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Abstract: This paper describes a bi-objective optimization model for the traffic count location problem in 

stochastic origin-destination (OD) traffic demand estimation. Two measures are defined to capture the maximum 

possible absolute error of the mean and the covariance of the estimated OD demand. The bounds of these two 

measures are mathematically deduced, and then the bi-objective optimization model is formulated to minimize the 

two upper bounds simultaneously. A surrogate-assisted genetic algorithm is proposed to solve this model, and a 

series of numerical examples are presented to demonstrate the applicability of the proposed model and the 

efficiency of the proposed algorithm. 

Keywords: traffic count location; origin–destination estimation; covariance matrix; bi-objective optimization; 

surrogate-assisted genetic algorithm 

 

1 Introduction 

Due to the development of communication technology, collecting traffic data through traffic 

sensor systems becomes more and more popular in the field of transportation. Different types of 

traffic sensors (e.g., counting sensors, path-ID sensors, image sensors, and vehicle sensors) are 

installed for various purposes, such as OD estimation (Castillo et al., 2013), travel time estimation 

(Tang et al., 2018), link flow inference (Xu et al., 2016), path flow reconstruction (Castillo et al., 

2012), and so on. On the one side, the traffic data collected by sensor systems are valuable and 

helpful for improving the service of transportation. On the other side, the sensor systems are 

usually impossible to cover the whole network due to physical limitations and budget constraints. 

Thus, the optimization of sensor locations has attracted increasing attention in the field of 

transportation. 

Compared with other traffic information, the origin-destination (OD) matrix describes the 

traffic flow between a set of origins and a set of destinations, providing an important input 
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parameter for urban traffic planning (González et al., 2019). In many applications, traffic counting 

sensor with the cheaper cost is widely used for OD estimation. Thus, the problem of optimizing 

the traffic count location has attracted increasing attention. However, most existing traffic count 

location models ignore the following two important features required to determine OD demand. 

 The stochastic characteristics of OD demand, particularly the spatial correlations among the 

traffic demands of different OD pairs, have not been fully considered in traffic count location 

problems.  

 The estimation errors for both the mean and covariance of stochastic OD demands have not 

been explicitly investigated in traffic count location problems. 

In view of these limitations, this paper describes a new bi-objective model for optimizing the 

traffic count location to estimate the mean and covariance of OD demand. 

It should be noted that most existing studies assumed that OD demands are independent. 

However, the correlation of OD demand should not be ignored. Generally, there are two 

categories of OD demand correlations, i.e., the spatial and temporal correlation (Fu and Lam, 

2018). Firstly, spatial OD demand correlation refers to the correlations (or dependency to some 

extent) of the OD demands during the same hourly periods between different OD pairs in a spatial 

manner. Secondly, temporal OD demand correlation represents the correlations of OD demands 

for the same OD pair between different periods (e.g., 8:00 am–9:00 am, and 9:00 am–10:00 am). 

This paper aims to optimize the traffic count location for the estimation of the mean and spatial 

covariance of the OD demand between different OD pairs. 

1.1 Literature review 

A large number of OD demand studies have shown that the estimation accuracy is related to 

both the model being used and the number and location of sensors (Lu et al., 2013). Therefore, 

determining the number and location of sensors to cover the entire road network better is a core 

problem in transportation networks. In general, the number of counting sensors determines the 

scale of the survey, and their location determines the amount of information that can be collected. 

Therefore, the problem of traffic count location based on OD estimation is mainly concerned with 

the following two aspects: 1) Minimizing the cost of data collection, such as by minimizing the 

number of sensors or minimizing the total cost of their locations (Zanguia et al., 2015; Chen et al., 

2016); 2) Maximizing the amount of information that can be obtained under the condition of 

limiting the number of sensors (Park and Haghani, 2015; Geetla et al., 2014). In short, an optimal 

traffic count location scheme must consider the limited resources available for data collection and 

collect as much traffic information as possible to improve the estimation accuracy of the OD 

matrix. 

In the literature, the problem of traffic count location for OD estimation has been extensively 

studied. Existing traffic count location models concentrate on various modeling purposes. These 

models are summarized in Table 1 in terms of their objective function, consideration of network 

uncertainty, and modeling approach. 

 Objective function. The traffic sensor location model for OD estimation is divided into the 

following two categories with respect to the types of objective functions: single-objective 

function and multiple-objective function. In the single-objective function model, the sensor 

location scheme is determined by solving an optimization problem with one objective 

function, such as minimizing the cost of sensor location or maximizing the amount of 

information gains. For example, Vieira et al. (2020) proposed a single-objective optimization 

model to tackle the traffic counting location problem (TCLP) with the purpose of the 



minimum number of sensors. Then, a progressive hybrid algorithm based on set covering was 

developed to solve the TCLP. Hadavi and Shafahi (2016) established a single-objective 

location model of vehicle identification sensor that aimed for the maximum number of 

uniquely identified OD pairs under budget constraints, and used GAMS software to solve the 

model. Regarding multi-objective function model, researchers considered different objectives 

to determine the sensor location schemes. For example, Fei and Mahmassani (2011) studied a 

bi-objective optimal sensor location model by integrating road information with coverage 

data for OD pairs. A greedy heuristic algorithm was then proposed to find the Pareto optimal 

solution. Owais et al. (2019) presented a multi-objective sensor location model that addressed 

a trade-off between the accuracy of OD estimation and the cost of sensor location. Then a 

multi-criteria meta-heuristics algorithm was designed to solve the proposed model with a 

polynomial time complexity.  

 Consideration of network uncertainty. In the real world, the network uncertainty refers to 

the disturbances that affect transportation networks, such as adverse weather conditions, peak 

hour traffic flow fluctuations, signal failures and so on (Chen et al., 2010). Some Researchers 

have taken account of different uncertain circumstance to provide different types of sensor 

location models for OD estimation, including sensor failure model, human behavior 

stochasticity, and error propagation model. For example, considering the sensor failure 

probability, An et al. (2018) formulated a reliable sensor location model as a mixed-integer 

linear program that aimed at maximizing the accuracy of object surveillance under the risk of 

possible sensor disruptions. Danczyk et al. (2016) proposed a sensor configuration model to 

minimize overall freeway performance monitoring errors while considering probabilistic 

sensor failures. Concerning human behavior stochasticity, Moreira-Matias et al. (2016) 

studied the location of portable digital devices equipped with GPS for estimating the 

time-evolving OD demand, which follows the stochastic dynamics on the human behavior. In 

relation to the error propagation issue, Zhou and List (2010) proposed a scenario-based 

stochastic sensor location model that can recognize different uncertainty sources, such as the 

uncertainty in historical data, sensor measurement errors, and approximation errors. 

