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Abstract

Active integrity constraints (AICs) are a useful formalism to express integrity con-
straints and policies to restore consistency in databases violating them. However, AICs
do not allow users to express different kinds of constraints commonly arising in prac-
tice, such as foreign keys.

In this paper, we propose existential active integrity constraints (EAICs), a power-
ful extension of AICs that allows us to express a wide range of constraints used in
databases and ontological systems. We investigate different properties of EAICs. Spe-
cifically, we show that there exists a “representative” set of founded updates, called
universal, which suffices for query answering. As such a set might contain an infi-
nite number of founded updates, each of infinite size, we study syntactic restrictions
ensuring finiteness, as well as the existence of a single universal founded update.

Keywords: Knowledge representation and management, Knowledge bases, Repair,
Certain query answering.

1. Introduction

Although integrity constraints have long been used to maintain data consistency,
nowadays there are many applications that have to deal with inconsistent data, that
is, data violating integrity constraints (Arioua & Bonifati (2018); Geerts et al. (2014,
2013)). Thus, the problem of reasoning in the presence of inconsistent information has
received much attention in the last decades.

The consistent query answering (CQA) framework is a principled approach to an-
swer queries over inconsistent databases (Arenas et al. (1999)). It relies on the notions
of repair and consistent query answer. Intuitively, a repair for a possibly inconsistent
database is a consistent database that “minimally” differs from the original one. In
general, there may be multiple repairs for an inconsistent database. The consistent (or
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certain) answers to a query over an inconsistent database are the query answers that
can be obtained from every repair. The following example illustrates these notions.

Example 1. Consider the database schema consisting of two relations emp(Name, Dept)
and dept(Name), where the former stores information on employees and departments
they work for, and the latter stores all departments.

Suppose a referential integrity constraint is defined, stating that every department
occurring in the emp relation must appear in the dept relation too. This constraint can
be expressed as follows:

∀E∀D [ emp(E, D) ∧ ¬ dept(D)⇒ ]

Consider now the database D consisting of the following three facts: emp(john, cs),
emp(john, math), and dept(math). Clearly, D is inconsistent, as the cs department
appearing in the emp relation does not appear in the dept relation. A repair can be
obtained by applying a minimal (under set-inclusion) set of update operations to the
original database. We consider only fact insertions and deletions as admissible update
operations.2 Therefore, there exist two repairs: D1, obtained by inserting the fact
dept(cs) into D, and D2, obtained by deleting the fact emp(john, cs) from D. The
only consistent answer to the query asking for all departments’ names is math. 2

Although inconsistent databases can be repaired in different ways, in many applica-
tions it is natural and desirable to express that only a restricted set of update operations
can be performed to restore consistency, which cannot be done with classical integrity
constraints. Active integrity constraints (AICs) have been introduced to overcome such
a limitation (Caroprese et al. (2009)). The basic idea is illustrated in the following
example.

Example 2. Consider again the scenario of Example 1 and suppose that, when the
integrity constraint is violated, we want to restore consistency only by adding missing
departments (and thus avoid deleting facts of the emp relation). This behavior can be
expressed by means of the following active integrity constraint:

∀E∀D [ emp(E, D) ∧ ¬ dept(D) ⇒ +dept(D) ]

The same constraint of Example 1 is defined on the left-hand side of ⇒, while on
the right-hand side the only admissible update operation is specified. Thus, only the
insertion of dept(cs) can be performed to restore consistency of D, and D1 is the
only acceptable repair. As defined in the following, the insertion of dept(cs) is a
“founded” update, because it is supported by the AIC above. In contrast, the deletion
of emp(john, cs) is not a founded update, as it is not an admissible operation according
to the AIC above. 2

2Other minimality criteria and update operations, such as updating values within facts (Greco et al.
(2018); Wijsen (2005); Greco & Molinaro (2008, 2012); Flesca et al. (2010)), have been considered in the
literature. In this paper, we consider minimality under set-inclusion and insert/delete updates, which indeed
are the most common minimality criteria and repair primitives considered in the literature.
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Active integrity constraints allow users to express integrity constraints along with
admissible update operations. One limitation of AICs is that they do not allow ex-
istential quantification, and thus do not allow users to formulate classical constraints
such as foreign keys and more general inclusion dependencies, which require existen-
tially quantified variables to be expressed (Cali et al. (2012)). The following example
illustrates this aspect.

Example 3. Consider the database schema consisting of two relations
emp(NameE, Dept) and dept(NameD, City), where the former stores information about
employees and the departments they work for, while the latter stores information about
all departments and the cities they are located in. Suppose that we want to define an
inclusion dependency saying that every department in the emp relation must appear in
the dept relation. Such a constraint cannot be expressed by means of AICs. What we
need are existentially quantified variables. The aforementioned constraint can in fact
be expressed as follows:

∀E ∀D [ emp(E, D) ∧ @C dept(D, C)⇒ ]

However, no policy is stated as to how to resolve inconsistency when the constraint is
violated. 2

We can lift the idea of AICs (that is, to specify which update operations should
be applied when a constraint is violated) to integrity constraints like the one in the
previous example. This leads us to existential active integrity constraints (EAICs),
introduced in this paper, which generalize AICs enabling users to express a wider class
of integrity constraints commonly arising in practice (e.g., inclusion dependencies), as
well as policies to restore consistency.

Example 4. The following EAIC:

∀E ∀D [ emp(E, D) ∧ @C dept(D, C) ⇒ ∃Z +dept(D, Z) ]

defines the same constraint of Example 3, but it also states that inconsistency must be
resolved by adding missing departments to relation dept.

Importantly, EAICs lead to value invention because of existentially quantified vari-
ables, which is not the case for AICs, and this poses different new issues—for instance,
for a database containing only the fact emp(john, cs), a city for the cs department
needs to be invented. 2

Contributions. This paper introduces existential active integrity constraints (EAICs),
an extension of AICs allowing existential variables. EAICs allow users to express both
data dependencies and policies to fix violations, and generalize several classes of con-
straints, including tuple-generating dependencies and formalisms for ontological rea-
soning. We introduce the notion of a universal set of founded updates, a restricted
subset of founded updates that are sufficient to compute consistent query answers. We
also identify an expressive subclass having a “deterministic” behavior, that is, to answer
(positive) queries it suffices to consider only one founded update.
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Organization. The rest of the paper is organized as follows. Preliminaries on (ac-
tive) integrity constraints are reported in Section 2. In Section 3, we present the syntax
and semantics of existential active integrity constraints, and introduce the important
notion of a universal set of founded updates. In Section 4, we study restrictions guar-
anteeing finiteness of universal sets of founded updates, whereas in Section 5, we study
the role of disjunction and the class of normal (i.e., disjunction-free) EAICs. In Sec-
tion 6, we define a restricted class of EAICs having a “deterministic” behavior (i.e.,
for consistent query answering, it suffices to look at a single founded update). Related
work is discussed in Section 7. Finally, we draw conclusions in Section 8.

2. Preliminaries

We assume the existence of the following (pairwise disjoint) enumerable sets: pred-
icates P , variables V , and constants C. Each predicate is associated with an arity,
which is a non-negative integer. A term is either a constant or a variable.

An atom is of the form p(t1, . . . , tn), where p is a predicate of arity n and the ti’s are
terms—when the atom’s predicate is relevant, we call such an atom a p-atom. We write
an atom containing only constants also as p(c), where c is understood to be a sequence
of constants, and write p(X) to refer to an atom whose terms are the variables X .

A literal is either an atom A (positive literal) or its negation ¬A (negative literal).
Logical formulae are built using literals and logical connectives—the syntax of the
logical formulae we are interested in will be precisely defined later.

A term/atom/literal/formula is ground if it is variable-free. A formula ϕ′ is a ground
instance of a formula ϕ if ϕ′ can be obtained from ϕ by substituting every variable in
ϕ with a constant. We use ground(ϕ) to denote the set of all ground instances of ϕ,
and for a set of formulae Φ, we define ground(Φ) = ∪ϕ∈Φ ground(ϕ).

2.1. Integrity Constraints

We assume the standard concepts of the relational data model. A database is a col-
lection of relations. Each relation is a finite set of tuples of constants and has a finite
set of attributes. Each tuple c of constants in a relation p can be viewed as a ground
atom p(c), called fact; then a database can be viewed as a finite set of facts.

We consider queries expressed by means of safe nonrecursive Datalog programs,
which is equivalent to relational algebra (RA) and safe relational calculus (RC). A
conjunctive query consists of a Datalog rule of the form Q(Z) :− ϕ(X), where ϕ is a
conjunction of atoms over the variables in X , and Z ⊆ X . Such a query is equivalent
to a RA query using only the following RA operators: Cartesian product, projection,
and positive selection, that is, selection conditions are restricted to be conjunctions of
equalities. By positive queries we mean safe RC queries and nonrecursive Datalog
queries without negation, which are equivalent to unions of conjunctive RA queries.
Although the choice of the language is not relevant for our purposes, from now on we
assume that queries are formulated using safe, nonrecursive Datalog without negation.
The result of evaluating a query Q on a database D will be denoted as Q(D).
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An (universally quantified or full) integrity constraint (IC) is of the form:

∀X

[
m∧
i=1

bi(Xi) ∧
n∧

i=m+1

¬ bi(Xi)⇒

]
(1)

where n ≥ m ≥ 0, for every 1 ≤ i ≤ n, the bi(Xi)’s are atoms, and the above
conjunction is safe, that is, variables occurring in negative literals also occur in positive
literals.

A database D is consistent w.r.t. a set of integrity constraints Σ (we also say that D
satisfies Σ) if D |= Σ in the standard model-theoretic sense. Otherwise, D is inconsis-
tent w.r.t. Σ.

An update atom is of the form +a(X) or −a(X), where a(X) is an atom. A
variable-free update atom is said to be ground. Intuitively, a ground update atom
+a(c) (resp. −a(c)) states that a(c) will be inserted into (resp. deleted from) the
database. We use the notation ±a(c) to refer to a generic ground update atom, which
may be either +a(c) or −a(c). Given a set U of ground update atoms, we define
U+ = {a(c) | +a(c) ∈ U} and U− = {a(c) | −a(c) ∈ U}. We say that U is coherent
if it does not contain two update atoms +a(c) and −a(c) (i.e., if U+ ∩ U− = ∅).
Given a database D and a coherent set of update atoms U , we use U(D) to denote the
database obtained by applying U to D, that is, the database (D ∪ U+) \ U−. When
U is a singleton {±A}, with a slight abuse of notation, we also write ±A in place of
{±A}.

Given a database D and a set of integrity constraints Σ, an update for 〈D,Σ〉 is a
coherent set of ground update atoms R such that (i) R(D) |= Σ and (ii) there is
no proper subset R′ of R such that R′(D) |= Σ. The set of all possible updates for
〈D,Σ〉 is denoted as R(D,Σ). Every database obtained by applying an update R to
D is called a repair for 〈D,Σ〉. Thus, repairs are consistent databases derived from the
original one by means of a minimal set of update operations—recall that we consider
fact insertions and deletions as the only primitives to restore consistency.
The certain (or consistent) answers to a queryQ on a databaseD w.r.t. a set of integrity
constraints Σ are defined as:

CERTAIN(Q,D,Σ) =
⋂

R∈R(D,Σ)

Q(R(D)).

2.2. Active Integrity Constraints

In this section we recall the syntax and semantics of active integrity constraints
(AICs) (Caroprese et al. (2009)). We consider formulae of the form ϕ ⇒ ψ, where
ϕ is a conjunction of literals and ψ is a disjunction of update atoms. For any formula
ϕ ⇒ ψ, body(ϕ ⇒ ψ) = ϕ denotes the body of the implication, whereas head(ϕ ⇒
ψ) = ψ denotes the head. With a slight abuse of notation, we sometimes use body(σ)
(resp. head(σ)) to denote the set of body literals (resp. head update atoms).

