To quantify variability in the results,

we use several different random splits of the data. The number of sample splits is 100 for

datasets with less than 1500 samples (less than 500 training samples), 20 for datasets with

a size between 1500 and 7500 (number of training samples between 500 and 2500), and 10

for datasets with more than 7500 samples (more than 2500 training samples).

Concerning tuning parameters, we select the number of boosting iterations M from

{1, 2, . . . , 1000}, the learning rate ν from {1, 10−1, 10−2, 10−3}, and the minimum number

of samples per leaf from {1, 5, 25, 100}. For Newton boosting, the latter is replaced by the

equivalent sample size per leaf in Equation (17), and for the XGBoost implementation, the

minimum sum of Hessians per leaf (min child weight) is used. Further, for the mean-

scale regression datasets, the minimum number of samples per leaf is chosen from {25, 100}

only for gradient and hybrid boosting since a very small number of samples can lead to

identifiability problems when modeling both the mean and the scale. Tuning parameters

are chosen for each sample split such that they minimize the error rate for classification

and the negative log-likelihood for regression on the validation data. The maximal tree

depth is set to five for all methods. We are not considering the maximal tree depth as an

additional tuning parameter for computational reasons. However, additional results for a

subset of the datasets reported in Section 4.3.1 and Appendix C show that similar findings

are obtained for other tree depths. Further, we note that in Section 4.2 and Appendix B,

we also consider the case when the minimum number of samples per leaf parameter is not

chosen by minimizing the test error on the validation data but is instead set to the default

value of one.

In Figure 1 and Table 2, we report test error rates for classification and test negative

log-likelihoods for regression datasets. Figure 1 visualizes the results using boxplots. In

Table 2, we additionally report average test errors and test negative log-likelihoods as

well as approximate standard deviations. Further, we report the average rank of every
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Figure 1: Comparison of boosting methods using test error rate for classification and test

negative log-likelihood for regression. The red rhombi represent means.

method over the different datasets. Since XGBoost does not support mean-scale regression,

we only consider the datasets for which all four methods can be run when calculating

average ranks. Overall, we find that Newton boosting with the novel equivalent sample
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Data Grad Hybrid Newton XGBoost

adult 0.128 (0.00158) 0.128 (0.00143) 0.129 (0.00222) 0.128 (0.00158)

bank 0.1 (0.00213) 0.0999 (0.00191) 0.1 (0.00208) 0.0996 (0.00198)

cancer 0.0402 (0.0147) 0.039 (0.0132) 0.0378 (0.0108) 0.0387 (0.0124)

ijcnn 0.0155 (0.00101) 0.0138 (0.000791) 0.0121 (0.00109) 0.013 (0.000838)

ionosphere 0.102 (0.0317) 0.0984 (0.0293) 0.0945 (0.0277) 0.104 (0.0288)

sonar 0.256 (0.0556) 0.252 (0.0517) 0.243 (0.0499) 0.257 (0.055)

car 0.0411 (0.0114) 0.0331 (0.00759) 0.0349 (0.00764) 0.045 (0.0112)

covtype 0.159 (0.00331) 0.158 (0.00326) 0.154 (0.00384) 0.159 (0.00371)

digits 0.0343 (0.00547) 0.0285 (0.00464) 0.0245 (0.00467) 0.0367 (0.0044)

glass 0.347 (0.0618) 0.339 (0.0612) 0.346 (0.0595) 0.355 (0.0607)

letter 0.0764 (0.00449) 0.067 (0.00233) 0.0574 (0.00438) 0.066 (0.00409)

satimage 0.106 (0.00622) 0.102 (0.00801) 0.0968 (0.00673) 0.102 (0.00687)

smartphone 0.0177 (0.00272) 0.017 (0.00266) 0.013 (0.00267) 0.02 (0.00288)

usps 0.0516 (0.00371) 0.0482 (0.00261) 0.0395 (0.00364) 0.0539 (0.00311)

insurance 51500 (341) 51500 (349) 51500 (324) 51500 (332)

malnutrition 6.53 (0.00649) 6.41 (0.00792) 6.41 (0.00733)

birthweight 7.33 (0.0702) 6.57 (0.177) 6.61 (0.226)

Av. rank 3.27 2.2 1.6 2.93

p-val Friedman test 0.000746

Adj. p-val Wilcoxon test 0.000229 0.0714 0.0302

Table 2: Results for real-world data: Average test error rates for classification and test

negative log-likelihoods for regression. In parentheses are approximate standard deviations.

Below are average ranks of the methods over the different datasets (only considering datasets

for which all four methods are run). Further, a p-value of a Friedman test with an Iman

and Davenport correction for comparing the different algorithms is reported. The last

row shows Holm-Bonferroni corrected p-values of Wilcoxon signed-rank tests for pairwise

comparison of Newton boosting with the novel number of weighted samples parameter and

the three alternative methods.

size per leaf parameter has clearly the lowest generalization error among the four methods.