 Modeling approach. As well as the mathematical programming approach used in the studies 

above, algebraic methods have been employed to solve the problem of traffic count location 

for OD estimation. For example, Rodriguez-Vega et al. (2019) solved the location problem of 

flow and turning ratio sensors by using the method of the rank of matrix, which can reduce 

the total number of sensors. Fu et al. (2016) developed a two-stage heterogeneous sensor 

location model, in which the first stage uses path reconstruction to determine the optimal 

locations of active sensors in the network and the second stage applies the theory of 

maximum clique to replace some active sensors with passive sensors strategically. 



Table 1 Literature summary on the problem of traffic count location for OD estimation 

Literature 
Objective 

function 

Consideration of 

network 

uncertainty 
Modeling approach Solution methods 

Vieira et al. (2020) Single-objective No Mathematical programming 
Hybrid algorithm based 

on set covering 

Hadavi and Shafahi 

(2016)  
Single-objective No Mathematical programming GAMS software 

Fei and Mahmassani  

(2011) 
Multi-objective No Mathematical programming Greedy algorithm 

Owais et al. (2019) Multi-objective No Mathematical programming Meta-heuristics algorithm 

An et al. (2018) Multi-objective Sensor failure Mathematical programming 
Customized Lagrangian  

relaxation algorithm 

Danczyk et al. (2016) Single-objective Sensor failure Mathematical programming 
Heuristic algorithm using 

k-shortest path search 

Moreira-Matias et al.  

(2016)  
Single-objective 

Human behavior 

stochasticity 
Mathematical programming 

Incremental discretization 

framework 

Zhou and List (2010) Single-objective Error propagation Mathematical programming Beam search algorithm 

Rodriguez-Vega et al.  

(2019)  
Single-objective No Algebraic method 

Heuristic algorithm using 

the rank of matrix 

Fu et al. (2016) Single-objective No Graph theory 
Heuristic algorithm using 

the maximum clique 

This paper Multi-objective 
Spatial covariance 

of OD demand 
Mathematical programming 

Surrogate-assisted 

genetic algorithm 

Although many studies on traffic count locations have been reported, few have considered the 

stochastic features of OD demand, instead of focusing on the mean estimation of OD demand. In 

fact, the OD traffic flow fluctuates randomly over time and should not be regarded as a 

deterministic variable. Thus, the OD demand has been treated as a random variable in network 

modeling (Chen and Xu, 2012). Some researchers have identified the importance of stochastic OD 

demand in traffic planning. For example, Waller et al. (2001) found that the relevant degree of OD 

demand plays an important role in estimating errors in the expected travel time. According to 

Zhao and Kockelman (2002), ignoring the correlation of OD demand reduces the reliability of 

traffic forecasts and affects infrastructure layout. To describe the stochasticity of OD demand, 

traditional OD estimation models need to be extended to estimate the mean and covariance of OD 

demand (Shao et al., 2015; Ji et al., 2011). Shao et al. (2014) proposed a bi-level programming 

model in which the weighted least-squares problem is adopted to estimate the OD mean and 

covariance in the upper level. The lower level is a reliability-based traffic assignment problem that 

is used to represent the risk-taking behavior of travelers under stochastic OD demand. Xing et al. 

(2013) proposed an information-theoretic sensor location model that aims to minimize total travel 

time uncertainties, including the uncertainty associated with prior travel time estimates, sensor 

measurement errors, and sampling errors. However, few studies have focused on the traffic count 

location for stochastic OD demand estimation. Specifically, current traffic count location models 

ignore the estimation of OD demand covariance when determining the optimal traffic count 

location scheme. To this end, this paper proposes a new traffic count location model that accounts 



for both the mean and covariance of OD demand under network uncertainty. 

1.2 Contribution statement 

This paper studies the traffic count location problem to obtain the mean and covariance of OD 

demand using traffic count data. The proposed model extends the existing works with the 

following new features. 

 The proposed model considers the stochasticity of OD demand. Indeed, the traffic count 

location model is developed to provide the optimal traffic count location scheme that 

minimizes the estimation error of both the mean and covariance matrix of stochastic OD 

demand.  

 To measure the accuracy of the estimated stochastic OD demand, the concept of maximum 

possible relative error (MPRE, Yang et al., 1991) is extended to a new concept named 

maximum possible absolute error (MPAE). MPAE is applicable to cases where the estimated 

values (e.g., mean or covariance of OD demand) are zero, whereas MPRE cannot be used in 

such cases. 

The traffic count location model is formulated as a bi-objective optimization model with 

nonlinear constraints based on the concept of MPAE. Moreover, a surrogate-assisted genetic 

algorithm is adopted to solve the proposed model. Numerical examples are presented to 

demonstrate the applicability of the proposed model and solution algorithm, leading to some 

insightful discussions. 

The remainder of this paper is organized as follows. In section 2, the MPAE is derived for the 

mean and covariance of OD demand estimation. Moreover, a rigorous mathematical proof of their 

bounds is also given. In section 3, a bi-objective traffic count location model is established. 

Section 4 introduces a surrogate-assisted genetic algorithm for solving this model by transforming 

the bi-objective optimization problem to a single-objective one. In section 5, two transportation 

networks are used to illustrate the applicability of the proposed model and the efficiency of the 

proposed algorithm. Finally, our conclusions and ideas for future studies are presented in section 

6. 

2 MPAE for estimating the mean and covariance of OD demand 

2.1 Maximum Possible Relative Error 

It is difficult to obtain the true OD matrix. Thus, accurately calculating the error in the OD 

estimation deserves further investigation. Yang et al. (1991) proposed the MPRE concept to 

represent the maximum possible deviation between the estimated and true mean OD demand. In 

the case of traffic constraints and the prior OD matrix, MPRE is unique and can evaluate the 

reliability of the resulting OD matrix. MPRE can usually be described as a special quadratic 

optimization problem. A brief explanation of MPRE is given below. 

Consider a traffic network G(N,A) , where N  represents the node set and A  represents 

the link set. A
~

 is the set of observed links, A A% , and W  is the set of all OD pairs. wq
 
is 

the estimated mean traffic demand of OD pair wW , and 
*

wq
 
is the true mean traffic demand 

of OD pair w . awp
 

is the choice proportion of OD pair w  through link aA%. av  is the 

observed traffic flow on link a . It is assumed that the choice proportion awp is given and fixed. 

Thus, for all aA%, the estimated and true mean OD demand should satisfy the following 

equations.   



aw w a

w W

p q v


         aA%                                        (1) 

aw w a

w W

p q v



         A
~

a                                         (2) 

It follows from Eqs. (1) and (2) that 

        

( ) 0aw w w

w W

p q q



     A
~

a                                        (3) 

Define  *

w w w wq q q  
 
as the relative error between 

*

wq
 
and wq . Substituting w  

into Eq. (3), it follows that 

0aw w w

w W

p q 



 

  A
~

a                                            (4) 

Let  w w





W
λ . Then,    

2

w

w

 λ

 

represents the relative deviation between the 

estimated and true mean OD demand. The smaller the value of   λ , the more accurate the 

estimated mean OD demand. Thus, MPRE is defined as the maximum value of   λ : 

 MPRE = max
λ

λ                                                   (5) 

Note that MPRE represents the maximum possible deviation between the estimated and true 

mean OD demand. Thus, smaller values of MPRE indicate a smaller estimation error for the mean 

OD demand. In view of this, MPRE can be treated as the objective of the traffic count location 

problem for estimating the mean OD demand. 

