2010.13890v1 [cs.SE] 26 Oct 2020

arxXiv

How We Refactor and How We Document it? On the
Use of Supervised Machine Learning Algorithms to
Classify Refactoring Documentation

Eman Abdullah AlOmar®*, Anthony Peruma?®, Mohamed Wiem Mkaouer?®,
Christian Newman?®, Ali Ouni®, Marouane Kessentini®
®Rochester Institute of Technology, Rochester, NY, USA

YETS Montreal, University of Quebec, Montreal, QC, Canada
¢ University of Michigan, Dearborn, MI, USA

Abstract

Refactoring is the art of improving the structural design of a software system
without altering its external behavior. Today, refactoring has become a well es-
tablished and disciplined software engineering practice that has attracted a sig-
nificant amount of research presuming that refactoring is primarily motivated by
the need to improve system structures. However, recent studies have shown that
developers may incorporate refactoring strategies in other development-related
activities that go beyond improving the design especially with the emerging
challenges in contemporary software engineering. Unfortunately, these studies
are limited to developer interviews and a reduced set of projects.

To cope with the above-mentioned limitations, we aim to better understand
what motivates developers to apply a refactoring by mining and automatically
classifying a large set of 111,884 commits containing refactoring activities, ex-
tracted from 800 open source Java projects. We trained a multi-class classifier
to categorize these commits into three categories, namely, Internal Quality At-
tribute, External Quality Attribute, and Code Smell Resolution, along with the
traditional Bug Fix and Functional categories. This classification challenges the
original definition of refactoring, being exclusive to improving software design
and fixing code smells. Furthermore, to better understand our classification
results, we qualitatively analyzed commit messages to extract textual patterns
that developers regularly use to describe their refactoring activities.

The results of our empirical investigation show that (1) fixing code smells is
not the main driver for developers to refactoring their code bases. Refactoring
is solicited for a wide variety of reasons, going beyond its traditional definition;
(2) the distribution of refactoring operations differ between production and test
files; (3) developers use a variety of patterns to purposefully target refactoring-

*Corresponding author
Email addresses: eman.alomar@mail.rit.edu (Eman Abdullah AlOmar),
anthony.peruma@mail.rit.edu (Anthony Peruma), mwmvse@rit.edu (Mohamed Wiem Mkaouer),
cdnvse@rit.edu (Christian Newman), ali.ouni@etsmtl.ca (Ali Ouni), marouane@umich.edu
(Marouane Kessentini)

Preprint submitted to Journal of INTEX Templates 28th October 2020

related activities; (4) the textual patterns, extracted from commit messages,
provide a better coverage for how developers document their refactorings.

Keywords: Refactoring, Software Quality, Software Engineering, Machine
Learning

1. Introduction

The success of a software system depends on its ability to retain high quality
of design in the face of continuous change. However, managing the growth of
the software while continuously developing its functionalities is challenging, and
can account for up to 75% of the total development (Erlikh, 2000; Barry et al.,
1981). Ome key practice to cope with this challenge is refactoring. Refactoring
is the art of remodeling the software design without altering its functionalities
(Fowler et al., 1999; AlDallal & Abdin, 2017). It was popularized by (Fowler
et al., 1999), who identified 72 refactoring types and provided examples of how
to apply them in his catalog.

Refactoring is a critical software maintenance activity that is performed by
developers for an amalgamation of reasons (Tsantalis et al., 2013; Silva et al.,
2016; Palomba et al., 2017). Refactoring activities in the source code can be
automatically detected (Dig et al., 2006; Tsantalis et al., 2013) providing a
unique opportunity to practitioners and researchers to analyze how developers
maintain their code during different phases of the development life-cycle and
over large periods of time. Such valuable knowledge is vital for understanding
more about the maintenance phase; the most costly phase in software develop-
ment (Boehm, 2002; Erlikh, 2000). To detect refactorings, the state-of-the-art
techniques (Dig et al., 2006; Tsantalis et al., 2013) typically search at the level of
commits. As a result, these techniques are also able to group commit messages
with their corresponding refactorings.

Commit messages are the description, in natural language, of the code-level
changes. To understand the nature of the change, recent studies have been using
natural language processing to process commit messages for multiple reasons,
such as classification of code changes (Hindle et al., 2008), change summariz-
ation (McBurney et al., 2017), change bug-proneness (Xia et al., 2016), and
developer’s rationale behind their coding decisions (Alkadhi et al., 2018). That
is, commit messages are a common way for researchers to study developer ra-
tionale behind different types of changes to the code. There are two primarily
challenges to using commit messages to understand refactorings: 1) the commit
message does not have to refer to the refactoring that took place at all, 2) de-
velopers have many ways of describing the same activity. For example, instead
of explicitly stating that they are refactoring, a developer may instead state
that they are performing code clean-up or simplifying a method. Developers
are inconsistent in the way they discuss refactorings in commit messages. This
makes it difficult to perform analysis on commit messages, since researchers
may find it challenging to determine whether a commit message discusses the

refactoring(s) being performed or not. Thus, it is hard to determine when the
commit message is discussing a refactoring at all and it is hard to determine
how a commit message is discussing the refactoring.

To cope with the above-mentioned challenges, the purpose of this study is to
augment our understanding of the development contexts that trigger refactoring
activities and enable future research to take development contexts into account
more effectively when studying refactorings. Thus, the advantages of analyz-
ing the textual description of the code change that was intended to describe
refactoring activities are three-fold: 1) it improves our ability to study commit
message content and relate this content to refactorings; a challenging task which
posed a significant hurdle in recent work on contextualizing rename refactorings
(Peruma et al., 2018, 2019b), 2) it gives us a stronger understanding of com-
mit message practices and could help us improve commit message generation by
making it clear how developers prefer to express their refactoring activities, 3) it
provides us with a way of relating common words and phrases used to describe
refactorings with one another. Typically frameworks like WordNet, which does
not recognize refactoring phrases and terminology, are used for this task. Our
dataset and methodology reduces the need to rely on frameworks which are not
trained for natural language found in software projects.

In this paper, we present a way to partially-automatically detect how de-
velopers document their refactorings in commit messages, and classify these into
categories that reflect the type of activity that refactoring was co-located with.
The goal of this work is to create a data set of terms and phrases, used by de-
velopers, to describe refactorings. Further, we group these words and phrases by
maintenance-type (e.g., bug fix, external, code smell) to obtain a fine-grained
and maintenance-type-specific dataset of terms and phrases. Recent studies
have shown the feasibility of extracting insights of software quality from de-
velopers inline documentation. For instance, mining developer’s comments has
unveiled how developers knowingly commit code that is either incomplete, tem-
porary, or faulty. Such phenomenon is known as Self-Admitted Technical Debt
(SATD) (Potdar & Shihab, 2014). Similarly, our previous study has intro-
duced Self-Affirmed Refactoring (SAR) (AlOmar et al., 2019a, 2020a), defined
as developer’s explicit documentation of refactoring operations intentionally in-
troduced during a code change.

To perform this analysis, we formulate the following research questions:

e RQ1. To what purposes developers refactor their code?

While previous surveys studied how developers apply refactorings in vary-
ing development contexts, none of them have measured the ubiquity of
these varying contexts in practice. Therefore, it is important to quantify
the distribution of refactoring activities performed in varying development
contexts to augment our understanding of refactoring in theory versus in
practice.

¢ RQ1.1 Do software developers perform different types of refactoring op-
erations on test code and production code between categories?

This question further explores the findings of the classification to see to
what extent developers refactor production files differently from test files.

¢ RQ2. What patterns do developers use to describe their refactoring activ-
ities?
Since there is no consensus on how to formally document refactoring
changes, we intend to extract (from commit messages) words and phrases
commonly used by developers in practice to document their refactorings.
Such information is useful from many perspectives. First, it allows to un-
derstand the rationale behind the applied refactorings, e.g., fixing code
smells or improving specific quality attributes. Moreover, it may reveal
what specific refactoring operations are being documented, and whether
developers explicitly mention it as part of their documentation. Such de-
tails are of crucial importance especially in modern code review the help
code reviewers understand the rationale behind such refactorings. Little
is known about how developers document refactoring as previous studies
mainly rely on the keyword refactor to annotate such documentation.

e RQ2.1 Do commits containing the label Refactor indicate more refactor-
ing activity than those without the label?

We revisit the hypothesis raised by (Murphy-Hill et al., 2008) about whether
developers use a specific pattern, i.e., “refactor” when describing their re-
factoring activities.

The dataset of classified refactorings along with textual patterns are avail-
able online (AlOmar, 2020 (last accessed October 20, 2020) for replication and
extension purposes.

The remainder of this paper is organized as follows. Section 2 discusses
the notion of refactoring related documentation or Self-Affirmed Refactoring.
Section 3 enumerates the previous related studies, and shows how we extracted
the categories used for the classification. In Section 4, we give the design of
our empirical study, mainly with regard to the construction of the dataset and
classification. Section 5 presents the study results while further discussing our
findings in Section 6. The next Section 7 reports threats to the validity of our
experiments, before concluding the paper in Section 8.

2. Self-Affirmed Refactoring

Commit messages are the description, in natural language, of the code-level
changes. In this paper, we want to automatically detect how refactoring is doc-
umented in the commit message, and classify it into categories that reflect the
type of activity that refactoring was co-located with. Earlier studies were rely-
ing on developer surveys for extracting such information. But multiple studies
have been detecting the performed refactoring operations, e.g., rename class,
move method etc. within committed changes to better understand how de-
velopers cope with bad design decisions, also known as design antipatterns, and

to extract their removal strategy through the selection of the appropriate set
of refactoring operations (Tsantalis et al., 2018). As the accuracy of refactor-
ing detectors has reached a relatively high rate, mined commits’ messages and
their issues descriptions constitute a rich space to understand how developers
describe, in natural language, their refactoring activities. Yet, such information
retrieval can be challenging since there are no common standards on how de-
velopers should be formally documenting their refactorings, besides inheriting
all the challenges related to natural language processing (Tan et al., 1999).

However, recent studies have shown the feasibility of extracting insights of
software quality from developer’s inline documentation. For instance, mining
developers’ comments has unveiled how developers knowingly commit code that
is either incomplete, temporary, or faulty. Such phenomenon is known as Self-
Admitted Technical Debt (SATD) (Potdar & Shihab, 2014). Similarly, our pre-
vious study has introduced Self-Affirmed Refactoring (SAR) (AlOmar et al.,
2019a, 2020a), defined as developers’ explicit documentation of refactoring op-
erations intentionally introduced during a code change.

As explained later in the related work section, existing studies locate refact-
oring documentation through the localization of the keyword “refactor”, being
the most intuitive and widely known. However, a recent study has also shown
that the “refactor” can also be misused, and such information becomes mislead-
ing (Zhang et al., 2018). Yet, such findings are mainly taken from interviews. In
this study, we leverage the existence of a large set of refactorings, extracted form
a wide variety of projects, to design an empirical study to classify the context in
which it was performed, for that, we start with the traditional categorization of
Swanson (Swanson, 1976), and we extend its “Perfective” category to cover what
has been known by existing studies as drivers to recommend refactorings. This
study also further explores how developers document refactorings, and extracts
a new terminology that was found to be consistently used in refactoring-related
commit messages.

3. Related Work

This paper focuses on mining commits to initially detect refactorings and
then to classify them. Thus, in this section, we are interested in exploring
refactoring documentation, along with the research on refactoring motivations.

3.1. Refactoring Documentation

A number of studies have focused recently on the identification and detec-
tion of refactoring activities during the software life-cycle. One of the common
approaches to identify refactoring activities is to analyze the commit messages
in versioned repositories. (Stroggylos & Spinellis, 2007) opted for searching
words stemming from the verb “refactor” such as “refactoring” or “refactored”
to identify refactoring-related commits. (Ratzinger, 2007; Ratzinger et al.,
2008) also used a similar keyword-based approach to detect refactoring activity
between a pair of program versions to identify whether a transformation con-
tains refactoring. The authors identified refactorings based on a set of keywords

Table 1: Existing works on refactoring identification.

Study Year Purpose Approach Source of Info. Ref. Patterns
(Stroggylos & Spinellis, 2007) 2007 Identify refactoring commits ~ Mining commit logs General commits 1 keyword
(Ratzinger et al., 2008; Ratzinger, 2007) 2007 & 2008 Identify refactoring commits Mining commit logs General commits 13 keywords
(Murphy-Hill et al., 2012) 2012 Identify refactoring commits ~ Ratzinger’s approach General commits 13 keywords
(Soares et al., 2013) 2013 Analyze refactoring activity ~ Ratz s approach General commits 13 keywords
: nalysis
(Kim et al., 2014) 2014 Identify refactoring commits Identifying refactoring branches ~Refactoring branch Top 10 keywords
Mining commit logs
(Zhang et al., 2018) 2018 Identify refactoring commits Mining commit logs General commits 22 keywords
(AlOmar et al., 2019a) 2019 Identify refactoring patterns Detecting refactorings Refactoring commits 87 keywords & phrases
Extracting commit messages

detected in commit messages, and focusing, in particular, on the following 13
terms in their search approach: refactor, restruct, clean, not used, unused, re-
format, import, remove, replace, split, reorg, rename, and move.

Later, (Murphy-Hill et al., 2012) replicated Ratzinger’s experiment in two
open source systems using Ratzinger’s 13 keywords. They conclude that commit
messages in version histories are unreliable indicators of refactoring activities.
This is due to the fact that developers do not consistently report/document
refactoring activities in the commit messages. In another study, (Soares et al.,
2013) compared and evaluated three approaches, namely, manual analysis, com-
mit message (Ratzinger et al.’s approach), and dynamic analysis (SafeRefactor
approach (Soares et al., 2009)) to analyze refactorings in open source repositor-
ies, in terms of behavioral preservation. The authors found, in their experiment,
that manual analysis achieves the best results in this comparative study and is
considered as the most reliable approach in detecting behavior-preserving trans-
formations.

In another study, (Kim et al., 2014) surveyed 328 professional software en-
gineers at Microsoft to investigate when and how they do refactoring. They first
identified refactoring branches and then asked developers about the keywords
that are usually used to mark refactoring events in change commit messages.
When surveyed, the developers mentioned several keywords to mark refactoring
activities. Kim et al. matched the top ten refactoring-related keywords iden-
tified from the survey (refactor, clean-up, rewrite, restructure, redesign, move,
extract, improve, split, reorganize, rename) against the commit messages to
identify refactoring commits from version histories. Using this approach, they
found 94.29% of commits do not have any of the keywords, and only 5.76% of
commits included refactoring-related keywords.

(Zhang et al., 2018) performed a preliminary investigation of Self-Admitted
Refactoring (SAR) in three open source systems. They first extracted 22 keywords
from a list of refactoring operations defined in the Fowler’s book (Fowler et al.,
1999) as a basis for SAR identification. After identifying candidate SARs, they
used Ref-Finder (Kim et al., 2010) to validate whether refactorings have been
applied. In their work, they used code smells to assess the impact of SAR on
the structural quality of the source code. Their main findings are the following
(1) SAR tends to enhance the software quality although there is a small per-
centage of SAR that have introduced code smells, and (2) the most frequent
code smells that are introduced or reduced depend highly on the nature of the

studied projects. They concluded that SAR is a signal that helps to locate re-
factoring events, but it does not guarantee the application of refactorings. We
summarize these state-of-the-art approaches in Table 1.

3.2. Refactoring Motivation

(Silva et al., 2016) investigate what motivates developers when applying
specific refactoring operations by surveying GitHub contributors of 124 soft-
ware projects. They observe that refactoring activities are mainly caused by
changes in the project requirements and much less by code smells. (Palomba
et al., 2017) verify the relationship between the application of refactoring op-
erations and different types of code changes (i.e., Fault Repairing Modification,
Feature Introduction Modification, and General Maintenance Modification) over
the change history of three open source systems. Their main findings are that
developers apply refactoring to: 1) improve comprehensibility and maintain-
ability when fixing bugs, 2) improve code cohesion when adding new features,
and 3) improve the comprehensibility when performing general maintenance
activities. On the other hand, (Kim et al., 2014) do not differentiate the mo-
tivations between different refactoring types. They surveyed 328 professional
software engineers at Microsoft to investigate when and how they do refactor-
ing. When surveyed, the developers cited the main benefits of refactoring to
be: improved readability (43%), improved maintainability (30%), improved ex-
tensibility (27%) and fewer bugs (27%). When asked what provokes them to
refactor, the main reason provided was poor readability (22%). Only one code
smell (i.e, code duplication) was mentioned (13%).

(Murphy-Hill et al., 2012) examine how programmers perform refactoring in
practice by monitoring their activity and recording all their refactorings. They
distinguished between high, medium and low-level refactorings. High-level re-
factorings tend to change code elements signatures without changing their im-
plementation e.g., Move Class/Method, Rename Package/Class. Medium-level
refactorings change both signatures and code blocks, e.g., Extract Method, In-
line Method. Low level refactorings only change code blocks, e.g., Fxtract Local
Variable, Rename Local Variable. Some of the key findings of this study are
that 1) most of the refactoring is floss, i.e., applied to reach other goals such
as adding new features or fixing bugs, 2) almost all the refactoring operations
are done manually by developers without the help of any tool, and 3) commit
messages in version histories are unreliable indicators of refactoring activity be-
cause developers tend to not explicitly state refactoring activities when writing
commit messages. It is due to this observation that, in this study, we do not rely
on commits messages to identify refactorings. Instead, we use them to identify
the motivation behind the refactoring.

(Moser et al., 2006) study the impact of refactoring on reusability. They
showed that refactoring increases the reusability of classes in an industrial, agile
environment. In a subsequent study, (Moser et al., 2007) question the effective-
ness of refactoring on increasing the productivity in agile environments. They
performed a comparative study of developers coding effort before and after re-
factoring their code. They measured the developer’s effort in terms of added

lines of code and time. Their findings show that not only does the refactored
system improve in terms of coupling and complexity, but also that the coding
effort was reduced and the difference is statistically significant.

(Szdke et al., 2014) conduct 5 large-scale industrial case studies on the applic-
ation of refactoring while fixing coding issues, they have shown that developers
tend to apply refactorings manually at the expense of a large time overhead.
(Szoke et al., 2017) extend their study by investigating whether the refactorings
applied when fixing issues did improve the system’s nonfunctional requirements
with regard to maintainability. They noticed that refactorings performed manu-
ally by developers do not significantly improve the system’s maintainability like
those generated using fully automated tools. They concluded that refactoring
cannot be cornered only in the context of design improvement.