The complementary literal of an update atom +a(X) (resp. −a(X)) is CompLit
(+a(X)) = ¬ a(X) (resp. CompLit(−a(X)) = a(X)). For any set U of update
atoms, CompLit(U) = {CompLit(±a(X)) | ±a(X) ∈ U}
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Definition 1. An active integrity constraint (AIC) σ is of the form:

∀X

 m∧
i=1

bi(Xi) ∧
n∧

i=m+1

¬ bi(Xi)⇒
q∨
i=1

−ai(Xi) ∨
p∨

i=q+1

+ai(Xi)

 (2)

where (i) n, p > 0, (ii) the bi(Xi)’s are atoms, (iii) the −ai(Xi)’s and +ai(Xi)’s are
update atoms, (iv) variables occurring in negated literals also occur in positive standard
literals, and (v) CompLit(head(σ)) ⊆ body(σ). 2

For an AIC σ, body+(σ) and body−(σ) denote the set of positive and negated atoms
in body(σ), respectively. An AIC specifies both an integrity constraint (in the body)
and the actions to be performed (in the head) if the integrity constraint is violated. We
use St(σ) to denote the integrity constraint of the form (1) derived from σ by removing
all the head update atoms. For a set of active integrity constraints Σ, St(Σ) denotes
the corresponding set of integrity constraints, that is St(Σ) = {St(σ) | σ ∈ Σ}.
Furthermore, for any set of AICs Σ and set of ground update atoms U , Σ[U ] denotes
the set of AICs derived from ground(Σ) by deleting head update atoms not occurring
in U and AICs such that all head update atoms have been deleted.

Below we define the semantics of AICs. For every database D and set of AICs Σ, a
setR of ground update atoms is an update for 〈D,Σ〉 if it is an update for 〈D,St(Σ)〉.
The set of updates for 〈D,Σ〉 is denoted as R(D,Σ).

Definition 2. Given a database D and a set of AICs Σ:

• An updateR for 〈D,Σ〉 is founded iff it is an update for 〈D,Σ[R]〉.

• A repairR(D) is founded iffR is a founded update. 2

The idea underlying the above definition is that the actions of an update must be de-
termined only by the AICs allowing those actions. Observe that the founded semantics
guarantees that, given a founded repair R, for each update atom ±A ∈ R there must
be an AIC σ ∈ gorund(Σ) such that ±A ∈ head(σ) (otherwiseR is not minimal).

Example 5. Consider the database D5 = {p} and the set of AICs Σ5:

σ1 : p ∧ q ⇒ −p
σ2 : p ∧ ¬q ⇒ +q

For 〈D5,Σ5〉 there is a unique update R = {−p}, which is not founded as update −p
is not determined by the first AIC, but (indirectly) by the second one. Observe that
Σ5[R] = {σ1} and 〈D,Σ5[R]〉 has only one updateR′ = ∅. 2

It is worth noting that although the definition here introduced is different from that
used in Caroprese et al. (2009), here we use the same name as the former is just a
refinement of the latter, and its purpose is to overcome the problem of cyclic support—
see Caroprese & Truszczynski (2011). Theorem 8 in Appendix A shows that every
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founded update according to Definition 2 is also founded according to the definition
given in Caroprese et al. (2009).

The set of all founded updates for a database D and a set of AICs Σ is denoted as
FR(D,Σ). Clearly, FR(D,Σ) ⊆ R(D,Σ).

Example 6. Consider the scenario of Example 2 and let Σ6 be the set containing only
the AIC σ reported therein.
Then, R(D,Σ6)={R1,R2}, whereR1 ={-emp(john, cs)} andR2 ={+dept(cs)}.
Moreover Σ6[R1] = ∅, whereas Σ6[R2] = ground(Σ6). Consequently, R1 is not
founded, whereasR2 is founded. Therefore, FR(D,Σ6) = {R2}. 2

The certain answers to a query Q on a database D w.r.t. a set of AICs Σ are:

CERTAIN(Q,D,Σ) =
⋂

R∈FR(D,Σ)

Q(R(D)).

Thus, in the presence of active integrity constraints, the certain answers to a query
are defined by considering only founded repairs, rather than all of them.

3. Existential Active Integrity Constraints

As shown in the Introduction, AICs suffer from limited expressivity, due to the lack
of existential quantification. As already anticipated, we are now going to propose an
extension of AICs, which lets us define AICs with existentially quantified variables,
allowing for more expressive integrity constraints, such as inclusion dependencies.
In particular, EAICs additionally allow update atoms with existential variables in the
head, as well as negative body literals of a particular form. For instance, the EAIC of
Example 4, which we report again below for convenience,

∀E ∀D [ emp(E, D) ∧ @C dept(D, C) ⇒ ∃Z +dept(D, Z) ]

has the existentially quantified update atom ∃Z +dept(D, Z) in the head, and the neg-
ative body literal @C dept(D, C) in the body—neither of them is allowed by AICs.
More in general, as stated in the following, EAICs additionally allow update atoms of
the form ∃Z +a(X,Z) in the head, and negative literals of the form @Za(X,Z) in the
body.

The set of complementary literals of an update atom is redefined as follows:

• CompLit(−a(X)) = {a(X)};

• CompLit(∃Z+a(X,Z)) = {@Y a(X
′
, Y ) | ∃ subst. ϑ s.t. a(X

′
, ϑ(Y )) = a(X,Z)}.

For any set U of update atoms, CompLit(U) = ∪±A∈UCompLit(±A)

Syntax. The following definition introduces the syntax of existential active integrity
constraints.
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Definition 3. An Existential Active Integrity Constraint (EAIC) is of the form:

∀X

 m∧
i=1

bi(Xi) ∧
n∧

i=m+1

@Zi bi(Xi, Zi)⇒
q∨
i=1

-ai(Xi) ∨
p∨

i=q+1

∃Zi +ai(Xi, Zi)

 (3)

where (i) n, p > 0, (ii) universally quantified variables occurring in negative body lit-
erals also occur in positive body literals, (iii) every existentially quantified variable oc-
curs only in one update atom or negative body literal, and (iv) for each±A ∈ head(σ),
the condition CompLit(±A) ∩ body(σ) 6= ∅ holds. 2

Example 7. Consider the database schema consisting of two relations node(Id) and
edge(Source, Dest, Weight) used to store nodes and weighted edges of a graph, re-
spectively. For the following EAIC

σ : node(X1) ∧ node(X2) ∧ @(Y1,Y2) edge(X1, Y1,Y2)⇒ ∃Z1+edge(X1, X2,Z1),

we have CompLit(∃Z1+edge(X1, X2,Z1))∩ body(σ) = {@(Y1,Y2) edge(X1, Y1,Y2)} 6=
∅. 2

A negative body literal @Zi bi(Xi, Zi) s.t. Zi is empty will be simply written as
¬ bi(Xi). For an EAIC σ, St(σ) denotes the constraint, called existential integrity
constraint (EIC), obtained by deleting all head atoms from σ. For any set of EAICs Σ,
we define St(Σ) = {St(σ) | σ ∈ Σ}. For ease of presentation (and w.l.o.g.), from
now on we assume that constants do not appear in EAICs.

Semantics. We use pground(ϕ) to denote the set of all partially ground instances
of a formula ϕ obtained by replacing universally quantified variables with constants in
all possible ways. For a set of formulae Φ, pground(Φ) = ∪ϕ∈Φ pground(ϕ).

A database D satisfies a partially ground conjunction of literals ϕ (denoted D |= ϕ),
if ϕ+ ⊆ D and there is no substitution ϑ replacing existentially quantified variables
in ϕ with constants s.t. ϑ(ϕ−) ∩ D 6= ∅.3 Thus, for any partially ground EIC σ of
the form ϕ ⇒, as it expresses a denial constraint (i.e., an implication whose head is
false), D |= σ iff D 6|= ϕ, that is, the following condition holds: if body+(σ) ⊆ D,
then there is a substitution ϑ replacing existentially quantified variables with constants
s.t. ϑ(body−(σ)) ∩ D 6= ∅. Furthermore, D satisfies an EIC σ if D satisfies every
partially ground instance in pground(σ); D satisfies an EAIC (or partially ground
instance thereof) σ if it satisfies St(σ). Finally, D satisfies a set of EAICs (or EICs)
Σ if D satisfies every σ ∈ Σ—we also say that D is consistent w.r.t. Σ. Updates and
repairs for databases with EICs and EAICs can be defined analogously to the cases of
ICs and AICs, respectively.

Example 8. Given the database schema consisting of two relations node(Id) and
edge(Source, Dest) used to store nodes and edges of a graph, respectively, consider
the following EAIC:

node(X) ∧ @Y edge(X, Y)⇒ −node(X) ∨ ∃Z +edge(X, Z)

3Here ϕ+ and ϕ− denote the sets of positive and negated atoms in ϕ, respectively.
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Intuitively, the EAIC says that every node must have an outgoing edge, and when this
is not the case either the node is deleted or an outgoing edge is added.

The database D = {node(a)} is clearly inconsistent. Since the domain C is in-
finite, the EAIC above suggests an infinite number of ways to repair the database,
namely, by means of update atoms of the form {+edge(a, c)} with c ∈ C. Notice that
{−node(a)} is another possible way of restoring consistency. 2

For any set of EAICs Σ and set of ground update atoms U , Σ[U ] denotes the set of
partially ground EAICs derived from pground(Σ) by first deleting every head update
atom ±A for which there does not exist a substitution ϑ such that ϑ(±A) ∈ U , and
then deleting every EAICs where all head update atoms have been deleted.

The definitions of founded update and founded repair are the same as those defined
for AICs, that is, for any database D and set of EAICs Σ: (i) an update R is founded
iff it is an update for 〈D,Σ[R]〉, and (ii) a repairR(D) is founded iffR is a founded.

3.1. Nulls and Certain Query Answers

The introduction of existentially quantified variables increases the expressivity of
active integrity constraints. The price to pay is that, differently from the AIC setting,
decidability of query answering over knowledge bases with EAICs is no more guar-
anteed, in general. Example 8 showed that EAICs can admit an infinite number of
updates, whereas the following one shows that EAICs can admit updates of infinite
size (i.e., containing an infinite number of update atoms).

Example 9. Consider again the database schema of Example 8 and the set of EAICs
Σ9 consisting of the following EAIC:

edge(X, Y) ∧ @V edge(Y, V)⇒ ∃Z +edge(Y, Z)

Intuitively, the EAIC says that every node having an incoming edge must also have an
outgoing edge, and when this does not hold the missing outgoing edge must be added.

The database D = {edge(c1, c2)} is inconsistent. Assuming an infinite domain of
constants C = {c1, c2, c3, c4, . . . }, the set {+edge(c2, c3), +edge(c3, c4), . . . } is an
update with an infinite number of update atoms. 2

To restrict the number of repairs to be considered for query evaluation, we next
introduce the concepts of labeled null and universal repairs (see the next Subsection
3.2).

A labeled null can be used as a placeholder for any constant from C. Thus, in addition
to the set of constants C, we assume the existence of an infinite enumerable set of
labeled nulls N of the form ⊥i, where i ∈ N is a natural number. Below we report
some auxiliary notation and terminology to deal with labeled nulls—some of them are
slight generalizations of previously introduced notions to account for labeled nulls too,
besides constants.

For any set of atoms D with values in C ∪N ∪V , we use C(D) (resp. N (D), V(D))
to denote the set of constants (resp. nulls, variables) occurring in D.
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For every two sets of atoms D1 and D2 over S, a homomorphism h from D1 to
D2, denoted h : D1 → D2, is a mapping from C(D1) ∪ N (D1) ∪ V(D1) to C(D2) ∪
N (D2) ∪ V(D2) such that:

(i) h(c) = c, for every c ∈ C(D1);

(ii) h(⊥i) ∈ C(D2) ∪N (D2), for every ⊥i∈ N (D1);

(iii) for every fact Ri(t̄) of D1, we have that Ri(h(t̄)) is a fact of D2 (where, if
t̄ = (a1, ..., an), then h(t̄) = (h(a1), ..., h(an))).

