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Abstract

Over the last decades, most approaches proposed for handwritten digit string recognition (HDSR)

have resorted to digit segmentation, which is dominated by heuristics, thereby imposing substantial

constraints on the final performance. Few of them have been based on segmentation-free strategies

where each pixel column has a potential cut location. Recently, segmentation-free strategies has added

another perspective to the problem, leading to promising results. However, these strategies still show

some limitations when dealing with a large number of touching digits. To bridge the resulting gap, in

this paper, we hypothesize that a string of digits can be approached as a sequence of objects. We thus

evaluate different end-to-end approaches to solve the HDSR problem, particularly in two verticals:

those based on object-detection (e.g., Yolo and RetinaNet) and those based on sequence-to-sequence

representation (CRNN).

The main contribution of this work lies in its provision of a comprehensive comparison with a

critical analysis of the above mentioned strategies on five benchmarks commonly used to assess HDSR,

including the challenging Touching Pair dataset, NIST SD19, and two real-world datasets (CAR and

CVL) proposed for the ICFHR 2014 competition on HDSR. Our results show that the Yolo model

compares favorably against segmentation-free models with the advantage of having a shorter pipeline

that minimizes the presence of heuristics-based models. It achieved a 97%, 96%, and 84% recognition

rate on the NIST-SD19, CAR, and CVL datasets, respectively.
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1. Introduction

Research in handwritten digit string recognition (HDSR) has picked up over the past few decades.

Most works covering the subject share a common strategy, which involves segmenting a string into

isolated digits and then applying a classifier capable of recognizing 10 classes (0...9). However, a

straightforward solution becomes unfeasible in the presence of noise, broken digits, and in the worst

case, touching digits. The impacts of the first two cases are reduced when some heuristic-based

pre-processing modules are applied. The challenge, however remains over touching digits.

To handle the presence of touching digits, algorithms based on contour and profile information

over segment the numerical string, generating components that may represent a digit or part of it.

After each resulting component is classified, a fusion method determines the best combination among

many hypotheses. The rationale behind over-segmentation is to maximize the chances of producing the

correct segmentation, even at a high post-processing computational cost. This strategy is illustrated in

Figure 1. Readers interested in different global and local approaches may refer to Casey & Lecolinet

(1996) and Ribas et al. (2013). These two works survey the state-of-the-art up to 2012, while the

approaches proposed by Gattal & Chibani (2015) and Gattal et al. (2017) were the last attempts

using the segmentation-based approach.

(a) (b)

Figure 1: (a) Segmentation paths for the string “56” and (b) Images that can be easily confused with digits “0” and
“1” (extracted from Vellasques et al. (2008)).

The alternative approaches resort to segmentation-free based methods (Choi & Oh (1999); Procter
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et al. (1998); Britto-Jr et al. (2003); Ciresan et al. (2012); Hochuli et al. (2018b)) in which the string

is recognized without the need for its a priori segmentation into isolated digits. This approach only

recently started gaining attention among the research community, prodded by advances in machine

learning thanks to deep learning techniques. While over-segmentation based methods demand certain

specific strategies to generate segmentation cuts, a robust isolated digit recognizer, as well as a strategy

for searching the best path among the generated segmentation hypothesis, the segmentation-free

demands a significant amount of training data. Both strategies are caracterized by common complexes

pipelines surrounded by handcrafted features, heuristic modules, and fusion rules to assembly task-

specific classifiers. The need for an end-to-end approach is therefore evident.

Contrary to the handwritten digit string recognition, the object recognition field is evolving very

rapidly. Each year, new algorithms surface and outperform the previous ones. Consequently, there

presently are a plethora of ready-to-use pre-trained deep learning end-to-end models available (Red-

mon et al. (2016); Redmon & Farhadi (2017); Girshick et al. (2014); Girshick (2015); Ren et al.

(2015); Lin et al. (2017)). In the same vein, sequence-to-sequence based models (Voigtlaender et al.

(2016); Shi et al. (2017); Dutta et al. (2018)) have produced end-to-end solutions for temporal series,

handwritten text, and text scene recognition. Besides high performance, these approaches contribute

significantly by providing a reduced number of handcrafted features and heuristics methods, producing

a straightforward pipeline as compared to related state-of-the-art works.

In discussing end-to-end approaches, one aspect that is very often highlighted in the literature

is the importance of context. Several recent computer vision approaches have demonstrated that

the use of context improves recognition performance (Divvala et al. (2009)). In the case of digit

string recognition, contextual information is more limited, but it nonetheless plays a vital role, as

demonstrated in Oliveira et al. (2002).

In this paper, we argue that a string of digits is a sequence of objects. Therefore, we restricted our

scope to the following neural network-based approaches: a) Yolo (Redmon et al. (2016); Redmon &

Farhadi (2017)), b) RetinaNet (Lin et al. (2017)) which is a state-of-the-art architectures for object

detection/recognition, and c) CRNN (Shi et al. (2017)), a sequence-to-sequence model composed of a

convolutional network combined with a long-short term memory (LSTM) (Schuster & Paliwal (1997)).

To complete our analysis, we also consider two approaches based on dynamic selection (Hochuli et al.

(2018a) and Aly & Mohamed (2019)). To deploy end-to-end approaches for this problem, we generate

a large dataset of strings mimicking real datasets, which provides contextual information for training.

Even though Zhan et al. (2017) applied CRNN for courtesy amount recognition on bank checks, we

provide an in-depth analysis of this model based on different challenging benchmarks, and compare it
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with other end-to-end approaches, such as those that are object detection-based.

The main contributions of this work lies in its provision of a comprehensive comparison, along with

a critical analysis of the end-to-end object recognition strategies, sequence-to-sequence approaches

used for handwritten words, and the recently published specific segmentation-free HDSR methods.

Our extensive experimental protocol include experiments on the following benchmarks: i) Touching

Pair (TP) dataset (Ribas et al. (2013)), which contains 79,464 touching digits and has been used a

benchmark for both heuristic-based and segmentation-free algorithms; ii) 570,000 images of strings

composed of 2-, 3-, and 4-touching digits; iii) NIST SD19, which is composed of 11,585 real-world

numerical strings, ranging from 2 to 6 digits, and iv) ICFHR 2014 competition (Diem et al. (2014)),

which contains real courtesy amount of bank checks and a significant variability of handwritten styles.

Our experimental analysis shows the limits of the proposed strategies for the HDSR. End-to-end

approaches, especially in the Yolo model, compare favorably against the segmentation-free methods

in Hochuli et al. (2018a,b) with the clear advantage of having a shorter pipeline that minimizes the

presence of heuristic-based modules, such as those pre-processing. On the other hand, bottlenecks as-

sociated with the laborious task of annotation of ground-truths when synthetic data are not applicable

and the lack of lexicon for digit strings is a matter of discussion.

This paper is organized as follows: Section 2 examines related works. The problem statement is

presented in Section 3. A detailed review of architectures is given in Section 4. In Section 5, we tackle

the approaches using the aforementioned datasets. Finally, Section 6 concludes this work.

2. Related Works

To avoid the burden of over-segmentation, some authors have devoted efforts towards segmentation-

free approaches. To the best of our knowledge, the first attempt in this direction was in the Space

Displacement Neural Network (SDNN) introduced by Matan et al. (1992). This strategy produces

a series of output vectors used by a post-processor to extract the best possible label sequence from

the vector sequence. As stated by LeCun et al. (1998), SDNN is an attractive technique but has not

managed to yield better results than heuristic over-segmentation methods.