(Tsantalis et al., 2013) manually inspect the source code for each detected
refactoring with a text diff tool to reveal the main drivers that motivated the
developers for the applied refactoring. Besides code smell resolution, they found
that introduction of extension points and the resolution of backward compatib-
ility issues are also reasons behind the application of a given refactoring type. In
another study, (Wang, 2009) generally focuses on the human and social factors
affecting the refactoring practice rather than on the technical motivations. He
interviewed 10 industrial developers and found a list of intrinsic (e.g., respons-
ibility of code authorship) and external (e.g., recognitions from others) factors
motivating refactoring activity.

Another study relevant to our work is by (Vassallo et al., 2019). They per-
formed an exploratory study on refactoring activities in 200 projects, by mining
their performed refactoring operations. Their findings show the need for better
understanding the rationale behind these operations, and so our study focuses on
contextualizing refactoring activities within typical software engineering activ-
ities and questions whether such difference in developers’ intentions would infer
different refactorings strategies. Such investigation has not been investigated
before in the literature. More recently, (Pantiuchina et al., 2020) present a
mining-based study to investigate why developers are performing refactoring in
the history of 150 open source systems. Particularly, they analyzed 551 pull re-
quests implemented refactoring operations and reported a refactoring taxonomy
that generalizes the ones existing in the literature. (Paixao et al., 2020) per-
form an empirical study on refactoring activities in code review in which they
captured Bug Fix and Feature refactoring categories. (AlOmar et al., 2020c)
studied how developers refactor their code to improve its reuse by analyzing
the impact of reusability refactorings on the state-of-the-art reusability metrics.
Figure 1 depicts how our classification clusters the existing refactoring taxonomy
reported in the literature (Moser et al., 2006, 2007; Tsantalis et al., 2013; Kim
et al., 2014, Silva et al., 2016; Palomba et al., 2017; Vassallo et al., 2019; AlOmar
et al., 2019b; Pantiuchina et al., 2020; Paixao et al., 2020; AlOmar et al., 2020c).
As can be seen, our classification covers these categories. Furthermore, previous
studies have shown that refactoring can be used outside of the design bozx, e.g.,
correction flaky tests, code naturalness, etc., therefore, our study is the first to
engage the automated classification of commit messages in order to cluster the

refactoring effort that has been performed in non-design circumstances.

All the above-mentioned studies have agreed on the existence of motivations
that go beyond the basic need for improving the system’s design. Refactoring
activities have been solicited in scenarios that have been coined by the previous
studies as follows: Functional, Bug Fix, Internal Quality Attribute, Code Smell
Resolution, and External Quality Attribute. Since these categories are the main
drivers for refactoring activities, we decided to cluster our mined refactoring
operations according to these groups.

Our proposal differs from commit classification-related studies, as their clas-
sification targeted general maintenance activities (perfective, adaptive) and was
not specific to commits containing messages describing refactoring activities.
In this study, we subdivide what would have been considered “perfective” in
previous studies, into three separate categories, namely, Internal Quality At-
tribute, External Quality Attribute and Code Smell Resolution. This division
is inherited from the analysis of previous papers whose detection of refactoring
opportunities rely on the optimization of high-level design principles, structural
metrics, and reduction of code smells. Thus, this is not a typical commit clas-
sification since refactoring related commit messages contain a strong overlap
in their terminology and so their classification is challenging. Moreover, as we
previously stated, existing studies in recommending refactoring are based on (i)
Internal Quality Attribute (ii) External Quality Attribute, and (iii) Code Smell
Resolution. The classification of commits according to these categories, will be
an empirical evidence of whether and to what extent these factors are being
used in practice. To perform the classification, we use existing classifiers (e.g.,
Random Forest, Naive Bayes Multinominal, etc) that have been used by several
studies (e.g., (Hindle et al., 2011; Kochhar et al., 2014; Levin & Yehudai, 2017;
Honel et al., 2019; AlOmar et al., 2020a)) in the context of commit classification
and challenge them using our defined set of classes. Although several studies
(Hattori & Lanza, 2008; Mauczka et al., 2012; Hindle et al., 2009; Amor et al.,
2006; Levin & Yehudai, 2017; Hindle et al., 2008; Mauczka et al., 2015; Yan
et al., 2016) have discussed how to automatically classify change messages into
Swanson’s general maintenance categories (i.e., Corrective, Adaptive, Perfect-
ive), refactoring, in general, has been classified as a sub-type of “Perfective” in
these maintenance categories. While we are motivated by the above-mentioned
studies, our work is still different from them since we apply the machine learning
technique to automatically classify commit messages into five main refactoring
motivations defined in this study, i.e., ‘Functional’, ‘Bug Fix’, ‘Internal Quality
Attribute’, ‘Code Smell Resolution’, and ‘External Quality Attribute’.

4. Empirical Study Setup

To answer our research questions defined in Section 1, we design a five-steps
approach as shown in Figure 2. Our approach consists of: (1) data collection,
(2) refactoring detection, (3) automatic refactoring classification, (4) unit test
files detection, and (5) refactoring documentation extraction.

‘uorjeArjouw Jurioloejoy :I 2In3drg

T e Wi

(0202) 1e30 ewioN
Aieinpou snosdu
Aaiqesna: anosduy Aaniqepes. onoadur
Anaysuapeo onosdu
‘ooueuios0d anoidut

(6702) 1e30 offessen uopoensge anoidur

Auigeureyurew anosdu
Auigepuersiopun anoiduy 2521 2po> 21804
oBesn 1y Ayduis
Aunqeis onoiduy
Aiiqepeas anouduir
200z 9002) e 3950W, Aaiaisuoixe onoidury
‘Saucusoied sNosduwt

(6707) Te3a ojessen

0207) e oexied 2007) e 3950W

uoneaydnp 3po> 2onpoy (0200) e 0 ewpmAuea

Bundnos anosdur

aumyess ppy. Bnaxs
Aunqeureiurew anoidwy uopsodwiod asn.
(0207) 1€ 3 euipNRUEd Anaer
auop snows e srasdun
(G362) e waorea jous 3pod anousou (502 e e equorea :
- wisiydiowAjod ndu aaousy
f—— Bnax o [re——
asn
i Al (£102) 10 30 seuesy. asod .
. 3o stewes ssep ssoduooa K ;
o0 e A &= e === Er00) e siewies Groa e e
|- uoneiodo suise sonponur u——— < pouimw AaaRedwo> prewpes
meo; ooy o poTeadS Bnasas Bnaxs Gie> u..n_..sﬁn..._u <

[1 ﬂ T

uoneARow Bupiopesey|

10

‘,‘I Phase 1 & 2: Data Collection & Refactoring Detection

2 > O o @

Commit log,
Detected

H

Engineered open- source Clone repositories Detect refactorings refactorings
Java projects selection (711,495)
(800)

Phase 3: Commits Classification |
N \
Commit log, i . . E@ . Iﬁrl
Detected
refactorings Subset of commit messages Data annotation Text pre-processing Training/Test split

H e & <«

Model tuning & evaluation Model training Feature extraction

K Opﬁm?e& model Model Constructy

E

Remaining set of commit

- @

messages Text pre-processing Optimized model Predictions
Model Classification
Phase 4: Unit Test File Detection I "" :
i ‘ % ‘ % * % * Detected
test files
Extract refactored Parse extracted file Eliminate Java files Check if files contained
Java file (Java parser) contained syntax errors unit test methods

(starts / ends with "test"

Phase 5: Refactoring Patterns Extraction | T

B = & = > = > B

Extract commit messages Collect SAR patterns Use keyword-based approach Read additional commits Identify potentially
(111,884) (87) (59,745) (21,193) candidate SAR patterns |

Phase 6: Manual Analysis | ''
=8
{5
= - EIQ = 22
Select commit messages Analyze code changes Analyze refactorings Case studies analysis

Figure 2: Empirical study design overview.

11

4.1. Phase 1: Data Collection

Our first step consists of randomly selecting 800 projects, which were cur-
ated open-source Java projects hosted on GitHub. These curated projects were
selected from a dataset made available by (Munaiah et al., 2017), while verifying
that they were Java-based, the only language supported by Refactoring Miner
(Tsantalis et al., 2018). The authors of this dataset selected “well-engineered
software projects” based on the projects’ use of software engineering best prac-
tices such as documentation, testing, and project management. Additionally,
these projects are non-forked (i.e., not cloned from other projects) as forked
projects may impact our conclusions by introducing duplicate code and data.
We cloned the 800 selected projects having a total of 748,001 commits, and a
total of 711,495 refactoring operations from 111,884 refactoring commits. Ad-
ditionally, these projects contain on average 935 commits and 19 developers.
An overview of the project’s statistics is provided in Table 2. This table shows
the total number of Java projects used in this study (800), the total number
of commits across all projects combined (748,001), the total number of refact-
oring commits and the associated refactoring operations respectively, 111,884
and 711,495. The table also details the number of refactoring operations per
code element at different levels of granularity, including method, attribute, class,
variable, parameter, package, and interface, ordered from highest down to the
lowest. Additionally, the standard deviation reported in the table shows that
these projects are very diverse.

Table 2: Projects overview.

Item Count Standard Deviation
Total of projects 800 N/A
Total commits 748,001 1233.69
Refactoring commits 111,884 195.48
Refactoring operations 711,495 2402.12
Considered Projects - Refactored Code Elements

Code Element 7## of Refactorings Standard Deviation
Method 222,785 415.55
Attribute 201,791 1854.35
Class 121,625 273.24
Variable 115,717 383.91
Parameter 48,054 127.48
Package 2380 8.25
Interface 1742 6.01

12

4.2. Phase 2: Refactoring Detection

To extract the entire refactoring history of each project, we used the Re-
factoring Miner! tool introduced by (Tsantalis et al., 2018). We decided to use
Refactoring Miner as it has shown promising results in detecting refactorings
compared to the state-of-the-art available tools (Tsantalis et al., 2018) and is
suitable for a study that requires a high degree of automation since it can be
used through its external API. The Eclipse plug-in refactoring detection tools
(e.g., Ref-Finder (Kim et al., 2010)), in contrast, require user interaction to se-
lect projects as inputs and trigger the refactoring detection, which is impractical
since multiple releases of the same project have to be imported to Eclipse to
identify the refactoring history.

4.8. Phase 3: Commits Classification

After all refactoring operations are collected, we need to classify them. As
part of the development workflow, developers associate a message with each com-
mit they make to the project repository. These commit messages are usually
written using natural language, and generally convey some information about
the commit they represent. In this study, we aim to determine the type of refact-
oring activity performed by the developer based on the message associated with
a refactoring-based commit. We started by collecting the different motivations
that drive developers to refactor their code as reported in the literature (Kim
et al., 2014; AlDallal & Abdin, 2017; Fowler et al., 1999; Lanza & Marinescu,
2007; Silva et al., 2016; Tsantalis et al., 2013; Palomba et al., 2017; Murphy-
Hill et al., 2012). Then, we search for common categories among the reported
motivations. The following step involves identifying categories clustering func-
tional requirements, quality attributes and software issues under the identified
categories. This process resulted in five different categories. Hence, we aim to
classify the refactoring commit, into one of five main categories: ‘Functional’,
‘Bug Fix’, ‘Internal Quality Attribute’, ‘Code Smell Resolution’, and ‘External
Quality Attribute’. Table 3 provides a description of each category.

In this supervised multi-class classification problem, we followed a multi-
staged approach to build our model for commit messages classification. The
first stage consists of the model construction. In the second stage, we utilized
the built model to classify the entire dataset of commit messages. An overview
of our methodology is depicted in Figure 2. In the following subsections, we
describe in detail the different steps in each stage.

Model Construction

In the first stage of the experiment, our goal is to build a model from a corpus
real world documented refactorings (i.e., commit message) to be utilized in the
second stage to classify commit messages. The following subsections detail the
different steps in the model construction phase.

'https://github.com/tsantalis/RefactoringMiner

13

https://github.com/tsantalis/RefactoringMiner

Table 3: Classification categories.

Category Description
Functional Feature implementation, modification or removal
Bug Fix Tagging, debugging, and application of bug fixes

Restructuring and repackaging the system’s code elements

to improve its internal design such as coupling and cohesion
Removal of design defects that might violate the fundamentals
Code Smell Resolution of software design principles and decrease code quality such

as duplicated code and long method

Property or feature that indicates the effectiveness of a system
such as testability, understandability, and readability

Internal QA

External QA

4.8.1. Data Annotation

In order to construct a machine learning model, a gold set of labeled data
is needed to train and test the model. To prepare this gold set, a manual
annotation (i.e., labeling) of commit messages needs to be performed by sub-
ject experts. To this end, we annotated 1,702 commit messages. This quantity
roughly equates to a sample size with a confidence level of 95% and a confidence
interval of 2. Confidence level and interval are utilized to obtain an accurate and
statistically significant sample size from a population (Brownlee, 2018). The au-
thors of this paper performed the annotation of the commit messages. Provided
to each author was a random set of commit messages along with details defining
the annotation labels. Each annotator had to label each provided commit mes-
sage with a label of either ‘Functional’, ‘Bug Fix’, ‘Internal Quality Attribute’,
‘Code Smell Resolution’, and ‘External Quality Attribute’. To mitigate bias
in the annotation process, the annotated commit messages were peer-reviewed
by the same group. All decisions made during the review had to be unanim-
ous; discordant commit messages were discarded and replaced. In total, we
annotated 348 commit messages as ‘Functional’, ‘Bug Fix’, ‘Internal Quality
Attribute’, and ‘Code Smell Resolution’, while 310 messages were labeled as
‘External Quality Attribute’.

4.3.2. Text Pre-Processing

To better support the model in correctly classifying commit messages, we
performed a series of text normalization activities. Normalization is a process of
transforming non-standard words into a standard and convenient format (Jur-
afsky & Martin, 2019). Similar to (Kochhar et al., 2014; Le et al., 2015), the
activities involved in our pre-processing stage included: (1) expansion of word
contractions (e.g., ‘I'm’ — ‘I am’), (2) removal of URLS, single-character words,
numbers, punctuation and non-alphabet characters, stop words, and (3) redu-
cing each word to its lemma. The lemmatization process either replaces the suf-
fix of a word with a different one or removes the suffix of a word to get the basic
word form (lemma) (Lane et al., 2019). In our work, the lemmatization pro-
cess involves sentence separation, part-of-speech identification, and generating
dictionary form. We split the commit messages into sentences, since input text
could constitute a long chunk of text. The part-of-speech identification helps in
filtering words used as features that aid in key-phrase extraction. Lastly, since

14

the word could have multiple dictionary forms, only the most probable form is
generated. We opted to use lemmatization over stemming, as the lemma of a
word is a valid English word (Lane et al., 2019). In relation to stopwords, we
used the default set of stopwords supplied by NLTK (Bird, 2002) and also ad-
ded our own set of custom stop words. To derive the set of custom stop words,
we generated and manually analyzed the set of frequently occurring words in
our corpus. Custom stop words include ‘git’, ‘code’, ‘refactor’, ‘svn’, ‘gitsvnid’,
‘signedoftby’, ‘reviewedon’, ‘testedby’; ‘us’, id’, ‘changeid’, ‘lot’, ‘small’, ‘thing’,
‘way’. Additionally, for more effective pre-processing, we tokenized each commit
message. Tokenization is the process of dividing the text into its constituent set
of words.

4.8.3. Training/Test Split

To gauge the accuracy of a machine learning model, the implemented model
must be evaluated on a never-seen-before set of observations with known labels.
To construct this set of observations, the set of annotated commit messages were
divided into two sub-datasets - a training set and a test set. The training set
was utilized to construct the model while the test set was utilized to evaluate
the classification ability of the model. For our experiment, we performed a
shuffled stratified split of the annotated dataset. Our test dataset contained
25% of the annotated commit messages, while the training dataset contained the
remaining 75% of annotated commit messages. This split results in the training
dataset containing a total of 1,276 commit messages, which breaks down to 246
‘Functional’, 271 ‘BugFix’, 255 ‘Internal’, 276 ‘CodeSmell’, and 228 ‘External’
labeled commit messages. The stratification was performed based on the class
(i.e., annotated label) of the commit messages. The use of a random stratified
split ensures a better representation of the different types (i.e., labels) of commit
messages and helps reduce the variability within the strata (Singh & Mangat,
2013).

4.3.4. Feature Extraction

In order to create a model, we need to provide the classifier with a set of
properties or features that are associated with the observations (i.e., commit
messages) in our dataset. However, not all features associated with each obser-
vation will be useful in improving the prediction abilities of the model. Hence,
a feature engineering task is required to determine the set of optimum features
(Zheng & Casari, 2018). In our study, we constructed our model using the text in
the commit message. Hence, the feature for this model is limited to the commit
message. We utilized Term Frequency-Inverse Document Frequency (TF-IDF)
(Manning et al., 2008), commonly used in the literature (Lin et al., 2013; Le
et al., 2015), to convert the textual data into a vector space model that can
be passed into the classifier. In our experiments, we evaluate the accuracy of
the model by constructing the TF-IDF vectors using different types of N-Grams
and feature sizes. The N-Gram technique is a set of n-word that occurs in a
text set and could be used as a feature to represent that text (Kowsari et al.,
2019). In general, the N-Gram term has more semantic than an isolated word.

15

Some of the keywords (e.g., “extract”) do not provide much information when
used on its own. However, when collecting N-Gram from commit message (e.g.,
Refactor createOrUpdate method in MongoChannelStore to extract methods and
make code more readable), the keyword “extract” clearly indicates that this re-
factoring commit belongs to Extract Method refactoring. In our classification,
we use N-Grams since it is very common to enhance the performance of text
classification (Tan et al., 2002). Using TF-IDF, we can determine words that
are common and rare across the documents (i.e., commit messages) in our data-
set; the model utilizes these words. In other words, The value for each N-Gram
is proportional to its TF score multiplied by its IDF score. Thus, each prepro-
cessed word in the commit message is assigned a value which is the weight of
the word computed using this weighting scheme. TF-IDF gives greater weight
(e.g., value) to words which occur frequently in fewer documents rather than
words which occur frequently in many documents.

4.3.5. Model Training

For our study, we evaluated the accuracy of six machine learning classifi-
ers: Random Forest, Logistic Regression, Multinomial Naive Bayes, K-Nearest
Neighbors, Support Vector Classification (C-Support Vector Classification based
on LIBSVM (Deng et al., 2012; Chang & Lin, 2011)), and Decision Tree (CART
(Breiman, 2017)). We selected these classifiers since they are widely adopted
in several classification problems in software engineering, as reported in Sec-
tion 3. It is important to note that the library containing the classification
algorithms are capable of multiclass classification. As per the Python’s SKlearn
documentation, Random Forest, K-Nearest Neighbors, Logistic Regression, and
Multinomial Naive Bayes are inherently multiclass (SKlearn, 2007a), while SVC
utilizes a one-vs-one approach to handle multiclass (SKlearn, 2007b). Moreover,
to ensure consistency, we ran each classifier with the same set of test and training
data each time we updated the input features.