A homomorphism that is the identity on C ∪ N (i.e., it maps variables only) is also
called a substitution, whereas a substitution whose image is C ∪N (resp. C) is called a
matcher (resp. constant matcher). The concepts of homomorphism can be extended to
(sets of) update atoms.

The new definitions of ground (update) atom, update and repair are given in the
following. A ground atom A is of the form p(t1, . . . , tn), where p is an n-ary predicate
and t1, . . . , tn ∈ C∪N ; we write it also as p(t), where t is understood to be a sequence
of constants and labeled nulls. Intuitively, A represents all atoms B = p(c1, . . . , cn),
with c1, . . . , cn ∈ C, such that there exists a homomorphism from A to B. A ground
update atom is of the form +p(t) or−p(t), where p(t) is a ground atom. We use±p(t)
to refer to a generic ground update atom.

Certain answers. The semantics of a database D with labeled nulls is usually given
in terms of the set POSS(D) of its possible worlds, that is, all databases that can be
obtained from D by replacing all nulls with constants. The certain answers to a query
Q over D are defined as follows:

CERTAIN(Q,D) =
⋂

W∈POSS(D)

Q(W )

The definitions of partially ground constraints remains the same. A database D with
labeled nulls satisfies a partially ground EIC σ if the following condition holds: for
every homomorphism h from body+(σ) to D that maps nulls to constants, there is a
constant matcher ϑ s.t. ϑ(body−(σ)) ∩ h(D) 6= ∅. The definitions of satisfaction of
(sets of) EICs and EAICs remain the same.

Moreover, the introduction of nulls implies that the definitions of coherent update
atoms and update need to be revised.

Definition 4. A set of ground update atoms U is coherent if there are no two update
atoms +a(t1),−a(t2) ∈ U and a homomorphism h such that a(h(t1)) = a(h(t2)).

Given two coherent sets of ground update atoms Ui and Uj , we say that Ui is more
general than Uj , denoted Ui w Uj , if there exists a homomorphism h from Ui to Uj .

We also say that Ui and Uj are (homomorphically) equivalent (and write Ui ≡ Uj) if
Ui w Uj and Uj w Ui. 2

For instance, {+edge(⊥1,⊥2)} w {+edge(a,⊥2)} w {+edge(a, a)}, and the sets
{+edge(a,⊥1)}, {+edge(⊥2, a)}, {−node(a)} are pairwise incomparable.
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The introduction of nulls makes the minimality criterion of updates for the case of
AICs and databases with constants only, not suitable anymore. Thus, the next definition
extends the notion of update to EAICs.

Definition 5 (Update). Given a database D and a set of EICs Σ, an update for 〈D,Σ〉
is a coherent set of ground update atomsR such that (i)R(D) |= Σ, and (ii) for every
coherent set of ground update atoms R′ such that R′(D) |= Σ if R′ w R, then also
R w R′ holds. 2

Observe that the previous definition coincides with the one provided in Section 2
when applied to AICs, as update atoms contain only constants and R w R′ is equiva-
lent toR ⊆ R′.

Once we have revised the definition of coherent set of ground update atoms, update,
founded update atom, founded update and founded repair are defined analogously to
the case of AICs. Thus, we continue to use the same notation even for EAICs.

In the presence of a set of EAICs Σ, the definition of certain answers has to take
into account all possible founded repairs for 〈D,Σ〉 and, for each founded repair, all
its possible worlds. Thus,

CERTAIN(Q,D,Σ) =
⋂

R∈FR(D,Σ)∧M∈POSS(R(D))

Q(M)

The following proposition states that certain query answering is undecidable in the
presence of EAICs.

Proposition 1. Deciding whether a tuple belongs to CERTAIN(Q,D,Σ) is undecid-
able.

Proof. It can be proved by reduction of the analogous certain answer problem defined
for databases with TGDs. In such a case the certain answer problem is defined as
CERTAIN(Q,D,Σ) =

⋂
{S | S is a solution for 〈D,Π〉}, where Π is a set of TGDs.

A solution for 〈D,Π〉 is a set of tuples such that D ⊆ S and S |= Σ. The problem
of deciding whether a tuple belongs to CERTAIN(Q,D,Π), where Π is a set of TGDs,
is undecidable. Thus, the undecidability of the problem follows from the fact that, as
we will show in Section 6.2, any set of TGDs Π can be mapped to a set of EAICs
eaic(Π) so that (universal) solutions for 〈D,Π〉 are equivalent to (universal) founded
repairs for 〈D, eaic(Π)〉 (see Theorem 7 in Section 6.2) and both the problems of
stating whether 〈D,Π〉 admits a (universal) solution and of stating whether a tuple is
a certain answer for a query Q over a database D with dependencies Π, are, in the
general case, undecidable. 2

The previous result does not preclude, however, the existence of interesting classes
of EAICs for which the problem of computing certain query answers is decidable, and
even tractable. It is worth noting that it might be the case that there are no founded
updates for a database and set of EAICs. This may already happen in the presence of
AICs, as shown in Example 5.
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In the next subsection we will introduce a property that allows us to select a minimal
set of founded updates to compute certain answers.

3.2. Universal Set of Founded Updates

Although the introduction of nulls enlarges the number of (founded) updates, only a
subset of these need to be considered in computing certain answers. This idea is cap-
tured by the notion of “universal set of founded updates”, introduced in the following
definition.

Definition 6 (Universal Set of Updates). Let D be a database and Σ a set of EAICs.
A universal set of updates S is a minimal (w.r.t. ⊆) set of S-updates for 〈D,Σ〉 s.t. for
every updateRj for 〈D,Σ〉 there is an S-updateRi ∈ S s.t. Ri w Rj . 2

Roughly speaking, a universal set of founded updates is a set of founded updates that
is representative of all founded updates. It is worth noting that the minimality property
guarantees that a universal set of founded updates contains only founded incomparable
updates.

Example 10. Consider the database and the EAIC of Example 8. The founded updates
are R0 = {−node(a)}, every Ri = {+edge(a,⊥i)}, for some i ∈ N, and every
Rc = {+edge(a, c)}, for some c ∈ C. The sets of the form {R0,Ri} are universal
sets of founded updates, whereas the sets of the form {R0,Rc}, for some c ∈ C, are
not. 2

In the previous example we have an infinite number of universal sets of founded
updates, but all of them are homomorphically equivalent. However, as previously
pointed out, it might also happen that there is no founded update for a database D and
set of EAICs Σ.

For any queryQ, databaseD, and set of EAICs Σ, let S be a universal set of founded
updates for 〈D,Σ〉, then the certain answers to Q over S are:

CERTAIN(Q,D, S) =
⋂

R∈S∧M∈POSS(R(D))

Q(M)

Theorem 1. Let D be a database, Σ a set of EAICs, and Q a query. Then, for any
universal set of founded updates S for 〈D,Σ〉

CERTAIN(Q,D,Σ) = CERTAIN(Q,D, S)

Proof. We show that (i) CERTAIN(Q,D,Σ) ⊆ CERTAIN(Q,D, S) and
(ii) CERTAIN(Q,D,Σ) ⊇ CERTAIN(Q,D, S).

(i) To prove that CERTAIN(Q,D,Σ) ⊆ CERTAIN(Q,D, S) we have to show that⋂
R∈FR(D,Σ)∧M∈POSS(R(D))

Q(M) ⊆
⋂

R∈S∧N∈POSS(R(D))

Q(N).

This is trivial as S ⊆ FR(D,Σ).
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(ii) To prove that CERTAIN(Q,D, S) ⊆ CERTAIN(Q,D,Σ) we have to show that⋂
R∈S∧N∈POSS(R(D))

Q(N) ⊆
⋂

R∈FR(D,Σ)∧M∈POSS(R(D))

Q(M).

For any R ∈ FR(D,Σ) there is an R′ ∈ S such that R′ w R. This means that
that for every ground database M ∈ POSS(R(D)), then M ∈ POSS(R′(D)).
Therefore CERTAIN(Q,D, S) ⊆ CERTAIN(Q,D,Σ). 2

Therefore, to answer queries it is possible to consider any universal set of founded
updates. In the following, for each database D and set of EAICs Σ, US(D,Σ) denotes
an arbitrary, but fixed, universal set of (founded) updates of 〈D,Σ〉. Moreover, when-
ever the universal set of updates contains only one update, we call such an element
universal update. As a consequence, certain answers can be computed by only consid-
ering the repairs obtained by taking any universal set of founded updates; we call such
a set of repairs universal set of repairs.

Corollary 1. Given a query Q, a database D, and a set of EAICs Σ,

CERTAIN(Q,D,Σ) =
⋂

R∈US(D,Σ)∧M∈POSS(R(D))

Q(M)

Proof. Straightforward from Theorem 1. 2

For databases (without EAICs) containing labeled nulls, certain answers to positive
queries can be easily computed in polynomial time as follows (Imielinski & Lipski
Jr. (1984)): first, the query is evaluated by treating nulls as standard constants, and
then tuples containing nulls are discarded from the result of the query evaluation. This
evaluation is sometimes called naive evaluation. We useQnaive(D) to denote the result
of the naive evaluation of a query Q over a database (possibly with labeled nulls) D.
As a consequence, we obtain the following corollary.

Corollary 2. Given a positive query Q, a database D, and a set of EAICs Σ,

CERTAIN(Q,D,Σ) =
⋂

R∈US(D,Σ)

Qnaive(R(D))

Proof. It follows from Corollary 1 and the correctness of the naive evaluation for
positive queries (Imielinski & Lipski Jr. (1984)). 2

4. Finite Universal Set of Founded Updates

In the previous section, we have shown that there exists a “representative” set of
founded updates, called universal, that can be considered for query answering. Since
the problem of checking whether a tuple belongs to the certain answers is undecidable,
one way of restoring decidability of certain answering is to isolate a fragment of EAICs
for which both the cardinality of US(D,Σ) and the cardinality of each element therein
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is finite. Another approach is to identify a fragment for which certain answering be-
comes decidable, regardless of the finiteness of US(D,Σ) or the elements therein. In
this work, we follow the first approach and leave the second one for future work.

The set US(D,Σ) may be infinite, i.e., it may contain updates of infinite size or its
cardinality may be infinite. The following two examples show these two cases.

Example 11. Consider again the scenario of Example 9 where the database is D =
{node(a)} and the set of EAICs Σ9 is defined as follows:

edge(X, Y) ∧ @V edge(Y, V)⇒ ∃Z +edge(Y, Z).

In this case, US(D,Σ9) consists of a single founded update R = {+edge(c2,⊥1),
+edge(⊥1,⊥2), . . . }, which has an infinite number of update atoms. 2

Example 12. Consider the following set of EAICs Σ12:

σ1 : node(X) ∧ @Y edge(X, Y) ⇒ ∃Z +edge(X, Z)
σ2 : edge(X, X) ⇒ -edge(X, X)

Notice that the second EAIC forbids self-loops to be in the database. For the database
D = {node(a)}, US(D,Σ) contains infinitely many founded updates of the form
{+edge(a, c)} with c ∈ C − {a}. 2

The problem with Example 9 is that Σ9 is “recursive” and there is a cyclic prop-
agation and generation of nulls. Regarding Example 12, assuming that C is infinite,
we have an infinite number of universal founded repairs, which are not finitely repre-
sentable (with the formalism used in this paper). More in detail, there is an infinite
number of updates {+edge(a, c)}, where c is any constant in C different from con-
stant a, that cannot be represented by a unique universal repair {+edge(a,⊥)}, as ⊥
represents all constants.