The Hidden Markov Model (HMM), initially developed in the field of speech recognition, has

been used to build segmentation-free methods for handwriting recognition. Elms et al. (1998) first

applied HMM to word recognition and then adapted their work to classify handwritten digit strings

of unknown length (Procter et al. (1998)). Britto-Jr et al. (2003) revisited these two studies and

proposed a two-stage segmentation-free method using features extracted from lines and columns that

are processed by a set of HMMs. This framework achieved an average recognition rate of 91.0% in
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NIST-SD19.

Choi & Oh (1999) designed a framework based on 100 neural networks to avoid the segmentation

of touching pairs. Their approach achieves 95.3% of the recognition rate of touching pairs extracted

from NIST-SD19 (Grother (2016)). A decade later, Ciresan (2008) took advantage of Convolutional

Neural Networks by training two CNNs, one for isolated digits and one for touching pairs. The

authors combined these two networks to recognize 3-digit strings of the NIST database achieving a

93.4% recognition rate. At that time, strings with three digits connected were not considered.

Another decade later, advances in the field of machine learning, especially with the popularization

and better understanding of deep learning techniques (Bengio et al. (2013); Gu et al. (2017)), lead

to advances in different areas of handwriting recognition, such as digit recognition (Das et al. (2016);

Sabour et al. (2017)), character recognition (Xiao et al. (2017); Laroca et al. (2018, 2019)), word

recognition (Roy et al. (2016); Tamen et al. (2017); Y. Wua & Liu (2017)), script identification (Ziyong

et al. (2017)), and signature verification (Hafemann et al. (2017)). Leveraging this evolution, Hochuli

et al. (2018a) introduced a segmentation-free approach capable of recognizing digit strings of any size.

In their work, the authors combined four CNNs into a Dynamic Selection (DS) scheme (Britto et al.

(2014); Cruz et al. (2018)). The first CNN works as a high-level classifier that determines the size

of components, while the other three operate at a low-level by classifying 1-digit, 2-digit, and 3-digit

components, respectively. This approach achieved the state-of-the-art for NIST-SD19 and Touching

Pairs (Ribas et al. (2013)) datasets, surpassing segmentation-based and segmentation-free methods.

Despite this good performance, this approach has certain limitations. First, it is based on a hierar-

chical framework composed of heuristic-based pre-processing and four classifiers, which leads to various

error sources. Second, the strategy recognizes strings of any size but limited to 3-digit touching. To

mitigate some of these problems, Hochuli et al. (2018b) reduced the number of classifiers by intro-

ducing a single classifier (C1110) capable of classifying 1110 classes (0 . . . 9, 00 . . . 99, and 000 . . . 999).

Although these approaches achieve high recognition rates, they are still carried by complex pipelines,

and are surrounded by heuristic processes, pre-processing modules, and fusion strategies.

Recently, sequence-to-sequence architectures have been successfully applied to the tasks of hand-

written text recognition and scene text recognition (Voigtlaender et al. (2016); Shi et al. (2017);

Dutta et al. (2018)). Those solutions combine a Convolutional Neural Network (CNN) and a Re-

current Neural Network (RNN) to produce a sequence of probabilities interpreted by a transcription

layer. This pipeline produces an end-to-end trainable model which achieves state-of-art performance

of handwritten text recognition. However, it relies on a specific lexicon to mitigate confusions.

In object recognition, the main goal is to detect and recognize a set of predefined classes of objects
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in a given input image. Until the last decade, a classical approach used to be based on a sliding

window and its variants (Lampert et al. (2008); Felzenszwalb et al. (2008, 2010)). This approach uses

a classifier trained with handcrafted features at several spatial locations of the image. A limitation

is the high number of windows needed to search over multiple scales and aspect ratios. Moreover, in

this exhaustive search strategy, the computational cost increases very rapidity.

A breakthrough occurred due to the arising of large-scale datasets (Russakovsky et al. (2015); Lin

et al. (2014)), the popularization of GPUs and the popularization of deep networks in the ILSVRC

2012 (Russakovsky et al. (2015)). At that time, this field had recovered the attention of the research

community, and several deep learning-based methods were proposed to improve the state-of-art (Han

et al. (2018)).

One of the first successful approaches in this regard consisted of the Region-based Convolutional

Network (R-CNN) proposed by Girshick et al. (2014). This architecture begins by extracting region

proposals from the image space using the selective search algorithm (Uijlings et al. (2013)). Then, each

region is warped to a fixed size, and a CNN extracts features. Finally, an SVM classifier determines

a class, and a bounding-box regressor refines the locations. The main drawback of this strategy is

that it requires the extraction of features of each warped region proposal, which is computationally

expensive.

To overcome this obstacle, SPPnet (He et al. (2015)) and Fast-RCNN (Girshick (2015)) have been

proposed. These models predict region proposals direct over feature maps. A spatial pooling layer

is introduced to produce fixed-length representations (wrapping at feature level). Although these

strategies speed up the entire process, they still rely on a handcrafted region proposal method. To

overcome this limitation, He et al. (2017) introduced a region proposal network (RPN), which implicit

produces candidate locations. With this approach, the features produced by the last convolutional

layer are used on both (a) region proposal and (b) region classification tasks.

Despite their advatages, the above approaches must still handle a two-stage pipeline whenever a

region proposal strategy is needed, regardless of whether or not this need is implicit. A more ingenious

alternative was proposed by Redmon et al. (2016) with the Yolo architecture, in which the authors

proposed a regression-based approach that encapsulates all stages into a single network. With a single

forward pass, the network provides bounding box locations and class probabilities. An essential aspect

of Yolo is that it can encode the context and appearance from the neighborhood of objects, which is

an important feature for implicit digit segmentation. A year later, the RetinaNet (Lin et al. (2017))

was proposed and add a Feature Pyramid Network (FPN) to produce multi-scale features. Its novelty

lay in its introduction of an improved loss function known as focal loss to deal with class imbalance
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among background and foreground samples, which stifles the learning process as most image locations

contain no objects. Although the RetinaNet achieves the state-of-art in object detection benchmarks,

Yolo provides a good tradeoff between speed and accuracy.

3. Problem Statement

As stated earlier, traditional approaches address the problem by grouping foreground pixels into

connected components, and then classifying them. The main problem with in scenario is that when a

group of pixels is extracted from an image, only a local view of the problem is obtained, with a lot of

contextual information eliminated. Without this valuable information, the algorithms suffer from the

presence of noise and touching digits.

An end-to-end approach addresses this problem holistically. Deep learning models can learn the

interaction between digits in the context of an image, which contains noise, touching, overlapping,

and broken digits. Therefore, end-to-end approaches usually have short pipelines: the object detector

D receives as input an image I containing n digits (objects) and produces as output the location

(bounding boxes) and the digit classes [0, . . . , 9] associated with an estimation of the posterior prob-

ability. Considering that the input image I may contain n connected components, the most probable

interpretation of the written amount M is given by Equation 1. It is worth noting that the CRNN

approach does not provide bounding box locations because it does not implement bounding box re-

gressors. However, the digit’s location may be estimated by the receptive fields of the feature sequence

(Figure 5b).

P (M |I) =

n∏
i=1

P (ωj |xi) (1)

where ωi = {0 . . . 9} and xi stands for the digits candidates.