2.2 Advantages of the Maximum Possible Absolute Error 

MPRE was developed based on the popular statistical concept of relative error. Similarly, the 

absolute error can characterize the degree of similarity between an estimate and the true value. 

The relative error is independent of the scale of the estimate, but inapplicable if the estimate is 

zero. This is mainly because the concept of relative error  *

w w w wq q q   requires the 

denominator in the above fraction is non-zero, i.e. 0wq  . If the estimated OD demand is zero 

(i.e. 0wq  ), the definition of w  is not well defined mathematically. Thus, MPRE cannot be 

applied in such cases where the estimated mean and covariance of OD demand is zero. Actually, 

the estimated OD demand could be zero, as the true value is unknown. To overcome this difficulty, 

the concept of absolute error is used to derive the maximum possible absolute error (MPAE), 

which can handle cases in which the estimate is zero. Moreover, the absolute error and relative 

error are not significantly different when the precision of the OD matrix estimation is well 

controlled (Gan et al., 2005). Thus, the proposed MPAE is applicable to cases in which the 

estimated parameters are zero. In this paper, the estimated parameters are the mean and covariance 

of the OD demand. These two parameters could be zero. For example, if the traffic demand of two 

OD pairs is independent, the corresponding covariance between the two OD demands will be zero. 

Different from the concept of relative error  *

w w w wq q q   , let 
*mean

w w wq q  
 

represent the absolute error between the true and estimated mean demand of OD pair w . It is 

noted that the absolute error 
mean

w  
does not include the modulus operator and may be positive or 

negative. Then, Eq. (3) can be rewritten as 

0mean

aw w

w W

p 


     A
~

a                                        (6) 

Define 



 
2

( )

mean

w
mean wG

n



 


                                               (7) 

where  , ,
T

mean mean

w  L L  and n  is the total number of OD pairs. 

As a measure of the mean estimation error of OD demand, small values of ( )meanG   represent 

highly accurate estimation of the mean OD demand. Inspired by the concept of MPRE, the MPAE 

of mean OD demand (MPAEM) is defined as the following optimization problem (Yuan, 2009): 

MPAEM( ) = max ( )mean meanG                                  (8) 

s.t.  0mean

aw w

w W

p 


   A
~

a                                  

The true and estimated covariance of OD demand should satisfy the following conditions: 

' '

'

q v

aw bw ww ab

w w

p p  
 

 
W W

    A
~

, ba                            (9) 

          
' '

'

q v

aw bw ww ab

w w

p p  


 

 
W W

     A
~

, ba                           (10) 

where 
'

q

ww
 
and 

'

q

ww


 
are the estimated and true covariance of traffic demand between OD pairs 

w  and w , respectively; v

ab
 
is the covariance of observed traffic flow on links a

 
and b .  

It follows from Eqs. (9) and (10) that  

           
' ' '

'

( ) 0q q

aw bw ww ww

w w

p p  


 

  
W W

   A
~

, ba                       (11) 

Similar to the definition of 
mean

w , let 
cov *

' ' '

q q

ww ww ww    represent the absolute error between 

the true and estimated covariance of traffic demand between OD pairs w  and w . The absolute 

error of covariance terms 
cov

'ww
 
can also be positive or negative. Then, Eq. (11) can be rewritten 

as 

           cov

' ' 0aw bw ww

w w

p p 
 

 
W W

   ,a bA%                             (12) 

Define 

           
 

2
cov

,cov

2
( )

ww

w w
G

n











                                          (13) 

Thus, the MPAE of the OD covariance matrix (MPAEC) is defined as the following 

optimization problem: 

           
cov covMPAEC( ) = max ( )G                                (14) 

            s.t.  cov

' ' 0aw bw ww

w w

p p 
 

 
W W

  A
~

, ba    

2.3 Properties of MPAEM and MPAEC 

The OD covering rule is widely used in dealing with traffic count location problems. Yang et al. 

(1991) proved that the OD covering rule was a necessary condition for ensuring the boundedness 

of MPRE. Thus, the OD covering rule is usually regarded as the basic principle of the traffic count 

location problem. 

  (OD Covering Rule): The traffic count locations on a road network should be located on links 

so that a certain portion of trips between any OD pair will be observed. 

  Proposition 1: If the traffic count location scheme satisfies the OD covering rule, then the 

values of both MPAEM and MPAEC are bounded. 

  Proof: If the OD covering rule holds, the traffic demand for any OD pair can be observed. In 



particular, for any two OD pairs with non-zero demands , 'w w W , there are two links A
~

, ba
 

such that 0awp   and ' 0bwp  .  

  In Eqs. (1) and (2), because 0awp   and 
*, 0w wq q  , we have  

0 a
w

aw

v
q

p
  ,

  

*0 a
w

aw

v
q

p
                                   (15) 

Then,  

*mean a
w w w

aw

v
q q

p
   

                                       

(16) 

It follows from Eq. (16) that 
mean

w  is bounded.  

Assume that the OD demand covariance is greater than or equal to zero. According to Eqs. (9) 

and (10), it follows from 0awp 
 
and ' 0bwp 

 
that 

          
'

'

0
v

q ab
ww

aw bwp p


  ,    

*

'

'

0
v

q ab
ww

aw bwp p


                             (17) 

Then,  

cov *

' ' '

'

v
q q ab

ww ww ww

aw bwp p


    

                                        

(18) 

Thus, 
cov

'ww
 
is also bounded. According to Eqs. (16) and (18), the values of both MPAEM and 

MPAEC are bounded. This completes the proof.                                                    
 

Remark: According to Eq. (16), for a specific OD pair w , the upper bound of the absolute 

error for the mean OD demand is a

aw

v

p
. That is, the upper bound of 

mean

w  
takes a different value 

a

aw

v

p  

in each link a . Intuitively, the smaller the value of 
mean

w , the more accurate the mean OD 

demand estimation. Thus, the minimal upper bound of 
mean

w  is needed. This can be expressed as  

, 0
min ,

aw

mean a
w a

a A p
aw

v
z w W

p


 

   
    

                                   

(19) 

where mean

w  
represents the minimal upper bound of the mean absolute error of OD pair w ; az  

is a 0-1 decision variable. 1az   indicates that link a  has a couting sensor, and otherwise zero. 

It should be pointed out that az  represents the sensor location scheme. The objective function in 

Eq. (19) should be minimized over only links A
~

a . 

Similarly, the minimal upper bound of 
cov

'ww
 

can be expressed as follows: 

cov

,
0, 0

min , ,

aw bw

v

ab
ww a b

a b A
aw bwp p

z z w w W
p p









 

   
    

                           

(20) 

where cov

ww   
represents the minimal upper bound of the absolute error in the covariance between 

OD pairs w  and w .  