To guarantee finiteness of US(D,Σ) we need to introduce some restrictions on the
form of EAICs.

In the following, we first introduce a restriction, called safety, that ensures that each
founded update is finite. Then, we introduce a (somehow orthogonal) restriction, called
weak monotonicity, ensuring a finite number of universal founded updates. As shown
in the following, if a set Σ of EAICs satisfies both criteria, then finiteness of US(D,Σ)
and of its elements is guaranteed for every database D.

The first restriction concerns the propagation of values among arguments. This prob-
lem is similar to the well-known problem of guaranteeing termination of the chase pro-
cedure (Fagin et al. (2005a,b); Deutsch et al. (2008); Greco et al. (2012)). We next
present a restriction inspired by the safety criterion used for TGDs to guarantee chase
termination (Meier et al. (2009)). The safety criterion analyzes the structure of EAICs
by constructing a directed graph and analyzing how nulls are created and propagated
into “affected” positions (Cali et al. (2013)).

Given a set of EAICs Σ, for every atom p(t1, ..., tn) (or update atom ±p(t1, ..., tn))
occurring in Σ and for all i ∈ [1, n], p[i] is called a position of Σ. Moreover, Σ+
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denotes the set of EAICs obtained from Σ by deleting all negative body literals and
all head delete update atoms. If the head of σ contains only delete atoms, then σ is
deleted.

Let Σ be a set of EAICs. The set of affected positions aff (Σ) of Σ is defined iter-
atively starting from the empty set as follows. Let p[i] be a position occurring in the
head of some σ ∈ Σ+ andX be a variable occurring in this position. Then p[i] is added
to aff (Σ) if:

• X is existentially quantified, or

• X is universally quantified and appears in body atoms of σ only in affected
positions of Σ.

Intuitively, affected positions are positions where nulls may be introduced. The fol-
lowing example further clarifies this aspect.

Example 13. Consider the EAIC of Example 9:

edge(X, Y) ∧ @V edge(Y, V)⇒ ∃Z +edge(Y, Z).

There is only one binary predicate edge and, therefore, two positions: edge[1] and
edge[2]. Position edge[2] is affected, as there is an edge-atom in the head with an
existential variable in the second argument. This means that, in computing a univer-
sal repair, we could add an edge-atom with a null in the second argument and, thus,
edge[2] is an affected position.

Moreover, if we have an edge-atom with a null in the second argument, to satisfy the
EAIC we could need to add another edge-atom, where the null occurring in the second
argument of the positive body literal is “copied” into the first argument of the new
atom. Thus, position edge[1] is affected as well. Intuitively, this means that to compute
a universal repair we could need to add atoms having nulls in both positions. 2

As shown in Examples 11 and 13, the EAIC of Example 9 could produce a universal
repair with an infinite number of nulls and an infinite number of atoms. This is due to
the fact there is a cyclic propagation and generation of nulls. More specifically, having
an atom with a null in the second argument, we add a new atom where the null is copied
into the first argument and a new null is put in the second argument. This situation can
be represented by means of a labelled graph. The next definition introduces the concept
of propagation graph which allows us to identify these cyclic conditions.

The propagation graph of Σ is a directed graph GΣ = (V,E), where V = aff (Σ) is
the set of nodes of GΣ and E is the set of edges defined as follows. For every σ ∈ Σ+

and for every variable X occurring in a body atom in position p[i], if X occurs only in
affected positions in body(σ) then:

• for every occurrence ofX in head(σ) in position q[j] there is an edge p[i]→ q[j]
in E;

• for every existentially quantified variable Z in the head of σ and for every posi-
tion q[j] where Z occurs, there is a labeled edge p[i]→∗ q[j].
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Figure 1: Propagation graph for Σ14 Figure 2: Propagation graph for Σ′14

Definition 7 (Safe EAICs). A set of EAICs Σ is said to be safe if the propagation
graph GΣ has no cycles going through a labeled edge. 2

Example 14. Consider the following set of EAICs Σ14:

σ1: node(X) ∧ @Y edge(X, Y) ⇒ ∃Z +edge(X, Z)
σ2: edge(X, Y) ∧ ¬ node(Y) ⇒ -edge(X, Y) ∨ +node(Y)

The set of EAICs Σ+
14 is as follows:

σ′1: node(X) ⇒ ∃Z +edge(X, Z)

σ′2: edge(X, Y) ⇒ +node(Y)

Position edge[2] is affected because variable Z is existentially quantified in that posi-
tion in σ′1. Moreover, position node[1] is affected as variable Y appears in the head and
only in affected positions in the body of σ′2. Consequently, from σ′1 we derive that also
position edge[1] is affected.

Thus, the vertices of the propagation graph are all positions of Σ14. The propagation
graph, shown in Figure 1, where predicate symbols node and edge have been replaced
by their initials, contains the unlabeled edges (n[1], e[1]) and (e[2], n[1]), and the la-
beled edge (n[1], e[2]). This happens because (i) a null occurring in position node[1]
may be copied to position edge[1] (edge (n[1], e[1])), (ii) a null occurring in position
edge[2] may be copied to position node[1] (edge (e[2], n[1])), and (iii) a new null
is introduced in position edge[2] which “depends” on the value in position node[1]
(labeled edge from n[1] to e[2]). As there is a cycle with a labeled edge, Σ14 is not
safe—indeed, for the database D = {node(a)}, there is a founded update with an
infinite number of update atoms.

Observe that, by replacing node(Y) with node(X) in both the head and the body of
σ2, the new set of EAICs, denoted as Σ′14, becomes safe as the propagation graph,
shown in Figure 2, does not contain cycles with labeled edges. 2

The second restriction regards the possibility to write EAICs with conflicting actions,
and its aim is to guarantee a finite number of founded updates in US(D,Σ).

Definition 8 (Weakly monotonic EAICs). A set of EAICs Σ is weakly monotonic
if there are no two update atoms +A1 and −A2 appearing in Σ and two substitutions
ϑ1 and ϑ2 such that ϑ1(A1) = ϑ2(A2). 2
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The weakly monotonic property guarantees that the sets of update atoms produced
through the application of EAICs is always coherent, that is, there are no two EAICs
which could add and delete two atoms having an homomorphism to the same ground
atom with constants only. As an example, Σ14 is not weakly monotonic as the heads
of the two EAICs contain “conflicting” updates.

As stated in the theorem below, by combining the safety and the weakly monotonic-
ity restrictions, finiteness of US(D,Σ) is guaranteed, that is, US(D,Σ) contains a
finite number of founded updates, and each of them is finite (i.e., it contains a finite
number of update atoms). It is easy to see that both safety and weak monotonicity can
be checked in polynomial time.

Theorem 2. Let Σ be a set of safe, weakly monotonic EAICs. Then, for every database
D, the set US(D,Σ) is finite, and eachR ∈ US(D,Σ) is finite.

Proof. Nulls may be introduced only in arguments corresponding to positions such
that there is path ending in such positions (in the propagation graph of Σ) and having
a labeled edge. Since these positions do not occur in cycles with labeled edges, the
number of labeled nulls that can be introduced is finite. As for the remaining positions,
only constants (already occurring in the input database) can occur in arguments cor-
responding to those positions. Moreover, as EAICs are weakly monotonic, every null
represents all constants in the domain, that is the possibly infinite number of constant
atoms represented by a ground atom (possibly with nulls) is finitely representable.

To show that the size is polynomial it is sufficient to consider the skolemized version
of Σ denoted by sk(Σ), where existentially quantified variables occurring in the head
of NEAICs and replaced by complex terms built using fresh function symbols and uni-
versally quantified variables, have as arguments only variables which can take values
from constants occurring in the input database. As the number of function symbols and
their arities depend only on Σ, for any database D, the size of the ground instantiation
of sk(Σ) obtained by replacing variables with constants in D, is polynomial in the
size of the database domain dom(D) and, therefore, in the size of the input database
D. Moreover, since |ground(sk(Σ))| is polynomial in |D|, the founded update atoms
which can be inferred from ground(sk(Σ)) is also polynomial in the size of D. A
founded update can be obtained by replacing ground complex terms with nulls. 2

The next example shows a set of EAICs which are safe and weakly monotonic.

Example 15. Consider a database consisting of three relations with schemas emp(Name,
Dept), dept(Name, Mgr) and e-dept(Name) storing information about employees (name
and department where she/he works), departments (name and manager) and excellent
departments4 (name), and the below set of EAICs Σ:

emp(E, D) ∧ e-dept(D) ∧ @M dept(D, M)⇒ ∃Z + dept(D, Z)
dept(D, E) ∧ @Y emp(E, Y)⇒ ∃Z + emp(E, Z)

4In Italy some university departments have been classified as excellent for the quality of research.
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stating that (i) for each employee E working in a department D which is also an excellent
department there must be a related tuple in the department table and, (ii) for each
department D with manager E there must be an employee with name E in relation emp.
The set of EAICs is safe and weakly monotonic. Therefore, for any database instance
D, US(D,Σ) is finite and consists only of finite updates. 2

The problem of identifying classes of TGDs admitting finite universal solutions has
been deeply investigated in recent years (see Fagin et al. (2005a)). More general (and
complex) criteria guaranteeing finiteness of a universal set of founded updates could be
defined and we reserve such a topic for further future investigation. Criteria recently
studied guaranteeing chase termination for TGDs (Greco et al. (2015); Calautti et al.
(2016)) may be the inspiration for more general conditions for finiteness of universal
set of founded updates.

5. Normal EAICs

So far we have considered general (canonical) EAICs allowing body negation, head
disjunction and head updates. We next consider normal EAICs (NEAICs), that is,
EAICs whose head contains exactly one update atom, and compare the expressive
power of EAICs and NEAICs. To this end we also introduce the definition of equiva-
lence among sets of EAICs.

Definition 9. Given two sets of EAICs Σ and Σ′, we say that Σ and Σ′ are equivalent
if for every database D, FR(D,Σ) = FR(D,Σ′). 2

Clearly, for any pair of equivalent sets of EAICs Σ and Σ′, database D and query Q,
CERTAIN(Q,D,Σ) = CERTAIN(Q,D,Σ′).

Theorem 3. The problem of deciding whether two sets of EAICs are equivalent is un-
decidable.

Proof. The proof can be carried out by reduction from the Query Equivalence Problem:
given two queriesQ andQ′ of the same arity, is it the case thatQ andQ′ are equivalent
(i.e., does Q(D) = Q′(D) hold on every database D)? For the sake of simplicity, we
assume that the two queries are Boolean and defined by two sets of (safe, not recursive)
Datalog rules, that is Q = (g, P ) (resp. Q′ = (g, P ′), where g is a predicate symbol of
arity 0 (called query goal) and P (resp. P ′) is a set of Datalog rules (called program).
Therefore Q(D) is equivalent to checking whether g belongs to the minimal model
M of P ∪ D, which is equal to the least fixpoint of P ∪ D. We show that checking
whether g ∈ M is equivalent to checking whether g belongs to the (unique) founded
repair R of (ΣP , D), where ΣP is a set of AICs derived from P as follows. Let
ΣP = {body(X,Y ) ∧ ¬a(X) ⇒ +a(X) | a(X) ← body(X,Y ) ∈ P}, the minimal
model M of P ∪D coincides with the the (unique) founded repairR for ΣP ∪D. This
can be proved inductively showing that at each step i, Mi = Ri, where Mi andRi are,
respectively, the fixpoints of P ∪D and ΣP ∪D computed until step i:
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• (base case - step 0). M0 = R0 = D;

• (inductive case - step i). Assuming that Mi−1 = Ri−1, first assign Mi = Mi−1

and Ri = Ri−1 and then update Mi and Ri as follows. For each rule a(X) ←
body(X,Y ) and for each (constant) matcher θ such that Mi |= θ(body(X)) and
Mi 6|= θ(a(X)), add θ(a(X)) to Mi. Moreover, this implies that there is an AIC
body(X,Y ) ∧ ¬a(X) ⇒ +a(X) such that Ri |= θ(body(X) ∧ ¬a(X)) and,
therefore, θ(a(X)) is added to Ri as well. Clearly also the vice versa holds.
Therefore Mi = Ri.