4. End-to-End Strategies for HDSR

In this section, we present all the approaches evaluated in our work. Section 4.1 describes the

dynamic selection approaches proposed by Hochuli et al. (2018a) and Aly & Mohamed (2019), which

represented a breakthrough in the HDSR field as they introduced a set of classifiers to produce a

segmentation-free solution for the HDSR field. Section 4.2 describes the object detection approaches

(Yolo and RetinaNet), while Section 4.3 describes the sequence-to-sequence framework (CRNN). The

training protocol used for all models is presented in Section 4.4.
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To ensure a fair evaluation, we used the source code provided by the authors whenever they were

available. The repositories for the approaches reported in Hochuli et al. (2018a), Redmon et al. (2016)

and Lin et al. (2017) are available in 1,2, and 3, respectively. In the case of the CRNN, the original

code4 was outdated, and therefore, we used a more recent version5. Aly & Mohamed (2019) did not

share their source code, and as a result, in this paper, we replicate the results reported by the authors.

4.1. Dynamic Selection Approaches

The dynamic selection framework proposed by Hochuli et al. (2018a) is depicted in Figure 2a.

Here, a digit string x is first classified by the Length classifier (L), which will assign a probability of

having 1, 2, 3, or 4 touching digits. The digit classification module comprises three classifiers (C1, C2,

C3) designed to discriminate 10 [0 . . . 9], 100 [00 . . . 99], and 1000 [000 . . . 999] classes. The classifiers

that will be used for a given image depend on the output of the Length Classifier. In accordance with

a fusion rule, more than one digit classifier may be invoked to mitigate any possible confusion.

(a) (b)

Figure 2: Dynamic Selection approaches proposed by (a) Hochuli et al. (2018a) and (b) Aly & Mohamed (2019).

The fusion rule used in this case considers the Top-2 outputs of L. Let Li(x) = pi(x) be the

probability of the input pattern, and let x be composed of i, (i = 1, 2, 3, 4) digits. Let C1(x) =

max
0≤i≤9

pi(x), C2(x) = max
0≤i≤99

pi(x), and C3(x) = max
0≤i≤999

pi(x) be the probability produced by 10-class,

100-class, and 1000-class classifiers, respectively, for the input pattern x. Let Top1(C) and Top2(C)

1https://github.com/andrehochuli/digitstringrecognition
2https://pjreddie.com/darknet/yolov2/
3https://github.com/facebookresearch/Detectron
4https://github.com/bgshih/crnn
5https://github.com/yalecyu/crnn.caffe
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be the functions that return the classes with first and second highest scores of a given classifier C,

respectively. Then, x is assigned to the class ω ∈ [0...1110], according to Equation 2,

P (ω|x)

 if L(x) < T, max(CTop1(L)(x),CTop2(L)(x))

otherwise, CTop1(L)(x)
(2)

where T is a threshold defined empirically on the validation set.

The authors justify dealing with 1, 2, and 3 touching digits because most of the touching occurs

between two digits and sometimes between three digits (Wang et al. (2000)). Strings composed of

more than three touching digits are rare in real problems, and where one occurs, it is rejected by L.

An alternative approach, depicted in Figure 2b, was proposed by Aly & Mohamed (2019). In

this case, the length classifier and the fusion rule were eliminated by a cascade architecture of PCA-

SVMNet classifiers, which is a combination of PCA-Convolutional layers used to extract features

and a linear multi-class SVM to predict classes. An extra class was introduced on each classifier as

rejection, i.e., for the isolated digit classifier (10[0...9]), the class ‘11‘ contains samples of touching

digits ([00...999]). The number of classes of each SVM classifier increases according to the level on the

cascade.

4.2. Object Detection Approaches

Yolo (Redmon et al. (2016)) is a general-purpose object detection framework that can be trained in

an end-to-end fashion. Using a single network and looking at the entire image, it can predict bounding

boxes and classes with a single forward pass instead of applying the model at every location as in the

case with traditional sliding window or region purpose-based methods (Girshick (2015); Ren et al.

(2015)). The framework is illustrated in Figure 3.

Figure 3: The Yolo framework divides the image into a grid and for each cell predicts bounding boxes and classes.

First, the convolutional layers (see Section 4.2.1) extract features from the entire image, and then

the detection layer divides the image into a grid. Next, each grid cell predicts the coordinates of
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bounding boxes, and the confidence of each box encloses an object. Handpicked anchor boxes are

preliminary defined to help the network learn how to predict the right bounding boxes. Moreover,

it provides class probabilities for the cells belonging to a given object. Finally, to mitigate confusion

among overlapped boxes, the Non-Maximum Suppression (NMS) algorithm is used.

The input resolution of the Darknet reported in Redmon et al. (2016) is 416×416. However, given

that strings of digits are usually wider than higher, we used an initial input size of 128× 256 (height

× width) to train the model. It is worth mentioning, though, that this architecture does not set the

input image size. Rather, it changes the network after every few iterations. After, every ten batches,

the network randomly chooses a new image dimension size, and the training is resumed. This forces

the network to learn to accurately predict across a variety of input dimensions. In Section 5.5, we

show through experiments that during recognition, the input size can be easily defined as a function

of the testing input image. Because Yolo looks at the whole input, it implicitly encodes contextual

information about objects and their neighborhood.

The RetinaNet architecture (Lin et al. (2017)) is depicted in Figure 4. A Feature Pyramid Network

(FPN) on the top of convolutional layers produces rich and multi-scale features based on a single input

resolution. Compared with Yolo, both frameworks have a similar workflow despite these slight changes:

the convolutional layers produce features to bounding box regressors and class predictors, which, with

the aid of anchors boxes, determine locations and classes for objects in the input image. 4.2.1 provides

detailed information about convolutional layers as well as a definition of anchors.

Figure 4: RetinaNet Framework: A Feature Pyramid Network (FPN) on top of convolutional layers produces rich and
multi-scale features from one single input. Moreover, the proposed loss function (focal) improved the class imbalance
issue among background and foreground samples.

What distingues RetinaNet from other approaches is its proposed loss function, also know as

the focal loss. The authors evidence that a significant issue encountered in most object detection

approaches is the class imbalance that exists among foreground and background samples. Since most

image locations do not contain an object of interest, the ratio between foreground and background

locations is about 1:100 or even 1:1000. Therefore, the background samples dominate the loss gradient,
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and consequently, the result is a biased model. The solution proposed is to define a loss function that

penalizes “easy” classified samples.

Let the cross-entropy loss (CE) for classification be:

CE(p, y) =


− log(p) if y = 1

− log(1− p) otherwise.

(3)

where y ∈ {±1} denotes the ground-truth class and p ∈ [0, 1] is the estimated probability for the class

with label y = 1. For the sake of simplicity, let pt be:

pt =


p if y = 1

1− p otherwise,

(4)

Finally, CE(p, y) = CE(pt) = − log(pt).

Once a weighting factor (−αt log(pt)) should balance the priority of background and foreground, it

does not give attention to easy or hard samples. Therefore, the author proposes to add a modulating

factor (1− pt)
γ to the cross-entropy loss, with tunable focusing parameter γ ≥ 0:

FL(pt) = −αt(1− pt)γ log(pt). (5)

When an example is misclassified and pt is small, the modulating factor is close to 1, and the loss is

unaffected. As pt → 1, the factor goes to 0 and the loss for well-classified examples is down-weighted.

The focusing parameter γ smoothly adjusts the rate at which easy examples are down-weighted. When

γ = 0, FL is equivalent to CE, and as γ is increased, the effect of the modulating factor is likewise

increased.

4.2.1. Network Architectures

The network architectures used by both Yolo and RetinaNet are presented in Table 1. Yolo

was first introduced with an architecture called Darknet (Redmon & Farhadi (2017)) to perform the

classification of 1000 object categories. It is composed of 19 convolutional layers and 5 max-pooling

layers. To perform detection, they suppressed the last convolutional layer and added three 3 × 3

convolutional layer with 1024 filters.

