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Trajectory Planning for Multi-Robot Systems: Methods
and Applications

Ángel Madridano, Abdulla Al-Kaff, David Mart́ın∗, Arturo de la Escalera

aIntelligent Systems Lab, Universidad Carlos III de Madrid
Calle Butarque 15, Leganés (28911), Madrid, Spain

Abstract

In the multiple fields covered by Artificial Intelligence (AI), path planning is un-

doubtedly one of the issues that cover a wide range of research lines. To be able

to find an optimal solution, which allows one or several vehicles to establish a safe

and effective way to reach a final state from an initial state, is a challenge that

continues to be studied today. The increasingly widespread use of autonomous

vehicles, both aerial and ground-based, make path planning an essential aspect

for incorporating these systems into an endless number of applications. Besides,

in recent years, the use of Multi-Robot Systems (MRS) has spread, consisting

of both Unmanned Aerial Vehicles (UAVs) and Unmanned Ground Vehicles

(UGVs), gaining versatility and robustness in their operation. The possibil-

ity of using heterogeneous robotic teams allows tackling, autonomously, and

simultaneously, a wide range of tasks with different characteristics in the same

environment. For this purpose, path planning becomes a crucial aspect and,

for this reason, this work aims to offer a general vision of trajectory planning,

to establish a comparison between the methods and algorithms present in the

literature for the resolution of this problem within MRS, and finally, to show the

applicability of these methods in different areas, together with the importance of

these methods for achieving autonomous and safe navigation of different types
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1. Introduction

In the last decade, the advances in the field of electronics have improved

the characteristics of both Unmanned Aerial Vehicles (UAVs) and Unmanned

Ground Vehicles (UGVs), as crucial as their autonomy or weight, along with

a considerable reduction in their cost. This, coupled with the wider variety of5

vehicles available in both classes, has led to an exponential increase in the use

of these vehicles in a wide range of tasks.

In addition, the implementation of systems made up of a set of vehicles,

whether all aerial, ground-based, or both, is now spreading. The possibility of

using a Multi-Robot System (MRS) autonomously and simultaneously, improves10

the efficiency of these vehicles in missions; where response time and accessibility

to different areas are established as crucial factors for success; such as search

and rescue missions, emergencies, monitoring large areas or tracking multiple

targets.

A key aspect of achieving safe and coordinated navigation of a system con-15

sists of different vehicles is path planning. Therefore, there is a need to develop

algorithms that can generate a solution to the problem of reaching, a specific

location by a vehicle that moves freely in a given environment without human

intervention. In addition, the vehicle must be able to reach that objective with-

out colliding with obstacles present in the environment, and avoiding the rest20

of the vehicles that are part of the MRS. Not only to reach the goal safely is

necessary, but also, when working with systems and environments where the

distance traveled and the time spent are determining factors, it becomes essen-

tial that the obtained final solution to be optimal. For this reason, many of the

path planning methods are based on different types of algorithms that allow,25

2



on the one hand, to find a set of safe paths to the goal, and on the other hand,

to establish which of these possibilities is the most optimal in terms of aspects;

such as the distance traveled, dynamics of the system, or time spent to travel

it. Although the planning of trajectories presents difficulties when generating a

solution, its application to MRS implies a series of aspects linked to the type of30

vehicles used.

Thus, in the case of UAVs, the most crucial feature from the planning point of

view is the possibility of modifying their altitude; to avoid obstacles or restricted

areas, i.e., the possibility of establishing a 3D path planning. Also, aspects such

as the possibility of covering large areas in a short time, or their ease of access35

to remote places should be considered. On the other hand, UAVs present a

series of restrictions to be considered during the task planning phase, such as

the influence of weather conditions, particularly wind, which may cause UAVs

to be unable to follow a particular path precisely, or to reach a specific position;

or the ’Downwash’ effect, i.e., the impossibility of UAVs to fly near another40

UAV; because of the effect of air disturbances generated by the rotors of one

UAV to dynamics of the rest of the UAVs.

In the case of the UGVs, their main disadvantage in terms of path planning

is the restriction to 2D, which makes it impossible to reach certain places or

access remote locations because they cannot cross or overcome certain obstacles.45

On the contrary, they have the advantage that, in the most cases, UGVs have

greater autonomy than UAVs, being able to reach locations further away from

the starting point, provided that they are accessible.

Therefore, the main objective of this work is to analyze, and compare the

main methods and algorithms collected in the current literature; to carry out50

the path planning in MRS. Moreover, the document includes a study on the

fields that use these systems, trying in this way to generate a complete work

that allows to know the current state of the art of the techniques of trajectory

planning in MRS, its applicability in different areas, and to establish conclusions

about which of the methods are more propitious for each case, and how to face55

future developments in this field.
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The structure of the document is organized as follows: Section 2 provides an

introduction to the essential concepts in the field of MRS,helping to understand

certain aspects of the path planning algorithms in this field, which are covered in

Section 3. Then, Section 4 analyses the applicability of MRS to different fields.60

Finally, Section 5 collects the conclusions of the work on the applicability of the

different path planning algorithms in the field of MRS, and the possible future

steps to be undertaken in this area are detailed.