4.8.6. Model Tuning & Evaluation

The purpose of this stage in the model construction process is to obtain
the optimal set of classifier parameters that provide the highest performance;
in other words, the objective of this task is to tune the hyperparameters. For
example, for the K-Nearest Neighbors classifier, we tuned the number of neigh-
bors hyperparameter (i.e., ‘k’) by evaluating the accuracy of the model as we
increased the value of ‘k’ from 1 to 50 in increments of one. We tuned at least
one hyperparameter associated with each classifier in our list. For numeric-
based hyperparameters, we determined the bounds/range for testing through
continuously running the classifier with a different range of values to identify
the appropriate minimum and maximum value.

We performed our hyperparameter tuning on the training dataset using a
combination of 10-fold cross-validation and an exhaustive grid search (Dangeti,
2017). Our test dataset did not take part in the training process, which provides
a more realistic model evaluation. This approach is also known to prevent
overfitting that leads to incorrect conclusions. Grid search utilizes a brute force

16

technique to evaluate all combinations of hyperparameters to obtain the best
performance. It is used to find the optimal hyperparameters of a model which
results in the most accurate predictions. Since our classification is multiclass, we
relied on the Micro-F1 score. The combination of hyperparameters that resulted
in the highest Micro-F1 score was selected to construct the model. We provide,
in Table 4, the optimal hyperparameter values for the classification algorithms
in our study.

Table 4: Optimal parameter values for the classification algorithms.

Algorithm Parameter Value

max_ depth 78

n_estimators 500
Random Forest ey 0

criterion gini
bootstrap false
c 1.99
Support Vector Classification gamma scale
kernel linear
. criterion gini
Decision Tree max_depth 75
penalty 11
Logistic Regression solver liblinear
c 1.0
Multinomial Naive Bayes alpha 2.63

n_neighbors 69

K-Nearest Neighbors ! e
weights uniform

4.8.7. Optimized Model

In this stage, the optimized model produced by the training phase is utilized
to predict the labels of the test dataset. Based on the predictions, we measure
the precision and recall for each label as well as the overall Fl-score of the
model. In Section 5, we detail our classification results.

Model Classification

In this stage of our experiment, we utilized the optimized model that we
created in the prior stage. However, to be consistent, before classifying each
commit message, we performed the same text pre-processing activities, as in the
prior stage, on the commit message. The result of this stage is the classification
of each refactoring commit into one of the five categories. The output of this
classification process was utilized in our experiments in order to answer our
research questions.

4.4. Phase 4: Unit Test File Detection

As part of our study, we distinguish between refactorings applied to pro-
duction and unit test files and perform comparisons against both production-
file-based refactorings versus test-file-based refactorings. To identify all test
files that were refactored, we followed the same detection approach as (Peruma
et al., 2019a). In this approach, following JUnit’s file naming standards?, we

2https://junit.org/junit4/faq.html#running_15

17

https://junit.org/junit4/faq.html#running_15

first extracted all refactored Java source files where the filename either starts or
ends with the word “test”. Next, we utilized JavaParser® to parse each extrac-
ted file. By parsing the files, we were able to eliminate Java files that contained
syntax errors and were able to detect if the file contained JUnit-based unit test
methods accurately, thereby cutting down on false positives. Finally, to ensure
that the files were indeed unit test files, we checked if the files contained unit
test methods. As per JUnit specifications, a test method should have a public
access modifier, and either has an annotation called @Test (JUnit 4), or the
method name should start with “test” (JUnit 3).

4.5. Phase 5: Refactoring Patterns Extraction

To identify self-affirmed refactoring patterns, we perform manual analysis
similar to our previous work (AlOmar et al., 2019a). Since commit messages
are written in natural language and we need to understand how developers doc-
ument their refactoring activities, we manually analyzed commit messages by
reading through each message to identify self-affirmed refactorings. We then ex-
tracted these commit comments to specific patterns (i.e., a keyword or phrase).
To avoid redundancy of any kind of patterns, we only considered one phrase if
we found different forms of patterns that have the same meaning. For example,
if we find patterns such as “simplifying the code”, “code simplification”, and
“simplify code”, we add only one of these similar phrases in the list of patterns.
This enables having a list of the most insightful and unique patterns. It also
helps in making more concise patterns that are usable for readers. We also
analyzed the top 100 features, distilled by the classifier, for each category.

The manual analysis process took approximately 20 days in total. In the
first two weeks, the authors had regular meetings to discuss top features, ex-
tracted from each category, to understand how each class was represented by
its corresponding set of keywords, along with extracting any patterns that are
most likely to be descriptive to refactoring, besides being another verification
level of the classification accuracy. Moreover, during these meetings, the ex-
traction of textual patterns from commit messages was also performed by the
authors. Due to the subjective nature of this process, we opted to report as
many keywords as possible for better coverage. When reporting keywords from
top features, we kept the majority of keywords, for each category. keywords
that were removed were either proper names of code elements (method names,
identifiers, etc.), or languages and frameworks. For the identification of patterns
from commit messages, the authors kept any keyword that can be either tightly
or loosely coupled to refactoring. Such decision mitigates the selection bias, at
the expenses of reporting keywords that may or may not be relevant to refactor-
ing documentation. During the last week, two authors have finished analyzing
the remaining commit messages. This step resulted in analyzing 59,745 com-
mit messages. Then, we iterated over the set again while excluding the terms
identified in our previous work, to identify additional self-affirmed refactoring

Shttps://javaparser.org/

18

https://javaparser.org/

patterns. We manually read through 21,193 commit messages. Our in-depth
inspection resulted in a list of 513 potential self-affirmed refactoring candidates,
identified across the considered projects, as illustrated later in Tables 8 and 9.

4.6. Phase 6: Manual Analysis

To get a more qualitative sense of the classification results, we created five
case studies that demonstrate GitHub developers’ intentions when refactoring
source code. Case study is one of the empirical methods used for studying phe-
nomena in a real-life context (Wohlin et al., 2012). In our study, we performed
a combination of manual analysis and quantitative analysis using custom-built
scripts. For each case study, we provide the commit message and its corres-
ponding refactoring operations detected by Refactoring Miner. We elaborate in
detail these case studies in Section 5.2, where we report on our results.

5. Experimental Results

This section reports and discusses our experimental results and aims to an-
swer the research questions in Section 1.

Replication package. We provide our comprehensive experiments package
available in (AlOmar, 2020 (last accessed October 20, 2020) to further replicate
and extend our study. The package includes the selected Java projects, the
detailed refactoring and non-refactoring commits and documentation, manual
commits classification, the automatic commits classification, and the JUnit file
detection.

5.1. RQ1: To what purposes developers refactor their code?

To answer this research question, we present the refactoring commit mes-
sages classification results explained in Subsection 4.3. This section details the
classification of 111,884 commit messages containing 711,495 refactoring oper-
ations. The complete set of scores for all the classifiers including the Precision,
Recall, and F-measure scores per class for each machine learning classifier is
provided in Table 5. The best performing model was used to classify the test
dataset. Based on our findings, we observed that Random Forest achieved
the best F1 score: 87% which is higher than its competitors. Random Forest
belongs to the family of ensemble learning machines, and has typically yielded
superior predictive performance mainly due to the fact that it aggregates several
learners. Hence, we utilized this machine learning algorithm (and its optimal set
of hyperparameters) as the optimum model for our study. In order to compare
classification algorithms performance, we use the McNemar test (Dietterich,
1998). We compare the performance of Random Forest against the other five
classifiers. As shown in Table 6, the McNemar’s test results show that there are
statistically significant differences in the performance of the classifiers except
for the classifier Support Vector Classification in which the difference is not
statistically significant.

19

Table 5: Detailed classification metrics (Precision, Recall, and F-measure) of each classifier.

Random Forest Support Vector Classification Decision Tree ‘
Category Precision Recall F1 Category Precision Recall F1 | Category Precision Recall F1
Bug Fix 0.83 0.79 0.81 | Bug Fix 0.75 0.78 0.77 | Bug Fix 0.77 0.80 0.78
Code Smell 0.93 0.95 0.94 | Code Smell 0.93 0.94 0.93 | Code Smell 0.89 0.91 0.90
External QA 0.85 0.91 0.88 | External QA 0.92 0.89 0.90 | External QA 0.77 0.90 0.83
Functional 0.81 0.91 0.86 | Functional 0.77 0.88 0.82 | Functional 0.92 0.83 0.87
Internal QA 0.95 0.81 0.87 | Internal QA 0.95 0.84 0.89 | Internal QA 0.91 0.80 0.85
Average F1 0.87 0.87 0.87 | Average F1 0.87 0.86 0.86 | Average F1 0.85 0.85 0.85

Logistic Regression Multinomial Naive Bayes K-Nearest Neighbors \
Category Precision Recall F1 Category Precision Recall F1 Category Precision Recall F1
Bug Fix 0.66 0.70 0.68 | Bug Fix 0.63 0.77 0.69 | Bug Fix 0.62 0.71 0.66
Code Smell 0.89 0.94 0.91 | Code Smell 0.82 0.94 0.87 | Code Smell 0.76 0.93 0.84
External QA 0.88 0.88 0.88 | External QA 0.97 0.71 0.82 | External QA 0.85 0.75 0.79
Functional 0.77 0.87 0.82 | Functional 0.66 0.83 0.74 | Functional 0.68 0.73 0.71
Internal QA 0.96 0.78 0.86 | Internal QA 0.99 0.67 0.80 | Internal QA 0.97 0.71 0.82
Average F1 0.83 0.83 0.83 | Average F1 0.81 0.78 0.78 | Average F1 0.78 0.77 0.76

Table 6: McNemar’s test results.

’ Random Forest ‘

Classifier p-value
Support Vector Classification 0.1
Decision Tree 0.04
Logistic Regression 0.02
Multinomial Naive Bayes 0.01
K-Nearest Neighbors 0.01

Figure 3 shows the categorization of commits, from all projects combined.
We observe that all of the categories had almost a uniform distribution of refact-
oring classes with low variability. For instance, Bug Fix, Functional, Internal
Quality Attribute, External Quality Attribute, and Code Smell Resolution had
commit message distribution percentages of 24.3%, 22.3%, 20.1%, 17.5%, and
15.9%, respectively.

The first observation that we can draw from these findings is that developers
do not solely refactor their code to fix code smells. They instead refactor the
code for multiple purposes. Our manual analysis show that developers tend
to make design-improvement decisions that include re-modularizing packages
by moving classes, reducing class-level coupling, increasing cohesion by moving
methods, and renaming elements to increase naming quality in the refactored
design. Developers also tend to split classes and extract methods for: 1) sep-
aration of concerns, 2) helping in easily adding new features, 3) reducing bug
propagation, and 4) improving the system’s non-functional attributes such as
extensibility and maintainability

Figure 4 depicts the distribution of refactoring commits for all production
and test files for each refactoring motivation. As can be seen, developers tend to
refactor these two types of source files for several refactoring intentions, and they
care about refactoring the logic of the application and refactoring the test code
that verifies if the application works as expected. Although developers usually
handle production and test code differently, the similarity of the patterns shows
that they refactor these source files for the same reasons with unnoticeable

20

Functional
22.3%

Internal QA
20.1%

Figure 3: Percentage of classified commits per category in all projects combined.

differences.

Production code. Concerning refactorings applied in the production files,
developers perform refactoring for several motivations. For the Bug Fix cat-
egory, an interpretation for this comes from the nature of the debugging process
that includes the disambiguation of identifier naming that may not reflect the
appropriate code semantics or that may be infected with lexicon bad smells
(i.e., linguistic anti-patterns (Abebe et al., 2011; Arnaoudova et al., 2013)).
Another debugging practice would be the separation of concerns, which helps
in reducing the core complexity of a larger module and reduces its proneness
to errors (Tsantalis & Chatzigeorgiou, 2011). Regarding the Internal Qual-
ity Attributes category, developers move code elements for design-level changes
(Stroggylos & Spinellis, 2007; Alshayeb, 2009; Bavota et al., 2015; Mkaouer
et al., 2015), e.g., developers tend to re-modularize classes to make packages
more cohesive, and extract methods to reduce coupling between classes. As for
the External Quality Attributes category, developers often optimize the code to
improve the non-functional quality attributes such as readability, understandab-
ility, and maintainability of the production files. For the Code Smell Resolution
category, developers eliminate any bad practices and adhere to object-oriented
design principles. Finally, for the Functional category, developers implement a
new feature or modify the existing ones.

Test code. With regards to test files, developers perform refactoring to
improve the design of the code. An example can be shown by renaming a given
code element such as a class, a package or an attribute. Finding better names
for code identifiers serves the purpose of increasing the software’s comprehens-
ibility. Developers explicitly mention the use of the renaming operations for the
purpose of disambiguation the redundancy of methods names and enhancing
their usability. Another activity to refactor test files could be moving methods,

21

Functional
23.1%

Functional
22.7%

Internal QA
19.0%

Internal QA
19.4%

(a) Production file (b) Test file

Figure 4: Percentage of classified commits per category in production and test files.

or pushing code elements across hierarchies, e.g., pushing up attributes. Each
of these activities are performed to support several refactoring motivations.

Summary. Our study has shown that fixing code smells is not the main
driver for developers to refactor their code bases. Indeed, the percentage
of commits belonging to this category account for only 15.9 % of the
overall classified refactoring commits, making this class the least among
all other categories. Bug Fix is found to be leading with a percentage of
24.3%, but, the sum of the design-related categories, namely Code Smell,
Internal Quality Attribute, and External Quality Attribute, represent the
majority with a 53.5%. As explicitly mentioned by the developers in their
commits messages, refactoring is solicited for a wide variety of reasons,
going beyond its traditional definition, such as reducing the software’s
proneness to bugs, easing the addition of functionality, resolving lexical
ambiguity, enforcing code styling, and improving the design’s testability
and reusability.

5.2. Case Studies

This subsection reveals more details with respect to our classified commits.
As we validate our classification results, we have selected an example from each
category. For each example, we checkout the corresponding commit to obtain
the source code, then two authors manually analyze the code changes. The
purpose is not to verify the consistency between the commit message and its
corresponding changes, but to capture the context in which refactorings were
applied. In each analyzed commit, we report its class, its message, the distri-

22

bution of its corresponding refactoring, along with our understanding of their
usage context.

5.2.1. Case Study 1. Refactoring to improve internal quality attributes

H ops4j / org.ops4j.pax.runner @Watch~ 78 Yestar 46 YFork 40
<> Code Pull requests 1 Projects 0 Security Insights
| am doing a massive refactoring, to make the structure a bit more un... Browse files
.derstandable. Need to commit to continue this.
git-svn-id: https://scm.ops4j.org/repos/opsdj/projects/pax/runner@4653 9b982a3c-3ae5-0310-adbc-d9a3335569bd
P master © runner-1.9.0 ... runner-1.6.0
niclas@hedhman.org committed on Oct 18, 2006 1 parent 6cd76f4 commit a92dc422838cb22bb68be36100d77154a2bf558d

Figure 5: Commit message stating the restructuring of code to improve its structure.

8.70%

E Move & Rename Class
O Move Source Folder
O Change Package

81.16% O Move Class

Figure 6: Distribution of refactoring operations.

This case study aims to demonstrate one of the five refactoring motivations
reported in this study. The commit message mainly discussed two refactoring
practices: (1) performing large refactorings, and (2) optimizing the structure of
the codebase. It is apparent from this commit that the main intention behind
refactoring the code is to improve the design. Specifically, Refactoring Miner
detected 69 refactoring operations associated with this commit message. We
observe there is consistency between what is documented in the commit message
and the actual size of refactoring operations.

Closer inspection of the nature and type of the 69 refactorings and the cor-
responding source code shows that the GitHub commit author massively op-

23

timized the package structure within existing modularizations. Particularly, as
Figure 6 shows, the developer performed four refactoring types, namely, Move
Class, Change Package, Move Source Folder, and Move and Rename Class. A
percentage of 80.16% of these refactorings were Move Class refactorings, 8.70%
were Change Package, 7.25% were Move Source Folder, and 2.90% were com-
posite refactorings (Move and Rename Class). As pointed out in Refactoring
Miner documentation?, Change Package refactoring involves several package-
level refactorings (i.e., Rename, Move, Split, and Merge packages).

We observe that the developer is optimizing the design by performing repack-
aging, i.e., extracting packages and moving the classes between these packages,
merging packages that have classes strongly related to each other, and renaming
packages to reflect the actual behavior of the package. The present observations
are significant in at least two major respects: (1) improving the quality of pack-
ages structure when optimizing intra-package (i.e., cohesion) and inter-package
(i.e., coupling) dependencies and minimizing package cycles and (2) avoiding in-
creasing the size of the large packages and/or merging packages into larger ones.
Developer intention to distribute classes over packages, however, might depend
on other design factors than package cohesion and coupling. This remodular-
ization activity helps to identify packages containing classes poorly related to
each other.

In order to confirm the main refactoring intention when performing this
refactoring, we emailed the GitHub contributor and asked about the main mo-
tivation behind performing this massive refactorings in the commit message
(Figure 5). The GitHub contributor confirmed that the intention was to im-
prove the design and this motivation is best illustrated in the following response
about the commit we examined:

“there are a few reasons for large refactorings: (1) the codebase is
becoming increasingly difficult to evolve. Sometimes relatively small
conceptual changes can make a huge difference, but requires a lot of
changes in many places.” and “(2) analysis of codebase dependencies,
call sequences and so on reveal that the codebase is a mess and needs
to be fixed to avoid current or future bugs.”

The most striking observation to emerge from the response was that as a
program evolves in size it is vital to design it by splitting it into modules, so that
developer does not need to understand all of it to make a small modification.
Generally, refactoring to improve the design at different levels of granularity
is crucial. This case study sheds light on the importance of refactoring at
package-level of granularity and how it plays a crucial role in the quality and
maintainability of the software. In future investigations, it might be possible
to extend this work by learning from existing remodularization process and
then recommending the right package for a given class taking into account the
design quality (e.g., coupling, cohesion, and complexity). Future studies on

“https://github.com/tsantalis/RefactoringMiner

24

https://github.com/tsantalis/RefactoringMiner

remodularization topic can develop refactoring tool which can refactor software
systems at different levels of granularity.

5.2.2. Case Study 2. Refactoring to remove code smells

H reficio / p2-maven-plugin OWatch~ 27 Kstar 195 | YFork 78
<> Code Issues 43 Pull requests 5 Projects 0 [EE Wiki) Security |ili Insights
Mega refactoring. Artifacts' resolver and bundler have been decoupled... Browse files

.. from the main plugin Mojo...

Improved style and code quality.
Removed duplicated code.