Moreover, let M = Mj such that Mj = Mj+1 and letR = Rj such thatRj = Rj+1.
We have that M is the minimal model of P ∪D and R is the (unique) founded repair
for (D,Σ). Clearly checking whether g ∈ M is equivalent to checking whether there
is a founded repair containing g. 2

Given a set of EAICs Σ, Normal(Σ) denotes the set of NEAICs derived from Σ by
replacing every EAIC B ⇒ A1 ∨ · · · ∨An ∈ Σ with n NEAICs B ⇒ Ai, i ∈ [1, n].

Theorem 4. For any set of EAICs Σ, Normal(Σ) and Σ are equivalent.

Proof. Let Σ′ = Normal(Σ). First of all, observe that R(D,Σ) = R(D,Σ′) for every
databaseD, as St(Σ) = St(Σ′). The fact that FR(D,Σ) = FR(D,Σ′) holds, follows
from the fact that for any repairR for 〈D,Σ〉,Normal(Σ[R]) = (Normal(Σ))[R]. 2

Thus, normal EAICs have the same expressivity of general EAICs and head dis-
junction is only used as a shorthand for several EAICs. We point out that by adding
disjunction to standard TGDs we have an increment of the expressivity and complexity.

6. Deterministic EAICs

The framework studied so far is very general and highly expressive. This implies that
the complexity of computing certain answers is, in the general case, high. Clearly, the
complexity depends on the large number of updates and alternative repairs that must
be considered. In practical cases, users would not necessarily need the full expressive
power of EAICs, and rely on less expressive fragments. One of such fragments of
EAICs is that for which the universal set of founded updates contains at most one
update, that is, all repairs of a universal set are homomorphically equivalent. There
are several reasons to study such a fragment: (i) to identify subsets of EAICs for which
computing certain answers is tractable (polynomial time complexity), (ii) to effectively
generate a repaired database and not only use repairs to compute certain answers, and
(iii) to model ontological reasoning (see subsection 6.2).

Thus, in this section we study a subset of EAICs with a deterministic behavior, that
is, such that US(D,Σ) has at most one founded update. As the problem of checking
whether a set of EAICs is deterministic is undecidable (see next), we shall define a
syntactic subclass of EAICs, called confluent, for which at most one universal repair

19



exists, for every input database. We will also show that this class is expressive enough
to capture meaningful scenarios, and that every set of TGDs can be rewritten into an
“equivalent” set of confluent NEAICs.

Let us start by introducing the formal definition of a deterministic set of EAICs.

Definition 10 (Deterministic EAICs). A set of EAICs Σ is deterministic if
|US(D,Σ)| ≤ 1, for every database D. 2

Therefore, for deterministic EAICs Σ, if 〈D,Σ〉 admits founded repairs, then there
exists a founded repair Ri such that for any other founded repair Rj , Ri w Rj holds.
This also implies that in such a case positive queries can be answered by computing
exactly one universal founded update (if it exists). The following example shows a set
of deterministic EAICs which has no founded updates.

Example 16. Consider the set of EAICs Σ5 of Example 5, which is shown below:

σ1 : p ∧ q ⇒ −p
σ2 : p ∧ ¬q ⇒ +q

Since for every database D, |US(D,Σ5)| ≤ 1, Σ5 is deterministic. Indeed, if D does
not contain p, then there is only one founded update (namely the empty one, as D is
consistent) and only one founded repair, namely D. If D contains both p and q, then
there is only one founded update (namely −p) and thus only one founded repair. On
the other hand, if D contains p but does not contain q, there is no founded update and,
therefore, no founded repair.

Consider now the set of EAICs Σ16 obtained from Σ5 by replacing σ2 with the
following EAIC:

σ3 : p ∧ q⇒ −q

We have that Σ16 is not deterministic anymore as for D′ = {p, q}, US(D′,Σ16) =
{{−p}, {−q}}. 2

As discussed before, the deterministic property for EAICs is a desirable one, that
would allow us to obtain good computational behavior. It is thus crucial to understand
what is the complexity of checking whether a given set of EAICs is deterministic.

Theorem 5. Checking whether a set of EAICs Σ is deterministic is undecidable. 2

Proof. The proof can be carried out by reduction from the problem of checking whether
a Datalog program P has a total well founded model or, equivalently, whether it has a
unique stable model, for each database D.

Let P be a Datalog program, we denote by ΣP = {body(X,Y ) ∧ ¬a(X) ⇒
+a(X) | a(X) ← body(X Y ) ∈ P} be the set of AICs derived from P . We prove
that for every database D and stable model M for P ∪ D, M is a founded repair for
〈D,ΣP 〉 andR = {+a(x) | a(x) ∈M \D} is a founded update for 〈D,ΣP 〉.

Let P ′ = ground(P ), M a set of ground atoms, and P ′′ = {a(x) ← body(x, y) ∈
P ′ | a(x) ∈M \D}. First, observe thatM is a stable model for P ′∪D iff it is a stable
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model for P ′′ ∪ D. This follows from the definition of stable model. In fact, let P ′M
(resp. P ′′M ) be the positive program derived from P ′ (resp. P ′′) by (i) deleting rules
having a negative body literal ¬b(z) with b(z) ∈ M and (ii) deleting the remaining
negative body literals. Then, M is a minimal model for P ′M ∪ D iff it is a minimal
model for P ′′M ∪D.

Consider the ground instantiations P ′ = ground(P ) and Σ′P = ground(ΣP ). We
have that for each rule a(x) ← body(x, y) ∈ P ′ with a(x) ∈ M \ D there exists a
ground AIC body(x, y)∧¬a(x)⇒ +a(x) such that M 6|= body(x, y)∧¬a(x). As M
is minimal (recall that stable models are minimal models), it is a repair for 〈D,ΣP ′〉
and, consequently, a repair for 〈D,ΣP 〉.

Moreover,M 6|= body(σ′) for every σ′ ∈ ΣP ′ implies thatM 6|= body(σ′′) for every
σ′′ ∈ ΣP ′′ . As ΣP ′′ = ΣP ′ [R], M is a repair for both 〈D,ΣP ′〉 and 〈D,ΣP ′ [R]〉, i.e.
it is a founded repair for 〈D,Σ〉 2

6.1. Confluent EAICs

In light of the previous theorem, we introduce sufficient conditions ensuring that a
set of EAICs is deterministic. To this end we introduce further restrictions as shown in
Figure 3. In particular, while weak monotonicity guarantees that founded updates are
coherent, the monotonicity property we are going to introduce adds a further restriction
guaranteeing that mutually recursive NEAICs perform only additions of atoms or only
deletions of atoms. On the other hand, the new confluence property we are going to
introduce guarantees that updates generated by means of a fixpoint computation are
founded and universal. Finally, we define the inner class eaic(TGD) as the the class
of EAICs corresponding to TGDs, which is included in the classes of EAICs discussed
above. The roadmap for the rest of the section is to study the fragments shown in Figure
3 not considered so far.

A set of EAICs (possibly with disjunction in the head) intuitively describes different
alternative ways to construct a repair. Hence, a first restriction might be to disallow dis-
junction in the head. However, as previously shown, NEAICs (which are disjunction-
free) have the same expressivity of general EAICs. Hence, this only restriction will
not be enough in order to obtain decidability. Thus, we focus our attention on normal
EAICs enjoying further restrictions. Before proceeding with the formal definition of
our syntactic restriction, we introduce some auxiliary notations and definitions.

An NEAIC σ is applicable (or fireable) w.r.t. a databaseD, if there exist a matcher ϑ
(mapping only universally quantified variables of σ) and an homomorphism h : N →
C such that h(D) |= ϑ(body(σ)). Here, h(D) is a possible instantiation of D, whereas
ϑ(body(σ)) is the body of a partially ground version of σ.

The application of a fireable NEAIC σ to a database D with matcher ϑ gives a new
database D′ = ϑ′(head(σ))(D), where ϑ′ extends ϑ by mapping existential variables
in head(σ) with fresh distinct nulls not occurring in D, and is denoted by D −→σ,ϑ D′.
Given two (not necessarily distinct) NEAICs σi, σj ∈ Σ, we say that:

• σi fires σj if there exists a databaseD and a matcher ϑi such that: (i)D −→σi,ϑi Di,
(ii) σj is not fireable in D, but is fireable in Di.
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EAIC ≅ NEAIC

WM-NEAIC

C-NEAIC

eaic(TGD)

M-NEAIC
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IC

Legenda:
• EAIC = Existential EAICs
• NEAIC = Normal EAICs
• WM-NEAIC = Weakly Monotonic NEAICs
• M-EAIC = Monotonic NEAICs
• C-EAIC = Confluent NEAICs
• eaic(TGD) =NEAICs derived from TGDs

Figure 3: Restricted fragments of EAICs

• σi blocks σj if there exist two databases D1 and D2 and two matchers ϑi and
ϑj such that: (i) D1 −→

σi,ϑi
D′1, (ii) D2 −→

σj,ϑj
D′2 and (iii) let ±Ak be the

update atom such that ±Ak(Dk) = D′k (with k ∈ {1, 2}), then ±A1(D2) 6|=
ϑj(body(σ2) \ CompLit(head(σ2))).

Intuitively, the above definition states that σi fires σj if there are two partially ground
instantiations of σi and σj , say σ′i and σ′j , such that the firing of σ′i modifies the da-
tabase so that σ′j becomes fireable. Analogously, we say that σi blocks σj if there
are two partially ground instantiations of σi and σj , say σ′i and σ′j , such that the fir-
ing of σ′i performs an update which makes σ′j (which was applicable before) not fire-
able because σ′i made an alternative update making σ′j satisfied. Here ±A1(D2) 6|=
ϑ(body(σ) \ CompLit(head(σ), σ)) means that update ±A1 made false some literal
in the body of σ′j which is not made false by update ±A2, that is σ′2 has been made
satisfied by the update performed by σ′1.

Example 17. Consider the database D = {node(a)} and the NEAICs of Example 12
shown below:

σ1 : node(X) ∧ @Y edge(X, Y) ⇒ ∃Z +edge(X, Z)
σ2 : edge(X, X) ⇒ -edge(X, X)

We have that σ1 is applicable w.r.t. D by taking the substitution ϑ = {X/a} and an
empty homomorphism h, whereas σ2 is not applicable asD does not contain any edge-
atom. The application of σ1 to D with substitution ϑ produces D′ = {node(a),
edge(a,⊥1)}. As the NEAIC σ2 was not fireable w.r.t. D, but it is fireable w.r.t. D′

with substitution {X/a} and homomorphism h′ = {⊥1 /a}, we have that σ1 fires σ2.
Consider now the database D1 = {node(a), edge(a, a)}. NEAIC σ2 is fireable w.r.t.
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D1, whereas σ1 is not fireable. The application of σ2 to D1 produces a new database
D′1 which makes σ1 fireable. Thus σ2 fires σ1.

Regarding the set of NEAICs Σ5 of Example 5, we have that σ2 fires σ1 (e.g., con-
sider the database D = {p}) and σ1 blocks σ2 (e.g., consider the databases D1 =
{p, q} and D2 = {p}). 2

Definition 11 (Firing Graph). Given a set of NEAICs Σ, the firing graph of Σ is a
labeled directed graph ΓΣ = (Σ, E) where the set of edges E is defined as follows:

E = {(σi, σj , sign(head(σi))) | σi, σj ∈ Σ and σi fires σj} ∪
{(σi, σj , block)| σi, σj ∈ Σ and σi blocks σj},

with sign(head(σ)) being the type of update performed by σ, that is, sign(+A) =
“ + ”, whereas sign(−A) = “− ”. 2

Thus, edges in the firing graph may have three different labels: “+”, “–”, and “block”.
The next definition introduces the class of confluent NEAICs, which we will show

to be deterministic.