2. Multi-Robot Systems

Multi-Robot Systems includes all those groups formed by two or more robots65

sharing the same work space. This general concept covers industrial robotic

arms, humanoid robots, ground and aerial mobile systems, and autonomous

vehicles.

Although this work is exclusively oriented to MRS formed by autonomous

mobile systems (UGVs and UAVs) either homogeneous of heterogeneous, some70

concepts related to the classification of MRS and their terminology are estab-

lished.

As stated in Zakiev et al. (2018), in the field of robotics research there

are multiple terms such as Multi-Robot Systems, Multi-Agent Systems, Robotic

Swarms or Sensor Networks that are usually used interchangeably; to refer to75

groups formed by more than one robots working in a coordinated manner in

the same area. Although this general concept is maintained in these subgroups,

each term presents particular characteristics:

1. Multi-Robot Systems: Includes all systems containing multiple robots.

Therefore, a robotic swarm is included within the MRS, but not all MRS80

are swarms.

2. Multi-Agent Systems: This term does not belong only to robotics,

and in general, refers to a system composed of multiple intelligent agents

capable of interacting with each other. For this reason, areas such as

computer science, biology, psychology, or economics also present research85

4



in this field. If their study is focused on robotics, they are usually used

to talk about ideal models of robotic limbs and are considered necessary

when establishing theories whose viability is in doubt.

3. Robotic Swarms: This term includes some essential aspects that dis-

tinguish swarms; such as scalability, inter-robot communications, and the90

advantage of the whole over individuality. Although other studies; such

as Şahin (2004), include aspects like the autonomy to relate to the envi-

ronment or the homogeneity of all the elements that form the swarm, the

first three are common to most studies in this field.

4. Sensor Networks: This term is related to a set of mobile sensors that95

interact with each other. Therefore, any of the groups described above

could be in itself a sensor network.

Another important aspect within the MRS to be considered from a path

planning point of view, is the control and decision-making architecture of the

MRS. Two main types of architectures are established:100

1. Centralized Architecture: it is characterized by having within the

MRS a single element or node in charge of collecting all the informa-

tion, processing it, and establishing the set of actions or decisions to per-

form Jose & Pratihar (2016); Yan et al. (2010, 2012); Luna & Bekris

(2011). Therefore, the main characteristic of these systems is the capac-105

ity to have a global vision of the whole system in a single agent, and be

able to establish optimal global plans. This facilitates the decision-making

process as there is only one agent, which with all the information, com-

municates to the different elements the steps to be carried out, having

control of all the movements and decisions of the system.110

On the contrary, it presents disadvantages such as the limitations of the

communication systems. The centralized architecture is characterized by

an essential communication system, so that, the central agent receives in-

formation from the rest of the elements of the system and communicates

the decisions or actions to be taken. Therefore, the radius of the use of115
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MRS with centralized architecture is limited to the distance allowed by

the communication systems. Furthermore, the bandwidths of the com-

munications can be established as a disadvantage in the scalability of the

MRS. A centralized architecture reduces the robustness of the MRS, since

the achievement of a mission is conditioned to the maintenance of this120

central agent, any loss of it, leads to terminate the tasks of the rest of the

elements of the MRS.

2. Decentralized Architecture: Unlike the previous one, there is no single

agent or node in charge of controlling the whole MRS Amato et al. (2014,

2015a,b); Omidshafiei et al. (2017); Long et al. (2018). Within this type125

of architecture, they are distinguished:

(a) Distributed Architectures: These are characterized by the fact

that each member of the MRS has the power to make decisions for

himself. Although it is necessary to establish a communication sys-

tem that allows some exchange of information between the elements130

of the MRS; to cooperate and achieve common objectives, the loss of

one or more elements does not lead to the failure of the mission.

(b) Hierarchical Architectures: Characterized by establishing a local

order between the different elements of the system. They are complex

architectures but present good robustness in terms of failures and135

autonomy of operation Cao et al. (1997).

One of the essential characteristics within MRS is the type of robots that

form it. Thus, homogeneous MRS consist of robots or vehicles with identical

characteristics. Habibi et al. (2015, 2016); Wawerla & Vaughan (2010) (Fig-

ure 1). On the contrary, when at least one of the agents that form the MRS140

presents different characteristics or capabilities from the rest of the MRS, it is

said to be heterogeneous MRS Gregory et al. (2016); Mathew et al. (2015);

Roldán et al. (2016); Zhou et al. (2015) (Figure 2). As indicated, this paper

focus on MRS formed by UAVs and UGVs, and it is considered that a system

formed by different UAVs with different characteristics is also a heterogeneous145

MRS (Figure 2a). From the point of view of path planing its importance lies in
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the possibility of carrying out this planning in 2D, 3D or mixing both depending

on the possibilities of movement of the vehicles used.

(a) MRS formed by UAVs. (b) MRS formed by UGVs.

Figure 1: Examples of Homogeneous MRS.