P master O v13.0 .. vi.10

’ tombujok committed on Dec 1, 2013 1 parent 3864429 commit 950475ef3c2c55fa51075927d41757d52942e251

Figure 7: Commit message stating the removal of duplicate code.

[Change Package

O Extract Method

O Extract Variable

[0 Rename Variable

E Move Class

Ed Move & Rename Class
O Extract Class

O Move Method

E Move Attribute

O Rename Method

10.54%

Figure 8: Distribution of refactoring operations.

This case study illustrates another developer’s perception of refactoring
which is mainly about code smell resolution. Figure 7 shows that the developer
performed large-scale refactoring to eliminate duplicated code. Generally, code
duplication belongs to the “Dispensable” code smell category, i.e., code frag-
ments that are unneeded and whose absence would make the code cleaner and
more efficient.

Figure 8 depicts the 38 refactoring operations performed in which the de-
veloper removed duplicated code. The developer performed 10 different types
of refactorings associated with the commit message shown in Figure 7: Rename

25

Method, Move Attribute, Move Method, Extract Class, Move and Rename Class,
Mowe Class, Rename Variable, Extract Variable, Extract Method, and Change
Package.

From the pie chart, it is clear that the majority of refactorings performed
were Rename Method and Mowve Attribute with 34.21% and 21.05% respect-
ively, followed by Move Method with 13.16% and Extract Class refactorings
with 10.54%. Nearly 5% were Move Class and Move and Rename Class refact-
orings and only a small percentage of refactoring commits were Change Package,
Ezxtract Method, Extract Variable, and Rename Variable.

On further examination of the source code and the corresponding refactor-
ings detected by the tool, we notice that there are a variety of cases in which
the code fragments are considered duplicate. One case is when the same code
structure is found in more than one place in the same class, and the other one is
when the same code expression is written in two different and unrelated classes.
The developer treated the former case by using Fxtract Method refactoring fol-
lowed by the necessarily naming and moving operations and then invoked the
code from both places. As for the latter case, the developer solved it by using
Extract Class refactoring and the corresponding renaming and moving opera-
tions for the class and/or attribute that maintained the common functionalities.
The developer also performed Change Package refactorings when removing code
duplication as a complementary step of refactoring, which could indicate mo-
tivations outside of those described in the commit message.

It appears to us that composite refactorings have been performed for resolv-
ing this code smell. These activities help eliminate code duplication since mer-
ging duplicate code simplifies the design of the code. Additionally, these activ-
ities could help improving many code metrics such as the lines of code (LOC),
the cyclomatic complexity (CC), and coupling between objects (CBO).

5.2.3. Case Study 3. Refactoring to improve external quality Attributes

dustin / java-memcached-client @® Watch~v | 65 Y Star | 473 YFork 369
<> Code Pull requests 27 Projects 0 Wiki Security Insights
This changeset refactors the MemcachedConnection class. Browse files

It also breaks out certain large blocks into their own methods

to make it better readable and easier for the JIT to inline

the code.

Change-Id: I3369606afeef@@b50740e54c01a78e89682cadel

Reviewed-on: http://review.couchbase.org/3e416

Reviewed-by: Michael Nitschinger <michael.nitschinger@couchbase.com>

Tested-by: Michael Nitschinger <michael.nitschinger@couchbase.com>

P master © 2114 .. 2103

‘ daschl committed on Nov 20, 2013 1 parent ©f3730a commit e94fbf5db73390a94e93bbedfd7ce892c393ee3a

Figure 9: Commit message stating the refactoring to improve code readability.

26

[Parameterize Variable
0 Rename Variable

O Extract Method

[0 Rename Parameter

Figure 10: Distribution of refactoring operations.

This case study demonstrates another refactoring intention which is related
to improving external quality attributes (i.e., indication of the enhancement
of non-functional attributes such as readability and understandability of the
source code). As shown in Figure 9, the developer stated that the purpose of
performing this refactoring is to improve the readability of the source code by
breaking large blocks of code into separate methods.

Figure 10 illustrates the breakdown of 16 refactoring operations related to
readability associated with this commit message. It can be seen that Rename
Parameter and Extract Method refactorings have the highest refactoring-related
commits with 37.50% and 31.25%, respectively. Rename Variable is the third
most performed refactoring with 25%, in front of Parameterize Variable refact-
orings at 6.25%. By analyzing the corresponding source code, it is clear that
developer decomposed four methods for better readability, namely, hand1eI0(),
handleIO(sk SelectionKey), handleReads(sk SelectionKey, ga MemcachedNode),
and attemptReconnects (). The name could also change for a reason (e.g., when
Extract Method is applied to a method, the method name and its parameters
or variables also update as a result).

To improve code readability, developer used FExtract Method refactorings
as a treatment for this case study to reduce the length of the method body.
Additionally, renaming operations were used to improve naming quality in the
refactored code and reflect the actual purpose of the parameters and variables.
Converting variables to parameters could also make the methods more readable
and understandable. To develop a full picture of how to create readable code,
future studies will be needed to focus on code readability guidelines or rules for
developers.

27

5.2.4. Case Study 4. Refactoring to add feature

I tvrenamer / tvrenamer ®©Watchv 11 W Star | 121 Y Fork 19
<> Code @ Issues 49 {7 Pull requests 2 1" Projects 0 EE Wiki @) Security :I1 Insights
Major new functionality Browse files

Featues
- Added http file downloader, integrated into TVRageProvider
- Implemented 'check for updates' and preference option

Code changes

- FINALLY made preferences static (yay!)

- Renaming of many UIStarter variables to conform to nameType
- Moved string handling into StringUtils

- Updated tests

¥ master © v10b3 .. 05b3

. daveharris committed on Feb 27, 2011 1 parent 5ceddda commit f 18278¢8667F8de 156c4e6

Figure 11: Commit message stating the addition of a new functionality.

14.29%

B Move Method

O Move & Rename Class
[0 Rename Method

O Move Class

E Rename Attribute

O Rename Variable

Figure 12: Distribution of refactoring operations.

This case study discusses another motivation of refactoring that is different
than the traditional design improvement motivation. As shown in Figure 11, de-
velopers interleaved refactoring practices with other development-related tasks,
i.e., adding feature. Specifically, the developer implemented two new function-
alities (i.e., allow the user to download files, and “check for updates” and “pref-
erence option” features. Developers also performed other code changes which
involved renaming, moving, etc.

Figure 12 portrays the 21 refactoring operations performed in which the de-
veloper added features and made other related code changes. With regards to

28

the type of refactoring operations used to perform these implementations, the
developer mainly performed moving and renaming related operations that are
associated with code elements related to that implementation. Overall, Rename
Variable and Rename Attribute constitute the main refactoring operations per-
formed accounting for 38.10% and 28.57% respectively, followed by Move Class
with 14.29% and Rename Method with 9.52% . The percentage of Move Method
and Move and Rename Class refactorings, by contrast, made up a mere 4.76%.

Upon exploring the source code, it appears to us that the developer per-
formed moving-related refactorings when adding features (e.g., update checker
functionality and activate user preference option) to the system, and renaming-
related operations have been performed for several enhancements related to the
UI (e.g., renaming buttons, task bar, progress bar, etc). These observations may
explain that adding feature is one type of development task that refactorings
were interleaved with and the refactoring definition in practice seems to deviate
from the rigorous academic definition of refactoring, i.e., refactoring to improve
the design of the code.

5.2.5. Case Study 5. Refactoring to fix bug

H jawi / ols @Watch~ 49 Hrstar | 275 YFork 65

<> Code @ Issues 102 i) Pull requests 0 [Projects 0 EE Wiki (@) Security Ii Insights

Several Ul-related bugs solved. Also corrected the storing/retrieving... Browse files

.. of user-settings. Ensured the devices menu has a predictable order.
P master O v097 .. w096

D jawi committed on Aug 26, 2010 1 parent 812adc7 commit 3fo5fa358b5243246 7c8a

Figure 13: Commit message stating the correction of user interface related bugs.

B Extract Class

O Rename Method
[0 Rename Variable
O Extract Method

E Move Attribute

d Rename Attribute
O Rename Parameter
18.92% O Move Method

Figure 14: Distribution of refactoring operations.

29

This case study presents another refactoring intention, i.e., refactoring to
fix bugs that differs from the academic definition of refactoring. It can be seen
from the above commit message (Figure 13) that several Ul-related bugs have
been solved while performing refactorings. Similar to the commit in case study
4, the developer interleaved these changes with other types of refactoring.

The pie chart above shows 7 distinct refactoring operations performed that
constituted 37 refactoring instances for bug fixing-related process. The type of
refactorings involved in this activity are mainly focused on extracting, moving,
and renaming-related operations.

From the graph above we can see that roughly a quarter of refactorings
were Move Method. Rename Parameter, Rename Attribute, and Move Attribute
constituted almost the same percentage with slight advantage to Rename Para-
meter. Extract Method was comprised of 13,51%, whereas Rename Variable,
Rename Method, and Eztract Class combined just constituted under a fifth.
The present results are significant in at least two major respects: (1) developers
flossly refactor the code to reach a specific goal, i.e., fix bugs, and (2) developers
did not separate refactoring techniques from bug fixing-related activities. Inter-
leaving these activities may not guarantee behavior preserving transformation
as reported by (Fowler et al., 1999). Developers are encouraged to frequently
refactor the code to make finding and debugging bugs much easier. Fowler et
al. pointed out that developers should stop refactoring if they notice a bug that
needs to be fixed since mixing both tasks may lead to changing the behavior
of the system. Testing the impact of these changes is a topic beyond the scope
of this paper, but it is an interesting research direction that we can take into
account in the future.

Analyzing the distributions of refactoring operations in the case studies, and
observing how they vary due to the context of refactoring and due to the differ-
ence between production and test files, has raised our curiosity about whether we
can observe similar difference if we analyze distributions of refactorings across
classification categories. In the next subsection, we define the following research
question to investigate the frequency of refactorings, spit by target refactored
element (production vs. test) per category.

5.8. RQ1.1: Do software developers perform different types of refactoring oper-
ations on test code and production code between categories?

In Table 7, we show the volume of operations for each refactoring operation
applied to the refactored test and production files grouped by the classification
category associated with the file. Values in bold indicate the most common ap-
plied refactoring operation — Move Class and Rename Parameter for production
files, and Rename Method for test files.

Concerning production file-related refactoring motivations, the topmost re-
factoring operations performed across all refactoring motivations is Move Class
refactoring, except for Bug Fix in which Rename Attribute is the highest per-
formed refactoring. In the case of internal quality attribute-related motivations,

30

ts combined.

jec

Refactoring frequency in production and test files in all pro

Table 7

(%eLT) T8 (%67°0) 688% (%L62) T (%8€0) 1£6€ (%80°T) LT (%L2°0) 18T (%€L°0) 8 (%11°0) 9¥¢T (%82°0) 0T (%48°0) €028 °MqLIV YA d[qertep doejdey
(%¢00) T (%800°0) 20T (%0°0) 0 (%20°0) 212 (%00) 0 (%700°0) 2 (%0°0) 0 (%10°0) L0z (%6€0) ¢ (%F10°0) 9¢€ amquyyy eoerdey
(%L8°€T) 67T (%90°8) 68296 (%¥671) 112 (%6¢°01) 950801 (%12'81) 982 (%92°6) 88209 (%¥1°6) 001 (%60°€) 20S0L (%16°6) L1 (%FF°0T) 129701 d[qeLIep oureusy
(%68°0) 9T (%TL'TT) 9€¥8ET (%66°0) ¥1 (%80°L) GL2TL (%80°T) LT (%z2€9) €8PTY (%97°1) 91 (%¥8'T) 006TF (%76°0) 21 (%€6°8) 71968 IdjPUIRIRd dureusy
(%¢€9°62) TS (%59°01) 268921 (%L8'9T) 118 (%LL711) 881021~ (%9€°62) 19% (%e871) GFeL6 (%T6°SE) £6€ (%%e'L1) ceee6e (%67°92) VI (%90°6) 60806 POYJRIN oureusy
(%8¢°0) 01 (%L1°¢) gagLe (%L27T) 81 (%¥92) 01042 (%96°0) ST (%69°¢) 172¥E (%28°0) 6 (%092) 7689% (%92°T) 9T (%28°2) 74288 sse[D) oureuay
(%19°7) 62 (%42°6) 982601 (%¥8°1) 9 (%00'71) se8ehT (%927) L9 (%PT°LT) LLVETT (%281) 02 (%L0°0T) 029622 (%see) &7 (%88°'9) £6889 mqIyy dureusy
(%0°0) 0 (%€z°1) 18671 (%0°0) (%06°0) 226 (%90°0) T (%€22) 68971 (%€2°0) 8 (%24°0) 72811 (%80°0) T (%ev'1) 1erl POYIeIN umo(ysnd
H S\%V.e 0 A§$,wv 8119 (A&c.w_v 0 Aﬂxﬁomv L9V A§§,wv & A@Qw@.%v 979 AQ .%v : A?\EN.M: 889¢ (%0°0) 0 (%85°0) 9819 emquyy umoq ysng
%9€'TT) 70T %V6'9) L6618 %9.°2) 6¢ %LV'T) T8TIE %05°€) 95 %VL'E) 6E5TT %95°€) 6 %LTT) 66798 (%L€°0T) €€T (%81°L) 9061L poysely dn Tmd
(%¥8°€) 69 (%292) 01862 (%F8'1) 9 (%¥€0) €2051 (%vee) oF (%e€T) 1828 (%€L0) 8 (%ee2) 12189 (%90%) g (%88°0) €088 emquyy dn 1md
(%8¢°0) 01 (%97°0) 7L7S (%er°0) 9 (%¥€0) 8v¢ (%99°1) 9g (%€2°0) G281 (%81°0) ¢ (%20°0) €291 (%¥6°0) &1 (%92°0) 5652 o[qelTe ozIIjoUTETE]
(%0°0) 0 (%09°0) 9065 (%0°0) 0 (%16°0) €626 (%00) 0 (%€21) L808 (%0°0) 0 (%02°0) 9€9% (%0°0) 0 (%29°0) 6129 10p[og 92M0G dAOIN
(%96'7) 68 (%L€°2) 66028 (%0T°€T) G81 (%06°6) 960101~ (%02°0T) 89T (%2e°€) 06818 (%91°81) 20T (%20'2) 892LF (%9€76) 021 (%21°9) 67619 POMIDIN @A0IN
(%8272) 7 (%20°8) L8LV6 (%¥8°0) a1 (%T2"LT) SL98LT (%£07) g& (%8L°6T) 9T86ZT (%e8°¢) o7 (%€L'TS) 9LETOTT (%£072) 9t (%€ 1T) 6098TT SSe[D) A0
(%00°€) ¥ (%29°¢) 00799 (%¢€72) €8 (%1¥7°7) 5205k (%10'T) 9 (%97°¢) 91288 (%L¢°¢) 19 (2%26°T) c98¢p (%86°€) 16 (%€T'TT) 2hgell 2MqLIYY dA0IN
(%0°0) 0 (%76°0) 26ITT (%67°0) L (%L6°T) 75091 (%1€°0) ¢ (%L2°2) 85671 (%227) ¥1 (%55°0) €6V21 (%1€°0) ¥ (%¥¥°1) 92¥v1 sse[) owreuay 7y GAOIN
(%0°0) 0 (%10°0) 0gT (%0°0) 0 (%10°0) 02 (%00) 0 (%70°0) 81 (%0°0) 0 (%0°0) 09 (%80°0) T (%20°0) 141 2INqLI}}Y dUIRUdy 23 SAOIN
(%9¢°0) 01 (%68°0) 0901 (%26°0) €1 (%€2°0) €7¥T (%92°0) g1 (%2z0) €271 (%L20) € (%61°0) 062F (%1€°0) ¥ (%1€0) 201€ a[qeITep suuy
H?%n.%v 6 MxSAW 29921 MQ\QR.DW A AC\DS.@ 612L Mo%.w.ow 2l Mc\%m.ow L128 M;\Dﬂqw 61 (%8z°0) 001¢ (%2L°T) 2T (%19°0) 6€19 POYIDIN duI[u]
%S6°€) TL %20°S) £3E65 %V0'E) €7 %€S'T) V69ST %TLT) TL %STT) €628 %29°€) OF (%6€°0) €683 (%¥e2) 08 (%66°0) 5266 [qelTes joRIIXE
(%0°0) 0 (%92°1) 6€67T (%26°0) €1 (%00°1) 06201 (%0L°0) TT (%50'T) L169 (%9€°0) ¥ (%2€°0) 08€L (%29°0) 8 (%2L°0) 292L ssepiadng joe1)Xg
(%0¢°0) 6 (%02°0) 1662 (%0°0) 0 (%11°0) 1211 (%0°0) 0 (%91°0) ¥80T (%60°0) T (%50°0) 60TT (%00°0) 0 (%91°0) 8281 sse[qng PeNXH
(%86°¢1) 182 (%09°6) 9TFETT (%€VST) 812 (%V6°€) 9820F (%2¥°6) 8¥T (%L7°€) TLLTE (%SLP) 28 (%08°0) L2181~ (%61°61) 97 (%e1°¢) L9818 POUIRIN 12RIIX
(%11°0) @ (%0€°0) 829¢ (%0°0) 0 (%02°0) ¥012 (%0°0) 0 (%82°0) 7281 (%0°0) 0 (%11°0) Gese (%0°0) 0 (%L1°0) 00LT Q0RJILIUT JORIIXG
(%91°1) 12 (%99°T) 01961 (%26°0) €1 (%1€°2) $29€T (%g€7) 89 (%16°0) 6109 (%¥97) 81 (%0€°0) ¢8L9 (%10°T) €T (%1€°T) 991€T sse[) PRNXG
(%¥8°2) 16 (%802) 92572 (%98°2) 111 (%L9°C) L2eLe (%eee) s¢ (%L2°T) 69¢8 (%¥LT) 08 (%8¢°0) €798 (%05°2) z€ (%80°2) 2280% POYIBIN PAOIN 73 JORIIXT
(%0°0) 0 (%62°0) THSE (%0°0) 0 (%0¢°0) 0z1¢ (%00) 0 (%22°0) 092 %0°0) 0 (%9¢°0) £69¢1 (%0°0) 0 (%97°0) 9297 a3epe g a8ueyn
1891, ‘poig 189, poig 189, ‘porg 989, poig 91891, poig m:-hceoﬂww‘m
uﬂ_hw-am ~NEOT—U:§ ¢<Nu —N-hhweunm :wEm wvoo QNU ~N=,~®u=~ -

31

developers performed Move Class refactoring to move the relevant classes to the
right package if there are many dependencies for the class between two packages.
This could eliminate undesired dependencies between modules. Another pos-
sibility for the reason to perform such refactoring is to introduce a sub-package
and move a group of related classes to a new subpackage. With respect to code
smell resolution motivation, developers eliminate a redundant sub-package and
nesting level in the package structure when performing Move Class refactoring
operations. With regards to external quality attribute-related motivation, de-
velopers can target improving the understandability of the code by repackaging
and moving the classes between these packages. Hence, the structure of the
code becomes more understandable. Developers could also maintain code com-
patibility by moving a class back to its original package to maintain backward
compatibility. For feature addition or modification, Move Class refactoring is
performed when adding new or modifying the implemented features. This could
be done by moving the class to appropriate containers or moving a class to a
package that is more functionally or conceptually relevant. Lastly, for bug fixing-
related motivations, developers mainly improve parameter and method names;
they rename a parameter or method to better represent its purpose and to en-
force naming consistency and to conform to the project’s naming conventions.
Developers need to change the semantics of the code to improve the readability
of the code. For test files-related refactoring motivations, the most frequently
applied refactoring is Rename Method. This can be explained by the fact that
test methods are the fundamental elements in a test suite. Test methods are
utilized to test the production source code; hence, the high occurrence of method
based refactorings in unit test files. The observed difference in the distribution
of refactorings in production/test files between our study and the related work
(Tsantalis et al., 2013) is also due to the size (number of projects) effect of the
two groups under comparison.