3 Bi-objective optimization for traffic count location model 

Traffic count location models attempt to estimate the stochastic OD demand as accurately as 

possible. In view of OD demand variations, the traffic count location scheme should account for 

the estimation error in both the mean and the covariance of the estimated stochastic OD demand. 

According to the definition of MPAEM and MPAEC, the lower the upper bound of MPAEM and 

MPAEC, the more accurate the estimates for the mean and covariance of stochastic OD demand. 

Moreover, the dimensions of MPAEM and MPAEC are also different. It is hard to combine them 



into one objective function using a weighted summation method. Therefore, a bi-objective 

optimization for traffic count location model is proposed to minimize the upper bounds of 

MPAEM and MPAEC simultaneously as follows: 

1min ( ) mean

w w

w W

f z  


 

                                  

    (21) 

cov

2

,

min ( ) ww ww

w w W

f z   


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(22)

                     

                       
 

, 0
. . min ,

aw

mean a
w a

a A p
aw

v
s t z w W

p


 

   
    

                                 
(23) 

cov

,
0, 0

min , ,

aw bw

v

ab
ww a b

a b A
aw bwp p

z z w w W
p p









 

   
    
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(24) 

a

a A

z l


 %

                                                        
(25) 

1,aw a

a A

z w W


  
                                           

(26) 

0,1az a A  
                                              

(27) 

where w  
and ww   

are positive weighting parameters
 
indicating the importance of 

mean

w  and 
cov

ww  , respectively. aw is a 0-1 parameter. 1aw  indicates that some trips of OD pair w  pass 

over link a , and otherwise zero. Clearly, if 0awp  , then 1aw  ; else, 0aw  .  

Equation (26) ensures compliance with the OD covering rule, and Eq. (25) indicates that the 

total number of traffic counting sensors should be equal to a given fixed parameter l
~

. Note that 

the parameter l% must be greater than or equal to the minimum number of counting sensors 0l  
required to satisfy the OD covering rule. If 0

~
ll  , there is no feasible solution for the proposed 

model. 0l  
can be determined by the following model (Yang and Zhou, 1998): 

min a

a A

z



                                               

           (28)
                                 

 

. . (26) ~ (27)s t  

For the implementation of this model, the weighting parameter w  and ww   
can be set as 

follows. 

w
w

w

w W

q

q





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%

%
                                                            (29) 
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(30) 

where wq%

 

is the prior mean traffic demand of OD pair w . '

q

ww%

 

is the prior covariance of 

traffic demand between OD pairs w  and w .  

 According to Khoo et al. (2017), OD pairs with higher traffic demand should be assigned a 

higher ratio in the corresponding estimation. In line with this idea, Eq. (29) means that the more 

prior OD demand information is available, the higher the value of the weighting parameter. That is, 

the estimation error of OD pairs with higher traffic demand is more likely to be minimized. The 

following example illustrates the performance of Eq. (29). Suppose that there are two OD pairs in 

a transportation network, with prior mean OD demands of 990 passenger car units/hour (pcu/h) 

and 10 pcu/h. This condition means that the first OD pair has much more traffic flow information 

than the second OD pair. Therefore, it is unreasonable for the weighting parameters of these two 

OD pairs to be the same. According to Eq. (29), the weighting parameters for the two OD pairs are 



0.99 and 0.01, respectively. Having different weighting parameters is more reasonable than having 

identical weighting parameters, as it addresses the different traffic flow information of the two OD 

pairs.  

4 Surrogate-assisted Genetic Algorithm for bi-objective traffic count location 

model 

In the bi-objective optimization model, there may be conflicts between the two objectives. In 

general, there would then be no optimal solution for the two objective functions. In view of this, 

we attempt to find the Pareto solutions (Grasso et al., 2018). One common approach to finding the 

Pareto solutions is to transform the bi-objective optimization problem into a single-objective 

optimization problem using the weighted summation method (Kolak et al., 2018). Note that the 

dimensions of the two objective functions in the proposed model are inconsistent. The dimension 

of 
mean

w  is pcu/h, while the dimension of 
cov

ww   is (pcu/h)2. To address this inconsistency, the 

average values of mean

w w

w W

 



 

and cov

,

ww ww

w w W

  





 

are adopted following the work of Shao et al. 

(2014). Above all, the following single-objective optimization model with the objective function 

of weighted maximum possible absolute error (WMPAE) is used to obtain the Pareto solutions of 

the bi-objective optimization model. 
cov

2
,

min (1 )
mean

w w ww ww

w W w w W

y
n n

   
   

 

   
                              

(31) 

. . (23) ~ (27),(29) ~ (30)s t
                                   

 

where the weighting parameter 0 1   is used to measure the relative importance of MPAEM 

and MPAEC in the model. 

The above optimization model is a 0-1 programming problem. The decision variable az  is the 

sensor location scheme. For a transportation network with n  links and m  sensors, the total 

number of possible sensor location schemes for 
az  is 

m

nC . Under this circumstance, the time 

complexity of this problem is )( m

nCO . That is to say all the possible sensor location schemes 

need to be enumerated to verify the optimality of the solution. Therefore, the above optimization 

model is a NP-hard problem. It is known in the literature that the computational time of 

enumeration algorithm exponentially increases with respect to the scale of decision variable. As 

such, the enumeration algorithm is very time consuming for large scale network. 

Various modified enumeration methods have been developed to find the optimal or sub-optimal 

solution of such problems by enumerating some or all feasible solutions. For example, implicit 

enumeration methods such as the branch and bound method (Laporte and Louveaux, 1993; Karimi 

and Davoudpour, 2015) and genetic algorithm (Holland, 1975; Fogue et al., 2013) are extensively 

used. The genetic algorithm (GA) is a widely used robust evolutionary technique that can find the 

global optimum of nonlinear multi-objective optimization. Genetic algorithms represent the 

process of solving optimization problems via the evolutionary theory of “survival of the fittest”. In 

other words, through the selection, crossover, and mutation of chromosomes in a population, 

relatively good chromosomes are preserved and combined to evolve better populations and 

determine the optimal or near-optimal solution (Chiappone, et al., 2006).  

Note that the calculation of the objective function (Eq. (31)) involves two sub-optimization 

problems (Eqs. (23) and (24)), which are two nonlinear optimization models and may require 

considerable computation time. Such property may lead to slow convergence and "premature" 

phenomenon in the traditional genetic algorithm. In view of this, the surrogate model (Datta and 

Regis, 2016) is incorporated into traditional genetic algorithm. Then, this paper proposes a 

surrogate-assisted genetic algorithm (SGA) to solve the proposed model.  