Its average rank i1 1.6. The second best method with an average rank of 2.2 is hybrid

gradient-Newton boosting. Gradient boosting often has the lowest predictive accuracy

with an average rank of 3.27. In addition, Newton boosting with the novel number of

weighted samples parameter performs substantially better than the XGBoost variant of

Newton boosting with a minimum sum of unnormalized Hessians parameter which has an
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average rank of 2.93. We observe particularly striking differences with large outperformance

in the predictive accuracy of Newton boosting for several classification datasets (ijcnn,

digits, letter, satimage, smartphone, and usps). For the two mean-scale regression datasets

(birthweight and malnutrition), we also observe that gradient boosting performs worse than

Newton and hybrid gradient-Newton boosting, but no notable difference among the latter

two is found. For the Poisson regression dataset (insurance), gradient, hybrid, and Newton

boosting perform equally well.

Concerning statistical significance, we note that when using a resampling approach,

standard statistical tests, such as a paired t-test, cannot be used to do a pairwise comparison

of the different algorithms separately per dataset since training and test datasets in different

splits are dependent due to overlap (Dietterich, 1998; Bengio and Grandvalet, 2004; Demšar,

2006), and this can result in biased standard error estimates for the generalization error.

Following Demšar (2006), we compare the different methods across all datasets using a

Friedman test with an Iman and Davenport correction (Iman and Davenport, 1980). This

gives a p-value of 0.000746 which shows that the differences in the four methods are highly

significant. We next use a Wilcoxon signed-rank test to investigate whether the pairwise

differences in accuracy between Newton boosting with the novel number of weighted samples

parameter and the three alternative methods are statistically significant. To account for

the fact that we do multiple tests, we apply a Holm-Bonferroni correction (Holm, 1979).

Comparing Newton boosting with gradient and hybrid gradient-Newton boosting, we obtain

adjusted p-values of 0.000229 and 0.074. I.e., Newton boosting performs significantly better

than gradient boosting and the difference between Newton boosting and hybrid gradient-

Newton boosting is marginally not significant at a 5% level. However, the sample size for

performing these tests is relatively small (17) and, consequently, the tests likely have low

power.

3.2 Simulated data

In the following, we compare the performance of the different boosting approaches on

simulated data for both classification and regression. Concerning regression, we consider

two extensions of generalized linear models, boosted Poisson and Gamma regression, as

well as the mean-scale regression model used in Section 3. For classification, we consider

both binary and multiclass classification. In addition, we consider the boosted Tobit model
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(Sigrist and Hirnschall, 2019), which can be interpreted as a hybrid regression-classification

model. See Section A in the appendix for more details on these models.

For classification, we use the scikit-learn function make classification, which sim-

ulates from an algorithm that is adapted from Guyon (2003) and was designed to generate

the ‘Madelon’ dataset. We use this for both simulating binary data and a multiclass data

with five classes. Further, we assume ten (informative) features and no redundant and

repeated features; see Guyon (2003) for more details. These two datasets are denoted

by ‘bin classif’ and ‘multi classif’ in the following. In addition, we simulate binary data

according to the following specification introduced in Friedman et al. (2000):

F (X) = 10
6∑
j=1

Xj

(
1 +

6∑
l=1

(−1l)Xl

)
, X ∼ N(0, I10),

Y |X ∼ Bernoulli(p), p =
(

1 + e−F (X)
)−1

.

This data is denoted by ‘bin classif fht’ in the following. Finally, we also simulate multiclass

data with five classes according to the following specification (Friedman et al., 2000):

R2 =

10∑
j=1

X2
j , X ∼ N(0, I10),

Y = k if tk ≤ R2 < tk+1,

where the thresholds tk are chosen such that the labels are approximately equally distributed

among the different classes. We denote this data by ‘multi classif fht’.

For Poisson and Gamma regression, the boosted Tobit model, as well as mean-scale re-

gression (’msr’), we consider two non-linear functions. First, we use a function of Friedman

(1991) given by:

F (X) = 5 · tan−1

(
X2X3 − 1− 1

X2X4

X1

)
+ 0.2 (‘ f3’),

where X = (X1, X2, X3, X4)′ with X1 ∼ Unif(0, 100), X2 ∼ Unif(40π, 560π), X3 ∼

Unif(0, 1), and X4 ∼ Unif(1, 11). In contrast to the original function of Friedman (1991),

we multiply the function by 5 and add 0.2 such that function also attains larger values

and that all values are positive. We use the scikit-learn function make friedman3 for

simulation and denote datasets generated by this function using the suffix ‘ f3’ in the

following. Further, we also consider a function introduced in Ridgeway (1999):

F (X) = exp
(
2 sin(3X1 + 5X2

1 )− 2 sin(3(X2 + 0.1) + 5(X2 + 0.1)2)
)