The concept of residual networks (ResNet) was introduced by He et al. (2016) to deal with the

vanish gradient issue in deep networks. It provided a breakthrough as it allowed to skipping connec-

tions between convolution blocks. Using this concept, the authors proposed several networks between
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34 and 152 layers, and which achieved outstanding performance on the benchmark datasets. The

ResNet-50 provides a good tradeoff between speed and accuracy and it is the backbone for the Reti-

naNet framework. Its architecture is detailed in Table 1. Moreover, an FPN with levels ranging from

P3 to P7, produces rich and multi-scale features from a single input resolution.

Table 1: Architectures of Darknet (left) and ResNet-50 (right). In the ResNet-50, a downsampling with a stride of 2 is
performed after each convolutional block.

Darknet (Yolo)

Layer Type Filters Size/Stride

#1 Conv. 32 3x3 / 1

#2 Maxpool 2x2 / 2

#3 Conv. 64 3x3 / 1

#4 Maxpool 2x2 / 2

#5 Conv. 128 3x3 / 1

#6 Conv. 64 1x1 / 1

#7 Conv. 128 3x3 /1

#8 Maxpool 2x2 / 2

#9 Conv. 256 3x3 / 1

#10 Conv. 128 1x1 / 1

#11 Conv. 256 3x3 / 1

#12 Maxpool 2x2 / 2

#13 Conv. 512 3x3 / 1

#14 Conv. 256 1x1 / 1

#15 Conv. 512 3x3 / 1

#16 Conv. 256 1x1 / 1

#17 Conv. 512 3x3 / 1

#18 Maxpool 2x2 / 2

#19 Conv. 1024 3x3 / 1

#20 Conv. 512 1x1 / 1

#21 Conv. 1024 3x3 / 1

#22 Conv. 512 1x1 / 1

#23 Conv. 1024 3x3 / 1

#24 Conv. 1000 1x1

#25 Avgpool Global

#26 Softmax

ResNet-50 (RetinaNet)

Layer Type Filters

#1 Conv. 7×7, 64, stride 2

#2 Max-Pool 3×3, stride 2

#3..11 Conv.

 1×1, 64
3×3, 64
1×1, 256

×3

#12..23 Conv.

 1×1, 128
3×3, 128
1×1, 512

×4

#24..41 Conv.

 1×1, 256
3×3, 256
1×1, 1024

×6

#42..50 Conv.

 1×1, 512
3×3, 512
1×1, 2048

×3

#51 Avgpool

#52 1000-d FC

#53 Softmax

The default dimensions of anchor boxes were defined by authors using samples of the Imagenet

Dataset, composed of 1000 classes of real-life objects. Although the dataset includes a wide range of

classes, to make anchors feasible for digits, we performed a k-means clustering over 10,000 ground-

truth bounding boxes from the training samples. This resulted in three anchors with the following

aspect ratios: 0.5, 0.6 and 1.0.
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4.3. Sequence-to-Sequence Approach

A Convolutional Recurrent Neural Networks (CRNN) (Voigtlaender et al. (2016); Shi et al. (2017);

Dutta et al. (2018)) is a sequence-to-sequence model that can be trained from end-to-end. The pipeline

for a such network in Figure 5a. First, convolutional layers extract features from an input image, and

then a sequence of feature vectors is extracted from feature maps.

Since each region of the feature map is associated with a receptive field in the input image, each

vector in the sequence is a descriptor of this image field, as illustrated in Figure 5b. Next, this

sequence fed the recurrent layers, which are composed of a bidirectional Long-Short Term Memory

(LSTM) (Schuster & Paliwal (1997)) network, producing a per-frame prediction from left to right of

the image. Finally, the transcription layer determines the correct sequence of classes to the input

image by removing the repeated adjacent labels and the blanks, represented by the character ‘-’. This

solution is well suited when the past and future context of a sequence contribute to the recognition

of the whole input. With the aid of contextual information, such as a lexicon, this approach achieves

high text recognition performance. The application of this solution to handwritten digits is a matter

of discussion once we have fewer classes than words (0..9), but there is no lexicon to mitigate possible

confusion.

4.3.1. Network Architecture

Shi et al. (2017) proposed the CRNN architecture to recognize English words. To produce feature

maps with a larger width, they adopted 1 × 2 size max-pooling on layers #7 and #12 instead of

squared ones. The input resolution is defined as 32 × 128 (height × width). We kept the network

architecture unchanged where we want to evaluate handwritten digit recognition performance.

4.4. Training

Since deep networks require a considerable amount of data to learn a representation, we created a

synthetic dataset composed of numerical strings ranging from 2- to 6-digits, and containing isolated

and touching components. The rationale for this strategy was to create a dataset with contextual

information about the neighborhood of isolated and touching digits. The strings are built by concate-

nating isolated digits of NIST SD19 (Grother (2016)) through the algorithm described in Ribas et al.

(2013). Figure 6 shows some samples.

To avoid building a biased dataset, we used information on authors available on the NIST SD19,

which ensure that digits from different authors were used exclusively for training, validation, and

testing. Table 3 shows the purpose (training, validation, and testing), as well as the amount of data
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(a) (b)

Figure 5: CRNN architecture proposed by Shi et al. (2017): (a) the pipeline from convolutional layers to transcription
layer and (b) the receptive field for each feature vector.

Table 2: CRNN Architecture proposed by Shi et al. (2017)

Layer Type Filters Size/Stride

#1 Convolutional 64 3x3 / 1

#2 Maxpool 2x2 / 2

#3 Convolutional 128 3x3 / 1

#4 Maxpool 2x2 / 2

#5 Convolutional 256 3x3 / 1

#6 Convolutional 256 3x3 / 1

#7 Maxpool 1x2 / 2

#8 Convolutional 512 3x3 / 1

#9 BatchNormalization

#10 Convolutional 512 3x3 / 1

#11 BatchNormalization

#12 Maxpool 1x2 / 2

#13 Convolutional 512 2x2 / 1

#14 Map-to-Sequence

#15 Bidirecional-LSTM 256 (hidden units)

#16 Bidirecional-LSTM 256 (hidden units)

#17 Transcription
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(a) (b) (c) (d) (e)

Figure 6: Synthetic data representing numerical strings ranging from 2 to 6 digits.

created6.

Table 3: Distribution of the synthetic dataset

Length/Classes Samples Authors Purpose

2-Digit String 42,614 1000-1599 Training

14,202 1600-1799 Validation

14,838 1800-1999 Testing

3-Digit String 76,890 1000-1599 Training

25,570 1600-1799 Validation

27,025 1800-1999 Testing

4-Digit String 82,625 1000-1599 Training

27,487 1600-1799 Validation

29,166 1800-1999 Testing

5-Digit String 82,944 1000-1599 Training

27,663 1600-1799 Validation

29,371 1800-1999 Testing

6-Digit String 82,926 1000-1599 Training

27,609 1600-1799 Validation

29,396 1800-1999 Testing

Another aspect we took into consideration when creating this dataset was the distribution of

isolated and touching digits in the strings. When analyzing real datasets, one may observe something

similar to an exponential distribution dominated by isolated digits. Figure 7a shows such a distribution

while 7b depicts the distribution of the 10 classes of digits in the database. The digit “1” is less

represented since it is the class with less occurrence in touching strings (Ribas et al. (2013)).

The models detailed in Sections 4.1, 4.2 and 4.3 were trained from scratch using the synthetic

data described in Table 3. Except by input size, training is performed with the Stochastic Gradient

Descent (SGD) using back-propagation with mini-batches of 64 instances, a momentum factor of 0.9,

and a weight decay of 5 × 10−4. Initially, the learning rate is set to 10−3, to allow the weights to

quickly fit the long ravines in the weight space, after which it is reduced over time (until 5× 10−4) to

make the weights fit the sharp curvatures.