 

SGA can be regarded as a modified GA. Specifically, compared with the original GA method, 

SGA adds the operations of approximating the objective function and correcting the individual, as 

shown in Table 2. The surrogate model approximates the objective function without directly 

solving the optimization problem (Eq. (31)). Such an approximation could considerably reduce the 

computational load of genetic algorithm. However, if the objective function of each individual in 

the population is calculated by the surrogate model, the accuracy of the solution may be 

influenced by the approximation errors. In view of this, for some individuals, the original model 

(Eq. (31)) still needs to be solved in order to correct the value of objective functions by removing 

the inaccurate information due to the approximation of surrogate model. In a word, the 

approximation and correction operations are aimed at reducing the amount of calculation and 

trying to alleviate the negative effects of approximation errors caused by surrogate model.  

Table 2 Comparison of SGA and GA  

Algorithm Process 

GA Code → Selection → Crossover → Mutation 

SGA Code → Approximation→ Correction→Selection → Crossover → Mutation 

The steps of SGA can be explained as follows: 

(1) Coding for the representation of candidate solutions 

According to the characteristics of the model proposed in this paper, a simple and intuitive 

binary code is chosen to represent the solution of the problem. In a chromosome, the index of a 

link in the road network is sorted to indicate whether the link contains a sensor. If so, the link code 

is set to 1; otherwise, it is set to 0. For example, x = 1 1 0 1 0 1 means that there are sensors on 

links 1, 2, 4, and 6, while there are no sensors on links 3 and 5. 

(2) Initial population generation 

The N  initial feasible solutions are randomly selected from the feasible fields that satisfy the 

constraint conditions, and an initial population is constituted. The length of each chromosome is 

the number of links. We set the maximum evolution time T  and error accuracy  . 

(3) Surrogate model for approximating the objective function 

Equation (31) is used to randomly generate M  initial sample points ( ) ( ){ , },i iyz  

1,2, ,i M L ， where 
( ) ( ) ( ) ( )

1[ , , , , ]i i i i T

a A
z z zz L L , and A  is the number of links.  

The Kriging surrogate model (Krige, 1951; Chen et al., 2016) assumes that the response value is 

related to the input variable as follows: 

( ) ( )y F  z z
                                   (32) 

where ( )F z  is a regression model; ( ) z  is a random process with mean 0, variance 2 , and 

covariance  
( ) ( ) 2 ( ) ( )cov( ( ), ( )) ( , )i j i jR  z z z z

                 (33)    

where ( ) ( )( , )i jR z z  is the correlation function of two sample points ( )i
z  and ( )j

z : 

                     

2
( ) ( ) ( ) ( )( , ) expi j i j

a a a

a A

R z z


 
   

 
z z

                  (34) 

  The estimated value ˆ( )y
0

z  of the response ( )y
0

z  at the unknown point 0
z  is given by  

                

1ˆ ˆˆ( ) ( ) ( )Ty r R Y I   
0 0

z z

                          
(35) 



where 
1

1
ˆ

T
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


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MI  L , 
( ) ( )[ ( , )]i j

M MR R  z z , (1) (2) ( )[ , , , ]M TY y y y L ; ( )r
0

z  is an 

M-dimensional vector whose elements reflect the correlation function between point 0
z  and the 

sample point, and the estimated variance is 
1

2
ˆ ˆ( ) ( )

ˆ
TY I R Y I

M

 


 
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(4) Individual correction 

First, the objective function of each individual in the population is calculated by the surrogate 

model (Eq. (35)). Then some individuals are selected to use the original model (Eq. (31)) to 

correct their objective function values. This paper adopts Expected Improvement (EI) add point 

correction method (Donald et al., 1998). EI value of each individual is calculated as follows.  

min min
min

ˆ ˆ
ˆ ˆ[ ( )] ( )

ˆ ˆ

F y F y
E I F y 

 

    
      

   
z

                

(36)

 
where minF  is the minimum value of the objective function for all sample points; ŷ  is the 

predicted value of the Kriging model at point z ; ̂  is the predicted standard deviation of the 

Kriging model; and ( )  , ( )  are the standard normal density and distribution functions, 

respectively. Select the individual with the maximum EI from the population and determine 

whether this individual is in the sample set. If so, no correction is made and the subsequent genetic 

algorithm steps are performed. Otherwise, the original model is used for correction. The corrected 

individual is added to the sample set, and the surrogate model is updated. 

(5) Fitness function 

The fitness function reflects the relative superiority of each individual in the population. Higher 

values of the fitness function indicate that the chromosome is closer to the optimal solution. 

Moreover, the proposed traffic count location model aims to minimize the estimation error. Thus, 

the fitness function of individual i  is defined as 

( )

1

ˆ
i i

f
y



                                
(37) 

(6) Selection 

  The selection mechanism compares the fitness function values. The higher the degree of 

individual fitness, the greater the likelihood of selection. This paper adopts the roulette selection 

method. To ensure the optimal solution of each generation is not destroyed by the crossover and 

mutation operations during the search evolution, the best individual of the current generation is 

also preserved. 

(7) Crossover 

The crossover operation exchanges several genes between two selected chromosomes to form 

two new chromosomes with high crossover probability cp . In this paper, we use the single-point 

crossover, commonly used in binary coding, which selects a cross-point at random and then 

switches the genes of two parent chromosomes at that point. 

(8) Mutation 

The mutation operation changes some sub-strings value in an individual coding with low 

mutation probability mp  to form new individuals. For the binary encoding, the random selection 

of a point changes the value of that point from 1 to 0 or from 0 to 1.  

5 Numerical experiments 

This section presents the results of two numerical experiments. A small transportation network 

is used to demonstrate the following properties of the proposed model: (a) the effects of OD 

demand covariance on the traffic count location problem; (b) the effects of prior OD demand 

information on the traffic count location problem; (c) modeling behavior in the case where the 



stochastic OD demand estimation is zero; and (d) the tradeoff between the two objective functions 

by providing all Pareto solutions. The second example utilizes a real transportation network to 

demonstrate the convergence of the proposed surrogate-assisted genetic algorithm. 

5.1 Small transportation network 

Figure 1 depicts a small transportation network with 14 links and 6 OD pairs, i.e., (1–6), (1–8), 

(1–9), (2–6), (2–8), (2–9). The true and prior mean OD demand are listed in Table 3, and the 

link-OD choice proportion is presented in Table 4. The prior OD demand covariance matrix and 

observed link flow covariance matrix are presented in Tables 5 and 6, respectively. 

 

 

Fig. 1 Small network 

Table 3  Mean OD demand (pcu/hour) 

OD pair 1–6 1–8 1–9 2–6 2–8 2–9 

Prior demand  100 130 120 120 170 (10) 140 

True demand 120 150 100 130 200 (0) 90 

Note: The numbers in parentheses represent the special case discussed in sub-section 5.1.2, where the demand of 

OD pair 2–8 is zero. 
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Table 4  Link-OD choice proportion 

   OD pair 

 

Link 
1–6 1–8 1–9 2–6 2–8 2–9 

Observed mean 

link flow 

1 0.5      60 

2  1  0.4    190  

3 0.5  0.6    120 

4    0.6  0.6 132 

5 0.5   0.4 1 (0) 0.4 348 (148) 

6    0.6  0.6 132 

7   0.4    40 

8  1      150 

9 1   0.4   172 

10   0.2  1 (0)  220 (20) 

11   0.8   0.4 116 

12      0.6 54 

13  1      150 

14   0.2    20 

Mean OD 

demand 
120 150  100 130 200 (0) 90  

Note: The numbers in parentheses represent the special case discussed in sub-section 5.1.2, where the demand of 

OD pair 2–8 is zero. 