(a) MRS formed by different UAVs. (b) MRS formed by UGVs-UAVs.

Figure 2: Examples of Heterogeneous MRS.

Finally, another critical aspect within MRS is the interaction of the elements

of the system with each other; that is, how they relate to each other for the150

simple reason of sharing the same environment. This generates the appearance

of collective behavior. This behavior manifests itself in different ways:

� Indifference: In which, each mission of a robot is independent of the

rest, and there may not be a relationship with the rest of the agents.

� Cooperation: The association of different agents whose objective is a155

common end or task. Associated with the cooperation appears the term
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”Awareness,” defined as the property of the MRS robots of knowing of

the existence of other members of the system.

� Competition or antagonism: where the objectives of the system’s

agents are entirely incompatible with each other.160

In this section, a set of concepts and characteristics intrinsic to MRS have

been synthesized, and which facilitate the analysis of path planning methods.

In this way, the state of the art of the MRS has been summarized, to be able

to understand better why to apply some algorithms or others at the time of

solving the problem of the path planning in MRS.165

3. Path Planning

Path planning is considered as one of the most critical challenges in Artificial

Intelligence (AI), and is directly related to the autonomous movement of all

types of intelligent systems. So much so, that works such as Hedrick et al.

(2020) include the development of an efficient path planning algorithm for the170

exploration of planets such as Mars.

Path planning algorithms attempt to establish paths and movements that

allow mobile vehicles to reach a goal; navigating autonomously and safely in a

working environment. Therefore, they generate an optimal solution for a system

to change from an initial state to a final state by avoiding static and dynamic175

obstacles, present in the environment.

The importance of finding a solution to the problem of autonomous naviga-

tion and path planning have led to that the developments reached in this area

have grown exponentially in the last years, and cover a wide range of methods

based on different techniques and characteristics.180

The expansion of autonomous vehicles and their frequent use within MRS

has led to the adaptation of classic methods of path planning, initially designed

for a single vehicle. Along with this adaptation, new techniques have appeared

that consider multiple vehicles in the planning, and allow planning in real time,

as the vehicles navigate through the environment.185
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In recent years, several studies have been generated that attempt to analyze

the state of implementation and development of trajectory planning techniques

aimed at different types of vehicles Bormann et al. (2018); Gayathri & Uma

(2018); Injarapu & Gawre (2017); Cai et al. (2020); Dewangan et al. (2017);

Costa & Silva (2019) The great extension of different types of techniques and190

algorithms used within the field of path planning means that the set of studies

carried out to date complement each other and, if necessary, continue to analyze

and explore this area of research to add studies that complement the knowledge

achieved to date and, in new publications, bring together advances made in this

field.195

Therefore, the main objective of this work is to study and analyze the state

of the literature in the field of MRS-oriented path planning and, with this work,

to complement previous studies related to this field. This survey collects and an-

alyzes a set of techniques, methods and algorithms aimed at solving the problem

of path planning in MRS. For this reason, a general description of the problem200

is first given, followed by an analysis of the different ways to reach a solution,

and finally, the work is focused on the path planning in MRS.

Before analyzing MRS Path Planning-based methods, it is convenient to

detail some essential aspects of path planning. There is a set of terms that can

be used indifferently to talk about path planning, but that have aspects that205

allow us to differentiate between them. These terms are:

� Path Planning: Related to find a continuous curve, not necessarily

smoothed, in the C-space that starts from an initial Xinit point and reaches

an end Xgoal point. This curve is formed by a set of segments and includes

stops at defined positions along the curve. This term focuses on providing210

a raw solution and, for this reason, sometimes complementary methods

are needed to generate an optimal solution.

� Optimal Path Planning: This term introduces a cost function based

on aspects, such as distance traveled or time; to try to find a set of paths,

which optimizes this cost function.215
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� Trajectory Planning: This term is intrinsically linked to knowing the

dynamic characteristics of vehicles. Therefore, trajectory planning meth-

ods are a further step in optimal path planning. They not only determine

where vehicles move, but also establish how they should move along that

path. Path planning is included in a Kinodynamic planning problem by220

considering speeds, accelerations, and kinodynamic constraints of vehicles

Cruz-Martin et al. (2004).

Recently in the literature, a new term has emerged related to path plan-

ning, which brings together those methods in which an optimal solution to the

problem of path planning is generated by satisfying a specific risk and, called225

Chance-Constrained Path Planning Ariu et al. (2017). The developments made

in this area are focused on using techniques and algorithms of road planning

within this type of planning. Thus, within the analysis of techniques and algo-

rithms made throughout this document may appear implementations aimed at

generating an optimal solution within this field, which focus their research on230

the use of such algorithms.

In the definition of path planning, another relevant term appears as it is the

configuration space. The configuration C-space is a mathematical tool developed

to collect all the configurations and positions of a vehicle Goerzen et al. (2010).

This C-space is divided into two subsets: the free space, with the positions235

that the vehicle can reach, and the obstacle space, with those positions that are

unreachable or susceptible to collision.