Definition 12. A set of NEAICs Σ is said to be

1. monotonic if it is weakly monotonic and ΓΣ does not contain any cycle with both
insert and delete edges;

2. confluent if it is monotonic and ΓΣ does not contain cycles with blocking edges
(i.e., edges with label “block”). 2

The monotonicity property guarantees that mutually recursive NEAICs perform only
additions of atoms or only deletions of atoms. The confluence property guarantees that
if a partially grounded EAIC σj has been applied producing an update ±A, then the
database will not be modified in the next steps so that σj is not applicable anymore
making ±A unfounded.

Example 18. Considering the set of NEAICs Σ5 of Example 5, we have that ΓΣ5
=

〈{σ1, σ2}, {(σ2, σ1,+), (σ1, σ2, block)}〉. Since ΓΣ5
is weakly monotonic and does

not contain any cycle with two edges labeled respectively with ”+” and ”-”, Σ5 is
monotonic. However, since the firing graph has a cycle with a blocking edge, the set of
NEAICs is not confluent.

Regarding the set of NEAICs Σ12 of Example 12, we have that ΓΣ12
= {σ1, σ2},

{(σ1, σ2,+), (σ2, σ1,−)}〉. Since the firing graph contains a cycle with both insert and
delete edges, Σ12 is not monotonic as it neither is weakly monotonic nor satisfies Item
1 of Definition 12. Consequently Σ12 is not confluent. 2

We now introduce a procedure to compute a universal set of founded updates for
confluent NEAICs. For any database D and confluent set of NEAICs Σ, for each
i ≥ 0, we inductively define the database Di as follows:

23



• i = 0: Di = D;

• i > 0: Di is defined as a database for which it holds Di−1 −→
σ,ϑ

Di, for some
arbitrary σ ∈ Σ and matcher ϑ, such that there is no path in ΓΣ from an σ′ ∈ Σ
applicable in Di−1 to σ involving a blocking edge.

It is easy to see, from the definition of confluent NEAICs, that there always exists n ≥
0, such that Dn = Dn+1. We denote such a Dn as fixpoint(D,Σ). Moreover, as we
can have different alternative fixpoint sequences, we can have different final databases
that, as shown in the next theorem, are all homomorphically equivalent and are all
universal founded repairs. Observe that the fixpoint presented above is equivalent to
partitioning Σ into strata so that the same stratum does not contain two NEAICs σi and
σj such that there is a path with a blocking edge from σi to σj . and computing one
stratum at a time following the topological order of ΓΣ. Basically, it works similarly to
the stratified fixpoint algorithm for Datalog with stratified negation.

Theorem 6. For any database D and confluent set of NEAICs Σ, fixpoint(D,Σ) is
a universal founded repair.

Proof. First we prove that, is such a case, Dn is a founded repair. This derives from the
fact that at each step it is applied an NEAIC σ that is fireable with respect to the current
database and a matcher ϑ. The application of σ with matcher ϑ gives a new instance
ϑ(head(σ))(D) and the update performed is never contradicted in the next steps, that
is, each positive literal in ϑ(body(σ)) will not be deleted and for each negative body
literal @Y b(X,Y ) no atom A |= @Y b(ϑ(X), Y ) will be added. The update is never
contradicted because there is no path in ΓΣ from an σ′ ∈ Σ applicable in Di to σ
involving a blocking edge. This process continues while there is some NEAIC that is
applicable with respect to the current database and a given matcher. At the end of the
(possibly infinite) fixpoint sequence the final instance is consistent and, therefore, is a
repair. Obviously, the repair is founded as it is derived from the application of NEAICs
where each body literal will not be contradicted in the next steps.

In the following, given two instances I and J , we say that there exists a homomor-
phism h : I → J if there exists a homomorphism h s.t. h(I) ⊆ J .

To show that Dn is a universal founded repairs, that is for any founded update R,

Dn w R(D), we first prove the following: let I
σ,ϑ−→ J a repair step with head(σ) =

∃Y + a(X,Y ), and let K be an instance such that (i) K 6|= body(σ) and (ii) there
exists a homomorphism h : I → K; then there exists a homomorphism h′ : J → K.

As ϑ : body(σ) → I and h : I → K are homomorphisms, h ◦ ϑ : body(σ) → K
is a homomorphism as well. Since K satisfies σ, there exists a homomorphism h′′ :
body(σ)→ K such that h′′ is an extension of h ◦ϑ mapping also head existential vari-
ables and h′′(X) = h(ϑ(X)) where X is universally quantified. For each existential
variable Y occurring in the head, denote by⊥Y the fresh labeled null used to substitute

variable Y at the current step (i.e. at step I
σ,ϑ−→ J) in the fixpoint procedure. Define

h′ on N (J) as follows: h′(⊥j) = h(⊥j), if ⊥j∈ N (I), and h′(⊥Y ) = h′′(⊥Y ) for
each head existential variable Y at step i. We need to show that h′ is a homomorphism
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from J to K, which means that h′ maps facts of J to corresponding facts of K. For
facts of J that are also in I this is true because h is a homomorphism. Moreover J
contains, in addition to any facts of I , a fact a(ϑ(X),NY ), whereNY denotes a vector
of labelled nulls, one for each variable in Y . The image under h′′ of this fact is, by
definition of h′′, the fact a(h(ϑ(X)), h′′(Y )). Since h′′(X) = h(ϑ(X)), this is the
same as a(h′′(x), h′′(Y )). But h′′ homomorphically maps a(X,Y ) into a fact of K.
Thus, h′ is a homomorphism.

Analogously we can prove the following: let I −→σ,ϑ J with head(σ) = −a(X), and
let K be an instance such that: (i) K 6|= body(σ) and (ii) there exists a homomorphism
h : I → K ∪ {a(X)}; then there exists a homomorphism h′ : J → K.

For any repair R(D), by applying the above results at each fixpoint step, we obtain
a homomorphism h : Dn → R(D). Thus, Dn is a universal founded repairs. 2

Thus, any confluent set admits a founded repair R which is universal, that is, for
any other founded repair R′, we have that R w R′, and thus |US(D,Σ)| = 1.
It is worth noting that considering two applications of the fixpoint algorithm we can

have two different repairing sequences D = D0
σ1,ϑ1−→ D1

σ2,ϑ2−→ · · · σn,ϑn−→ Dn and

D = D′0
σ′
1,ϑ

′
1−→ D′1

σ′
2,ϑ

′
2−→ · · · σ

′
m,ϑ

′
m−→ D′m, but Dn ≡ D′m. For computing certain

answers to positive queries we can take any one of these repairs. The next example
further clarifies this aspect.

Example 19. Consider the databaseD = {p(a), q(a)} and the confluent set of NEAICs
Σ19:

σ1 : p(X) ∧ @e(X, Y)⇒ ∃Z + e(X, Z)
σ2 : q(X) ∧ @e(X, X)⇒ ∃Z + e(X, X)

There are two possible fixpoint sequences D = {p(a), q(a)} σ1,{X/a}−→ {p(a), q(a),

e(a,⊥)} σ2,{X/a}−→ {p(a), q(a), e(a,⊥), e(a, a)} = D2 and D = {p(a), q(a)} σ2,{X/a}−→
{p(a), q(a), e(a, a)} = D′1. Moreover, D2 ≡ D′1 and, for computing certain answers
to positive queries, it makes no difference if we take D2 or D′1. 2

The next proposition shows that for confluent AICs universal models coincide with
grounded repairs introduced in Cruz-Filipe (2016a).

Proposition 2. For any database D and set of AICs Σ, fixpoint(D,Σ) is a grounded
repair for 〈D,Σ〉.

Proof. It is sufficient to show that our fixpoint(D,Σ) coincides with the fixpoint of
the operator T DΣ (denoted simply as T whenever D and Σ are understood) introduced
by Cruz-Filipe (2014), applied iteratively to the input database D. Let us first recall
how the operator T works. Initially (step 0), U0 = ∅. Then, at each step i > 0 the
operator T selects nondeterministically a rule σ ∈ ground(Σ) such that if Ui−1(D) |=
body(σ) then T (Ui−1) = Ui−1 ∪ {head(σ)} = Ui, where Ui−1 = {±A1, ...,±Ai−1}
is the set of updates performed at steps j < i. For confluent AICs the T operator is
monotonic as it never generates conflicting updates.
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To show the equivalence, assume first that D0 = D and U0 = ∅. This means

that D0 = U0(D). Then, for each i > 0 consider the repair step Di−1
σi,ϑi−→ Di

performed by the fixpoint algorithm. LetDi−1 = Ui−1(D), then Ui−1 |= body(ϑi(σ)),
Di = head(ϑi(σi))(Di−1) and Ui = Ui−1 ∪ {head(ϑi(σi))}. The vice versa holds as
well for every i > 0. 2

Corollary 3. For any database D and for any safe, confluent set of NEAICs Σ, a
universal set of founded updates can be computed in polynomial time.

Proof. It follows from Theorem 2 and the fact that every confluent set Σ is weakly
monotonic. 2

6.2. EAICs vs TGDs

The standard semantics for querying databases with data dependencies defined by
TGDs and EGDs is based on (universal) solutions, that is, databases that contain the
input one and can be homomorphically mapped to every other model of the input data-
base together with the dependencies. The framework proposed in this paper is strictly
more general than that based on TGDs, and the above holds not only because the se-
mantics of EAICs allow to update the database through tuple insertion and deletion.
Indeed, EAICs are more general than TGDs, even if we restrict EAICs to the confluent
fragment allowing only insertions in the head. For instance, consider the constraint
stating that employees not working for any department must be allocated in the IT
department. This constraint can be expressed by the following EAIC:

employee(X),@Y worksFor(X, Y)⇒ worksFor(X, “IT”)

However, such a constraint cannot be expressed using TGDs and even normal TGDs
as proposed in Alviano et al. (2017) (that is, TGDs with negated body literals and
stable model semantics). Indeed, both TGDs and normal TGDs do not allow existen-
tially quantified variables in the body of constraints. We will appropriately discuss the
relationship with normal TGDs and stable model semantics.

We now establish a relationship between tuple-generating dependencies (TGDs)—
see, e.g., Fagin et al. (2005a)—and confluent EAICs. Specifically, the latter (strictly)
generalize the former. We start by stating how TGDs can be translated into NEAICs.

Definition 13. Given a TGD σ of the form

body(X)→ ∃Y a(X
′
, Y ),

where X
′ ⊆ X , we denote by eaic(σ) the EAIC

body(X) ∧ @Y a(X
′
, Y )⇒ ∃Z + a(X

′
, Z),

where Z is a list of new variables not occurring in σ. Given a set of TGDs Σ, we define
eaic(Σ) = {eaic(σ) | σ ∈ Σ}. 2

26



The next proposition states that the set of EAICs derived from a set of TGDs is
confluent.

Proposition 3. For every set of TGDs Σ, eaic(Σ) is confluent.

Proof. The set of EAICs eaic(Σ) is trivially in normal form and monotonic as the
head of every EAIC has only one update atom and such an update is an insert atom.