In the present work, regularization was implemented through early-stopping, which prevents over-

6All the synthetic data is available upon request for research purposes at https://web.inf.ufpr.br/vri/databases-
software/touching-digits/
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(a) (b)

Figure 7: Distribution of the dataset (a) Distribution regarding isolated and touching digits, and (b) Distribution of the
10 classes of digits in the database.

fitting from interrupting the training procedure once the performance of the network on a validation

set deteriorates. During training, the network’s performance on the training set will continue to im-

prove, but its performance on the validation set will only improve up to a certain point, where the

network starts to overfit the training data. At that point, the learning algorithm is terminated. The

models were trained using an NVidia GeForce Titan X GPU7.

4.4.1. Time Consuming

Table 4 presents the average time consumed by each approach in terms of recognition. Since

training is not often used, the impact of the time consumed for this task is not considered in this

evaluation.

In light of this, we can observe that the number of objects (digits) that composing a string does

not contribute to a significant increase in the recognition time for all approaches. The reason for this

is that the network forward has a similar cost irrespective of the number of objects in the input. It is

worth mentioning that the time analysis for Aly & Mohamed (2019) is not reported once the code is

not released.

5. Experiments

We designed a set of experiments on five different benchmarks to allow a better comparison of

the different approaches. Firstly, we used the challenging Touching Pairs (TP) dataset (Section 5.1),

which contains different touching pairs styles. Then, we focus on the Synthetic Touching Strings

7All trained classifiers are available for research purposes at https://web.inf.ufpr.br/vri/databases-software/touching-
digits/
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Table 4: Average recognition time of end-to-end approaches

Method #Models (#Classes) Recognition (sec)1

1-Digit 3-Digit

CRNN 1 (10) 0.001 0.001

Yolo 1 (10) 0.010 0.011

Hochuli et al. (2018a) 4 (1114) 0.060 0.062

RetinaNet 1 (10) 0.160 0.161

(1) NVIDIA Titan Xp GPU

dataset (Section 5.2) to evaluate the limits of each approach in a hard task, i.e., one using strings with

up to four touching digits. The third dataset (Section 5.3) is a well-known NIST-SD19 composed of

11,585 strings ranging from 2 to 6 digits. The fourth benchmark was built for the ICFHR 2014 HDSR

challenge (Section 5.4), which contains two different datasets. Finally, we present an experiment with

very long strings to emphasize the power of the object-detection approach.

5.1. TP dataset

The TP dataset contains 79,464 samples of touching digits and it was proposed in Ribas et al.

(2013) as a benchmark for segmentation algorithms. The authors were interested in evaluating when

the segmentation cuts may produce a correct segmentation no matter how many cuts were produced.

The solution in these situations is straightforward for approaches that produce only one cut: if the

resulting components (after classification) match the ground-truth, the segmentation is deemed correct.

However, for approaches that produce multiple cuts, the segmentation is only deemed correct, if there

are at least two correct digits among hypotheses.

For this experiment, we assume a correct segmentation when the model provides the correct number

of digits/objects and classes. Otherwise, there is an error. Two sources of errors are possible: a wrong

estimation of the string length or its misclassification. Table 5 compares the results of the end-to-end

approaches with both segmentation-based and segmentation-free algorithms. It should be mentioned

that all the works presented in Table 5 use the same testing set proposed in Ribas et al. (2013).

The training sets for both the segmentation-based and the segmentation-free algorithms used isolated

digits extracted from NIST SD19. However, they differ in that all segmentation-based approaches

use isolated digits to train single-digit classifiers while the segmentation-free ones use the strings of

digits described in Table 3. Table 5 also illustrates the performance according to the connection types

depicted in Figure 8.

5.1.1. Discussion
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Table 5: Performance of the segmentation algorithms (reported in Ribas et al. (2013), Hochuli et al. (2018a), Gattal &
Chibani (2015)), in terms of correct segmentation, on the TP Database.

Strategy Method Performance Connection Type (%) Segmentation

% I II III V Cuts

S
e
g
-B

a
se
d

Shi & Govindaraju (1997) 59.30 68.31 59.72 60.35 25.44 1

Congedo et al. (1995) 63.07 62.88 67.51 59.40 40.45 1

Lacerda & Mello (2013) 65.79 71.75 71.21 63.64 56.57 1

Elnagar & Alhajj (2003) 67.34 63.88 71.51 56.40 58.73 1

Pal et al. (2003) 71.21 73.96 74.69 80.09 41.52 1

Oliveira et al. (2000) 88.03 90.40 90.78 89.01 64.88 1

Fujisawa et al. (1992) 89.85 95.45 91.27 83.57 63.72 3.66

Fenrich & Krishnamoorthy (1990) 92.37 97.54 93.79 99.45 65.57 4.07

Gattal & Chibani (2015) 93.24 96.67 93.75 99.68 77.58 24.11

Chen & Wang (2000) 93.80 97.87 94.23 97.55 76.76 45.40

S
e
g
-F

re
e

CRNN 68.58 68.52 64.19 84.83 56.81 0

RetinaNet 88.48 89.95 88.51 97.15 78.32 0

Aly & Mohamed (2019) 95.05 95.65 96.20 97.15 91.21 0

Yolo 96.53 96.98 97.64 98.97 92.55 0

Hochuli et al. (2018a) 97.12 97.02 97.89 98.97 93.03 0

Figure 8: Types of connected numeral string (extracted from Ribas et al. (2013)).

Algorithms based on a single segmentation hypothesis (segmentation cuts = 1) usually fail in more

complex touching cases (e.g., type V) since just one segmentation cut is often not enough to correctly

split the digits. On the other hand, algorithms based on multiple cuts, such as Chen & Wang (2000);

Gattal & Chibani (2015), find the correct segmentation but at a high computational cost, which makes

them impractical for real applications.

Yolo compares to Hochuli et al. (2018a) in terms of classification for most types of connections

depicted in Figure 8, except on Type V. In this case, the task-specific classifier trained on touching

pairs performs better since it can cope with highly slanted images better. This is related to the

limitations of Yolo, as reported by Redmon et al. (2016). Yolo imposes strong spatial constraints on

bounding box predictions since each grid cell only predicts two boxes and can only have one class.

This spatial constraint limits the number of nearby objects that the model can predict. In our case,

we observed this phenomenon in Figure 9d.

CRNN and RetinaNet, on the other hand, performed quite poorly with performances even worse

than those of several segmentation-based algorithms. One of the bottlenecks of the CRNN is that the
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(a) (b) (c) (d)

Figure 9: Missed detections of Yolo for TDP dataset: (a) ‘51’ as ‘57’, (b) ‘21’ as ‘24’, (c) ‘12’ as ‘62’ and (d) ‘76’ as ‘7’.

local perspective of the problem given by each receptive field, or by a sub-sequence, may represent a

digit fragment. In this case, a fragment of a digit taken out of context can be easily misclassified with

high probability when its shape is somewhat similar to that of a digit. This issue is quite similar to the

over-segmentation strategy implemented by segmentation-based approaches. Considering that there is

no lexicon or post-processing method, the transcription layer may collapse by missed predictions. The

worst performance is seen in complex cases, i.e., type V, where the neighborhood of digits is severely

affected because it has more overlapping than other types. In analyzing the errors, we observe that

most of these complex cases could be solved using contextual information, which, unfortunately, is

not available in most applications of HDSR. These cases are depicted in Figure 10.