When analyzing and comparing the methods of path planning, it is necessary

to establish objective criteria. From the terms used in path planning, two types

of approaches can be obtained when comparing results LaValle (2006):240

� Feasibility: finding a safe path from the initial setup to the target, re-

gardless of efficiency.

� Optimality: to generate an access plan that allows optimally reaching

the objective.
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Also, path planning is a problem whose computational complexity is linked245

to the dimensions of the problem. Therefore, depending on the type of vehicle

and the size of the MRS, the size of the problem varies considerably from the

computational point of view. This aspect causes those methods that manage

to reduce this computational cost are better positioned to generate optimal

solutions to this problem, and that can be used in real-time dynamic planning.250

Path planning methods are considered complete if, whenever there is a so-

lution, they are able to find it and, if there is no possible path, they report the

inability to establish a path.

In this paper, the path planning methods applied to MRS are divided into

four categories (Figure 3): each category is characterized with some specifica-255

tions and has advantages and disadvantages according to the type of MRS, and

working environment. Throughout this section, each category and its algorithms

is analyzed based on recent work in the literature.

Figure 3: Diagram of Path Planning Algorithms.
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3.1. Decomposition graph-based methods

The idea behind these methods is to break up the environment into a grid. In260

this way, it is possible to obtain a representation of the environment in the form

of cells, establishing a code that allows discriminating which cells correspond

to obstacles, to free space, and to start or end nodes of the path. Once this

decomposition is generated, nodes are established in the free cells, and joined

to each other through edges, creating a structure known as graph (Figure 4). In265

this way, maps of the real environment are modeled with a set of vertices (V)

and edges (E).

Figure 4: Graph Example.

Therefore, the solution to the path planning problem is to find a sequence

of consecutive edges that join an initial node with a final one, i.e., look for

a discrete optimization through the cellular decomposition of the environment270

or graph. To find the optimized solution, they calculate the cost by scanning

through the nodes and considering the weights of each node and edge they pass

through. Therefore, it is frequent to find developments based on other methods

that employ these methods in later phases; to obtain an optimal solution.

This type of method includes an extensive set of algorithms, which in this275

work are simplified into three: Dijkstra, A*, and D*; because they are the most

used in MRS-oriented path planning.

12



3.1.1. Dijkstra Algorithm.

The Dijkstra algorithm Thomas et al. (2001) tries to find the shortest path

in a graph, where the weights of the edges are already known. It emerged as a280

solution to the problem of finding the shortest path between two cities (starting

node and end node).

Its procedure starts from the initial node with a value of 0, going through

all the adjacent nodes looking for the lowest edge weight. The procedure is

repeated while there are adjacent nodes to cover, while comparing the weights285

and storing the one that optimizes the path. When the end node has been

reached, the procedure is terminated.

The Dijkstra algorithm has the advantage of the capability of finding the

shortest path between two locations, however, when performing a complete

exploration of the environment presents problems of the computational cost,290

where the complexity of the problem increases. Thus, it is established that the

computational cost grows quadratically with the number of nodes in the graph.

In Mac et al. (2017), the Dijkstra algorithm is used in the second level of

development; to obtain collision-free paths from a graph obtained by triangular

decomposition. Once this graph has been obtained, the algorithm finds the opti-295

mal solution for various objectives. In this work, a third phase based on genetic

algorithms is also included; to achieve the smoothing of the paths generated by

the Dijkstra algorithm. Furthermore, the work shows how the algorithm’s ex-

ecution time increases as the environment become more complex. Despite this

setback, execution times allow this development to be considered as a solution300

to path planning for multiple vehicles; such as exploration missions, surveillance

operations, or agricultural work.

In Bai et al. (2019), a complete planning algorithm has been proposed for

a heterogeneous multi-vehicle system. In which, a task assignment phase is

established, along with a Dijkstra-based path planning algorithm; to minimize305

the travel time between two given locations. This algorithm allows obtaining

an optimal solution to the path planning problem from a scenario previously
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divided into cells. Although, it is used for an invariant scenario, it does not

provide the option of dynamic planning while the vehicle navigates towards its

destination.310

In Chen et al. (2019), the authors develop a Dijkstra-based path planning

algorithm; to generate an optimal and coordinated multi-path solution for sub-

station inspection robots. In this work, once a task is assigned to a robot, the

Dijkstra algorithm plans the shortest path, adding to the solution the time of

occupying each cell. In this way, when establishing paths for the set of robots,315

the algorithm can check, through a time window, if there is any conflict in the

planning, and if so, recalculates the path. Therefore, through this work, the

Dijkstra algorithm can be considered as a solution to dynamic path planning

problems.

3.1.2. A* Algorithm.320

Similar to Dijkstra algorithm, the A* algorithm is complete LaValle (2006),

i.e., it finds an optimal solution as long as it exists. However, unlike Dijkstra

algorithm, A* does not go through the entire graph in search of this solution,

so it gets better results for problems with large environments.