We now show that ΓΣ does not contain blocking edges. Assume that there are
two NEAICs σi, σj ∈ eaic(Σ) such that σi blocks σj . This means that there are

Di−1, Dj−1, ϑi, ϑj such that i) Di−1
σi,ϑi−→ Di and that, let +Ai be the update per-

formed by rule σi with substitution ϑi (i.e. {Ai} = Di \ Di−1), +Ai(Dj−1) 6|=
ϑj(body(σj) \CompLit(head(σj))). Moreover, we know thatDj−1 |= body(ϑj(σj)).
Since ϑj(body(σj) \ CompLit(head(σj))) contains only positive literals and de-
rived from a TGD, and Dj−1 |= ϑj(body(σj) \ CompLit(head(σj))), we have that
+Ai(Dj−1) = Dj−1 ∪ {Ai} |= ϑj(body(σj) \ CompLit(head(σj))) as well. Thus,
we have found a contradiction. Therefore, since ΓΣ does not contain blocking edges,
eaic(Σ) is confluent. 2

The following theorem states the “equivalence” between a set of TGDs Σ and the
corresponding set of EAICs eaic(Σ). Roughly speaking, for every universal model for
a set of TGDs Σ and databaseD there is a homomorphically equivalent universal repair
for the EAICs 〈D, eaic(Σ)〉.

Theorem 7. Let Σ be a set of TGDs, D a database, and M = US(D, eaic(Σ)). For
every universal solution S of 〈D,Σ〉, S and M are homomorphically equivalent.

Proof. Assume that S is a canonical universal solution, as for any other universal
solution S′ we have that S ≡ S′. This means that S is a fixpoint of the chase algorithm,

that is, it can be obtained through a sequence of chase steps D = D0
σ1,ϑ1−→ D1

σ2,ϑ2−→
· · · σn,ϑn−→ Dn · · · and S be the fixpoint of this sequence. Moreover, since eaic(Σ) is
a set of confluent NEAICs, we can consider an M = fixpoint(D, eaic(Σ)). Thus,
there is a repair sequence D = D′0 −→

σ′1,ϑ
′
1 D′1 −→

σ′2,ϑ
′
2 · · · −→σ

′
n,ϑ

′
m D′m · · · = M . We can

show that by taking σ′i = eaic(σi) and ϑ′i = ϑi, we have that D′i ≡ Di and, therefore,
n = m and S ≡M .

• i = 0: D′0 = D0 by definition;

• i > 0: assuming D′i−1 = Di−1 we can show that, by taking σ′i = eaic(σi)

and ϑ′i = ϑi, D′i ≡ Di holds. Indeed the chase step Di−1 −→
σ1,ϑ1

Di implies
that Di−1 |= body(ϑi(σi)) and Di−1 6|= head(ϑi(σi)). However, D′i−1 |=
body(ϑ′i(σ

′
i)) and, let head(σi) = ∃Z+a(X,Z),D′i = D′i−1∪{a(ϑ′i(X),⊥Z)},

where⊥Z is a vector of new nulls, one for each variable in Z. Moreover, we also
have that Di = Di−1 ∪ {a(ϑ′i(X),⊥′Z)}. Thus, D′i ≡ Di, i.e. Di and D′i differ
only in the name of nulls. Thus, D′n ≡ Dn, for every n > 0. 2
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Example 20. Consider the set Σ consisting of the TGD:

employee(X)→ ∃Y worksFor(X, Y).

The corresponding set of EAICs eaic(Σ) contains the EAIC:

employee(X) ∧ @Y worksFor(X, Y)⇒ +∃Z worksFor(X, Z).

Consider now the database D = {employee(a)}. Notice that the pair 〈D,Σ〉 is
said consistent in the ontology setting, while we say that 〈D, eaic(Σ)〉 is inconsis-
tent. The universal solution of 〈D,Σ〉 is S = {employee(a), worksFor(a,⊥i)},
whereas US(D, eaic(Σ)) = {+worksFor(a,⊥j)}, which applied to D yields the re-
pair M = {employee(a), worksFor(a,⊥j)}. Consequently, M is homomorphically
equivalent to S. 2

It is worth noting that, since universal models of Σ are homomorphically equivalent
to the repairs obtained from the universal set of founded updates of eaic(Σ), equiva-
lence w.r.t. query answering is preserved as well, as the query answers are the same in
both settings (this is an immediate corollary of Theorem 7).

Moreover confluent EAICs strictly generalize TGDs. First, the former allow facts to
be deleted, which is not the case for TGDs. Even if we focus on confluent EAICs con-
taining only insert operations, they strictly generalize TGDs, as shown in the following
example.

Example 21. Consider the database schema of Example 8 and the NEAIC of Exam-
ple 7 reported below5:

node(X) ∧ @Y edge(X, Y)⇒ +edge(X, X)

stating that for each node without an outgoing edge we must add a loop edge. Consid-
ering the databaseD21 = {node(a)}, we have that US(D21,Σ21)) = {+edge(a, a)}.

We point out that considering the stable model semantics proposed in Alviano et al.
(2017) for TGDs extended with body negation, the semantics proposed in that work
does not capture the meaning here proposed. Indeed, consider the corresponding set of
TGDs extended with negation Σ21:

node(X) ∧ ¬edge1(X)→ edge(X, X)
edge(X, Y)→ edge1(X)

where the EAIC above has been rewritten into two TGDs just to make range restricted
variables in negative body literals. Then, Σ21∪D21 has no stable model and, therefore,
there is no way to make the database consistent. 2

5This EAICs is safe, weakly monotonic and also confluent, as the firing graph does not contains edges.
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7. Related Work

Automatic Maintenance of Integrity Constraints. The notion of automatic consis-
tency maintenance in the presence of integrity constraints has been extensively con-
sidered in the context of database management systems. Many approaches proposed
in the literature make use of ECA (event-condition-action) rules for checking and en-
forcing integrity constraints. In addition, current DBMS languages offer the possibility
of defining triggers (special ECA rules) well suited to respond automatically, by per-
forming actions, to events that are taking place inside (or even outside) the database.
The effort of “adding” active rules into conventional database systems has raised con-
siderable interest both in the scientific community and in the commercial world. As
a consequence, a number of prototypes and systems have been developed (Widom &
Ceri (1996)). However, the problem with active rules is the difficulty to understand the
behaviour when a significant number of triggers act simultaneously (May & Ludascher
(2002); Paton & Diaz (1999); Ceri et al. (2000)).

In Ceri & Widom (1990) and Ceri et al. (1994) a framework for database mainte-
nance enforcing constraints by issuing actions to be performed to correct violations
has been proposed, while the problem of maintaining integrity constraints in database
systems has been considered in Medeiros & Andrade (1994).

A declarative framework for updating views over databases has been proposed in Caro-
prese et al. (2012). This work introduces the concepts of constrained updates. Con-
strained updates fulfill the view-update request, changing the database minimally and
avoiding arbitrary commitments. A similar approach has been presented for abduc-
tive logic programming extended with integrity constraints in Caroprese et al. (2014).
This work introduces the concept of constrained explanation for an observation as an
explanation having no arbitrariness.
Consistent Query Answering. Querying inconsistent data and knowledge bases has
been deeply investigated in the areas of databases and artificial intelligence (Arenas
et al. (1999); Subrahmanian (1994)).

The notions of repair and consistent query answer have been introduced in Arenas
et al. (1999). The same work has also proposed a method, based on query rewriting,
to compute consistent query answers. The proposed technique is simple, but has a lim-
ited applicability (first-order queries without disjunction or quantification, and binary
universal integrity constraints).

Several works have considered the use of logic programs to capture repairs as answer
sets of logic programs with negation and disjunction (Arenas et al. (2003); Greco &
Zumpano (2000); Greco et al. (2003); Furfaro et al. (2007)), so that consistent query
answers can be found by resorting to answer set solvers (Gebser et al. (2012b,a); Leone
et al. (2006); Greco et al. (2010)). These approaches are quite general, being able to
handle arbitrary universal constraints and first-order queries.

For surveys on repairing and querying inconsistent databases we refer to Bertossi
(2006); Chomicki (2007); Bertossi (2011).

Recently, Arioua & Bonifati (2018) has proposed an update-based repairing tech-
nique in the presence of both contradiction-detecting dependencies, a subset of denial
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constraints capturing contradictions in the data, and tuple-generating dependencies. In
such a framework repairs are suggested by the user and are computed through an inter-
active framework letting the user repair the knowledge base and meet her requirements.
Active integrity constraints. The formalism of AICs was first proposed in Flesca et al.
(2004), although the formal declarative semantics has been defined in Caroprese et al.
(2006, 2009). It is worth noting that Caroprese et al. (2009) introduced also a class
of AICs, called general active integrity constraints (GAICs), allowing existentially
quantified variables only in the body. However, as stated in Theorem 4 of Caroprese
et al. (2009), GAICs do not add expressive power to AICs, as they can be rewritten into
equivalent AICs.

Different problems around AICs have been investigated in the last years. Algorithms
for computing all classes of repairs discussed in Caroprese & Truszczynski (2011) have
been proposed in Cruz-Filipe et al. (2013)—see Cruz-Filipe et al. (2015) for an imple-
mentation over SQL databases. Cruz-Filipe et al. (2018) proposed a framework for
applying AICs to more knowledge representation systems, other than databases, gener-
alizing also the approach in Rantsoudis et al. (2017a) (see also Feuillade et al. (2019)).
The computation of repairs is also related to the computation of grounded fixpoints,
which have been shown to be the natural semantics in many knowledge representa-
tion formalisms (Bogaerts et al. (2015)). Furthermore, Cruz-Filipe (2014) proposed
a notion of stratification of AICs, also discussed in Cruz-Filipe (2016a), that bears
resemblance to the notion of an EAIC firing or blocking another. Alternative seman-
tics, identifying more restricted classes of repairs, have been proposed in Caroprese &
Truszczynski (2011). Recently, different algorithms for the computation of repairs have
been proposed in Cruz-Filipe (2016b). A new class of semantics for AICs that are natu-
ral counterparts of existing semantics in various non-monotonic reasoning domains has
been proposed in Bogaerts & Cruz-Filipe (2017, 2018). Existentially quantified vari-
ables in the body have been studied in Caroprese et al. (2009); the novelty of this paper
is that we extend AICs by also considering head existentially quantified variables. A
detailed comparison between the AICs framework and Revision Programming has been
presented in Caroprese & Truszczynski (2011). Rantsoudis et al. (2017b) explored the
idea underlying AICs in the description logic setting.
Existential rules. There has been a lot of interest in constraints expressed by means of
tuple-generating dependencies (TGDs) (Fagin et al. (2005a)). As stated in Theorem 7,
EAICs generalize TGDs—indeed, it suffices to consider the class of confluent EAICs
to subsume the formalism of TGDs. In contrast to TGDs, EAICs allow negation in the
body and deletion of facts. Indeed, the EAIC of Example 21 cannot be expressed even
with the formalism considered in Alviano et al. (2017), which allows negation in the
body of TGDs. In fact, Alviano et al. (2017) allows only a restricted form of negation,
called safe, which imposes every variable in the body to appear in a positive literal.

Several Datalog-like languages with existential variables in the head have been re-
cently proposed, e.g., Datalog±, TriQ-Lite, and Wardalog (Cali et al. (2012); Arenas
et al. (2014b); Gottlob et al. (2014); Gottlob & Pieris (2015); Bellomarini et al. (2017)).
Reasoning in the presence of inconsistent knowledge bases expressed by means of
Datalog± fragments has been addressed as well (Lukasiewicz et al. (2018)).

The main difference with respect to EAICs is that these languages do not sepa-
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rate constraints from actions to be performed and some of them allow only strati-
fied negation. We point out that EAICs allow us to express classical ontological ax-
ioms such as concept inclusion (e.g., emp v person can be expressed as emp(X) ∧
¬person(X) ⇒ +person(X)) and participation (e.g., emp v ∃worksfor can be ex-
pressed as emp(X)∧@Y worksfor(X, Y)⇒ ∃Z+worksfor(X, Z)). Negative constraints
can be expressed by means of EAICs with empty heads, whereas equality-generating
dependencies can be expressed by simply allowing built-in atoms (e.g., X 6= Y ) in the
body of EAICs, as proposed for AICs (see Caroprese et al. (2009)). Thus, a constraint
like the one previously mentioned cannot be expressed in these languages.