(a) (b)

(c) (d)

Figure 10: Missed predictions of CRNN for TP dataset: a) ‘75’ as ‘715’ (TYPE-I), b) ‘96’ as ‘966’ (TYPE-II), c) ‘25’
as ‘235’ (TYPE-III) and d) ‘02’ as ‘062’ (TYPE-V) .

RetinaNet also fails to efficiently encode the neighborhood of digits, which explains the model

collapse on hard overlapped digits (Type V). It should however, be noted that it performs well in easy

cases, such as Type III. Moreover, pairs featuring the digit “1” produce more missed detections if

their aspect ratio are significantly different from those of the other classes. Figure 11 illustrates some

of these problems.

5.2. Touching Strings Dataset

This goal of this experiment is to illustrate the limits of the evaluated approaches when dealing

with a challenging task, i.e., tasks involving strings with up to four touching digits (e.g., Figure 12a).

As pointed out earlier, this is not very often observed in real databases, but it is useful for assessing
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(a) (b) (c) (d) (e)

Figure 11: Detections of RetinaNet for TP dataset: (a) ‘51’ as ‘57’, (b) ‘31’ as ‘34’, (c) ‘61’ as ‘6’, representing missed
prediction, and (d) ‘25’ as ‘25’ and e) ‘53’ as ‘53’ representing correct predictions.

the limits of the proposed strategies discussed in this work. An important point here is that, as we

can observe in Figure 12b), the shape of the digits may be severely affected the neighbors, which is

quite different from those observed in the isolated digit datasets especially those in the middle of the

string. This is why learning from strings rather than from isolated digits is important, particularly

for approaches that use contextual information into the learning process.

(a) (b)

Figure 12: (a) Ground truth for a 4-digit string (0256) and (b) Shape of digits impacted by its neighbors.

In this experiment, 570,000 images of isolated digits, 2-, 3-, and 4-touching digits described in

Hochuli et al. (2018a) were used. The accuracy of all the strategies employed and the average recog-

nition time are reported in Table 6. As stated in Section 4.4.1, a more in-depth analysis of Aly &

Mohamed (2019)’s approach is not reported as the code was not released.

Table 6: Accuracy of the segmentation-free approaches on the synthetic data. (The best performances are highlighted
in bold)

Method Isolated digit 2-digit 3-digit 4-digit

Hochuli et al. (2018a) 99.56 99.00 94.88 -

CRNN 21.97 65.33 84.29 90.61

RetinaNet 86.63 87.32 81.58 77.52

Yolo 99.42 98.68 96.89 95.50

5.2.1. Discussion

As can be observed, the best overall results were achieved by Yolo followed by the approach

proposed in Hochuli et al. (2018a). Yolo’s main advantage is that it has no constraints regarding the

number of touching digits in the string.

Regarding the CRNN, the design of its architecture imposes few constraints over its performance

on digit strings. Since its input size is fixed, a shorter string has its aspect ratio stretched, which has
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more probability of suffering from over-segmentation. Figure 13d illustrates a missed prediction of

digit ‘2’ as a fragment of digit ‘4’. In such a case, taking the representation contained in the receptive

fields, out of context, could reasonably leads to a digit ‘2’ being composed. An extrapolation is possible

to the missed predictions of digit ‘1’ in Figure 13c and Figure 13e. Furthermore, in Figure 13, we can

observe the impact of the aspect ratio and aforementioned over-segmentation.

(a) (b)

(c) (d)

(e)

Figure 13: Predictions of sequence-to-sequence approach: a) ‘02’ as ‘02’ and b) ‘3076‘ as ‘3076’ representing correct
predictions, c) ‘02’ as ‘021’, d) ‘6014’ as ‘60124’ and e) ‘9646’ as ‘96416’ representing missed predictions .

(a) (b) (c) (d)

Figure 14: Missed predictions of RetinaNet: a) ‘15’ as ‘5’, b) ‘32‘ as ‘3’, c) ‘59’ as ‘509’ and d) ‘921’ as ‘9241’.

RetinaNet suffers when encoding the neighborhood of digit. In Figures 14a and 14b the aspect

ratio of digits ‘1’ and ‘2’ are quite different from that of the neighborhood, which then results in a

misclassification. In Figure 14d, a segment touching misleads the network in the detection of a digit

‘4’. Moreover, the multi-scale strategy can magnify a fragment that can be confused with a digit. In

such a case, the number ‘9’ was recognized as ‘0’, which is quite similar to over-segmentation. Figure

14c illustrates the problem. The Yolo approach (Figure 15) sucessfully overcomes these issues.
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(a) (b) (c) (d)

Figure 15: Correct predictions of Yolo approach: a) ‘15’ as ‘15’ , b) ‘32‘ as ‘32’, c) ‘59’ as ‘59’ and d) ‘921’ as ‘921’.

5.3. NIST SD19 Strings

Experiments using real-world strings are based on 11,585 numeral strings extracted from the hsf 7

series and distributed into five classes: 2 digit (2,370), 3 digit (2,385) 4 digit (2,345), 5 digit (2,316),

and 6 digit (2,169) strings, respectively. The strings were cropped from original samples leaving a

border of 5 pixels. These data exhibit different problems, such as touching and fragmentation, and

were also used as test sets in Hochuli et al. (2018a); Oliveira et al. (2002); Britto-Jr et al. (2003); Liu

et al. (2004); Oliveira & Sabourin (2004); Sadri et al. (2007); Gattal et al. (2017). It is important to

mention that hsf 7 was never used for training.

5.3.1. Discussion

To better compare the approaches, we divided the errors into two classes: misdetection and mis-

classification. Table 7 summarizes the results for this experiment for the approaches.

Table 7: Recognition rates for 2- to 6-digit strings of NIST SD19 dataset

Method Recognition Error (%)

Rate (%) Classification Detection

Yolo 97.1 2.4 0.5

Aly & Mohamed (2019) 96.1 N/A N/A

Hochuli et al. (2018a) 95.2 3.9 0.9

CRNN 80.3 11.8 7.9

RetinaNet 75.3 1.5 23.2

The Yolo error analysis shows that most detection problems are related to the digit “1”. The

problem occurs when i) the height of the image is too small (Figure 16a), ii) is too high (Figure

16b) or iii) the slant of the image is big (Figure 16c). In these cases, the digit “1” is not detected.

Another source of error is the digit “4” (very often related to the digit “1”). In these cases, the model

sometimes detects two objects (“4” and “1” ) in the digit “4” (Figure 16d) and sometimes just the
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digit “4” is detected, missing the digit “1’ (Figure 16e). Finally, we observed a few samples behaving

similarly to under-segmentation (Figure 16f) and over-segmentation (Figure 16g).

(a) (b) (c) (d)

(e) (f) (g)

Figure 16: Detection problems: (a) 331 recognized as 33, (b) 91 recognized as 9, (c) 2415 recognized as 245, (d) 5438
recognized as 54138, (e) 4188 recognized as 488, (f) 21 recognized as 4, and (g) 260 recognized as 2670.

It is worth mentioning that the average misdetection rate was below 1%, and most of the cases

featuring broken digits (Figures 17a, 17b, and 17c) and densely connected strings (Figure 17d), where

other approaches show their limitations, were successfully recognized by the Yolo.

(a) (b) (c) (d)

Figure 17: Correct detection: (a) 060968, (b) 040, (c) 5594, and (d) 156085

Table 7 shows an average error rate of 2.4%, in which most misclassifications is related to hand-

writing variability. Figure 18 shows some common mistakes involving classes “0” and “1”. In these

cases, the handwriting styles are poorly represented in the training set.