Table 5  Prior OD demand covariance matrix (pcu/hour) 

OD pair 1–6 1–8 1–9 2–6 2–8 2–9 

1-6 1296      

1-8 56.7 2025      

1-9 27 29.7 900    

2-6 36.5 33.3 23.4 1521   

2-8 54 (0) 56.7 (0) 30.6 (0) 35.1 (0) 3600 (0)  

2-9 44.7 45  23.5 34.7 47 (0) 729 

Note: The numbers in parentheses represent the special case discussed in sub-section 5.1.2, where the demand of 

OD pair 2–8 is zero. 



Table 6  Observed link flow covariance matrix (pcu/hour2) 

Link  1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 1296              

2 83.7 2984.4             

3 1323 1013.4 2250            

4 81.2 125.2 128.1 2319.4           

5 1431.2 296.2 1535.7 2482.7 7650          

6 81.2 125.2 128.1 2319.4 2482.7 2319.4         

7 27 929.7 927 46.9 1045 46.9 900        

8 56.7 2054.7 86.4 78.3 191.7 78.3 29.7 2025       

9 1332.5 140.4 1382.9 1636.9 3058.5 1636.9 50.4 90 2890      

10 81 1017 1011.6 129 3840.6 129 930.6 86.4 139.5 4561.2     

11 71.7 998.2 995.2 810.6 959.9 810.6 923.5 74.7 129.8 1001.1 1676    

12 44.7 68.5 68.2 763.7 855.4 763.7 23.5 45 79.4 70.5 752.5 729   

13 56.7 2054.7 86.4 78.3 191.7 78.3 29.7 2025 90 86.4 74.7 45 2025  

14 27 929.7 927 46.9 104.5 46.9 900 29.7 50.4 930.6 923.5 23.5 29.7 900 

5.1.1 Effects of different objective functions and the number of sensors 

In this example, the performance of the newly proposed measures is examined in terms of 

determining the optimal traffic count locations. To this end, four scenarios with different 

weighting parameters are used, and the scenarios are summarized in Table 7. Each scenario has a 

different objective function to illustrate the difference between the proposed measures and the 

existing MPAEM. Scenario An only considers the mean of OD demand (MPAEM), Scenario B 

only considers the covariance of OD demand (MPAEC), Scenario C takes both the mean and 

covariance of OD demand into account (MPAE), and Scenario D is a comprehensive case in 

which the estimation error of both the mean and covariance of OD demand as well as the prior 

traffic demand information are simultaneously considered in the objective function (WMPAE).  

Table 7  Four scenarios with different weighting parameters 

Scenario 
Consideration of 

mean OD demand 

Consideration of OD 

demand covariance 

Consideration of 

traffic demand 

information for 

different OD pairs 

Parameter values 

A. MPAEM √ × × 
1   

1w ww     

B. MPAEC × √ × 
0   

1w ww     

C. MPAE √ √ × 
0.5   

1w ww     

D. WMPAE √ √ √ 

0.5   

w

w

w

w

q

q
 



%

% , 
'

'

q

ww

ww q

ww

w W w W







 


 

%

%

 
Even when using the same objective function, the resulting location will depend on the number 

of sensors. As discussed in section 3, the limited number of counting sensors l% must be greater 



than the minimum counting sensor number 0l  that satisfies the OD covering rule. Solving the 

optimization model (Eqs. (26)~(28)) yields 0 2l  . Therefore, it is assumed that 3l %  in this 

example. As the scale of this network is small, the enumeration method can be used to obtain the 

global optimum of the traffic count location scheme. The corresponding results are shown in 

Tables 8–11. 

Table 8  Results of Scenario A 

Number of  

sensors  
MPAEM MPAEC MPAE WMPAE 

Optimal sensor  

location scheme 

3 352.64 762.20 352.64 304.44 2, 3, 5 

4 204.03 497.03 204.03 190.70 2, 9, 10, 11 

5 214.67 321.10 214.67 145.92 2, 3, 5, 9, 11 

6 0 0 0 0 All feasible solutions 

 

Table 9  Results of Scenario B 

Number of  

sensors  
MPAEM MPAEC MPAE WMPAE 

Optimal sensor 

 location scheme 

3 568.18 684.41 684.41 678.84 2, 5, 7 

4 358.05 404.67 404.67 352.06 2, 5, 7, 9 

5 310.91 310.42 310.42 279.35 2, 3, 4, 9, 10 

6 0 0 0 0 All feasible solutions 

 

Table 10  Results of Scenario C 

Number of 

sensors  
MPAEM MPAEC MPAE WMPAE 

Optimal sensor 

location scheme 

Total covering 

flow by optimal 

sensor location  

3 384.73 735.52 560.13 553.49 2, 5, 14 558 

4 236.33 495.49 365.91 294.86 2, 3, 5, 7 698 

5 239.45 311.91 275.68 252.47 5, 7, 8, 12, 14 612 

6 0 0 0 0 All feasible solutions  

 

Table 11  Results of Scenario D 

Number of 

sensors  
MPAEM MPAEC MPAE WMPAE 

Optimal sensor 

location scheme 

Total covering 

flow by optimal 

sensor location 

3 358.17 778.41 568.29 464.77 2, 5, 9 710 

4 297.98 486.08 392.03 291.47 2, 3, 5, 9 830 

5 262.74 322.22 292.48 216.55 3, 5, 7, 9, 13 830 

6 0 0 0 0 All feasible solutions  

As can be seen from Tables 8–11, the traffic count location schemes of the four scenarios are 

different even when the number of sensors is the same. For example, with five counting sensors, 

the traffic count location schemes are (2, 3, 5, 9, 11), (2, 3, 4, 9, 10), (5, 7, 8, 12, 14), and (3, 5, 7, 

9, 13) for scenarios A, B, C, and D, respectively. That is, the result given by the proposed traffic 

count location model is different from that of the existing model using MPAEM.  

As the number of sensors increases, the magnitude of all four measures decreases. This 



phenomenon is in line with conventional traffic count location models. More counting sensors 

used for OD estimation means that more information is acquired, which leads to a decrease in the 

estimation error. When there are six counting sensors, all four measures return a value of zero 

because the number of OD pairs is equal to the number of counting sensors. In this case, the 

observed traffic flow information can uniquely identify the OD demand without estimation errors. 

Similar conclusions have been found in many OD demand estimation studies (Gentili and 

Mirchandani, 2018). 

An interesting finding is that the four measures cannot simultaneously reach their own 

minimum using any one traffic count location scheme. For example, with three counting sensors, 

the minimum MPAEM value of 352.64 is achieved in scenario A. However, the corresponding 

measure of MPAEC in scenario A is 762.20, which is greater than that in scenario B (684.41). 