(‘ r’),
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where X = (X1, X2)′, Xj ∼ Unif(0, 1), independent. Datasets generated using this func-

tion are denoted by the suffix ‘ r’.13 For Poisson and Gamma regressions, the above func-

tions are used to model the mean, and for Tobit regression the functions model the mean

of the latent variable. For the mean-scale regression model, we simulate 2n variables and

relate both the mean and the logarithmic standard deviation to half of the variables. Both

Tobit regression and a regression model where both the mean and the scale depend on

predictor variables are not supported in XGBoost and, consequently, no comparison can be

done for these. For Gamma regression, we set the shape parameter to γ = 10 and consider

this as a known parameter.14 For the Tobit model, we use σ = 1 and also consider this as

a known parameter. Further, we set the lower and upper censoring thresholds yl and yu in

such a way that approximately one-third of all data points are lower and upper censored.

We simulate 10 times datasets with 15000 samples. In each run, 5000 samples are

used as training, validation, and test data. As in Section 3, we calculate the p-value of a

Friedman test with an Iman and Davenport correction (Iman and Davenport, 1980) to check

whether there are significant differences among the methods across all datasets. Further, we

calculate Holm-Bonferroni corrected (Holm, 1979) p-values of Wilcoxon signed-rank tests

for pairwise comparison of Newton boosting with the three other approaches.

The results are reported in Figure 2 and in Table 3. See Section 3 for more details on the

plot and table. We find again that Newton boosting has the highest predictive accuracy for

the large majority of datasets, followed by hybrid gradient-Newton, with gradient boosting

having the lowest predictive accuracy. The Friedman test with an Iman and Davenport cor-

rection shows that there are statistically significant differences among the different boosting

approaches. Further, Newton boosting performs significantly better in terms of predictive

accuracy than both gradient and hybrid gradient-Newton boosting despite the relatively

small sample size and the multiple testing correction. Finally, Newton boosting with the

new equivalent sample size per leaf tuning parameter has higher predictive accuracy than

the XGBoost implementation with the unnormalized number of weighted samples per leaf

parameter.

13For instance, the dataset ’msr r’ is simulated from a mean-scale regression model with both the mean

and the standard deviation given by the above function introduced by Ridgeway (1999).
14We note that XGBoost only supports Gamma regression for γ = 1. However, this slight miss-specification

seems to have no detrimental impact as our results below show.
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Figure 2: Comparison of boosting methods on simulated datasets using test error rate

for classification and test negative log-likelihood for regression. The red rhombi represent

means.

4 Discussion

4.1 Does Newton boosting show higher predictive accuracy than gradient

boosting due to faster convergence?

In the previous sections, we have empirically shown that Newton boosting often results in

higher predictive accuracy than gradient and also hybrid gradient-Newton boosting. A po-

tential explanation for the observed phenomenon is that Newton boosting converges faster

than both gradient and hybrid gradient-Newton boosting, and that hybrid boosting also

converges faster than gradient boosting. This, in turn, could allow for using a smaller

shrinkage parameter ν, and smaller shrinkage parameters usually lead to increased predic-
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Data Grad Hybrid Newton XGBoost

bin classif 0.0485 (0.0126) 0.0449 (0.0126) 0.0403 (0.0116) 0.0438 (0.0121)

bin classif fht 0.107 (0.00394) 0.104 (0.004) 0.106 (0.00488) 0.105 (0.00428)

multi classif 0.178 (0.0163) 0.172 (0.0176) 0.167 (0.0184) 0.168 (0.0185)

multi classif fht 0.394 (0.00586) 0.359 (0.00462) 0.321 (0.00597) 0.373 (0.00415)

poisson r 7060 (78.2) 7000 (75.4) 6970 (73.7) 6990 (68.1)

poisson f3 11800 (45.5) 11700 (45.1) 11700 (50) 11700 (51.2)

gamma r 4610 (159) 4620 (160) 4610 (158) 4620 (157)

gamma f3 14300 (36.6) 14300 (35.5) 14300 (35.7) 14300 (35.1)

tobit r 4050 (45.7) 4040 (48.7) 4040 (40.5)

tobit f3 4540 (45.7) 4540 (47.5) 4530 (47.7)

msr f3 3.33 (0.0107) 3.31 (0.0121) 3.31 (0.0107)

msr r 2.43 (0.0408) 2.2 (0.0361) 2.16 (0.0327)

Av. rank 3.5 2.5 1.25 2.75

p-val Friedman test 0.000112

Adj. p-val Wilcoxon test 0.00146 0.00488 0.0156

Table 3: Results for simulated data: Average test error rates for classification and test

negative log-likelihoods for regression. In parentheses are approximate standard deviations.