The A* algorithm gathers a set of procedures called best-first search algo-325

rithms; that search for a set of possibilities, using an approximate cost heuristic

function to order the different alternatives, and inspect the different options in

order. Specifically, the Heuristic functions (H) are used to map the nodes in the

graph to return a non-negative value, indicating the distance from the node to

the target. The Heuristic Function Criteria are:330

1. H(Goal) = 0

2. H(x) <= H(y) + d(x, y) Where x and y two adjacent nodes and d(x, y)

are the length of the edge between these two nodes.

In the path planning problems, the following heuristic functions are usually

used:335
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1. Euclidean Distance:

H(xn, yn) =
√

((xn − xg)2 + (yn − yg)2) (1)

2. Manhattan Distance:

H(xn, yn) = |(xn − xg)|+ |(yn − yg)| (2)

The implementation of the A* algorithm is as follows: each node has the

initial distance from the node, and the sum of this distance and the estimated

distance to the target node. In each iteration, the algorithm tries to select the

node that has more probabilities of being in the shortest path between the start

and the target.340

Considering the direction to the end node, it causes the A* algorithm to be

substantially faster than other graph-based method algorithms, and in the worst

case, its performance is the same as Dijkstra’s. Therefore, its main advantage

is to consider the location of the end node with respect to the initial one, and

to work in directions that could be more fruitful.345

The work Erokhin et al. (2018) implemented an A*-based algorithm with

modifications; to apply it to the resolution of the path planning problem in

MRS. For this reason, in this work a dynamic calculation of the value of the

costs associated with the network nodes is performed. As the path of a robot

passes through a node, the value of that node changes, so that the rest of the350

robots consider that predefined path, and generate their path accordingly. The

obtained results from simulations showed how the A* algorithm, with dynamic

cost modification, can generate optimal solutions for navigating groups of robots

in unknown maps.

Another modifications in the classic A* algorithm have been presented in Le355

et al. (2018). Where, for a reconfigurable robot, path planning solutions are set

up, so that paths are established for each part of the robot. This implementation

allows the robot to cross narrow corridors thanks to the coordinated movement

of its parts, which allows changes in its morphology. In this case, a Zig-Zag-based

A* approach is used; to achieve full area coverage. Where, a set of waypoints360
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with a Zig-Zag pattern is defined, and the A* is used to calculate the shortest

path.

In Sun et al. (2019), the A* algorithm is part of significant development;

to solve the cooperative path planning oriented to coverage problems of large

areas. In this work, different types of algorithms are combined; to delimit the365

environment in areas, and to be able to realize a complete coverage of the land;

using the minor number of robots. Once the areas are determined, and the

waypoints to be reached by each robot are established, the A* algorithm is

implemented to find the shortest path between two waypoints on the route.

Therefore, in this work, the A* algorithm does not generate the paths; but370

optimizes the previously calculated ones, to minimize the distance traveled by

the vehicles and, deliver an optimal solution to full MRS coverage problems.

In addition to mobile robots, the A* algorithm is usable in autonomous ve-

hicles moving in structured road environments. In Boroujeni et al. (2017), the

authors present a modification of the classic A* algorithm, called Flexible Unit375

A* (FU-A*). In which, the path planning is carried out in structured environ-

ments taking into account both static and dynamic obstacles. The main idea is

to have a dynamic grid that adapts to the speed, and to the dynamic obstacles

present in the road, making a prediction of the position of these obstacles on

the map.380

3.1.3. D* Algorithm.

Algorithm D* Stentz (1997) is derived from the abbreviation A* dynamic.

D* tries to detect dynamic obstacles, and changes the weights of the edges

in real-time; to create a temporary map. Then using that temporary map,

it establishes safe navigation of the vehicles from the current location to the385

destination; by minimizing the time through the unblocked road.

Similar to A*, heuristic functions are used in D*. In the presence of obsta-

cles, the heuristics function is updated and minimized, allowing a powerful and

efficient search for paths.

Works like Peng et al. (2015), showed an example of how this algorithm390
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is applied to path planning problems for multiple vehicles. In this work, an

improved D* Lite algorithm is implemented; to generate solutions considering

aspects like the robot size. Through a server, the robots provide information of

their positioning, and the costs for the rest of the robots are updated. As the

robots move, the costs are updated, and the paths are re-planned. The results395

of the work showed how the D* Lite algorithm can obtain a solution in less time

than the genetic algorithms. Also, with parallel processing, as proposed in the

work, the time taken to find a solution is less than in the case of the classic D*

algorithm.

3.2. Sampling based methods400

These methods are based on a random mapping of the environment; to try

to achieve a path between two locations. For the exploration, it is necessary to

have a mathematical representation that describes the work space.

This random sampling is usually carried out in the form of nodes or cells. In

each iteration, a new point is accessed, and it is determined if it is free space,405

in this case, it is connected with other nearby samples, generating connections

between nodes belonging to the free space. It is establishing a structure or

graphic of the free space within the C-space.

An important classification of sampling-based methods is whether they are

active or passive methods. Thus, an active method that provide the best path to410

the target by its procedure. While the passive methods, generate a network of

paths from the beginning to the destination, and it is necessary to complement

them with algorithms that determine which is the optimal path.