That is, the absolute optimum concerning the MPAEM and MPAEC measures cannot be obtained. 

For the case of stochastic OD demand estimation, the proposed traffic count location model is 

needed as it accounts for estimation errors in both the mean and covariance of OD demand.  

To demonstrate the effects of weighting parameters 
w  and 

ww  , the total traffic flow covered 

by the sensor location scheme is given in Tables 10–11. The results indicate that the use of 

weighting parameters helps cover more of the traffic flow. For example, for the case of four 

counting sensors, there is not much difference between the MPAE and WMPAE values in 

scenarios C and D. However, the total traffic flow covered by the sensor location scheme in 

scenario D is 830 pcu/h, which is somewhat higher than that in scenario C (698 pcu/h). Therefore, 

scenario D (WMPAE) is a better optimal model for the counting sensor location problem.  

5.1.2 Handling the case of zero estimation of stochastic OD demand 

This example is used to demonstrate that the proposed model is capable of determining the 

traffic count location scheme when the estimated mean and covariance of OD demand are zero. In 

real life, the traffic demand of some OD pairs may be zero because of changes in traffic control 

policies or land use development. The concepts of MPAEM and MPAEC can address cases where 

the estimated mean and covariance of OD demand are zero, whereas the widely used MPRE 

cannot deal with this case. It is assumed that the true mean demand of OD pair 2–8 is zero 

(
*

28 0q  ), as shown in parentheses in Table 3. Under this assumption, the corresponding link-OD 

choice proportion and prior OD demand covariance of OD pair 2–8 is also assumed to be 0, as 

indicated by parentheses in Tables 4 and 5, respectively. The optimal location scheme of the 

counting sensors is presented in Table 12. 

Table 12  Optimal location of counting sensors with zero OD demand 

In Table 12, the value of the objective function in all four scenarios decreases with the increase 

in the number of sensors. For example, the value of MPAEM in Scenario A decreased from 286.53 

to 171.73 as the number of sensors increases from 3 to 5. This phenomenon is similar to that of 

non-zero OD demand (see Tables 8–11). Note that the observed mean and covariance matrix of 

Number 

of 

sensors 

Scenario A Scenario B Scenario C Scenario D 

MPAEM 
Location 

scheme MPAEC 
Location 

scheme MPAE 
Location 

scheme 
WMPAE 

Location 

scheme 

3 286.53 2, 5, 7 609.76 2, 5, 10 447.27 3, 5, 8 371.82 5, 10, 13 

4 189.06 2, 5, 10, 11 323.74 2, 3, 5, 9 256.40 2, 5, 9, 10 232.93 2, 3, 5, 10 

5 171.73 3, 4, 5, 10, 13 256.88 2, 3, 9, 10, 11 240.44 2, 4, 7, 9, 14 205.24 3, 7, 9, 12, 13 



link flow is different from that of non-zero OD demand. As a result, the optimal counting sensor 

location scheme under zero OD demand is different from that of the non-zero OD demand case. 

This can be inferred from the results in Tables 10 and 12. For Scenario C, when there are five 

sensors, the optimal location scheme with zero OD demand is (2, 4, 7, 9, 14), whereas that for the 

non-zero OD demand case is (5, 7, 8, 12, 14). Moreover, an interesting finding is that the 

estimation error of the four scenarios with zero OD demand is smaller than in the non-zero OD 

demand case. The reason is that the total observed traffic flow in the zero OD demand case is 

smaller than that in the non-zero OD demand case. 

The proposed modeling approach can also be used to identify the critical roads (or links) in 

terms of OD demand estimation. Following the work of Bagloee et al. (2017), a link is defined as 

a critical link if it is determined as a traffic count location in more than or equal to 6 out of 12 

times of the traffic location schemes in Table 12. A link is defined as a noncritical link if it is 

determined as a traffic count location in fewer than two times. The first row of Table 13 shows the 

times that each link is equipped with a sensor for the case 
*

28 0q  . And then the critical and 

noncritical links are marked in Fig. 2(a). We find that most of the critical links are located in the 

center of the network, whereas noncritical links are located at the edges of the network. This is an 

interesting test, but such a conclusion may highly depend on the parameters set in Table 3-6. In 

view of this, we additionally set two other cases: (1) the true mean demand of OD pair 1–9 is zero 

(
*

19 0q  ); (2) set another non-zero case of OD demand randomly in Table 3, for example 
* [130,200,90,160,220,100]q  . We also present the times each link counted in different location 

schemes for the two cases as shown in the last two rows of Table 13. And the corresponding layout 

of the critical and noncritical links is shown in Figs. 2(b) and 2(c). Overall, the three different 

cases show a similar pattern that critical links are located at the center and noncritical links are 

located at the edge. The underlying reasons for such this interesting finding deserve further 

investigation. 

Table 13  Times of each link in different location schemes 

              Link 

Case 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

A． zero demand of OD pair 2-8  

    
*

28 0q 
 

0 8 6 2 9 0 3 1 5 7 2 1 3 1 

B． zero demand of OD pair 1-9  

    
*

19 0q 
 

0 10 6 1 10 0 5 1 7 2 2 1 1 2 

C． non-zero OD demand  
* [130,200,90,160,220,100]q 

 
2 5 7 1 11 1 7 5 2 2 1 0 3 1 



  

 

 

Fig. 2 Critical and noncritical links  

5.1.3 Pareto solutions of the proposed model 

In this paper, the proposed optimal model for the traffic count sensor locations is formulated as 

a bi-objective optimization problem. The two objective functions are generally in conflict with one 

another. The Pareto solutions (non-dominated solutions) shown in Fig. 3 correspond to the case of 

five counting sensors. As there are a total of 14 links in this network, the total number of possible 

sensor location schemes is 
4

14 1001C  . The constraint in Eq. (26) reduces the number of feasible 

solutions to 49. Finally, there are 11 Pareto optimal solutions for this example. The Pareto front is 

moving toward the ideal front.  
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Fig. 3 Pareto optimal solutions of small network 

In addition, comparing the two special Pareto solutions A and B in Fig. 3, it is apparent that 

solution A performs best in terms of minimizing the error in the mean OD estimation, whereas 

solution B performs best in terms of minimizing the error in the OD covariance estimation. It is 

hard to determine which of these is the best solution. For implementation purposes, determining 
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the most suitable counting sensor location scheme for different purposes is worthy of further 

investigation.  

5.2 Real transportation network 

To demonstrate the efficiency of the proposed surrogate-assisted genetic algorithm for solving 

the optimization problem of traffic count location, we consider a real network in the City of Irvine, 

Orange County, California. The Irvine network, as shown in Fig. 4, consists of 39 zones, 162 

nodes, 496 links, and 108 OD pairs (Xu et al., 2016). The OD demand is set to follow a 

multivariate normal distribution. The traffic flow covariance ranges from 21.7 (pcu/hour)2 to 

4086.3 (pcu/hour)2. The link choice proportion matrix is given and fixed.  