(A

Summary. Our findings are aligned with the previous work (Tsantalis
et al., 2013). The distribution of refactoring operations differ between
production and test files. Operations undertaking production is signific-
antly larger than operations applied to test files. Rename Method and
Mowe Class are the most solicited operations for both production and
test files. Yet, we could not confirm that developers uniformly apply the
same set of refactoring types when refactoring either production or test
files.

5.4. RQ2: What patterns do developers use to describe their refactoring activ-
ities?

In this research question, we explore the set of 513 potential self-affirmed
refactoring candidates, extracted by manual inspection from commits messages
and categories top 100 features. We classify these SAR candidates into two
tables: Table 8 contains generic candidate patterns that were found across cat-
egories; Table 9 contains candidate patterns that are specific to each category.

32

1S

ts

ing commi

Patterns detected across all classes. Patterns whose occurrence in refactor

ficantly higher than non-refactor

Table 8

its (i.e., p< 0.05) are in bold.

ng comim:

signi

apod du ueal) (0£7)
A[puoLy-o[qIsULIXD xoul 1 SR (677)
popusyxo A[isea 10]\ (822)
SuryyeuLIoy JueysISU0D OO (L57)
9poo poposuun aowey (977)

9poo popoouun wy, (¢7z)
LOURYUD 2XONIPLY (VZT)
smyoomre oueyuy (£72)
wononper Aypresoty (7zz)

wueapo Aypresdty (12g)

sSueyo reanjonng (0z7)
Juowosoadutt Buiespey (617)
yuourosoadwy Surwre (317)
onsst &ypenb X1 (L17)
uoneoyrduns 0wy (912)

sosse[o posnun aowoy (¢17)
Sousystsuod Sururen aoxdwy (p17)
uBsap ,Suey) (£1z)
Jo pu 309 (212)
savery Aypenb xig (112)
sanjonys ofwped ,Suey) (017)
Ayrenb apod g aoadwy (60z)

apod Surystiod (80z)

oBueyo amjonms worezILSIo AMpPOly (L07)
aBueyo samjons opoly (90z)

aSueyd oanjonuyg (o)
uoryezuIolsd [($0z)

soSueyo ogowso)) (£07)

o8wyped aSuey) (z0z)

2poo 807 (10z)

apod ayy Ajnduts (00¢)
sopuopuadop uMop paysig (661)
Souopuadop apod paonpay (S6T)

9poo Jn0 pojoenxy (L61)

i 91 eoerdey (961)

dn «PLL (961)

*301mY (V6T)

soerdoy (£61)

wureuay (z61)

opoo dnuea[D (181)

a81owr peq X1q (£81)

J0 310 9p0o B10 ParOIY (Z81)

dn uoyeaN (T8T)

soureu dlqeLIeA JULYSISUOD 0wt ,S() (0S1)
sowreu ojqerres oyerdoxdde ,sn (621)
oureu sordung (841)

foudystsuoour Surureu ,aosoy (LL1)
oSwyped ,ureusy (9L1)

£oudysIS00 10§ sosse[o ,weudy (gLT)
suonueAI0D Surureu eef 0y Surposoe ,ureuny (A1)
Aouoysisuoo 10y ureusy (£41)
dnueapo owreN (11)

ureuax gofepy (121)

fouoystsuoo Surureu ureyurey (0L1)
uonueAL0D ureyuIely (69T)

sureu poygow ur odAy, (891)

suren Xug (L91)

uonusAUed Surweu X1 (997)

Supuren posuopuon sojqeug (¢91)
fousysisuon 10y soureu wojouresed poyout Suey) (p91)
sureu poyjew ,Buey) (£91)

sureu o8wped oyy Suey) (z91)

sureu oty ,Sueyd (191)

oweu Sueqd (091)

eureu 1a330¢ (64T)

dnues> Lypenb o101y (6T)

Ayenb ureyurely (L61)

Aypenb opoo puw o[&)s posoadu] (9¢T)
Ayyenb 9poo jo juowroroxduwy (gaT)
Ayrenb oroxduy (p¢1)

souewoyurew oxmnyuy Ajduug (£61)
urejurew oy Josey (741)
soueusyUrRW 0POd Jo osey (16T)

premioj Suraow eoweusjurew aser (0GT)
dn-,pLL, (671)

M=oy (871)

wBupeday (Lr1)

KAOWRY (9P T)

5poo Luwal) (Se1
Sy opop) (16T

101e9[0 9pod ey (9¢1
Ayrenb apo)y (geT
woreoyrun 9pop) (peT
uonyeoyIpow 9poy) (6T
Suignysos opo)) (z&1
Juowoouequo 9poy) (16T
Surdpry opop (0£1
Surgyyueaq opop) (621
LAMPNNSaT 9poy) (87T
1438 9poD) (221
Juoureroadur; 5poy) 82
Juowygsulpe opo) (¢z
uorgeoyrduns 8po) (77
Sunysijod apop) (g7
Sungyeunioy opo)) (zz
JuowoBueLIeal opoy) (9¢
woryeziuesio 9poy) (07
Sunyyeuriofr opo)) (6
woryeziupdo opoy) (8
worstAdT 0poy) (L
o3owson apoy) (9
9)1aMa1 9p0o) (g

mo1A01 5pop) (
wreasord 03 Jo1sE0 0POd O3 SR (€
o143 9POd 03 SUOHEIGIPOW O 30T (Z1T
914ys 9pod 03 suoRIGIPOY (TTT

91415 apod 03 syusurysnlpe tourpy (011
o143 0poo ,aoadury 83

143 9pod X1 (80

woryeoyIun O[3 9po)) (L0
aoadut o[£3s 9po)) (90

1418 0pod ay dn Lueo[) (g0
o143 opoo ,Suwey) (5o
dnApLL (€0

*IMY (20

wzuesi0-0y (10

eatopy (00

opoo Aduns (z
fyurep opoo aaoadury
KZIU0ISN

£ouesisuon urejurely

doo[ssa[pedu ,AouIay

SYPO[q 9S[o ATeSSE00UUN 4 AOWSY
posnun ie.:...@

sotouopuadop PosnUN A0y
fouspuadep oy

Juepunpox *>o=_oﬁ

5pOD PapesIUN L AOWIBY
SO[qRLIEA POPROUUN , AOUIOY
SSO[AST AT}, AOISY

UOISSOIBOY X1,

PuoIxe 03 Jordurs 31 e
10119q YIOM 1 SYEUI 0} SUOIYE:
Sunyeutoy xiq

Surypeuioy awos X1,

o0d4y Sutouue ,xrq

JROM) PUR L XTj SIOUT
woreziuiydo pue Xy owog
Kousysisuod *>En=:
wopyeoyiduns pue a3rma 1ofey (),
w:.nmmv_mm..om

5poo oy Jo Bugues Jourpy
dnueso oATSSEIN

dn uesa[d apo)

SsoUI[UED[D 9POy)

dnueapo apop)

uea[o apo)

Supypeurioy 9::&6

9poo Aressevouun dn ,uwa[)
ssout[uea[)

dnuespo m_m

Hds
1aomay (9

opoo eaoadwy (97)
ofmpoud oyeaedos 01 9pod uorEITHIL [PANOIY (CF)
wSunesg (vr)

apod Ap1L, (€7)

opoo gunesg (zh)

9poo ,1e30183Y (17)

9poo anjonaysoy (0F)

oBesjoed ,anjonaysoy (65)

opoo awos dun parpLy, (8¢)

poyeomy pue dn porpry, (Lg)

Suihpry woysang (9¢)

Apny s xi (cg)

IS Jo 10[© pasoly (vg)

L1030eja1 [eo1poR], (g€)

41030BJ0I QuIog (7£)

1030R)I [rews (1€)

o to030e5ey (0€)

RWAPS FUIISIXD L 1030RY (67)

apod 1030850y (32)

41010801 BI0IN (L7)

1070801 J0ulIAl (92)

x10300j01 S8NH (¢7)

41070801 OAISSEIN (1T)

1030830 10BN (£7)

410308301 JO 1017 (27)

10908301 o111 (12)

1030801 AaeoH (07)

9pod potojoejor AASR] (61)

stsA[eue swe 1ot Spremoy Funoouy (S1)
1090801 aAIsuURIXY (LT)

A[oAIsuoyx0 polojoRpRL USAq SEY 9pop) (91)
10998401 2P0 (CT)

apoo patojory 1A (F1)

s1030ejor Sig (1)

10108J01 JO 11q ¥ (21)

sdtduns (11)

wIngonasoy (01)

10p100Y (6)

1030850y (8)

«onpay (161) «uBisop-ay (¢71) *..mam_uw: «Foped-ay (g «Bwped oy (1)
sBepeday (061) usoysnd (PrT) umo(ysnd dnqndg (z dn md (9)
sustod (681) *71wedaQ (ep1) *AOIN *ZHRMPOIN (T PO (8)
*¥RIBIAL (88T) ¥BIN (V1) *onpoxjuy +uu (0 sroxduy (7)
XU (L8T) MO 4I10398g (TFT) #IORIXT *«PURIXE (67 xouequy (g)
syemsdeoug (981) ssodwoeda((0r1) #1210 dn-ueo[) 2 dn jued) (z)
dn3surwesd (¢81) dnuesrd (6£1) Jmo paues[) ¥Buey) (L] «PPV (1)
suzoygeq

33

its is signific-

mg commi

Patterns detected by class. Patterns whose occurrence in refactor

Table 9

ts (i.e., p< 0.05) are in bold.

ing commi

antly higher than non-refactor

oy onpot v 1m0 g
Kouopuadop 0wy

sapuopiadop U poysn g

souapuadop sso pue woryEmsdesto 01106
wopemsdeous 1110

sotseo wspydzowfod soyely

wsygdaoujod Jo Sugppue 11106

suon0 sopwredog

risoduon s
ooueayus ey 1930q toHsOdUIo)

womsoduos ppy

ooupoT Fursn prosy

UL KO SueALLY

fouopuadop aupott oty PO

o EET o]

oo ooy

aoueypaur doap uLIojIOg

ooueotu 10§ 1oddns porordu

ouTIAIT TSN SOSSV[PAYEIOT o) PUOINE
Souwypanuy LoFuw)

ooueipagu; wopeaypods 10§ poddns 1106

peorsty wopsoduIon Fugsn pue ovuelor Fugsn POAY
aouwruL oy 01 10ddns pOPPY

aouayul ppy

Apolduios o Jo g SoAOIRY

Apxoiduios papasitm pasotng
Apxoiduios oy A[jwas poonpay
Apxorduwon oonpay

poonpas ueaq serf Aypxordton

o715 apod ay paanpoy

syuomodueuo 1)
sofweto 10

nose] 1) MoN

soBuerp [[ews 10D

poSeyo seq mose] 1)

10] SoED [PUONIPPY

oyepdp)

ampopIe wou Juswmagduy

ya0ddns ppy

SO Hriawsd ppy-

ooy 115 A M0 (dg

s Aygenonouny Fupsixo Supeardoy
Aypeuonouny 2[00 Fugoury
Syenonouny poyionay

L TONOUN ATeSSO0UUN LOAOIRY

T Ageonoun sy SBIN

,5_:5,75__::
0} Ayeuonouny ppy
Aupenonouny Sunsxo Sutoey

Anpenonoung parotovsN
suopouny Fussiur poyuouoldun-oy

oMoA0IdT AoeIaY

uisop o[quIso) H10\

Anpiquisa) aswonouy

Aniqusuoixo pue Srempour paoidu
AniqusuoIxo oy 104

Anasuro mony

aLqepuaYxe dl0u SSE AR
o[qeAIoAD pue D[qIss009e Totseg

pejsIOpUN 0} 10150 0q 01 Yig]
Furpuwisopun 01106

Jsnqoa diout 9q o,
JuomoAO Kt SsomsNqOY
Aymaqesn aroxdur

ssowpsnqox oroidug

SISO A0S PIPPY

s opqeduion Seig
Amapedaiod preavieq suwoy
ofquuduIo-pressvq oq puons
olqueduion ooy

T ogqpeduon 11 oyery
Smaquedimon wremeiy
olquduion spreasprq doayy
s ofqueduion [

i 5
Qs oqueduon presspeg
oouvtmopiad dn poodg

1501 oowetIopad potreny
4591 ouenopad 107y
dn-poads oouemojog
wopeznmdo aouvTIONO]
poroxdur wor
JuowAO XA BdURLIONIY

oouwuLIopag

9p0d parwaoidop Aoty
2p0> paresandap 1L
9pod poyeardop Jo i 109
worqoad X1

Ly souey

Suggpuey 10110 SupEonT,
XY L1001

10310 FIpURE

apueH

s1501 Bugpe poxtd

st010 w0ty 10w PoxLy
10110 1593 X140

0110 alidwon X1

10130 ou0s X1

10110 [[ews X1

101D DWOS X1,

om0 g

Suown poxty

sppy & outos pasoutay Xy o1

15000 POWLIONO]
poads oy Suzgundo

spotpau uof sso oFussour 10110 dnuvor)
syuanmon plo A[ear oy Suypuvy Sussowr 1010 TYg

orou ysng
Anenopouny wotod dn-Suym g
swomaAoadu 9pod/amwag
Syenonpuny pareys pasojy
Apeuoyouny aropy
Supenonouny poroxdray

Anpenon:

ogqeaanoN
Syuomonoxdtuy Aypiqesy)

Annqes yaoxdu

aoueutioziad oy Furmswopy
uoumoroadu aduvLojd Jo o
sonssy oouetiojod PoAL0SOx APAIT
oouremopad oseazug

AypeTonouN wOIIO) 1EIXG
Jo Aneronouny P
Apenonpuny yodxg
Syfeonouy sty jo susuidopasd
AN[PTONOUN HOMIIO 9YEPIOSTO)
01 Anenoouny Jo soo1d mou om SPPY
Aenonouny Mou Suppy

oSsour 10y SyypenonouNy POPPY

Aupnonoun] PIpPY

soxnyuay poauiap 10j Burpoddng

aanyeoy feuondo jo ioddng

worppe omyesy [retg

SoULSISI0D 107 So1YERY Y JO A0S PorIEY
sommyeoy Auew poureuoyy

sommyeay oo[dutosuy pootny

1oy EP o) dAOTTINY

omyuey Moy

somyeay oseao 0} Ayiqussod poonporyuy
amyvoy [eyuottiodxa oty poywowodruy
amywo) Jo wonwouldu

soamyu0y YpLq ANy Jo ouo Jususdldus]

poppe omyeoy

Moy MoT © Jo WOHIPPY

Sommeay mou Swppy

Ja0ddus 0y somyea) Suppy

soxmyeoy ai0m POpPY

omiwa) BunsomI pOpPY

ontssepy
SSaWOLI0D TN

Somoroygo oswarony

11030 10§ alqusIaL 11 Y]

L NODD 010

olqeeSeurur 010

oouvtiopiad ,aoxduip

uaumoroxdut auewopad OFEY
onemopod g

suouror0xdu ANIIUE)

ooueniiopad ,ppy

oouvopiad oty oyepdp)

Aiquisn oroxduay

Aupqupeor Ajydung

Angiqepeas o) payyeutiogoyy
syuowonodury Aypiqepeay

suomroxdtay Atiqenioddns puw ATqepE
Juowaduequa Sjqeproy

Anpqepeos aroxdury
Anpiqupeat torseg
wonezruIndo AN[IqEPEaT 9po0)

Doy opiaoig

10§ prq uopediy Suypueq 1010 101106
o115 3pod 01 swonEIYIPoT Jo $10°T S1010 O} 10§ XY ¥
po Ayne/posnum A[snoaqo pasomoy ey opduion ,x1.
Sse(o SSofosn arouIY 189 PolIe) (¥ ,X1g

sossepo eyep otepdp) LomIEy 1591 4190110

SIS 3pod, B0 ,AOTIY worqoxd ,afosoy

[fouis apod auos g SOXY [PUOIPPY

s 0pod 14 onsst 001400

9p0> prop orour pasouIY oussy oupur X140

P02 Prap Jo W ¥ ST SILL o RET onss

apoo prap Apuaredde pasowoy ansst jo ajdnon ¢ xig

onsst oy 01 Xy v

9P02-prap A0S DACMIOY ANSSY A1) 0} HONN[0S oIS ¥ Jo 1q Y
9po> prap Aoy 3o p1t 19D

Ploy poyeaydnp arowoyy g ¢ w0 Fuppoy

[apo> snopaLIOY 300 410§ s8nq sow owos porjog
9pod opardnp poatosol SONSSY 910405 SOXTL
opod ayedidnp yAowy i onsst Suonmouod
0pod ayeardnp pue peop owos pasoutay
wonEaidnp 9po> Fiq o) porooy Lons
wopwordnp apo> omos a0 Yaozzoour
wopEaNdnp 0pod ooy uaoxq
worpEadnp 0pod Jo 101 © parotoRy

woneoy

ey uBisop [ews v dn xeof)
5pod ayedyidnp porojoesor
wopadar apo paanpar] Sinq s ,xg
uojeaydnp opod vanpay g Opuy ¢ poxtg
worEadup 0pod Jo 10y T oIMPpoY Sinq tougu & poxtg
9po2 oyardnp Furuor

aywondnp L

powow ayeardup 10} Xy

9pod ayedydnp eyeuruia
SPO[q 25> ATESSORIN DAOIY

$inq 1ofeu pox g
sonsst A3ages peoITy oMMy X1
Suypuey o110, Aoxdu

Bugdnos 1Fy o) a1 10D owos x1q Anpqixey oa0y opod ajeaydnp 410 g Jo worpasion
Apqusuodsoi Jo adods pue Surgdnos 0onpoy ompour moN Aoy poseasouy porowa uopedydnp 0popy Supyuny S
Suridnos poonpoy Soanuea) Jo NG ¥ POPPY AP PPV poreI EpIIpoT proay R

Suydnos asoof avuenuy ooy mou ppy osa1 apoo ,aoxdu 2pos apeordnp proay Xy Ing

Suygdnoso omyeay ppy. amponus afqesnoy uopeaydnp opo> proay soxy aouyy

ey [euopouny Teutoyxy oW 0pop xtasng

34

Upon a closer inspection of these refactoring patterns, we have made several
observations: we noticed that developers document refactoring activities at dif-
ferent levels of granularity, e.g., package, class, and method level. Furthermore,
we observe that developers state the motivation behind refactoring, and some
of these patterns are not restricted only to fixing code smells, as in the original
definition of refactoring in Fowler’s book, i.e., improving the structure of the
code. For instance, developers tend often to improve certain non-functional at-
tributes such as the readability and testability of the source code. Additionally,
developers occasionally apply the “Don’t Repeat Yourself” principle by removing
excessive code duplication. A few patterns indicated that developers refactor
the code to improve internal quality attributes such as inheritance, polymorph-
ism, and abstraction. We also noticed the application of a single responsibility
principle which is meant to improve the cohesion and coupling of the class when
developers explicitly mentioned a few patterns related to dependency removal.