Another essential feature of random sampling methods is that, despite work-

ing well in large 3D environments, they are not complete methods. This means415

that there may be path connects the starting point with the endpoint, but the

algorithm is unable to find it. This is because the sampling performed is not

enough, and is what is known as the failed case of the Twisty Passageway.

This case consists of a narrow corridor that communicates two areas of the

environment. If the random sampling is not able to generate nodes in this420
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corridor, the algorithm does not find a solution, although, in reality, there is

such a solution.

Although there are techniques to address this problem (increased sampling

density, more dense sampling in areas near obstacles), none guarantees proper

operation in all cases. Also, the most effective solutions to this problem are425

opposed to the main advantage of the methods; by sampling that is its capac-

ity to control the computational cost despite increasing the dimensions of the

environment.

Finally, another aspect of sampling methods is sometimes the generation

of zigzagging paths, so sometimes path smoothing methods are required; to430

establish a more social dynamic behavior of the systems.

3.2.1. Probabilistic Road Map

The Probabilistic Road Maps (PRM) LaValle (2006) is the first of the passive

algorithms included in the sampling-based methods. It is an algorithm that

allows exploring large work areas with a lower computational cost compared to435

the methods detailed in the previous section.

The implementation of a PRM algorithm is as follows: from a C-space,

locations are taken randomly, it is checked if this location is to free space or

an obstacle, and if it is free, it is a matter of communicating this node with

the nearest neighbors; that allows establishing a continuous and obstacle-free440

border between both. In this way, the environment is explored, and a network

within the C-space is elaborated, on which other network-based methods are

used to obtain an optimal solution between the starting point and the endpoint.

Although being a passive method can be a disadvantage, sometimes the

combination of simple algorithms allows obtaining an optimal solution; with445

lower computational cost than if active methods are used. Also there is an

advantage that makes it a competitive algorithm in MRS field, that is once the

network has been generated with all the possible paths in the environment, it

has the possibility to be reused for all vehicles in the system, which is different

from other methods; such as RRT that requires creating a tree per each vehicle.450
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In this way, a more dense network could be implemented, since the whole MRS

would use this complete exploration of the environment; to find the optimal

path to the destination.

One of the advantages of PRM algorithms is the ability to explore 3D spaces

with a low computational cost, which is why there is more focus in the literature455

to path planning problems, in systems formed by multiple UAVs.

There is a line of research oriented to the path planning in MRS, which

presented a set of works whose basis for the generation of paths is the use

of PRM Preiss et al. (2017); Debord et al. (2018); Hönig et al. (2018). These

works, apart from considering important aspects for UAVs (”Downwash” effect),460

include the aspects described above; such as the need to introduce optimizing

and smoothing paths methods, or time restrictions to adapt the problem to

MRS. Among the results of their work, it can be seen how the use of PRM is

justified for MRS as it is a scalable algorithm in terms of computation time.

Work such as Madridano et al. (2020) oriented the path planning to be able465

to carry out emergency tasks in urban areas, with UAVs swarm. For this, PRM

algorithms are used to establish, with a low computational expense, a set of

possible paths in large environments such as a building (Figure 5a). In the

results of this work, it is observed how the possibility of reusing the network

allows reducing the increase of the computational cost. In this way, through the470

use of PRM, scalable path planning methods can be created, with applicability

in such crucial fields as emergencies. Moreover, although it is not a complete

method, its development, together with classic optimization algorithms such

as A*, allows the generation of multiple paths in large areas in a short time

(Figure 5b).475

Although its main advantage makes it suitable for problems related to UAVs

and 3D planning, works such as Madridano et al. (2019), showed that it also

has applicability in 2D, with even better computation times than in the case of

3D. Although the work is also related to UAVs, and such 2D planning, a fixed

flight height is included to adapt it to UAVs. This development is valid for both480

heterogeneous MRS and UGVs swarm.
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(a) PRM in Building Case. (b) Final Paths in Building Case.

Figure 5: PRM Algorithm in Building Case Madridano et al. (2020).

3.2.2. Voronoi Diagram

Voronoi diagrams Yan et al. (2013) are widely used in the field of path

planning. Its concept based on generating a topological connection, which allows

space to be divided into regions; taking into account the presence of obstacles.485

The diagram is constructed in such a way that the distances from the edges to

the nearest obstacles are the same.

The procedure to generate a Voronoi diagram starts with the selection of

a starting point, which has coordinates with the property that the minimum

distance to nearby obstacles is the same. Then, the rest of the regions are490

calculated, which are determined by the obstacles present in the environment.

In this way, the workspace is fragmented, creating regions until all the places

are registered.
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Therefore, Voronoi algorithm generates a global graph, as it happens with

PRM, but as it is a passive method, it cannot generate an optimal solution495

at the same time. For that reason, algorithms like A* or D* are required to

establish safe and optimal paths; using the edges of the regions of the Voronoi

diagram.