Below are average ranks of the methods over the different datasets (only considering datasets

for which all four methods are run). Further, a p-value of a Friedman test with an Iman

and Davenport correction for comparing the different algorithms is reported. The last

row shows Holm-Bonferroni corrected p-values of Wilcoxon signed-rank tests for pairwise

comparison of Newton boosting with the novel number of weighted samples parameter and

the three alternative methods.

tive accuracy. To investigate whether this is the main reason for the differences, we show in

Figures 3 and 4 test error rates (classification) and test negative log-likelihoods (regression)

as well as training losses versus iteration numbers for several datasets for which we have

observed large differences. In order that the results for the different sample splits and also

boosting methods are comparable, learning rates are fixed and not tuned. Specifically, we

consider the following datasets and learning rates: ijcnn (ν = 0.5), bin classif (ν = 0.5),

digits (ν = 0.5), letter (ν = 0.1), satimage (ν = 0.3), smartphone (ν = 0.5), poisson r

(ν = 0.03), malnutrition (ν = 0.03), and msr r (ν = 0.05). Note that this list of datasets

includes both binary and multiclass classification as well as Poisson and mean-scale regres-

sion tasks. The solid lines in Figures 4 and 3 represent means over ten different data splits
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into equally sized training, validation, and test data. The lower and upper values of the

shaded areas are obtained after point-wise discarding the lowest and largest values. Training

losses are shown on a logarithmic scale with a lower cap at 10−5 for better visualization.

Figure 3: Test error rate (classification) and test negative log-likelihood (regression) versus

boosting iteration number.

As expected, Figures 3 and 4 show that gradient boosting often converges slower than

Newton and also hybrid gradient-Newton boosting. Concerning the latter two, we visually

observe almost no difference in convergence speed. However, the plots also show that

the faster convergence speed of Newton boosting is likely not the reason for the observed

differences in predictive accuracy since the minima of the test errors for Newton boosting

are usually achieved after fewer iterations compared to gradient boosting. Interestingly,
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Figure 4: Training loss versus boosting iteration number. The (logarithmic) y-scale is

truncated at 10−5 for better visualization.

our results indicate that Newton boosting converges to lower training losses, which are

essentially zero for the majority of classification datasets, while at the same time having

higher test accuracy. The fact that interpolating classifiers with zero training loss generalize

well to novel data seems to be in contradiction to the well-known bias-variance trade-off.

However, similar results have recently been observed for other datasets and complex models

such as deep learning and kernel machines (Zhang et al., 2017; Belkin et al., 2018b,a).

For the Poisson regression dataset, we observe that gradient boosting results in a lower

training loss but a higher test loss. For the mean-scale regression datasets, we find that

Newton and hybrid boosting show lower test and training losses than gradient boosting,
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and, in contrast to the classification datasets, we find clear signs of overfitting as the test

losses start to increase again after a certain number of boosting iterations. Concerning the

XGBoost implementation, we find that XGBoost results in higher training losses and also

higher test errors compared to our Newton boosting implementation. In particular, the

training losses do not converge to zero for the classification datasets.

Finally, we recall that in cases where the Hessians hm,i defined in Equation (14) are

constant, there is no difference between gradient and Newton boosting. It is thus likely

that the more variation there is in the second-order terms hm,i the larger is the difference

between gradient and Newton boosting.

4.2 Importance of the minimum number of (weighted) samples per leaf

parameter

In Table 4 in Appendix B, we additionally report results for the real-world datasets when

the minimum number of (weighted) samples per leaf parameter is not tuned by minimizing

a validation loss and simply set to a default value. I.e., for gradient and hybrid gradient-

Newton boosting, the minimum number of samples per leaf is one, for Newton boosting with

our proposed choice in (17), we set the minimum equivalent sample size per leaf parameter

to one, and for the XGBoost implementation, we set the minimum sum of Hessians to its

default value, i.e., also one.15 Overall, we find that the difference in predictive accuracy

between Newton boosting and gradient as well as hybrid gradient-Newton boosting is more

pronounced when the minimum number of samples parameter is not tuned. Interestingly,

we find that Newton boosting with the unnormalized sum of Hessians per leaf parameter

as implemented in XGBoost and Newton boosting with the novel equivalent number of

weighted samples per leaf parameters as implemented in KTBoost perform now almost

equally well, and that the results of Newton boosting with the novel equivalent sample

size per leaf parameter are worse compared to the ones in Table 2 when also tuning this

parameter. This provides evidence that the number of samples per leaf is an important

tuning parameter, and that the unnormalized version of this tuning parameter is difficult

to tune.

15We exclude the mean-scale regression datasets as there is no obvious default value since the minimum

number of samples per leaf needs to be larger than one.
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4.3 Additional results and robustness check

In the following, we report additional results to show that our findings are robust to the

choice of the maximal tree depth tuning parameters and also to the sample size.