Further, we observe that developers tend to report the executed refactoring
operations by explicitly using terms from Fowler’s taxonomy; terms such as
inline class/method, Extract Class/Superclass/Method or Push Up Field/Method
and Push Down Field/Method.

The generic nature of some of these patterns was a critical observation that
we encountered, i.e., many of these patterns are context specific and can be sub-
ject to many interpretations, depending on the meaning the developer is trying
to convey. For instance, the pattern fized a problem is descriptive of any an-
omaly developer encountered and it can be either functional or non-functional.
Since in our study, we are interested in textual patterns related to refactoring,
we decided to filter this list down by reporting patterns whose frequency in
commit messages containing refactoring is significantly higher than in messages
of commits without refactoring. The rationale behind this idea is to identify
patterns that are repeatedly used in the context of refactoring, and less often
in other contexts. Since the patterns were extracted from 111,884 messages of
commits containing refactoring (we call them refactoring commits), we need to
build another corpus of messages from commits that do not contain refactorings
(we call them non-refactoring commits). As we plan on comparing the frequency
of keywords between the two corpora, i.e., refactoring and non-refactoring com-
mit messages, it is important to adequately choose the non-refactoring messages
to ensure fairness. To do so, we follow the following heuristics: we randomly
select a statistically significant sample of commits (confidence level of 95%), 1)
chosen from the same set of 800 projects that issued the refactoring commits; 2)
whose authors are from the same authors of the refactoring commits; 3) whose
timestamps are in the same interval of refactoring commits timestamps; 4) and
finally, the average length of commit messages is approximately close (118 for
refactoring commits, and 120 for non-refactoring commits).

Once the set of non-refactoring commit messages constructed, for each keyword,
we calculate its occurrence per project for both corpora. This generates vector of
800 occurrences per corpus. Each vector dimension contains a positive number
representing the keyword occurrence for a project, and zero otherwise. Figure
15 illustrates occurrences violin plots of the keyword “refactor” in both corpora.

35

200 { 200
150

150

100 100

Non-refactoring commits
Refactoring commits

n

Figure 15: Violin plots representing the occurrence of refactor keyword in (A) non-refactoring
corpus vs. (B) refactoring corpus.

0 —— 0

While it is observed in Figure 15 that the occurrence of refactor in refactoring
commits is higher, we need a statistical test to prove it. So, we perform such
comparison using the Mann-Whitney U test, a non-parametric test that checks
continuous or ordinal data for a significant difference between two independent
groups. This applies to our case, since the commits, in the first group, are inde-
pendent of commits in the second group. We formulate the comparison of each
keyword occurrence corpora by defining the alternative hypothesis as follows:

Hypothesis 1. The occurrence vector of refactoring commits is strictly higher
than the occurrence vector of non-refactoring commits.

And so, the null hypothesis is defined as follows:

Null Hypothesis 1. The occurrence vector of non-refactoring commits is equal
or smaller than the occurrence vector of refactoring commits.

We start with generating occurrence vectors for each keyword, then we per-
form the statistical test for each pair of vectors. We report our findings in Table
8 and 9 where keywords in bold are the ones rejecting the null hypothesis (i.e.,
p< 0.05).

With the analysis of these tables results, we observe the following:

e While previous studies have been relying on the detection of refactoring
activity in software artifacts using the keyword “refactor*” (Stroggylos &
Spinellis, 2007; Ratzinger et al., 2008; Ratzinger, 2007; Murphy-Hill et al.,
2012; Kim et al., 2014), our findings demonstrate that developers use a
variety of keywords to describe their refactoring activities. For instance,
keywords such as clean up, repackage, restructure, re-design, and modu-
larize has been used without the mention of the refactoring keyword, to
imply the existence of refactorings in the committed code. While these
keywords are not exclusive to refactoring, and could also be used for gen-
eral usage, their existence in commits containing refactoring operations
has been more significant (i.e., p< 0.05), which qualifies them to be close
synonyms to refactoring. Table 10 enumerates the top-20 keywords, sorted
by the percentage of projects they were located in.

36

e The keyword refactor was also used in non-refactoring commit messages.
This can be explained either by its occasional misuse, like some previ-
ous studies found, or by the existence of refactoring operations that were
not identified by the tool we are using. Yet, the frequency of misuse of
this popular pattern remains significant in the refactoring-related commit
messages (i.e., p< 0.05).

e We notice that developers document refactoring activities at different
levels of granularity, e.g., package, class, and method level. We also ob-
serve that developers occasionally state the motivation behind refactoring,
which is not restricted only to fixing code smells, as in the original defin-
ition of refactoring in the Fowler’s book (Fowler et al., 1999), and so,
this supports the rationale behind our classification in the first research
question.

e Furthermore, our classification has revealed the existence of patterns that
are used in specific categories (i.e., motivations). For instance, the tra-
ditional code smell category is mainly populated with keywords related
to removing duplicate code. Interestingly, all patterns whose existence in
refactoring commit messages is statistically significant, were related to du-
plicate code deletion. Although patterns related to removing code smells
exist, e.g., Clear up a small design flaw or fix code smell or Antipattern
bad for performances, these patterns occurrence was not large enough to
reject the null hypothesis. Nevertheless, Table 11 contains a summary of
category-specific patterns that we manually identified. These keywords are
found relevant based on how previous studies have been identifying refact-
oring opportunities (removing code smells, improving structural metrics,
optimizing external quality attributes like performance etc.). Note that, in
Table 11, we did not quantify the frequency of these patterns, and we plan
on the future to further analyze their popularity, along with the type of
refactoring operations that are mostly used with their existence, similarly
to previous empirical studies (Bavota et al., 2013, 2015).

e Developers occasionally mention the refactoring operation(s) they per-
form. The Mann-Whitney U test accepted the alternative hypothesis for
all patterns linked to refactoring operations i.e., Pull Up, Push Down, In-
line, Extract, Rename, Encapsulate, Split, Extend, except for the famous
move. Unlike code smell patterns, move does exist in 787 projects (98.37%,
fourth most used keyword, after respectively Fiz, Add, and Merge) and it
is heavily used by both refactoring and non-refactoring commit messages.

e Similarly to move, keywords like merge, reformat, remove redundant, per-
formance improvement, code style, were popular across many projects, and
typically invoked by both refactoring and non-refactoring commits. So,
although they do serve in documenting refactoring activities, their gen-
eric nature makes them also used in several other contexts. For example,
merge is typically used when developers combine classes or methods, as

37

Table 10: Top generic refactoring patterns.

Patterns

Refactor® (89.00%) Renam* (83.63%) Improv* (78.75%) CleanUp (67.38%)

Replac* (66.88%) Introduc (53.00%) Extend (52.63%) Simplif (52.50%)

Extract (49.00%) Added support (47.38%) Split (45.50%) Reduc* (45.00%)

Chang* name (44.88%) Migrat (32.88%) Enhanc (32.63%) Organiz* (32.25%)

Rework (27.25%) Rewrit* (27.25%) Code clean* (25.63%) Remov* dependency (25.00%)

well as describing the resolution of merge conflicts. Similarly, perform-
ance improvement is not restricted to non-functional changes, as several
performance optimization techniques and genetic improvements are not
necessarily linked to refactoring.

Summary 1. Developers tend to use a variety of textual patterns to doc-
ument their refactoring activities, besides 'refactor’, such as ’re-package’,
‘redesign’, ’reorganize’, and 'polish’.

Summary 2. These patterns can be either (1) generic, providing high-
level description of the refactoring, e.g., 'clean up unnecessary code’,
‘ease maintenance moving forward’, or (2) specific by explicitly mention-
ing the rationale behind the refactoring, e.g., 'reduce the code coupling’
(internal), ’improving code readability’ (external), and ’fix long method’
(code smell).

Summary 3. Developers occasionally express their refactoring strategy.
We detected several refactoring operations, known from the refactoring
catalog, such as ’extract method’, ’extract class’, and ’extract interface’.

\. J

The extraction of these patterns raised our curiosity about the extent to
which they can represent an alternative to the keyword refactor, being the de
facto keyword to document refactoring activities. Figure 16 reveals examples of
these patterns. In the next subsection, we challenge the hypothesis raised by
(Murphy-Hill et al., 2008) about whether developers use a specific pattern, i.e.,
“refactor” when describing their refactoring activities. We quantify the messages
with the label “refactor” and without to compare between them.

5.5. RQ2.1: Do commits containing the label Refactor indicate more refactoring
activity than those without the label?

(Murphy-Hill et al., 2008) proposed several hypotheses related to four meth-
ods that gather refactoring data and outlined experiments for testing those
hypotheses. One of these methods concerns mining the commit log. (Murphy-
Hill et al., 2008) hypothesize that commits labeled with the keyword “refactor”
do not indicate more refactoring instances than unlabeled commits. In an em-
pirical context, we test this hypothesis in two steps. In the first steps, we
used the keyword “refactor”, exactly as dictated by the authors. Thereafter, we
quantified the proportion of commits including the searched label across all the

38

Table 11: Summary of refactoring patterns, clustered by refactoring related categories.

Internal External Code Smell
Inheritance Functionality Duplicate Code
Abstraction Performance Dead Code
Complexity Compatibility Data Class
Composition Readability Long Method
Coupling Stability Switch Statement
Encapsulation Usability Lazy Class
Design Size Flexibility Too Many Parameters
Polymorphism Extensibility Primitive Obsession
Cohesion Efficiency Feature Envy
Messaging Accuracy Blob Class
Concern Separation Accessibility Blob Operation
Dependency Robustness Redundancy

Testability Useless class

Correctness Code style

Scalability Antipattern

Configurability Design Flaw

Simplicity Code Smell

Reusability Temporary Field

Reliability Old Comment

Modularity

Maintainability

Traceability

Interoperability

Fault-tolerance

Repeatability

Understandability

Effectiveness

Productivity

Modifiability

Reproducibility

Adaptability

Manageability

considered projects in our benchmark. In the second step, we re-tested the hy-
pothesis using the subset of 230 SAR patterns, whose occurrence in refactoring
commits were found to be significant with respect to non-refactoring commits.
We counted the percentage of commits containing any of our SAR labels. The
result of the two rounds resides in a strict set of commits containing the label
“refactor”, which is included in a larger set containing all patterns, and finally a
remaining set of commits which does not contain any patterns. For each of the
sets, we count the number of refactoring operations identified in the commits.
Then, we break down the set per operation type.

In order to compare the number of refactorings identified for each set, i.e.,

39

Decompose
Enhance

az11e|Npo

Figure 16: Sample of SAR patterns identified in our study.

labeled and unlabeled commits with the keyword “refactor”, along with labeled
and unlabeled commits with SAR patterns. We used the Wilcoxon test, as sug-
gested by (Murphy-Hill et al., 2008) for the purpose of testing the hypothesis.
We then applied the non-parametric Wilcoxon rank-sum test to estimate the
significance of differences between the numbers of the sets. The choice of Wil-
coxon rank-sum test is motivated by the independence of sets from each other
(the occurrence of refactor is independent of the occurrence of the remaining
patterns).

Figure 17 shows the distribution of refactorings in labeled and unlabeled
commits with SAR patterns (group 1 on the left) and labeled and unlabeled
commits with the keyword refactor (group 2 on the right). The first observa-
tion we can draw is that Replace Attribute stands as most labeled refactoring
with a percentage of 35.9% for group 2, while the difference between operations
percentages, in group 1, is not significant, with Move Class having the highest
percentage of 48.95%. Another observation is that Pull Up Attribute turns out
to be the most unlabeled refactoring with a score of 54.91% for group 1, whereas
Rename Attribute tends to be the most unlabeled refactoring for group 2. This
result is consistent with one of the previous studies stating that renames are
rarely labeled, as they detected explicit documentation of renames in less than
1% of their dataset (Arnaoudova et al., 2014).

By comparing the different commits that are labeled and unlabeled with
SAR patterns, we observe a significant number of labeled refactoring commits
for each refactoring operation supported by the tool Refactoring Miner (p-value
= 0.0005). This implies that there is a strong trend of developers in using these
phrases in refactoring commits. The results for commits labeled and unlabeled
“refactor” with a p-value = 0.0005 engender an opposite observation, which
corroborates the expected outcome of Murphy-Hill et al.’s hypothesis. Thus, the
use of “refactor”is not a great indication of refactoring activities. The difference
between the two tests indicates the usefulness of the list of SAR patterns that
we identified.

It is to note that we did not perform any correspondence between the men-
tioned patterns and the corresponding refactoring operation(s). In other terms,

40

Change Package
Extract And Move Method
Extract Class
Extract Interface
Extract Method
Extract Subclass
Extract Superclass
Extract Variable
Inline Method
Inline Variable
Move And Rename Attribute
Move And Rename Class
Move Attribute
Move Class
Move Method
Move Source Folder
Parameterize Variable
Pull Up Attribute
Pull Up Method
Push Down Attribute
Push Down Method
Rename Attribute
Rename Class
Rename Method
Rename Parameter
Rename Variable
Replace Attribute
eplace Variable With Attributd

100 80 60 40 20 0 0 20 40 60 80 100
Refactoring Percentage (%) Refactoring Percentage (%)
" Labeled SAR.© Unlabeled SAR | | Labeled refactor Unlabeled refactor |

Figure 17: Distribution of refactoring operations for commits labeled and unlabeled SAR (left side)
and commits labeled and unlabeled refactor (right side).

41

if an operation is explicitly mentioned in a commit message, we have not checked
whether it was among the applied refactoring at the source code level. We op-
ted for such verification to be outside of the scope of the current study, while it
would be an interesting direction we can consider in our future investigations.

Summary. In consistency with the previous findings of (Murphy-Hill
et al., 2008), our findings confirm that developers do not exclusively rely
on the pattern “refactor” to describe refactoring activities. However, we
found that developers do document their refactoring activities in commit
messages with a variety of patterns that we identified in this study.

6. Discussions and Implications

In this section, we want to further discuss our findings and outline their
implications on future research directions in refactoring.

Developer’s Motivation behind Refactoring. One of main findings
show that developers are not only driven by design improvement and code smell
removal when taking decisions about refactoring. According to our RQ1 find-
ings, fixing bugs, and feature implementation play a major role in triggering
various refactoring activities. Traditional refactoring tools are still leading their
refactoring effort based on how it is needed to cope with design antipatterns,
which is acceptable to the extent where it is indeed the developer’s intention,
otherwise, they have not been designed or tested in different circumstances.
So, an interesting future direction is to study how we can augment existing
refactoring tools to better frame the developer’s perception of refactoring, and
then their corresponding objectives to achieve (reducing coupling, improve code
readability, renaming to remove ambiguity etc.). This will automatically induce
the search for more adequate refactoring operations, to achieve each objective.

Refactoring Support. Classifying refactoring commits by message is an
important activity because it allows us to contextualize these refactoring activ-
ities with information about the development activities that led to them. This
contextualization is critical and will augment our ability to study the reasoning
behind decisions to apply different types of refactoring. This will lead to bet-
ter support for informing developers of when to apply a refactoring and what
refactoring to apply. For example, recent studies try to understand how the
development context which motivated a rename refactoring affects the way the
words in a name changes when the refactoring is applied (Peruma et al., 2018,
2019b) for the purpose of modeling, more formally, how names evolve given
a development context. Without approaches such as the one proposed in this
work, these studies will be missing critical data. In particular, our findings
show that renames are dominant, for test files, across all categories (Table 7).
This indicates that renames occur in many, many different development con-
texts and, with our tool, studies such as these could be extended to study how
names change given each individual context instead of assuming they are indis-
tinguishable. This extends to other work as well; there is a critical need for

42

assisting developers in determining when to apply a refactoring; what refactor-
ing to apply; and in some cases how to apply the refactoring (Peruma et al.,
2018, 2019b; Arnaoudova et al., 2013, 2014; Liu et al., 2013).

Additionally, there is a demonstrated need to further automate refactoring
support. Prior research by (Kim et al., 2014) has investigated the way de-
velopers interact with IDEs when applying refactorings. (Negara et al., 2013;
Murphy-Hill & Black, 2008) have shown that refactorings are frequently applied
manually instead of automatically. This indicates that current support for re-
factoring is not enough; the benefit of automated application is outweighed by
the cost, which other researchers have highlighted (Newman et al., 2018; Li &
Thompson, 2012). Finally, we theorize that it will be beneficial to study how
refactorings are applied to solve different types of problems (i.e., in this case,
different maintenance tasks). This is supported by research that isolates cer-
tain types of code or code changes, such as isolating test from production code
(Tufano et al., 2016). Like this example, future research must understand the
context surrounding refactorings by identifying the reasoning (i.e., development
context) behind refactoring operations. The results from this work directly im-
pact research in this area by providing a methodology to categorize refactoring
commit messages and providing an exploratory discussion of the motivation be-
hind different types of refactorings. We plan to explore this question in greater
detail in future research.