In Chen et al. (2017), the Voronoi diagram is used together with meth-

ods based on consistency theory; to establish the optimal paths for a set of500

UAVs. This work focuses on solving the planning of multiple UAV paths, that

must attack multiple targets in a static environment. A Voronoi diagram is

established to represent a threat graph, and is used as input for UAVs to coop-

eratively search, through the theory of consistency, for optimal paths. In this

way, the combination of Voronoi diagrams with the combined theory of consis-505

tency makes it possible to generate a solution to the problem of path planning

in MRS, and that multiple UAVs can simultaneously and cooperatively reach

multiple objectives.

In Turanli & Temeltas (2017), a control system for mobile robot coordina-

tion based on Voronoi diagrams has been proposed. This algorithm is extended,510

implementing Voronoi diagrams of Ppower guarantee that allows enabling dy-

namic Voronoi partitioning. With this advance, the weights in the workspace

areas that assigned to the robots are changing, allowing the paths to converge

in a coordinated movement of the system.

Works such as Wei et al. (2017), oriented the Voronoi diagrams to the con-515

struction of a Centroidal Voronoi Tessellation (CVT) that allows the movement

and assembly of a robotic swarm autonomously. The CVT is characterized by

the fact that the points corresponding to the cells in the Voronoi diagram are

located in the centroids of the cells. The use of this method allows the planning

of different paths for each of the swarm robots, allowing the self-assembly of the520

swarm in different configurations.

Finally, works like Kim & Son (2020), showed another application of Voronoi

diagrams for path planning. This consists of using Voronoi diagrams to plan

the paths in exploration and search tasks; since the generated graph allows
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maximizing the resulting paths as a function of the distance traveled. In this525

work, the Voronoi diagram allows an MRS, oriented to agricultural tasks, to

divide the workspaces according to the number of robots. This partitioning

through the Voronoi diagram allows the optimization of task assignment, and

path planning processes.

3.2.3. Rapidly Exploring Random Trees530

The Rapid Random Exploring Tree (RRT) method LaValle (2006) aims to

sample the environment, taking into account the initial and goal locations. The

RRT has the ability to handle problems of multiple degrees of freedom, allow-

ing the RRT to be suitable for work with Personal Robots and robotic arms,

however, it has its applications in MRS systems.535

The procedure implemented to create the graph (tree) is the following. The

C-space is divided into free and obstacle spaces. From there, both the start

node and the destination node are introduced in the free space. Next, a random

node is entered, which must be in the free space, and be able to connect to the

start node. The next step is to check whether the end node can be reached540

from this new node. If not, the process is repeated, but in this case, the new

randomly created node is connected to the end node, and it is checked if it can

reach the branch from the starting node.

In this way, in each iteration, the branches of the tree coming from the initial

and end nodes grow outwards. It is an efficient procedure to explore the free545

space since when generating the two branches; the tree is growing and exploring

the C-space in parallel.

In each iteration, the system generates a random sample in one of the

branches and tries to make it grow until the sample if successful; the next

step tries to generate a bridge between both trees. If it is positive, then the550

objective is met, and a path can be established between the nodes of interest;

if it is negative, a new iteration is launched, but this time in the other tree.

RRT is a complete and efficient algorithm for path planning in a high di-

mensional C-space compared to the graph based algorithms seen before, as it
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allows a probabilistic exploration of the environment. In addition, it can be555

used together with dynamic constraints. The most recent works related to RRT

algorithms are applied to path planning introducing improvements and modifi-

cations, but showing the essential features of classical RRT.

Cui et al. (2016) presented a multidimensional RRT*; to carry out path

planning within a system with multiple autonomous underwater vehicles. The560

idea of this work is to develop a method to improve the efficiency in the tasks of

search, surveillance, and monitoring of the seabed. The purpose of the RRT* is

to create a set of optimal, reachable and collision-free paths through which the

different AUVs travel from an initial state to a final one.

Another work that relates the discrete-RRT (dRRT) in multi-robots systems565

is Solovey et al. (2015). It presents an adaptation of the RRT algorithm for the

discrete case of a graphic. It provides a fast and high dimensional exploration

of the C-space. The technique developed focuses on the search for paths within

the roadmap in scenarios involving the coupling of various robots. To do this,

a partial exploration of the roadmap is carried out, in such a way that it is570

only considered a neighbour of a vertex visited at each step, so that the dRRT

can quickly explore the C-space represented by the implicit graphic and solve

multi-robot problems by exploring only a small portion of that space.

The work presented in Aguilar & Morales (2016), detailed the research on

path planning in 3D for a mobile robot; using the RRT algorithm with variants575

(RTT*). Kinect V2 camera is used to generate a pointcloud of the robot’s en-

vironment, establishing the regions of free and occupied obstacles spaces. The

RRT* method is based on the classic RRT, but introduces two optimisation

phases; to minimise the cost of the path obtained. In addition, this work pre-

sented two more variations of the RRT* algorithm, with the idea of reducing580

the time spent on finding a viable solution, and accelerating the rate of conver-

gence, and optimization. These modifications are based on the change in the

probability of the random node generated, and are called RRT* Goal and RRT*

Limits. The results obtained to establish that RRT* Goal reduces considerably

the time to find a feasible solution, increasing the time and computational re-585
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sources dedicated to optimization, while RRT* Limits generates a trajectory

with lower costs than the standard RRT*.