(a) (b) (c) (d) (e) (f)

Figure 18: Misclassification (a) 07 recognized as 87, (b) 02 recognized as 42, (c) 16 recognized as 76, (d) 61 recognized
as 62, (e) 34 recognized as 84, and (f) 2956 recognized as 2952.

In the method based on dynamic selection (Hochuli et al. (2018a)), misclassification is the primary

source of error, with 1.0% due to length classifier and 2.9% to digit classifiers. Since most of the

connected components in the NIST SD19 strings are composed of isolated digits, the 1-digit classifier

is responsible for most of the connected components classification.

The detection errors of the CRNN reported in Table 7 occur both in isolated digits (Figure 20a)
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Figure 19: Missed prediction of Hochuli et al.Hochuli et al. (2018a): 314200 as 319200. The classifier (L) correctly
predicted the length of components, however, the 1-digit classifier (D) confused the number ‘4’ as ‘9’.

and in the touching digits (Figure 20b). As mentioned in Section 4.3, the aspect ratios of shorter

and longer strings are deformed by a fixed input size, which explains the highest error rate for 2- and

6-digit strings. Performance was severely impacted by misclassification into all string sizes. Since the

handwriting was highly variable, CRNN did not generalize the representation. This issue is depicted

in Figure 20c and Figure 20d, where the digits ‘2’ and ‘5’ were missed.

(a) (b)

(c) (d)

Figure 20: Missed predictions of CRNN for NIST dataset: a) ‘9428’ as ‘94728’ and b) ‘2956’ as ‘29576’ representing
over-segmentation errors (length), and c) ‘1206’ as ’1706‘ and d) ‘7554’ as ‘7594’ representing misclassification.

Finally, Table 7 shows that the bottleneck of RetinaNet is detection, as it either misdetects or

overdetects digits. The former is related to the shape of digit, while the latter is caused by a multi-

scale technique which allows a fragment of a digit to be magnified to a scale that represents a digit,

with high accuracy. This issue is similar to over-segmentation. The aforementioned issues are depicted

in Figure 21.

Table 8 compares the recognition rates of several systems reported in the literature on NIST-SD19.

For completeness, we replicate the results compiled by Hochuli et al. (2018a). The works by Britto-Jr

et al. (2003), Oliveira et al. (2002), and Oliveira & Sabourin (2004) use different segmentation (implicit

and explicit) and classification strategies, such as Hidden Markov Models, Multi-layer Perceptrons and

Support Vector Machines. Except for Liu et al. (2004) and Ciresan (2008), all the works use the same

strings for testing. Regarding the training data, all of them used isolated digits from NIST SD19.

However, the number of digits and how they are used may vary according to the strategy used in
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(a) (b) (c) (d)

Figure 21: Missed detections of RetinaNet for NIST dataset: (a) ‘5021’ as ‘502’ , (b) ‘889’ as ‘88’, (c) ‘600’ as ‘6000’
and (d) ‘74973’ as ‘749073’

each system. In the case of the Yolo, RetinaNet, CRNN, and Hochuli et al. (2018a) approaches, the

classifiers were trained with the synthetical strings reported in Table 3, which were built by combining

the same isolated digits.

The work presented by Sadri et al. (2007) is reported in two columns. The authors proposed a

system based on over-segmentation, in which they used a genetic algorithm to optimize their segmen-

tation algorithm. As pointed out in Hochuli et al. (2018a), the second set of experiments (marked

with an * in Table 8) is somehow biased since the heuristics were defined using a subset of the testing

set. Gattal et al. (2017) also reported good performance, but evaluating their results is ccomplicated

by the fact that several thresholds used for segmentation appear to be adjusted on the testing set.

Finally, a straightforward comparison is possible with the segmentation-free methods proposed

in Hochuli et al. (2018a) and recently improved by Aly & Mohamed (2019), which implemented a

different fusion strategy, even while, keeping the pre-processing steps and specific-task classifiers. As

discussed in Section 4, the end-to-end approaches cuts off all the heuristics used for pre-processing, the

need to train several deep learning models, and the parameter used in the fusion strategy. Additionaly,

Yolo improves the average recognition rate.

5.4. ICFHR Datasets

The experiment in this case performed on two real-world datasets built for the ICFHR 2014

challenge on HDSR (Diem et al. (2014)).

The ORAND-CAR-2014 consists of digit strings of the courtesy amount recognition (CAR) field

extracted from real bank checks with a resolution of 200 dpi. Besides the traditional challenges

present in handwriting such as noise, broken digits, and touching, this dataset presents samples with

background and currency symbols such as ‘#’, ‘$’, dots, commas, and dashes. The CVL Database was

collected mostly amongst students of the Vienna University of Technology, and contains about 300

writers, female and male alike. The images are delivered with RGB information and at a resolution
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Table 8: Comparison of the recognition rates on NIST SD19
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2 2370 85.3 70.3 94.8 96.8 97.6 95.5 98.9 99.0 97.6 98.8 98.6

3 2385 81.5 84.4 91.6 95.3 96.2 91.4 97.2 97.3 96.2 96.4 97.6 1476 96.8 93.4

4 2345 75.7 86.8 91.3 93.3 94.2 91.0 96.1 96.5 94.6 95.0 97.1

5 2316 68.5 83.8 88.3 92.4 94.0 88.0 95.8 95.9 94.1 95.4 96.5

6 2169 65.7 76.3 89.0 93.1 93.8 88.6 96.1 96.6 93.3 95.0 95.8 1471 96.7

Average 75.3 80.3 91.0 94.2 95.2 90.9 96.8 97.1 95.2 96.1 97.1 96.7 93.4

of 300 dpi. It includes varying sizes and writing styles. This database poses new challenges to the

community since it is harder than previously published datasets, especially in terms of variance in

writing style. Table 9 shows the amount of data used for training and testing in both datasets. Some

samples are depicted in Figure 22.

(a) 76210 (b) 1455542 (c) 60000

(d) 5841077 (e) 136075

Figure 22: Sample data of (a) Car-A, (b) and (c) are samples of Car-B and (d) and (e) are samples of CVL dataset.

Whenever the handwriting styles of these datasets are different from those of NIST SD19, models

already trained using synthetic data provide unreliable results, since the encoded information is quite

different. We thus trained all models using the data described in Table 9, since it is the protocol

suggested in the ICFHR 2014 competition. We kept the training parameters unchanged, following

that described in Section 4.4. To provide sufficient information to the object-detection approach, we

annotated the digits bounding-boxes (ground-truths) of each training sample8. This laborious task

8The annotated dataset is available upon request for research purposes at https://web.inf.ufpr.br/vri/databases-
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was necessary since most of the samples have a complex background, noise, and symbols, which are

difficult to reproduce synthetically.

Table 9: Distribution of Orand-Car and CVL datasets

Car-A Car-B CVL

Length Train Val Test Train Val Test Train Val Test

2 17 5 36 0 0 0 0 0 0

3 176 28 387 0 0 0 0 0 0

4 633 71 1425 60 3 5 0 0 0

5 819 84 1475 1080 120 69 113 12 789

6 127 18 363 1432 167 1241 683 75 4144

7 27 2 87 127 10 1452 340 39 1765

8 1 1 11 1 0 157 0 0 0

9 0 0 0 0 0 2 0 0 0

10 0 0 0 0 0 0 0 0 0

Total 1800 209 3784 2700 300 2926 1136 126 6698

5.4.1. Discussion

Table 10 presents the performances of end-to-end approaches on the testing set. The performances

of all methods are reported on the same testing datasets (Table 9), which were proposed in the ICFHR

2014 challenge. Zhan et al. (2017) previously implemented the CRNN approach to these datasets; and

we therefore, we just replicated the results. The worst results were found on the CVL dataset (26.01%).