4.3.1 Maximal tree depth

We additionally consider the following maximal tree depths: 1 (stumps), 3, 8, and 20. The

results in Appendix C show that we continue to observe very similar differences among

the different boosting versions also for other maximal tree depths. In particular, Newton

boosting results in the highest predictive accuracy. For the majority of the datasets, stumps

and also trees with maximal depth 3 perform worse than larger trees. However, for one

simulated dataset (multi classif fht), stumps result in clearly increased predictive accuracy.

Further, very large trees with a depth of 20 generally perform slightly worse than trees with

a depth of 5 or 8.

4.3.2 Simulated data with a smaller sample size

We repeat the simulation study using a smaller sample size. Specifically, we use n = 500

samples and do 100 simulation runs with the same specifications as in Section 3.2. The

results for this are reported in Table 9 in Appendix D. Qualitatively, we find similar results

as for the larger sample size. When excluding the Tobit and mean-scale regression datasets

for which XGBoost cannot be run, Newton boosting has an average rank of 1.25, hybrid

gradient-Newton boosting has an average rank of 2.38, gradient boosting has an average

rank of 3.57, and XGBoost has an average rank of 2.88. Further, gradient boosting has sig-

nificantly lower predictive accuracy than Newton boosting. The differences between hybrid

gradient-Newton boosting and Newton boosting are less pronounced and not significant,

though. Further, the differences between Newton boosting with the novel equivalent sam-

ple size per leaf parameter and the XGBoost implementation of Newton boosting with the

unnormalized number of weights parameter are also not significant. We note, however, that

these statistical tests are done using very small sample sizes of only 12 or 8, respectively,

and thus have low power.
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5 Conclusions

We compare gradient and Newton boosting as well as a hybrid variant of the two with trees

as base learners on a wide range of classification and regression datasets. Our empirical

results show that Newton boosting outperforms gradient and often also hybrid gradient-

Newton boosting in terms of predictive accuracy. Further, we present empirical evidence

that this outperformance is not a consequence of a faster convergence speed of Newton

boosting. Interestingly, Newton boosting converges to lower values of the empirical risk

while at the same time having lower test errors. In addition, we introduce a novel tuning

parameter denoted as equivalent sample size per leaf parameter which is interpretable,

intuitive to tune, and important for predictive accuracy.

We do not have a full explanation for why Newton boosting shows lower generalization

errors, and future research should shed light on the reasons for this. Theoretical results

such as bounds on the generalization error could help to find an explanation. Further,

future research should investigate whether similar results are found for other types of base

learners such as splines (Bühlmann and Yu, 2003; Hothorn et al., 2010), when combining

different base learners such as trees and kernel machines (Sigrist, 2019), when using a linear

model as baseline and adding more flexible base learners in a boosting framework (Costa

et al., 2019), or when combining boosting with Gaussian process or mixed effects models

(Sigrist, 2020).
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Costa, M. A., Wullt, B., Norrlöf, M., and Gunnarsson, S. (2019). Failure detection in

robotic arms using statistical modeling, machine learning and hybrid gradient boosting.

Measurement, 146:425–436.

De Menezes, F. S., Liska, G. R., Cirillo, M. A., and Vivanco, M. J. (2017). Data classification

with binary response through the boosting algorithm and logistic regression. Expert

Systems with Applications, 69:62–73.
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Appendices

A Loss functions for regression and classification tasks

In the following, we list the loss functions and corresponding gradients and second deriva-

tives that we consider in this article.

• Binary classification

Y |X ∼ Bernoulli(p), p =
(
1 + e−F (X)

)−1

Loss: L(Y, F ) = −Y F + log
(
1 + eF

)
Gradient : ∂L(Y,F )

∂F = −Y + p

Hessian: ∂2L(Y,F )
∂F 2 = p(1− p)

• Multiclass classification

Y |X ∼ Multinom(p1, . . . , pK), pk = eFk(X)∑K
l=1 e

Fk(X) , k = 1, . . . ,K

Loss:

L(Y, F ) =
∑K

k=1

(
−1{Y=k}Fk + log

(∑K
l=1 e

Fl(X)
))

, F = (F1 . . . , FK)

Gradient : ∂L(Y,F )
∂Fk

= −1{Y=k} + pk

Hessian: ∂2L(Y,F )
∂F 2

k
= pk(1− pk)

As in Friedman et al. (2000), we use ∂2L(Y,F )
∂Fk∂Fj

= 0 for simplicity.