 

Fig. 4 Irvine network 

5.2.1 Convergence of the surrogate-assisted genetic algorithm 

In order to present the merit of the proposed surrogate-assisted genetic algorithm (SGA) 

compared with traditional genetic algorithm (GA), we solve the WMPAE model when 0.5   

with SGA and GA, respectively. The experiment was implemented in Matlab on the Windows 10 

platform and executed on a personal computer with an Intel CoreTM i7-6500U 2.5 GHz CPU and 4 

GB memory. The limited sensor number was set to 38, which is the minimum number satisfying 

the OD covering rule. The surrogate-assisted genetic algorithm used the number of initial samples 

70M  , population size 50N  , the maximum number of iterations 1000T  , error accuracy 
310  , crossover probability 0.7cp  , and mutation probability 0.05mp  .  

Figure 5 illustrates the convergence of two algorithms SGA and GA. It is clear that the fitness 

function of SGA increases over the first 148 generations and becomes stable from the 149th 

generation. Nevertheless, GA takes 262 generations to converge, nearly twice the number of 

iterations for SGA. Meanwhile, the fitness growth of GA is very slow in the first 250 generations 

and may be caught in the local optimum. Besides, the fitness value of SGA is 0.0486, slightly 

higher than the 0.0449 of GA. The higher the fitness value, the smaller the corresponding 

objective function value. Therefore, the OD estimation error obtained by SGA is smaller than GA. 

On the other hand, the computation time of SGA is 1983.472 s, which is also less than that of GA 

(2705.926 s). In summary, this experiment shows that the proposed surrogate-assisted genetic 

algorithm converges faster than genetic algorithm. 

Although SGA is more efficient than GA, it is worth noting that the fitness values of SGA still 



has small fluctuations when it tends to be stable. As discussed in section 4, SGA can be regarded 

as a modified GA. In the selection operation, SGA preserves the best individual of the current 

generation and sends it to next generation. In the next generation, new individuals are generated in 

the population through "crossover and mutation" operation. These new individuals may be better 

than “the best” of last generation. That is the main reason for the fluctuations of fitness value in 

Figure 5.  

 

Fig. 5 Convergence of SGA and GA 

5.2.2 Sensitivity analysis of surrogate-assisted genetic algorithm 

In this section, we study the effect of different parameters on the proposed surrogate-assisted 

genetic algorithm. First of all, the number of sensors is set to range from 40 to 80 with the step 

size of 10, as shown in Figure 6. Figure 6 also shows that when the number of sensors increases, 

the estimated error of WMPAE sharply decreases from 685.78 to 203.41. However, the 

computation time has not increased much from 2298.09 s to 2965.20 s, about 10 minutes. 

Therefore, if the cost of sensor location allows, the number of sensors should be as large as 

possible to obtain more accurate OD estimation, which is not at the expense of computation time. 

 
Fig. 6 Effect of different sensor numbers on WMPAE and computational time 

In addition, we consider the effect of other cases on the algorithm: (a) Randomly select 40, 60, 

and 90 OD pairs from the Irvine network; (b) The weight   of the objective function of 

262 149 



WMPAE are set to 0.1, 0.3, 0.5 and 0.8, respectively; (c) Consider the traffic congestion, namely 

increase the prior OD demand by 20 percent. The value of WMPAE associated with these different 

cases is shown in Table 14. When the weight   increases from 0.1 to 0.3, WMPAE remains 

almost unchanged. However, as the weight   increases further, WMPAE decreases significantly. 

On the other hand, it can be seen that the two cases of 40 and 60 OD pairs have similar results on 

WMPAE. While the number of OD pairs increases to 90, WMPAE is twice of that in cases of 40 

or 60 OD pairs. For example, when the weight   is 0.3 for 40 OD pairs, the WMPAE is 303.66 

for non-congestion condition, while it increases to 597.53 when the weight   is 0.3 for 90 OD 

pairs. This shows that the scale of the network has a significant impact on the estimation error. The 

larger the scale of the network, the larger the estimation error. At the same time, we note that 

under the same weight   and number of OD pairs, the estimation error is not sensitive to traffic 

congestion. For example, when the weight   is 0.8 for 90 OD pairs, the WMPAE is 318.83 for 

non-congestion condition, while it slightly increases to 325.34 for congestion condition.  

Table 14  WMPAE with different weights and OD pairs 

Weight 


 

40 OD pairs 60 OD pairs 90 OD pairs 

Non-congestion Congestion Non-congestion Congestion Non-congestion Congestion 

0.1 306.52 320.56 315.48 318.67 595.19 609.73 

0.3 303.66 318.59 310.79 323.74 597.53 607.34 

0.5 235.53 255.59 243.54 251.47 431.52 441.77 

0.8 235.49 237.62 234.22 239.85 318.83 325.34 

6 Conclusions and further studies 

In this paper, we addressed an issue on the optimal location of traffic counting sensor on the 

links to estimate the stochastic OD demand. To this end, we proposed a new measure to evaluate 

the estimation error of the stochastic OD demand. The maximum possible absolute error of OD 

demand covariance (MPAEC) was defined to quantify the estimation error of traffic count 

location schemes for OD demand covariance estimation. This measure can be regarded as an 

extension of the conventional maximum possible absolute error of mean OD demand (MPAEM). 

After deriving the bounds of MPAEM and MPAEC, a bi-objective optimization model was 

proposed for the traffic count location problem. The two objectives were designed to minimize the 

upper bounds of MPAEM and MPAEC simultaneously. The proposed model is capable of 

handling zero estimates, unlike conventional models. A surrogate-assisted genetic algorithm was 

adopted to solve the proposed bi-objective optimization model. Two numerical examples have 

been presented to illustrate the applicability of the proposed model and the efficiency of the 

proposed algorithm. The results show that (a) the proposed MPAEC measure can be used to 

capture the estimation error of OD demand covariance in traffic count location schemes; (b) the 

proposed model is capable of solving cases in which the estimated mean and covariance of OD 

demand are zero; and (c) the proposed algorithm can solve the traffic count location model for a 

real network with 162 nodes, 496 links, and 108 OD pairs. 

Several areas of research are worthy of further investigation. 



(1) This paper discusses the optimal sensor location model for estimating the OD matrix. 

Extending the proposed model for purposes such as travel time estimation and path reconstruction 

requires further study. 

(2) It is assumed that the covariance between the OD demand and link flow is non-negative. 

Relaxing this non-negative assumption deserves further investigation. 

(3) The proposed model assumes that the traffic count sensors do not return any measurement 

errors. In reality, there are likely to be measurement errors or sensor failures. From this point of 

view, it is important to account for these issues effectively in the modeling approach to achieve 

accurate estimations. 

(4) Current research on traffic count location optimization mainly focuses on static OD demand 

estimation for strategic planning purposes. Further studies could be carried out to extend the 

proposed model to the dynamic case for traffic control and management. 
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