Refactoring Documentation. One of the main purposes of the automatic
detection of refactoring is to better understand how developers cope with their
software decay by extracting any refactoring strategies that can be associated
with removing code smells (Tsantalis et al., 2008; Bavota et al., 2013), or im-
proving the design structural measurements (Mkaouer et al., 2014; Bavota et al.,
2014). However, these techniques only analyze the changes at the source code
level, and provide the operations performed, without associating it with any
textual description, which may infer the rationale behind the refactoring applic-
ation. Our proposal, of textual patterns, is the first step towards complementing
the existing effort in detecting refactorings, by augmenting it with any descrip-
tion that was intended to describe the refactoring activity. As previously shown
in Tables 8, 9, and 11 developers tend to add a high-level description of their
refactoring activity, and occasionally mention their intention behind refactoring
(remove duplicate code, improve readability, etc.), along with mentioning the
refactoring operations they apply (type migration, inline methods, etc.). This
paper proposes, combined with the detection of refactoring operations, a solid
background for future empirical investigations. For instance, previous studies
have analyzed the impact of refactoring operations on structural metrics (Bavota
et al., 2015; Cedrim et al., 2016; Palomba et al., 2017). One of the main limita-
tions of these studies is the absence of any context related to the application of
refactorings, i.e., it is not clear whether developers did apply these refactoring
with the intention of improving design metrics. Therefore, it is important to
consider commits whose commit messages specifically express the refactoring for
the purpose of optimizing structural metrics, such as coupling, and complexity,
and so, many empirical studies can be revisited with a more adequate dataset.

43

Furthermore, our study provides software practitioners with a catalog of
common refactoring documentation patterns (cf., Tables 8, 9, and 11) which
would represent concrete examples of common ways to document refactoring
activities in commit messages. This catalog of SAR patterns can encourage
developers to follow best documentation patterns and to further extend these
patterns to improve refactoring changes documentation in particular and code
changes in general. Indeed, reliable and accurate documentation is always of
crucial importance in any software project. The presence of documentation for
low level changes such as refactoring operations and commit changes helps to
keep track of all aspects of software development and it improves on the quality
of the end product. Its main focuses are learning and knowledge transfer to
other developers.

Another important research direction that requires further attention con-
cerns the documentation of refactoring. It has been known that there is a
general shortage of refactoring documentation, as developers typically focus on
describing their functional updates and bug patches. Also, there is no con-
sensus about how refactoring should be documented, which makes it subjective
and developer specific. Moreover, the fine-grained description of refactoring can
be time consuming, as typical description should contain indication about the
operations performed, refactored code elements, and a hint about the intention
behind the refactoring. In addition, the developer specification can be ambigu-
ous as it reflects the developer’s understanding of what has been improved in the
source code, which can be different in reality, as the developer may not neces-
sarily adequately estimate the refactoring impact on the quality improvement.
Therefore, our model can help to build a corpus of refactoring descriptions, and
so many studies can better analyze the typical syntax used by developers in
order to develop better natural language models to improve it, and potentially
automate it, just like existing studies related to other types of code changes
(Buse & Weimer, 2010; Linares-Vasquez et al., 2015; Liu et al., 2018).

Refactoring and Developer’s Experience. While refactoring is being
applied by various developers (AlOmar et al., 2020b), it would be interesting
to evaluate their refactoring practices. We would like to capture and better
understand the code refactoring best practices and learn from these developers
so that we can recommend them for other developers. Previous work (AlOmar
et al., 2019a) performed an exploratory study on how developers document their
refactoring activities in commit messages, this activity is called Self-Affirmed
Refactoring (SAR). They found that developers tend to use a variety of textual
patterns to document their refactoring activities, such as “refactor”, “move”
and “extract”. In follow-up work, (AlOmar et al., 2019b) identified which qual-
ity models are more in-line with the developer’s vision of quality optimization
when they explicitly mention in the commit messages that they refactor to im-
prove these quality attributes. Since we noticed that various developers are
responsible for performing refactorings, one potential research direction is to in-
vestigate which developers are responsible for the introduction of SARs in order
to examine whether experience plays a role in the introduction of SARs or not.
Another potential research direction is to study if developer experience is one of

44

the factors that might contribute to the significant improvement of the quality
metrics that are aligned with developer description in the commit message. In
other words, we would like to evaluate the top contributors refactoring practice
against all the rest of refactoring contributors by assessing their contributions
on the main internal quality attributes improvement (e.g., cohesion, coupling,
and complexity).

Refactoring Automation. There have been various studies targeting the
automation of refactoring (Harman & Tratt, 2007; Simons et al., 2015; Mkaouer
et al., 2015; Lin et al., 2016; Mkaouer et al., 2016). They mainly rely on the
correspondence between the impact of refactoring on the source code to guide the
generation of code changes that will potentially improve it. Therefore, existing
studies heavily rely on structural measurements to guide the search for these
code changes, and so, improving quality attributes and removing anti-patterns
were the main drivers for automated refactoring. Clearly, the challenge facing
such approaches is applicability. Performing large-scale code changes, impacting
various components in the source code, may be catchy for its quality, but it also
drastically disturbs the existing software design. Although developers are in
favor for optimizing the quality of their software, they still want to recognize
their own design.

7. Threats to Validity

We identify, in this section, potential threats to the validity of our approach
and our experiments.

Internal Validity. In this paper, we analyzed only the 28 refactoring oper-
ations detected by Refactoring Miner, which can be viewed as a validity threat
because the tool did not consider all refactoring types mentioned by (Fowler
et al., 1999). However, in a previous study, (Murphy-Hill et al., 2012) reported
that these types are amongst the most common refactoring types. Moreover, we
did not perform a manual validation of refactoring types detected by Refactoring
Miner to assess its accuracy, so our study is mainly threatened by the accuracy
of the detection tool. Yet, (Tsantalis et al., 2018) report that Refactoring Miner
has a precision of 98% and a recall of 87% which significantly outperforms the
previous state-of-the-art tools, which gives us confidence in using the tool.

Further, the set of commit messages used in this study may represent a threat
to validity, because not all of the messages it may indicate refactoring activities.
To mitigate this risk, we manually inspected a subset of change messages and
ensured that projects selected are well-commented and use meaningful commit
messages. Additionally, since extracting refactoring patterns heavily depends
on the content of commit messages, our results may be impacted by the quant-
ity and quality of commits in a software project. To alleviate this threat, we
examined multiple projects. Moreover, our manual analysis is a time consuming
and an error prone task, which we tried to mitigate by focusing mainly on com-
mits known to contain refactorings. Also, since our keywords largely overlap
with keywords used in previous studies, this raised our confidence about the
found set but does not guarantee that we did not miss any patterns.

45

Another threat relates to the detection of JUnit test files. The task of
associating a unit test file with its production file was an automated process
(performed based on filename/string matching associations). If developers de-
viate from JUnit guidelines on file naming, false positives may be triggered.
However, our manual verification of random associations and the extensiveness
of our dataset acts as a means of countering this risk.

External Validity. The first threat is that the analysis was restricted to
only open source, Java-based, Git-based repositories. However, we were still
able to analyze 800 projects that are highly varied in size, contributors, number
of commits and refactorings. Another threat concerns the generalization of the
identified recurring patterns in the refactoring commits. Our choice of patterns
may have an impact on our findings and may not generalize to other open
source or commercial projects since the identified refactoring patterns may be
different for another set of projects (e.g., outside the Java developers community
or projects that have a low number of or no commit messages). Consequently,
we cannot claim that the results of refactoring motivation (see Figure 3) can
be generalized to other programming languages in which different refactoring
tools have been used, projects with a significantly larger number of commits,
and different software systems where the need for improving the design might
be less important.

Construct validity. The classification of refactorings heavily relies on com-
mit messages. Even when projects are well-commented, they might not contain
SAR, as developers might not document refactoring activities in the commit
messages. We mitigate this risk by choosing projects that are appropriate for
our analysis. Another potential threat relates to manual classification. Since
the manual classification of training commit messages is a human intensive task
and it is subject to personal bias, we mitigate manual classification related
errors by discarding short and ambiguous commits from our dataset and repla-
cing them with other commits. Another important limitation concerns the size
of the dataset used for training and evaluation. The size of the used dataset
was determined similarly to previous commit classification studies, but we are
not certain that this number is optimal for our problem. It is better to use a
systematic technique for choosing the size of the evaluation set.

To mitigate the impact of different commit message styles and auto-generated
messages, we diversified the set of projects to extract commits from. We also
randomly sampled from the two commits clusters, those containing detected
refactorings and those without. An additional threat to validity relates to the
construction of our set of refactoring patterns. One pattern could be used as
an umbrella term for lots of different types of activity (e.g., “Cleaning” might
mean totally different things to different developers). However, we mitigate this
threat by focusing mainly on commits known to contain refactorings. Further,
recent studies (Yan et al., 2016; Kirinuki et al., 2014) indicate that commit
comments could capture more than one type of classification (i.e., mixed main-
tenance activity). In this work, we only consider single-labeled classification,
but this is an interesting direction that we can take into account in our future
work.

46

Conclusion Validity. The refactoring documentation research question
has been provided along with the corresponding hypotheses in order to aid in
drawing a conclusion. In this context, statistical tests have been used to test the
significance of the results gained. Specifically, we applied the Wilcoxon test and
the Mann-Whitney U test, widely used non-parametric tests, to test whether
refactoring patterns are significant or not, and to test the occurrence of refactor
in refactoring commits and non-refactoring commits, respectively. These tests
make no assumption that the data is normally distributed. Refactoring motiv-
ation categories and the way we grouped the refactoring concepts described in
previous papers and established relations between them pose a threat to the
conclusion validity of our study. If some information was not described in the
literature, it may affect our conclusions.

8. Conclusion

In this paper, we performed a large-scale empirical study to explore the mo-
tivation driving refactorings, the documentation of refactoring activities, and the
proportion of refactoring operations performed on production and test code. In
summary, the main conclusions are: (1) our study shows that code smell res-
olution is not the only driver for developers to factor out their code. Refact-
oring activity is also driven by changes in requirements, correction of errors,
structural design optimization and nonfunctional quality attributes enhance-
ment. Developers are using wide variety of refactoring operations to refactor
production and test files, and (2) a wide variety of textual patterns is used to
document refactoring activities in the commit messages. These patterns could
demonstrate developer perception of refactoring or report a specific refactoring
operation name following Fowler’s names.

As future work, we aim to investigate the effect of refactoring on both change
and fault-proneness in large-scale open source systems. Specifically, we would
like to investigate commit-labeled refactoring to determine if certain refactoring
motivations lead to decreased change and fault-prone classes. Further, since a
commit message could potentially belong to multiple categories (e.g., improve
the design and fix a bug), future research could usefully explore how to automat-
ically classify commits into this kind of hybrid categories. Another potentially
interesting future direction will be to conduct additional studies using other re-
factoring detection tools to analyze open source and industrial software projects
and compare findings. Since we observed that feature requests and fix bugs are
also refactoring motivators for developers, researchers are encouraged to adopt a
maintenance-related refactoring beside design-related refactoring when building
a refactoring tool in the future.

References

Abebe, S. L., Haiduc, S., Tonella, P., & Marcus, A. (2011). The effect of lexicon bad smells on
concept location in source code. In Source Code Analysis and Manipulation (SCAM), 2011
11th IEEE International Working Conference on (pp. 125-134). Ieee.

47

AlDallal, J., & Abdin, A. (2017). Empirical evaluation of the impact of object-oriented code re-
factoring on quality attributes: A systematic literature review. IEEE Transactions on Software
Engineering, PP, 1-1. doi:10.1109/TSE.2017.2658573.

Alkadhi, R., Nonnenmacher, M., Guzman, E., & Bruegge, B. (2018). How do developers discuss
rationale? In 2018 IEEE 25th International Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 357-369). IEEE.

AlOmar, E. A. (2020 (last accessed October 20, 2020)). self-affirmed-refactoring repository. URL:
https://smilevo.github.io/self-affirmed-refactoring/.

AlOmar, E. A., Mkaouer, M. W., & Ouni, A. (2019a). Can refactoring be self-affirmed? an ex-
ploratory study on how developers document their refactoring activities in commit messages. In
Proceedings of the 3nd International Workshop on Refactoring-accepted. IEEE.

AlOmar, E. A., Mkaouer, M. W., & Ouni, A. (2020a). Toward the automatic classification of
self-affirmed refactoring. Journal of Systems and Software, (p. 110821).

AlOmar, E. A., Mkaouer, M. W., Ouni, A., & Kessentini, M. (2019b). On the impact of refactoring
on the relationship between quality attributes and design metrics. In 2019 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM) (pp. 1-11).
IEEE.

AlOmar, E. A., Peruma, A., Newman, C. D., Mkaouer, M. W., & Ouni, A. (2020b). On the
relationship between developer experience and refactoring: An exploratory study and preliminary
results. In Proceedings of the 4th International Workshop on Refactoring IWoR 2020. New
York, NY, USA: Association for Computing Machinery.

AlOmar, E. A., Rodriguez, P. T., , J., Bowman, Wang, T., Adepoju, B., Lopez, K., Newman,
C. D., Ouni, A., & Mkaouer, M. W. (2020c). How do developers refactor code to improve code
reusability? In International Conference on Software and Systems Reuse. Springer.

Alshayeb, M. (2009). Empirical investigation of refactoring effect on software quality. Information
and software technology, 51, 1319-1326.

Amor, J., Robles, G., Gonzalez-Barahona, J., Navarro Gsyc, A., Carlos, J., & Madrid, S. (2006).
Discriminating development activities in versioning systems: A case study.

Arnaoudova, V., Di Penta, M., Antoniol, G., & Gueheneuc, Y.-G. (2013). A new family of software
anti-patterns: Linguistic anti-patterns. In Software Maintenance and Reengineering (CSMR),
2018 17th European Conference on (pp. 187-196). IEEE.

Arnaoudova, V., Eshkevari, L. M., Di Penta, M., Oliveto, R., Antoniol, G., & Gueheneuc, Y.-G.
(2014). Repent: Analyzing the nature of identifier renamings. IEEE Transactions on Software
Engineering, 40, 502-532.

Barry, B. et al. (1981). Software engineering economics. New York, 197.

Bavota, G., De Lucia, A., Di Penta, M., Oliveto, R., & Palomba, F. (2015). An experimental
investigation on the innate relationship between quality and refactoring. Journal of Systems
and Software, 107, 1-14.

Bavota, G., Dit, B., Oliveto, R., Di Penta, M., Poshyvanyk, D., & De Lucia, A. (2013). An
empirical study on the developers’ perception of software coupling. In Proceedings of the 2013
International Conference on Software Engineering (pp. 692-701). IEEE Press.

Bavota, G., Panichella, S., Tsantalis, N., Di Penta, M., Oliveto, R., & Canfora, G. (2014). Re-
commending refactorings based on team co-maintenance patterns. In Proceedings of the 29th
ACM/IEEE international conference on Automated software engineering (pp. 337-342). ACM.

Bird, S. (2002). Nltk: The natural language toolkit. ArXiv, cs.CL/0205028.

Boehm, B. W. (2002). Software pioneers. chapter Software Engineering Economics. (pp. 641-686).
Berlin, Heidelberg: Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=944331.944370.

Breiman, L. (2017). Classification and Regression Trees. CRC Press.

48

http://dx.doi.org/10.1109/TSE.2017.2658573
https://smilevo.github.io/self-affirmed-refactoring/
http://dl.acm.org/citation.cfm?id=944331.944370

Brownlee, J. (2018). Statistical Methods for Machine Learning: Discover how to Transform Data
into Knowledge with Python. Machine Learning Mastery. URL: https://books.google.com/
books?id=386nDwAAQBAJ.

Buse, R. P., & Weimer, W. (2010). Automatically documenting program changes. In ASE (pp.
33-42). volume 10.

Cedrim, D., Sousa, L., Garcia, A., & Gheyi, R. (2016). Does refactoring improve software structural
quality? a longitudinal study of 25 projects. In Proceedings of the 30th Brazilian Symposium
on Software Engineering (pp. 73-82). ACM.

Chang, C.-C., & Lin, C.-J. (2011). Libsvm: A library for support vector machines, . 2. URL:
https://doi.org/10.1145/1961189.1961199. doi:10.1145/1961189.1961199.

Dangeti, P. (2017). Statistics for Machine Learning. Packt Publishing.

Deng, N., Tian, Y., & Zhang, C. (2012). Support Vector Machines: Optimization Based Theory,
Algorithms, and Extensions. Chapman & Hall/CRC Data Mining and Knowledge Discovery
Series. Taylor & Francis.

Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learn-
ing algorithms. Neural computation, 10, 1895-1923.

Dig, D., Comertoglu, C., Marinov, D., & Johnson, R. (2006). Automated detection of refactor-
ings in evolving components. In D. Thomas (Ed.), ECOOP 2006 — Object-Oriented Program-
ming: 20th European Conference, Nantes, France, July 3-7, 2006. Proceedings (pp. 404-428).
Berlin, Heidelberg: Springer Berlin Heidelberg. URL: https://doi.org/10.1007/11785477_24.
doi:10.1007/11785477_24.

Erlikh, L. (2000). Leveraging legacy system dollars for e-business. IT professional, 2, 17-23.

Fowler, M., Beck, K., Brant, J., Opdyke, W., & Roberts, d. (1999). Refactoring: Improving the
Design of Existing Code. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.
URL: http://dl.acm.org/citation.cfm?id=311424.

Harman, M., & Tratt, L. (2007). Pareto optimal search based refactoring at the design level.
In Proceedings of the 9th annual conference on Genetic and evolutionary computation (pp.
1106-1113). ACM.

Hattori, L. P., & Lanza, M. (2008). On the nature of commits. In 2008 23rd IEEE/ACM
International Conference on Automated Software Engineering - Workshops (pp. 63-71).
doi:10.1109/ASEW. 2008 .4686322.

Hindle, A., Ernst, N. A., Godfrey, M. W., & Mylopoulos, J. (2011). Automated topic naming
to support cross-project analysis of software maintenance activities. In Proceedings of the 8th
Working Conference on Mining Software Repositories MSR ’11 (pp. 163-172). New York, NY,
USA: ACM. URL: http://doi.acm.org/10.1145/1985441.1985466. doi:10.1145/1985441.1985466.

Hindle, A., German, D. M., Godfrey, M. W., & Holt, R. C. (2009). Automatic classication of large
changes into maintenance categories. In 2009 IEEE 17th International Conference on Program
Comprehension (pp. 30-39). doi:10.1109/ICPC.2009.5090025.

Hindle, A., German, D. M., & Holt, R. (2008). What do large commits tell us?: A taxonomical
study of large commits. In Proceedings of the 2008 International Working Conference on
Mining Software Repositories MSR ’08 (pp. 99-108). New York, NY, USA: ACM. URL: http:
//doi.acm.org/10.1145/1370750.1370773. doi:10.1145/1370750.1370773.

Honel, S., Ericsson, M., Lowe, W., & Wingkvist, A. (2019). Importance and aptitude of source code
density for commit classification into maintenance activities. In The 19th IEEE International
Conference on Software Quality, Reliability, and Security.