• Poisson regression

Y |X ∼ Pois(λ), λ = eF (X)

Loss: L(Y, F ) = −Y F + eF

Gradient : ∂L(Y,F )
∂F = −Y + eF

Hessian: ∂2L(Y,F )
∂F 2 = eF

• Gamma regression

Y |X ∼ Gamma(γ, λ) with shape γ and rate λ, λ = γe−F (X)

Loss: L(Y, F ) = γ
(
F + e−FY

)
− (γ − 1) log(Y )− γ log(γ) + log(Γ(γ))

Gradient : ∂L(Y,F )
∂F = γ

(
1− e−FY

)
Hessian: ∂2L(Y,F )

∂F 2 = γe−FY

• Tobit model

Y |X ∼ Tobit{yl,yu}(µ, σ
2), with mean µ, µ = F (X), and variance σ2 of the latent
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variable and lower and upper censoring thresholds yl and yu

Loss:

L(Y, F ) =− log

(
Φ

(
yl − F
σ

))
1yl(Y )

+

(
(Y − F )2

2σ2
+ log(σ) + 0.5 log(2π)

)
1{yl<Y<yu}

− log

(
1− Φ

(
yu − F
σ

))
1yu(Y )

Gradient :

∂L(Y, F )

∂F
=
φ
(
yl−F
σ

)
σΦ
(
yl−F
σ

)1yl(Y )− Y − F
σ2

· 1{yl<Y<yu}

−
φ
(
yu−F
σ

)
σ
(

1− Φ
(
yu−F
σ

))1yu(Y )

Hessian:

∂2L(Y, F )

∂F2

=
φ
(
yl−F
σ

)
σ2Φ2

(
yl−F
σ

) (
yl − F
σ

Φ

(
yl − F
σ

)
+ φ

(
yl − F
σ

))
1yl

(Y )

+
1

σ2
1{yl<Y<yu}

−
φ
(
yu−F
σ

)
σ2

(
1− Φ

(
yu−F
σ

))2

(
yu − F
σ

(
1− Φ

(
yu − F
σ

))
− φ

(
yu − F
σ

))
1yu (Y )

• Mean-scale regression

Y |X ∼ N(µ, σ2), with mean µ = F1(X) and standard deviation σ = eF2(X)

Loss: L(Y, F ) = (Y−F1)2

2e2F2
+ F2 + 0.5 log(2π)

Gradient :

∂L(Y, F )

∂F1
= −Y − F1

e2F2

∂L(Y, F )

∂F2
= −(Y − F1)2

e2F2
+ 1

Hessian:

∂2L(Y, F )

∂F 2
1

=
1

e2F2

∂2L(Y, F )

∂F 2
2

= 2
(Y − F1)2

e2F2

Similarly as for multiclass classification, we assume for simplicity zero off-diagonals

for the Hessian, i.e., ∂2L(Y,F )
∂F1∂F2

= 0.
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B Using a default value for the minimum number of (weighted)

samples per leaf parameter

Data Grad Hybrid Newton XGBoost

adult 0.129 (0.00211) 0.128 (0.00174) 0.128 (0.0019) 0.128 (0.00159)

bank 0.101 (0.00196) 0.101 (0.00162) 0.101 (0.00162) 0.1 (0.00208)

cancer 0.0551 (0.015) 0.0504 (0.0163) 0.0452 (0.0136) 0.0381 (0.0117)

ijcnn 0.0172 (0.00105) 0.0148 (0.000824) 0.0128 (0.000577) 0.013 (0.000838)

ionosphere 0.121 (0.0325) 0.118 (0.036) 0.107 (0.0357) 0.102 (0.029)

sonar 0.307 (0.0637) 0.308 (0.0595) 0.289 (0.0514) 0.254 (0.0548)

car 0.0567 (0.0103) 0.0523 (0.0121) 0.0407 (0.0122) 0.0445 (0.0114)

covtype 0.16 (0.00355) 0.16 (0.00377) 0.154 (0.0035) 0.159 (0.00371)

digits 0.0657 (0.00663) 0.0489 (0.0051) 0.0295 (0.00406) 0.0362 (0.0035)

glass 0.381 (0.0585) 0.372 (0.0576) 0.357 (0.0584) 0.348 (0.0582)

letter 0.0917 (0.00558) 0.075 (0.00424) 0.0594 (0.00357) 0.066 (0.00409)

satimage 0.114 (0.00601) 0.105 (0.00594) 0.0971 (0.00614) 0.102 (0.00639)

smartphone 0.033 (0.00482) 0.0238 (0.00318) 0.0159 (0.00242) 0.0197 (0.00265)

usps 0.0782 (0.00265) 0.0613 (0.00364) 0.0435 (0.00271) 0.054 (0.00341)

insurance 51900 (308) 51700 (306) 51600 (300) 51700 (305)

Av. rank 3.8 2.93 1.6 1.67

p-val Friedman test 2.24e-10

Adj. p-val Wilcoxon test 0.000366 0.00061 0.489

Table 4: Results for real-world data when the minimum number of (weighted) samples per

leaf parameter is not tuned and set to a default value: Average test error rates for clas-

sification and test negative log-likelihoods for regression. In parentheses are approximate

standard deviations. Below are average ranks of the methods over the different datasets.