Besides the unbalanced distribution between the training and testing sets, a short variety of string

labels in the training set (only 10) do not provide an efficient representation of digit iterations into

a sequence. For example, the sequence pair “98”, which is not available in the training set, is found

in two different strings of the testing set (“120398”, “662498”). Table 11 shows the poor variation of

labels. Since these end-to-end models must learn the variability introduced by the neighborhood, this

lack of samples strongly penalizes such models.

Unlike in the other benchmarks, in which the dynamic selection approach (Hochuli et al. (2018a))

performed quite well, it struggled in these experiments, mostly because of its heuristic-based pre-

processing module. Since ORAND-CAR provides a hard background and currency symbols, the

pre-processing module collapsed when detecting connected components. It performed slightly better

on the CVL dataset, which has no significant challenges in background suppression. However, the

poor distribution of the training set penalized the performance of the specific-task classifiers.

The Yolo and RetinaNet object-based models achieve a performance close to those reported in

Section 5.3, which denote that the network could encode a hard background. A remarkable perfor-

mance was achieved by the Yolo, point to the robustness of the model in encoding context, noise, and

software/touching-digits/
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Table 10: Comparison of the recognition rates on Orand and CVL datasets (ICFHR 2014 Competition)

Methods CAR-A CAR-B CVL

Tebessa I? 37.05 26.62 59.30

Tebessa II? 39.72 27.72 61.23

Hochuli et al. (2018a) 50.10 40.20 66.10

Singapore? 52.30 59.30 50.40

RetinaNet 72.51 69.17 61.06

Pernanbuco? 78.30 75.43 58.60

Beijing? 80.73 70.13 85.29

CRNN∗ 88.01 89.79 26.01

Saabni (2016)?† 85.80 -

Zhan et al. (2017) 89.75 91.14 2707

Xu et al. (2018) 91.89 93.79 63.03

Yolo 96.20 96.80 84.20

? Algorithms reported in Diem et al. (2014)

∗ Reported by Zhan et al. (2017)

† Unified CAR-A and CAR-B datasets

Table 11: Distribution of CVL dataset in terms of string labels variability

# of Different

Dataset Samples String Labels

Train 1136 10

Test 6698 26

background. The ORAND/CVL dataset also faced challenges in the form of overlapping digits, hand-

writing variability, and different aspect ratios that severely impact the models performances. These

issues are illustrated in Figure 23 and Figure 24.

Finally, the main drawback of object-based approaches is the laborious task of data annotation

when synthetic samples are not applicable.

5.5. Very Large Strings

The results show that approaching the HDSR as an object detection/recognition problem is ab-

solutely feasible. Additionaly, it produced (with Yolo) the most consistent performance for all the

benchmarks used in this study. In this final experiment, our goal is to assess the Yolo on very large

strings.

As mentioned previously, the images were resized to 128 × 256 (height × width) for training.

However, since Yolo changes the input size after every few iterations during training, this network

can recognize testing images of different sizes. The question is how to properly resize the testing

input image to maximize the network’s performance. This is relevant since the image width may vary

considerably according to the number of digits in the string. A 20-digit string is significantly longer
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(a) (b) (c)

(d) (e)

Figure 23: Missed predictions of RetinaNet for ORAND/CVL dataset: (a) ‘134’ as ‘234’ , (b) ‘27477’ as ‘24477’, (c)
‘71148’ as ‘9748’, (d) ‘1800000’ as ‘800000’, (e) ‘62779’ as ‘32279’ and (f) ‘1396829’ as ‘396829’

(a) (b) (c)

(d) (e)

Figure 24: Missed predictions of Yolo for ORAND/CVL dataset: (a) ‘7630500’ as ‘7030500’ , (b) ‘7204’ as ‘2204’, (c)
‘171448’ as ‘121498’, (d) ‘280634’ as ‘280034 ’ and (e) ‘7062543’ as ‘7002543’

than a 2-digit string, for example. Resizing both of them to 128× 256 is not the right choice.

To address this, we experimented on 5,000 strings ranging from 2 to 20 digits, which were synthet-

ically created by concatenating isolated digits from NIST SD19. For each string length, we tested the

input image width in the following range: [128, 256, 384, 512, 640, 768, 896, 1024,

1152, 1280]. The image height was always 128. Table 12 summarizes the image input size that maxi-

mizes the recognition rate for each string length.

5.5.1. Discussion

From Table 12, we can notice that there is a quasi-linear relation between the average string width

of the testing images9 and the best input size for the Yolo. In light of this, we propose a rule (Equation

6) to compute the input size width of the Yolo based on the width of the testing image. Such a rule

9The number of pixels may vary depending on the image resolution. In this work, all the images were acquired in
300dpi.
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Table 12: Image input size that maximizes the recognition rate for each string length

String Average Input Image Recognition

Length String Width Size (IIw) Rate (%)

(Sw) (128× w)

2 75 128 98.6

4 150 256 97.6

6 228 384 97.6

8 306 512 96.4

10 381 640 94.8

12 448 768 94.2

14 524 896 91.0

16 596 1024 90.6

18 666 1152 88.8

20 750 1280 89.6

is used for all experiments reported in this paper.

IIw =

 128 for Sw 6 75

Sw × 1.70 otherwise

(6)

Figure 25 shows some examples of 20-digit strings recognized by the system using the rule above.

These corroborate the efficiency of the adopted resizing strategy and show that the approach can

perform well even for very long strings composed of broken, overlapping, and different configurations

of touching digits.

(a)

(b)

(c)

Figure 25: 20-digit strings correctly recognized by the Yolo-based approach.

5.6. Summary of the experiments

Figure 26 summarizes the performance of the assessed methods on the different datasets used

in this study. As we can see, Yolo achieved outstanding performance in all scenarios. However, its
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bottleneck is the ground-truth annotation when synthetic samples are not feasible.

Even though RetinaNet also implements an object detection approach, it suffers from the built-in

multi-scale strategy (FPN), once a magnified fragment of digit misleads the model. A similar issue

occurs with CRNN in which the various different receptive fields fragment the input. These issues are

close to the over-segmentation problem faced by segmentation-based algorithms.

Finally, the segmentation-free approach of Hochuli et al. (2018a) perform well in scenarios where

there is no hard background, but, suffer from handling a complex pipeline composed of heuristic process

and multiple classifiers. We did not add the Aly & Mohamed (2019) method in this comparison because

we had no access to its source code.

Figure 26: Average recognition of approaches per dataset

6. Conclusion

This paper described end-to-end solutions for HDSR in which the string of digits is assumed to be

composed of objects that can be automatically detected and recognized. To this end, several strategies

were evaluated.

A robust experimental protocol based on numeral string datasets was defined to validate the

proposed methods containing several types of noise, touching digits, fragmentation, complexes back-

grounds, and long strings. The experimental results show that the object-detection approach is a feasi-

ble end-to-end solution that compares favorably to the state-of-the-art in HDSR in terms of recognition

rates. Also, it considerably reduces the complexity of the string recognition task and avoiding heuristic-

based methods, special pre-processing, segmentation, and classifiers devoted to specific-length strings,

meaning, no constraints related to the string length exist. However, the difficulty posed by need for

data annotation when synthetic samples are not applicable is the main drawback of this approach.
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Conversely, the sequence-to-sequence strategy provides a short pipeline. No significant efforts

related to the annotation of ground-truth is needed, as in the case with the object-detection based

approach. However, the strategy depends on contextual information, such as a lexicon, to achieve

good results. Thus, its design for handwritten digits needed to be reviewed.
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