Jurafsky, D., & Martin, J. H. (2019). Speech and language processing: An introduction to natural
language processing, computational linguistics, and speech recognition. Prentic e Hall, .

Kim, M., Gee, M., Loh, A., & Rachatasumrit, N. (2010). Ref-finder: a refactoring reconstruction tool

based on logic query templates. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering (pp. 371-372). ACM.

49

https://books.google.com/books?id=386nDwAAQBAJ
https://books.google.com/books?id=386nDwAAQBAJ
https://doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/1961189.1961199
https://doi.org/10.1007/11785477_24
http://dx.doi.org/10.1007/11785477_24
http://dl.acm.org/citation.cfm?id=311424
http://dx.doi.org/10.1109/ASEW.2008.4686322
http://doi.acm.org/10.1145/1985441.1985466
http://dx.doi.org/10.1145/1985441.1985466
http://dx.doi.org/10.1109/ICPC.2009.5090025
http://doi.acm.org/10.1145/1370750.1370773
http://doi.acm.org/10.1145/1370750.1370773
http://dx.doi.org/10.1145/1370750.1370773

Kim, M., Zimmermann, T., & Nagappan, N. (2014). An empirical study of refactoring challenges
and benefits at microsoft. IEEE Transactions on Software Engineering, 40, 633-649. doi:10.
1109/TSE.2014.2318734.

Kirinuki, H., Higo, Y., Hotta, K., & Kusumoto, S. (2014). Hey! are you committing tangled changes?
In Proceedings of the 22Nd International Conference on Program Comprehension ICPC 2014
(pp. 262-265). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/2597008.2597798.
doi:10.1145/2597008.2597798.

Kochhar, P. S., Thung, F., & Lo, D. (2014). Automatic fine-grained issue report reclassification. In
Engineering of Complex Computer Systems (ICECCS), 2014 19th International Conference
on (pp. 126-135). IEEE.

Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., & Brown, D. (2019).
Text classification algorithms: A survey. Information, 10, 150.

Lane, H., Hapke, H., & Howard, C. (2019). Natural Language Processing in Action: Understand-
ing, Analyzing, and Generating Text with Python. Manning Publications Company.

Lanza, M., & Marinescu, R. (2007). Object-oriented metrics in practice: using software metrics
to characterize, evaluate, and improve the design of object-oriented systems. Springer Science
& Business Media.

Le, T.-D. B., Linares-Vasquez, M., Lo, D., & Poshyvanyk, D. (2015). Reclinker: Automated link-
ing of issue reports and commits leveraging rich contextual information. In 2015 IEEE 23rd
International Conference on Program Comprehension (pp. 36-47). IEEE.

Levin, S., & Yehudai, A. (2017). Boosting automatic commit classification into maintenance
activities by utilizing source code changes. In Proceedings of the 13th International Con-
ference on Predictive Models and Data Analytics in Software Engineering PROMISE (pp.
97-106). New York, NY, USA: ACM. URL: http://doi.acm.org/10.1145/3127005.3127016.
doi:10.1145/3127005.3127016.

Li, H., & Thompson, S. (2012). Let’s make refactoring tools user-extensible! In Proceedings of the
Fifth Workshop on Refactoring Tools WRT ’12 (pp. 32-39). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/2328876.2328881. doi:10.1145/2328876.2328881.

Lin, S., Ma, Y., & Chen, J. (2013). Empirical evidence on developer’s commit activity for open-
source software projects. In SEKE (pp. 455-460). volume 13.

Lin, Y., Peng, X., Cai, Y., Dig, D., Zheng, D., & Zhao, W. (2016). Interactive and guided archi-
tectural refactoring with search-based recommendation. In Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering (pp. 535-546).
ACM.

Linares-Vasquez, M., Cortés-Coy, L. F., Aponte, J., & Poshyvanyk, D. (2015). Changescribe: A tool
for automatically generating commit messages. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering (pp. 709-712). IEEE volume 2.

Liu, H., Guo, X., & Shao, W. (2013). Monitor-based instant software refactoring. IEEE Transac-
tions on Software Engineering, 39, 1112-1126. doi:10.1109/TSE.2013.4.

Liu, Z., Xia, X., Hassan, A. E., Lo, D., Xing, Z., & Wang, X. (2018). Neural-machine-translation-
based commit message generation: how far are we? In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering (pp. 373-384). ACM.

Manning, C., Raghavan, P., & Schiitze, H. (2008). Introduction to Information Retrieval. Cam-
bridge University Press.

Mauczka, A., Brosch, F., Schanes, C., & Grechenig, T. (2015). Dataset of developer-labeled commit
messages. In 2015 IEEE/ACM 12th Working Conference on Mining Software Repositories
(pp. 490-493). doi:10.1109/MSR.2015.71.

Mauczka, A., Huber, M., Schanes, C., Schramm, W., Bernhart, M., & Grechenig, T. (2012). Tracing
your maintenance work — a cross-project validation of an automated classification dictionary for
commit messages. In J. de Lara, & A. Zisman (Eds.), Fundamental Approaches to Software
Engineering: 15th International Conference, FASE 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings (pp. 301-315). Berlin, Heidelberg: Springer Berlin Heidelberg. URL:
https://doi.org/10.1007/978-3-642-28872-2_21. doi:10.1007/978-3-642-28872-2_21.

50

http://dx.doi.org/10.1109/TSE.2014.2318734
http://dx.doi.org/10.1109/TSE.2014.2318734
http://doi.acm.org/10.1145/2597008.2597798
http://dx.doi.org/10.1145/2597008.2597798
http://doi.acm.org/10.1145/3127005.3127016
http://dx.doi.org/10.1145/3127005.3127016
http://doi.acm.org/10.1145/2328876.2328881
http://dx.doi.org/10.1145/2328876.2328881
http://dx.doi.org/10.1109/TSE.2013.4
http://dx.doi.org/10.1109/MSR.2015.71
https://doi.org/10.1007/978-3-642-28872-2_21
http://dx.doi.org/10.1007/978-3-642-28872-2_21

McBurney, P. W., Jiang, S., Kessentini, M., Kraft, N. A., Armaly, A., Mkaouer, M. W., & Mec-
Millan, C. (2017). Towards prioritizing documentation effort. IEEE Transactions on Software
Engineering, 44, 897-913.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Cinnéide, M. O., & Deb, K. (2016). On the use of many
quality attributes for software refactoring: a many-objective search-based software engineering
approach. Empirical Software Engineering, 21, 2503-2545.

Mkaouer, M. W., Kessentini, M., Bechikh, S., Deb, K., & O Cinnéide, M. (2014). Recommendation
system for software refactoring using innovization and interactive dynamic optimization. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software engineering
(pp. 331-336). ACM.

Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh, S., Deb, K., & Ouni, A. (2015).
Many-objective software remodularization using nsga-iii. ACM Transactions on Software En-
gineering and Methodology (TOSEM), 24, 17.

Moser, R., Abrahamsson, P., Pedrycz, W., Sillitti, A., & Succi, G. (2007). A case study on the
impact of refactoring on quality and productivity in an agile team. In Balancing Agility and
Formalism in Software Engineering (pp. 252-266). Springer.

Moser, R., Sillitti, A., Abrahamsson, P., & Succi, G. (2006). Does refactoring improve reusability?
In International Conference on Software Reuse (pp. 287-297). Springer.

Munaiah, N., Kroh, S., Cabrey, C., & Nagappan, M. (2017). Curating github for engineered software
projects. Empirical Software Engineering, 22, 3219-3253.

Murphy-Hill, E., & Black, A. P. (2008). Refactoring tools: Fitness for purpose. IEEE Software,
25, 38—44. doi:10.1109/MS.2008.123.

Murphy-Hill, E., Black, A. P., Dig, D., & Parnin, C. (2008). Gathering refactoring data: a com-
parison of four methods. In Proceedings of the 2nd Workshop on Refactoring Tools (p. 7).
ACM.

Murphy-Hill, E., Parnin, C., & Black, A. P. (2012). How we refactor, and how we know it. IEEE
Transactions on Software Engineering, 38, 5-18. doi:10.1109/TSE.2011.41.

Negara, S., Chen, N., Vakilian, M., Johnson, R. E., & Dig, D. (2013). A comparative study of
manual and automated refactorings. In G. Castagna (Ed.), ECOOP 2013 — Object-Oriented
Programming (pp. 552-576). Berlin, Heidelberg: Springer Berlin Heidelberg.

Newman, C. D., Mkaouer, M. W., Collard, M. L., & Maletic, J. I. (2018). A study on developer
perception of transformation languages for refactoring. In Proceedings of the 2nd International
Workshop on Refactoring (pp. 34-41). ACM.

Paixao, M., Uchba, A., Bibiano, A. C., Oliveira, D., Garcia, A., Krinke, J., & Arvonio, E. (2020).
Behind the intents: An in-depth empirical study on software refactoring in modern code review.
17th MSR, .

Palomba, F., Zaidman, A., Oliveto, R., & De Lucia, A. (2017). An exploratory study on the rela-
tionship between changes and refactoring. In 2017 IEEE/ACM 25th International Conference
on Program Comprehension (ICPC) (pp. 176-185). IEEE.

Pantiuchina, J., Zampetti, F., Scalabrino, S., Piantadosi, V., Oliveto, R., Bavota, G., & Di Penta,
M. (2020). Why developers refactor source code: A mining-based study, .

Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W., Ouni, A., & Palomba, F. (2019a). On
the distribution of test smells in open source android applications: An exploratory study. In
Proceedings of the 29th Annual International Conference on Computer Science and Software
Engineering CASCON ’19 (p. 193-202). USA: IBM Corp.

Peruma, A., Mkaouer, M. W., Decker, M. J., & Newman, C. D. (2018). An empirical investigation of
how and why developers rename identifiers. In Proceedings of the 2nd International Workshop
on Refactoring (pp. 26-33). ACM.

Peruma, A., Mkaouer, M. W., Decker, M. J., & Newman, C. D. (2019b). Contextualizing rename

decisions using refactorings and commit messages. In Proceedings of the 19th IEEE International
Working Conference on Source Code Analysis and Manipulation, IEEE.

ol

http://dx.doi.org/10.1109/MS.2008.123
http://dx.doi.org/10.1109/TSE.2011.41

Potdar, A., & Shihab, E. (2014). An exploratory study on self-admitted technical debt. In Software
Maintenance and Evolution (ICSME), 2014 IEEE International Conference on (pp. 91-100).
IEEE.

Ratzinger, J. (2007). sPACE: Software Project Assessment in the Course of FEvolution.
Ph.D. thesis. URL: http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_
phd-thesis_space.pdf.

Ratzinger, J., Sigmund, T., & Gall, H. C. (2008). On the relation of refactorings and software defect
prediction. In Proceedings of the 2008 International Working Conference on Mining Software
Repositories MSR 08 (pp. 35-38). New York, NY, USA: ACM. URL: http://doi.acm.org/10.
1145/1370750.1370759. doi:10.1145/1370750.1370759.

Silva, D., Tsantalis, N., & Valente, M. T. (2016). Why we refactor? confessions of github contrib-
utors. In Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Found-
ations of Software Engineering FSE 2016 (pp. 858-870). New York, NY, USA: ACM. URL:
http://doi.acm.org/10.1145/2950290.2950305. doi:10.1145/2950290.2950305.

Simons, C., Singer, J., & White, D. R. (2015). Search-based refactoring: Metrics are not enough.
In International Symposium on Search Based Software Engineering (pp. 47-61). Springer.

Singh, R., & Mangat, N. (2013). Elements of Survey Sampling. Texts in the Mathematical Sciences.
Springer Netherlands.

SKlearn (2007a). 1.12. multiclass and multilabel algorithms — scikit-learn 0.23.2 documentation.
https://scikit-1learn.org/stable/modules/multiclass.html.

SKlearn (2007b). sklearn.svm.svc scikit-learn 0.23.2 documentation. https://scikit-1learn.org/
stable/modules/generated/sklearn.svm.SVC.html#sklear.svm.SVC.

Soares, G., Cavalcanti, D., Gheyi, R., Massoni, T., Serey, D., & Cornélio, M. (2009). Saferefactor-
tool for checking refactoring safety. Tools Session at SBES, (pp. 49-54).

Soares, G., Gheyi, R., Murphy-Hill, E., & Johnson, B. (2013). Comparing approaches to analyze
refactoring activity on software repositories. Journal of Systems and Software, 86, 1006-1022.

Stroggylos, K., & Spinellis, D. (2007). Refactoring—does it improve software quality? In Software
Quality, 2007. WoSQ’07: ICSE Workshops 2007. Fifth International Workshop on (pp. 10—
10). IEEE.

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2Nd International
Conference on Software Engineering ICSE ’76 (pp. 492-497). Los Alamitos, CA, USA: IEEE
Computer Society Press. URL: http://dl.acm.org/citation.cfm?id=800253.807723.

Szdéke, G., Antal, G., Nagy, C., Ferenc, R., & Gyiméthy, T. (2017). Empirical study on refact-
oring large-scale industrial systems and its effects on maintainability. Journal of Systems and
Software, 129, 107-126.

Szdke, G., Nagy, C., Ferenc, R., & Gyimothy, T. (2014). A case study of refactoring large-scale
industrial systems to efficiently improve source code quality. In International Conference on
Computational Science and Its Applications (pp. 524-540). Springer.

Tan, A.-H. et al. (1999). Text mining: The state of the art and the challenges. In Proceedings of
the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced Databases (pp. 65-70).
sn volume 8.

Tan, C.-M., Wang, Y.-F., & Lee, C.-D. (2002). The use of bigrams to enhance text categorization.
Information processing & management, 38, 529-546.

Tsantalis, N., Chaikalis, T., & Chatzigeorgiou, A. (2008). Jdeodorant: Identification and removal
of type-checking bad smells. In 2008 12th European Conference on Software Maintenance and
Reengineering (pp. 329-331). IEEE.

Tsantalis, N., & Chatzigeorgiou, A. (2011). Identification of extract method refactoring opportun-
ities for the decomposition of methods. Journal of Systems and Software, 84, 1757-1782.

Tsantalis, N., Guana, V., Stroulia, E., & Hindle, A. (2013). A multidimensional empirical study on
refactoring activity. In Proceedings of the 2013 Conference of the Center for Advanced Studies
on Collaborative Research CASCON ’13 (pp. 132-146). Riverton, NJ, USA: IBM Corp. URL:
http://dl.acm.org/citation.cfm?id=2555523.2555539.

92

http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://www.infosys.tuwien.ac.at/Staff/ratzinger/publications/ratzinger_phd-thesis_space.pdf
http://doi.acm.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/1370750.1370759
http://dx.doi.org/10.1145/1370750.1370759
http://doi.acm.org/10.1145/2950290.2950305
http://dx.doi.org/10.1145/2950290.2950305
https://scikit-learn.org/stable/modules/multiclass.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklear.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklear.svm.SVC
http://dl.acm.org/citation.cfm?id=800253.807723
http://dl.acm.org/citation.cfm?id=2555523.2555539

Tsantalis, N., Mansouri, M., Eshkevari, L. M., Mazinanian, D., & Dig, D. (2018). Accurate and
efficient refactoring detection in commit history. In Proceedings of the 40th International Con-
ference on Software Engineering (pp. 483-494). ACM.

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., & Poshyvanyk, D.
(2016). An empirical investigation into the nature of test smells. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering ASE 2016 (pp. 4
15). New York, NY, USA: ACM. doi:10.1145/2970276.2970340.

Vassallo, C., Grano, G., Palomba, F., Gall, H. C., & Bacchelli, A. (2019). A large-scale empirical
exploration on refactoring activities in open source software projects. Science of Computer
Programming, 180, 1-15.

Wang, Y. (2009). What motivate software engineers to refactor source code? evidences from pro-
fessional developers. In 2009 IEEE International Conference on Software Maintenance (pp.
413-416). doi:10.1109/ICSM.2009.5306290.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Ezperiment-
ation in software engineering. Springer Science & Business Media.

Xia, X., Lo, D., Wang, X., & Yang, X. (2016). Collective personalized change classification with
multiobjective search. IEEE Transactions on Reliability, 65, 1810-1829.

Yan, M., Fu, Y., Zhang, X., Yang, D., Xu, L., & Kymer, J. D. (2016). Automatically classi-
fying software changes via discriminative topic model: Supporting multi-category and cross-
project. (pp. 296 — 308). volume 113. URL: http://www.sciencedirect.com/science/article/pii/
S016412121500285X. doi:https://doi.org/10.1016/j.jss.2015.12.019.

Zhang, D., Li, B., Li, Z., & Liang, P. (2018). A preliminary investigation of self-admitted refactorings
in open source software. doi:10.18293/SEKE2018-081.

Zheng, A., & Casari, A. (2018). Feature Engineering for Machine Learning: Principles and
Techniques for Data Scientists. O’Reilly Media.

33

http://dx.doi.org/10.1145/2970276.2970340
http://dx.doi.org/10.1109/ICSM.2009.5306290
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://www.sciencedirect.com/science/article/pii/S016412121500285X
http://dx.doi.org/https://doi.org/10.1016/j.jss.2015.12.019
http://dx.doi.org/10.18293/SEKE2018-081

	1 Introduction
	2 Self-Affirmed Refactoring
	3 Related Work
	3.1 Refactoring Documentation
	3.2 Refactoring Motivation

	4 Empirical Study Setup
	4.1 Phase 1: Data Collection
	4.2 Phase 2: Refactoring Detection
	4.3 Phase 3: Commits Classification
	4.3.1 Data Annotation
	4.3.2 Text Pre-Processing
	4.3.3 Training/Test Split
	4.3.4 Feature Extraction
	4.3.5 Model Training
	4.3.6 Model Tuning & Evaluation
	4.3.7 Optimized Model

	4.4 Phase 4: Unit Test File Detection
	4.5 Phase 5: Refactoring Patterns Extraction
	4.6 Phase 6: Manual Analysis

	5 Experimental Results
	5.1 RQ1: To what purposes developers refactor their code?
	5.2 Case Studies
	5.2.1 Case Study 1. Refactoring to improve internal quality attributes
	5.2.2 Case Study 2. Refactoring to remove code smells
	5.2.3 Case Study 3. Refactoring to improve external quality Attributes
	5.2.4 Case Study 4. Refactoring to add feature
	5.2.5 Case Study 5. Refactoring to fix bug

	5.3 RQ1.1: Do software developers perform different types of refactoring operations on test code and production code between categories?
	5.4 RQ2: What patterns do developers use to describe their refactoring activities?
	5.5 RQ2.1: Do commits containing the label Refactor indicate more refactoring activity than those without the label?

	6 Discussions and Implications
	7 Threats to Validity
	8 Conclusion