Further, a p-value of a Friedman test with an Iman and Davenport correction for com-

paring the different algorithms is reported. The last row shows Holm-Bonferroni corrected

p-values of Wilcoxon signed-rank tests for pairwise comparison of Newton boosting with

the novel number of weighted samples parameter and the three alternative methods.
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C Results for different maximal tree depths

Data Grad Hybrid Newton XGBoost

bin classif 0.15 (0.0466) 0.151 (0.0467) 0.151 (0.0483) 0.151 (0.0476)

multi classif fht 0.328 (0.00691) 0.191 (0.00528) 0.211 (0.0223) 0.381 (0.0173)

digits 0.0509 (0.00484) 0.0426 (0.00563) 0.0423 (0.00373) 0.0582 (0.0155)

satimage 0.126 (0.00587) 0.12 (0.00624) 0.117 (0.00636) 0.137 (0.0138)

ijcnn 0.0422 (0.00124) 0.0401 (0.00118) 0.04 (0.00127) 0.0414 (0.00149)

poisson r 6930 (79.2) 6950 (62.7) 6930 (69.7) 11300 (859)

gamma r 4600 (159) 4600 (160) 4600 (161) 5090 (820)

tobit r 4440 (45.7) 4430 (48.1) 4430 (47.9)

msr r 2.73 (0.0271) 2.71 (0.0256) 2.71 (0.0263)

malnutrition 6.53 (0.00615) 6.41 (0.00739) 6.41 (0.00756)

Av. rank 2.57 2.07 1.79 3.57

p-val Friedman test 0.196

Adj. p-val Wilcoxon test 0.168 0.343 0.0938

Table 5: Results when the maximal tree depth is one (stumps): Average test error rates

for classification and test negative log-likelihoods for regression. In parentheses are ap-

proximate standard deviations. Below are average ranks of the methods over the different

datasets (only considering datasets for which all four methods are run). Further, a p-value

of a Friedman test with an Iman and Davenport correction for comparing the different al-

gorithms is reported. The last row shows Holm-Bonferroni corrected p-values of Wilcoxon

signed-rank tests for pairwise comparison of Newton boosting with the novel number of

weighted samples parameter and the three alternative methods.
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Data Grad Hybrid Newton XGBoost

bin classif 0.0558 (0.0132) 0.0525 (0.0138) 0.046 (0.013) 0.0508 (0.0135)

multi classif fht 0.38 (0.00335) 0.344 (0.00968) 0.3 (0.00918) 0.358 (0.00447)

digits 0.0359 (0.00473) 0.0299 (0.00469) 0.024 (0.00342) 0.0338 (0.00573)

satimage 0.108 (0.00547) 0.104 (0.00618) 0.102 (0.00574) 0.106 (0.0059)

ijcnn 0.0185 (0.000857) 0.0167 (0.00116) 0.0141 (0.00113) 0.0158 (0.00083)

poisson r 7030 (60.1) 6950 (65.3) 6940 (64.4) 6990 (54.3)

gamma r 4600 (159) 4610 (158) 4610 (158) 4640 (156)

tobit r 4060 (46) 4070 (47.9) 4060 (50.4)

msr r 2.42 (0.0281) 2.36 (0.0236) 2.34 (0.0202)

malnutrition 6.53 (0.00648) 6.41 (0.0077) 6.41 (0.00798)

Av. rank 3.57 2.29 1.29 2.86

p-val Friedman test 0.000886

Adj. p-val Wilcoxon test 0.129 0.129 0.0469

Table 6: Results when the maximal tree depth is three: Average test error rates for clas-

sification and test negative log-likelihoods for regression. In parentheses are approximate

standard deviations. Below are average ranks of the methods over the different datasets

(only considering datasets for which all four methods are run). Further, a p-value of a

Friedman test with an Iman and Davenport correction for comparing the different algo-

rithms is reported. The last row shows Holm-Bonferroni corrected p-values of Wilcoxon

signed-rank tests for pairwise comparison of Newton boosting with the novel number of

weighted samples parameter and the three alternative methods.
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Data Grad Hybrid Newton XGBoost

bin classif 0.0464 (0.0122) 0.0408 (0.0104) 0.0379 (0.0101) 0.0434 (0.0111)

multi classif fht 0.401 (0.00676) 0.366 (0.00593) 0.337 (0.00748) 0.389 (0.0118)

digits 0.0351 (0.00589) 0.0297 (0.00465) 0.0234 (0.00445) 0.0384 (0.00427)

satimage 0.105 (0.00579) 0.0981 (0.00716) 0.0958 (0.00604) 0.102 (0.00613)

ijcnn 0.0143 (0.000823) 0.0131 (0.000699) 0.0116 (0.000586) 0.0133 (0.000672)

poisson r 7080 (82.5) 7020 (75.6) 6990 (77.1) 7010 (72)

gamma r 4610 (158) 4620 (156) 4610 (158) 4620 (159)

tobit r 4060 (47.8) 4050 (48.2) 4050 (47.4)

msr r 2.41 (0.0575) 2.19 (0.0434) 2.17 (0.0273)

malnutrition 6.53 (0.00658) 6.42 (0.00823) 6.42 (0.00737)