Universal repairs for databases with TGDs have been introduced in ten Cate et al.
(2012), where universality is defined w.r.t. the query. Universal sets of founded repairs
introduced in this paper are independent from the query and are defined in the context
of EAICs.
Applications. The framework proposed in this paper finds application in several do-

mains from different fields, including knowledge representation and reasoning (in the
form of rules to express ontologies in ontology-mediated query answering) and da-
tabases (in the form integrity constraints for applications like data integration, data
cleaning, and data exchange).

Ontology-mediated query answering (OMQA) is a prominent paradigm in knowl-
edge representation where a set of logical assertions (ontology), usually in the form
of existential rules, and a (conjunctive) query are combined together to obtain rich an-
swers from standard databases. Inconsistency between the database and the ontology
can naturally and very often arise, due to the open nature of OMQA systems. Such
inconsistency is usually identified via dedicated assertions (denial constraints) of the
ontology. In this context, maximally consistent versions of the database (repairs) are
used to provide meaningful answers to queries via certain answers over all repairs. In
this context, EAICs form a powerful formalism for defining richer constraints, that not
only generalize denial constraints, but also allow to specify which of the assertions in
the EAIC that cause the inconsistency are more desirable to not be entailed. This can
become quite useful in such settings, where the users of the ontology, which are usu-
ally non-experts of database-related topics, are able to express preferences on how the
database should be repaired by only using the higher level vocabulary of the ontology.

Data exchange is the process of taking data structured under a source schema and
transforming it into data structured under a target schema (Fagin et al. (2005a,b); Are-
nas et al. (2014a)). In a such framework, EAICs can be used in place of TGDs obtain-
ing a more general and flexible framework, without renouncing to consider restricted
schemas with lower complexity. Moreover, EAICs can also be used to express Equal-
ity Generating Dependencies (EGDs), the other form of dependencies used in data
exchange, but even more general constraints such as negative constraints.

Furthermore, EAICs can be used in other scenarios, such as production (rule) sys-
tems, active databases and data integration. For instance, in production systems, con-
sisting of programs with reasoning features implemented by means of logical rules,
EAICs can be used to implement mechanisms to respond to states of the world. There-
fore, as EAICs generalize classical production rules, they can be used as a basic rep-
resentation mechanism useful in different contexts such as automated planning, expert
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systems and action selection. Regarding data integration, EAICs could be used to im-
plement, using a unified framework for both dataset merging and cleaning mechanisms.

8. Conclusion

We have introduced existential active integrity constraints, a powerful formalism
augmenting AICs with existentially quantified variables, and allowing users to express
several constraints commonly arising in practice that cannot be expressed by means
of AICs. The introduction of existential variables can make the number of founded
updates as well as their cardinality infinite. We have shown that for the purpose of
query answering, only a representative set of founded updates, called universal, need
to be considered. Still, the universal set of founded updates can be infinite, so we have
defined restrictions guaranteeing finiteness and a “deterministic” behavior, that is, the
existence of at most one representative founded update.
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Cruz-Filipe, L., Gaspar, G., Engrácia, P., & Nunes, I. (2013). Computing repairs from
active integrity constraints. In TASE (pp. 183–190). IEEE Computer Society.

Cruz-Filipe, L., Gaspar, G., Nunes, I., & Schneider-Kamp, P. (2018). Active integrity
constraints for general-purpose knowledge bases. Ann. Math. Artif. Intell., 83, 213–
246.

Deutsch, A., Nash, A., & Remmel, J. B. (2008). The chase revisited. In Proc. of the
Symposium on Principles of Database Systems (PODS) (pp. 149–158).

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005a). Data exchange: semantics
and query answering. Theoretical Computer Science, 336, 89–124.

Fagin, R., Kolaitis, P. G., & Popa, L. (2005b). Data exchange: getting to the core. ACM
Transactions on Database Systems, 30, 174–210.

Feuillade, G., Herzig, A., & Rantsoudis, C. (2019). A dynamic logic account of active
integrity constraints. Fundam. Inform., 169, 179–210.

Flesca, S., Furfaro, F., & Parisi, F. (2010). Range-consistent answers of aggregate
queries under aggregate constraints. In Proc. of the International Conference on
Scalable Uncertainty Management (SUM) (pp. 163–176).

34



Flesca, S., Greco, S., & Zumpano, E. (2004). Active integrity constraints. In Proc. of
the ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming (PPDP) (pp. 98–107).

Furfaro, F., Greco, S., & Molinaro, C. (2007). A three-valued semantics for querying
and repairing inconsistent databases. Annals of Mathematics and Artificial Intelli-
gence, 51, 167–193.

Gebser, M., Kaminski, R., Kaufmann, B., & Schaub, T. (2012a). Answer Set Solving
in Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan & Claypool Publishers.

Gebser, M., Kaufmann, B., & Schaub, T. (2012b). Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187, 52–89.

Geerts, F., Mecca, G., Papotti, P., & Santoro, D. (2013). The LLUNATIC data-cleaning
framework. Proceedings of the VLDB Endowment, 6, 625–636.

Geerts, F., Mecca, G., Papotti, P., & Santoro, D. (2014). Mapping and cleaning. In
Proc. of the IEEE International Conference on Data Engineering (ICDE) (pp. 232–
243).

Gottlob, G., Lukasiewicz, T., & Pieris, A. (2014). Datalog+/-: Questions and answers.
In Proc. of the International Conference on Principles of Knowledge Representation
and Reasoning (KR).

Gottlob, G., & Pieris, A. (2015). Beyond SPARQL under OWL 2 QL entailment
regime: Rules to the rescue. In Proc. of the International Joint Conference on Arti-
ficial Intelligence (IJCAI) (pp. 2999–3007).

Greco, G., Greco, S., & Zumpano, E. (2003). A logical framework for querying and
repairing inconsistent databases. IEEE Transactions on Knowledge and Data Engi-
neering, 15, 1389–1408.

Greco, S., & Molinaro, C. (2008). Approximate probabilistic query answering over in-
consistent databases. In Proc. of the International Conference on Conceptual Mod-
eling (ER) (pp. 311–325).

Greco, S., & Molinaro, C. (2012). Probabilistic query answering over inconsistent
databases. Annals of Mathematics and Artificial Intelligence, 64, 185–207.

Greco, S., Molinaro, C., & Spezzano, F. (2012). Incomplete Data and Data Dependen-
cies in Relational Databases. Synthesis Lectures on Data Management. Morgan &
Claypool Publishers.

Greco, S., Molinaro, C., & Trubitsyna, I. (2018). Computing approximate query an-
swers over inconsistent knowledge bases. In Proc. of the International Joint Confer-
ence on Artificial Intelligence (IJCAI) (pp. 1838–1846).

35



Greco, S., Molinaro, C., Trubitsyna, I., & Zumpano, E. (2010). NP datalog: A logic
language for expressing search and optimization problems. Theory and Practice of
Logic Programming, 10, 125–166.

Greco, S., Spezzano, F., & Trubitsyna, I. (2015). Checking chase termination: Cyclic-
ity analysis and rewriting techniques. IEEE Transactions on Knowledge and Data
Engineering, 27, 621–635.

Greco, S., & Zumpano, E. (2000). Querying inconsistent databases. In Proc. of the In-
ternational Conference on Logic for Programming, Artificial Intelligence, and Rea-
soning (LPAR) (pp. 308–325).

Imielinski, T., & Lipski Jr., W. (1984). Incomplete information in relational databases.
Journal of the ACM, 31, 761–791.

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., & Scarcello, F. (2006).
The DLV system for knowledge representation and reasoning. ACM Transactions
on Computational Logic, 7, 499–562.

Lukasiewicz, T., Malizia, E., & Molinaro, C. (2018). Complexity of approximate query
answering under inconsistency in datalog+/-. In Proc. of the International Joint
Conference on Artificial Intelligence (IJCAI) (pp. 1921–1927).

May, W., & Ludascher, B. (2002). Understanding the global semantics of referential
actions using logic rules. ACM Transactions on Database Systems, 27, 343–397.

Medeiros, C. B., & Andrade, M. J. (1994). Implementing integrity control in active
data bases. Journal of Systems and Software, 27, 171–181.

Meier, M., Schmidt, M., & Lausen, G. (2009). On chase termination beyond stratifi-
cation. Proc. of the International Conference on Very Large Data Bases (VLDB), 2,
970–981.

Paton, N. W., & Diaz, O. (1999). Active database systems. ACM Computing Surveys,
31, 63–103.

Rantsoudis, C., Feuillade, G., & Herzig, A. (2017a). Repairing aboxes through active
integrity constraints. In A. Artale, B. Glimm, & R. Kontchakov (Eds.), DL. CEUR-
WS.org volume 1879 of CEUR Workshop Proceedings.

Rantsoudis, C., Feuillade, G., & Herzig, A. (2017b). Repairing aboxes through active
integrity constraints. In Proc. of the International Workshop on Description Logics
(DL).

Subrahmanian, V. S. (1994). Amalgamating knowledge bases. ACM Transactions on
Database Systems, 19, 291–331.

Widom, J., & Ceri, S. (Eds.) (1996). Active Database Systems: Triggers and Rules For
Advanced Database Processing. Morgan Kaufmann.

Wijsen, J. (2005). Database repairing using updates. ACM Transactions on Database
Systems, 30, 722–768.

36



9. Appendix

Theorem 8. For every databaseD and set of AICs Σ, every founded update for 〈D,Σ〉
is also founded according to the definition given in Caroprese et al. (2009).

Proof. In the following, founded updates according to the definition given by Caro-
prese et al. (2009) are called CGZ-founded updates, while founded updates according
to our definition are simply called founded updates.

LetR be a founded update for 〈D,Σ〉.
Reasoning by contradiction, suppose thatR is not a CGZ-founded update for 〈D,Σ〉.

Then, by definition of CGZ-founded update, there is a non-founded update atom ±A
inR. LetR′ = R\{±A}. By definition of non-founded update atom, there is no AIC
σ ∈ ground(Σ) s.t. ±A ∈ head(σ) andR′(D) |= body(σ).

Consider an arbitrary (ground) AIC σ ∈ Σ[R]. Two cases can occur:

1. ±A 6∈ head(σ). Then, by definition of Σ[R], it has to be the case that head(σ)
contains a ground update atom ±B 6= ±A that belongs to R. Since ±B 6= ±A
and R′ = R \ {±A}, then ±B belongs to R′ too. Thus, R′(D) 6|= body(σ) by
condition (v) of Definition 1, that is,R′(D) satisfies σ.

2. ±A ∈ head(σ). Two (sub)cases can possibly occur:
(a) R′(D) |= body(σ). By definition of Σ[R] there must be a ground AIC σ′ ∈

ground(Σ) such that body(σ′) = body(σ)—indeed, σ has been derived
from σ′ (by possibly deleting some ground update atoms from the head of
σ′). Then, R′(D) |= body(σ′). This contradicts the fact that ±A is not
founded: notice that σ′ belongs to ground(Σ), it has ±A in the head, and
R′(D) |= body(σ′), so this case cannot actually occur.

(b) R′(D) 6|= body(σ). Thus,R′(D) satisfies σ.

From the analysis above, R′(D) satisfies every σ ∈ Σ[R], which means that R is not
an update for 〈D,Σ[R]〉, as it is not minimal. Hence, R is not founded for 〈D,Σ〉,
which contradicts the initial hypothesis. 2

The next example shows that the opposite case does not hold.

Example 22. Consider the database D = {a, b} and the set of AICs Σ22

a ∧ ¬b⇒ −a
b ∧ ¬a⇒ −b
a ∧ ¬c⇒ +c

b ∧ ¬c⇒ +c

There are two updates for 〈D,Σ22〉: R1 = {−a,−b} and R2 = {+c}. According to
the definition given in this paper only R2 is founded, whereas according to the defini-
tion of founded update given in Caroprese et al. (2009) both updates are founded. 2
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