Av. rank 3.57 2.43 1 3

p-val Friedman test 2.73e-05

Adj. p-val Wilcoxon test 0.00586 0.00586 0.0156

Table 7: Results when the maximal tree depth is eight: Average test error rates for clas-

sification and test negative log-likelihoods for regression. In parentheses are approximate

standard deviations. Below are average ranks of the methods over the different datasets

(only considering datasets for which all four methods are run). Further, a p-value of a

Friedman test with an Iman and Davenport correction for comparing the different algo-

rithms is reported. The last row shows Holm-Bonferroni corrected p-values of Wilcoxon

signed-rank tests for pairwise comparison of Newton boosting with the novel number of

weighted samples parameter and the three alternative methods.
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Data Grad Hybrid Newton XGBoost

bin classif 0.0457 (0.0122) 0.0415 (0.0112) 0.0385 (0.00998) 0.0436 (0.0103)

multi classif fht 0.41 (0.00486) 0.388 (0.00579) 0.35 (0.00678) 0.394 (0.0138)

digits 0.0351 (0.00555) 0.0285 (0.00427) 0.0232 (0.0041) 0.0386 (0.00477)

satimage 0.104 (0.00604) 0.1 (0.00746) 0.0951 (0.00552) 0.103 (0.00542)

ijcnn 0.0147 (0.000878) 0.0137 (0.000396) 0.0118 (0.00064) 0.014 (0.000548)

poisson r 7100 (75.6) 7030 (77.3) 7050 (81.2) 7060 (75.3)

gamma r 4610 (158) 4640 (159) 4610 (158) 4630 (159)

tobit r 4070 (47.1) 4050 (46.8) 4060 (46.3)

msr r 2.42 (0.0457) 2.19 (0.0434) 2.18 (0.0316)

malnutrition 6.53 (0.00688) 6.42 (0.00783) 6.42 (0.00743)

Av. rank 3.57 2.14 1.14 3.14

p-val Friedman test 0.000298

Adj. p-val Wilcoxon test 0.00586 0.322 0.0313

Table 8: Results when the maximal tree depth is twenty: Average test error rates for clas-

sification and test negative log-likelihoods for regression. In parentheses are approximate

standard deviations. Below are average ranks of the methods over the different datasets

(only considering datasets for which all four methods are run). Further, a p-value of a

Friedman test with an Iman and Davenport correction for comparing the different algo-

rithms is reported. The last row shows Holm-Bonferroni corrected p-values of Wilcoxon

signed-rank tests for pairwise comparison of Newton boosting with the novel number of

weighted samples parameter and the three alternative methods.
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D Results for the simulated data with a smaller sample size

Data Grad Hybrid Newton XGBoost

bin classif 0.111 (0.026) 0.103 (0.0248) 0.0899 (0.0233) 0.106 (0.0247)

bin classif fht 0.248 (0.0227) 0.246 (0.0214) 0.237 (0.0216) 0.242 (0.0244)

multi classif 0.356 (0.0386) 0.346 (0.035) 0.329 (0.0349) 0.346 (0.0374)

multi classif fht 0.591 (0.0245) 0.583 (0.0242) 0.558 (0.025) 0.587 (0.0231)

poisson r 778 (40.2) 769 (40.5) 773 (37.3) 764 (36.9)

poisson f3 1210 (17.5) 1210 (17) 1200 (18.2) 1220 (20.2)

gamma r 471 (43.5) 476 (42.9) 468 (43.3) 472 (42.9)

gamma f3 1440 (11.3) 1440 (11.4) 1440 (11.5) 1440 (11.6)

tobit r 445 (18.5) 442 (18.7) 443 (18.8)

tobit f3 480 (16.1) 478 (16) 478 (15.6)

msr f3 3.38 (0.0354) 3.37 (0.0381) 3.38 (0.0419)

msr r 3.23 (0.199) 3.19 (0.254) 3.07 (0.236)

Av. rank 3.5 2.38 1.25 2.88

p-val Friedman test 0.000627

Adj. p-val Wilcoxon test 0.00146 0.47 0.297

Table 9: Results for simulated data with a sample size of n=500: Average test error

rates for classification and test negative log-likelihoods for regression. In parentheses are

approximate standard deviations. Below are average ranks of the methods over the different

datasets (only considering datasets for which all four methods are run). Further, a p-value

of a Friedman test with an Iman and Davenport correction for comparing the different

algorithms is reported. The last row shows Holm-Bonferroni corrected p-values of Wilcoxon

signed-rank tests for pairwise comparison of Newton boosting with the novel number of

weighted samples parameter and the three alternative methods.
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