Works like the one carried out in Wu et al. (2020) propose the RRT* al-

gorithm together with a chance constrained formulation to establish a safe so-

lution to path planning within urban air mobility problems. In this way, the590

combined use of the RRT* algorithm together with formulation uncertainty al-

lows establishing a method for the generation of collision-free trajectories for

operations within an urban air area. In line with this work is also the work

presented in Berning et al. (2020). As in the previous case, the RRT* algorithm

is used together with chance constrained to be able to establish safe trajecto-595

ries within future airspace shared between traditional commercial aviation and

UAVs. Both works present the advantage and the novelty of being able to gen-

erate a collision-free planning solution considering the uncertainty propagation

and, being able to establish, in a computationally efficient way, safe paths with

constrained chance for different UAV models.600

Finally, in Solana et al. (2017), a new tool is presented to give a solution

to the problem of the path planning in a MRS that sails by a disordered en-

vironment. The work combines the theory of Maintenance of the Generalized

Connectivity with an extension of the RRT algorithm, to establish paths within

the MRS that consider aspects like the obstacles or the maximum range of605

communication. With this combination, a global planner that generates ade-

quate paths for the MRS is generated, respecting the connectivity requirements

to guarantee the coordination between them. The RRT extension presented

is called T-RRT, and is used for the management of problems related to path

planning in disordered environments, and where it is necessary to consider addi-610

tional cost criteria during the scanning process. With this expansion, the aim is

to avoid local minimums thanks to a self-adaptation mechanism that efficiently

explores the valleys. This work shows how improvements and expansions of the

classic RRT allow obtaining optimal solutions to the path planning problem in

MRS with this type of algorithm.615
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3.2.4. Artificial Potential Field Methods

Artificial Potential Field (APF) algorithms are widely used due to their low

computational complexity Yang et al. (2016). They are based on establishing

a potential function of C-space; to create a relation between free and obstacles

spaces, in such a way that the function has high values when it approaches the620

obstacles, and low when it is far from them. Furthermore, a minimum is set in

the function that coincides with the location of the goal.

The first part of the implementation consists of creating this potential func-

tion, which it is required to define a repulsive field related to the obstacles of the

C-space, and an attractive field, with a minimum located in the goal, indicating625

the goal in the free space. Once the function is established, the gradient is used

to guide the vehicle from the starting to the end points.

The advantage of these methods is that they are relatively simple, to operate

in real-time at tens of hertz, and can work with large problems. However, their

main disadvantage is that they are incomplete; they cannot always ensure suc-630

cess. This problem is because the potential function can be more than minimal;

when combining attractive and repulsive forces. This means that vehicles may

not reach their destination, and fall to a local minimum.

In practice, it is difficult to eliminate the local minima, and to know when

the algorithm can converge and when it cannot. This problem has been avoided635

with developments such as navigation functions, or the calculation of potential

with restrictions.

Works such as Ying & Xu (2015), studied the use of APF; for free movement

of obstacles from Formations Leader-Followers of mobile robots. Two potential

fields are generated, one attractive to the destination, and one repulsive of640

the obstacles working with both jointly to form a composite potential field,

and making the MRS to reach the goal avoiding the obstacles, moving relative

formations in order to performe the task safely and reliably.

The work presented in Sun et al. (2017), showed an optimized APF algo-

rithm for operations of multi-UAV systems in 3D dynamic space. In which, an645
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APF method is developed with a distance factor and a jump strategy; to solve

common problems such as avoiding obstacles. Also, this algorithm takes into

account the dynamic objects, which are the rest of the vehicles located in the

environment; in order to generate safe paths in a collaborative system. The

results showed the validation of this method in simulations with 6 UAVs and 30650

obstacles present in different directions and configurations.

In Hassan et al. (2017), an APF algorithm for safe navigation of a UGV

swarm is presented. For this purpose, a potential 3D map is created, considering

the attractive field towards the goal, and two repulsive fields, related to the

obstacles and to the the robots themselves; to avoid collisions between them.655

Also, a virtual obstacles method is implemented to deal with the local minimums

problem. The obtained results showed that the APF is a solution for the path

planning in MRS, implemented together with the APF algorithms; to avoid

local minima.

Finally, works such as Wu et al. (2019), introduced improved APF algorithms660

(IAPF); to obtain an optimal solution to the path planning problem, solving

problems like local minima or smoothing of final paths. The proposed IAPF

introduces a gain restriction to the potential repulsive field model. In addition, a

random factor is added to avoid falling into local minima, and finally, a method

based on B-spline curves; to optimize and smooth the obtained paths. The gain665

restriction allows controlling the repulsive forces of the obstacles; depending

on the distance of the robots to the goal. If an obstacle is close to the goal,

the robots are able to reach the target by reducing the repulsive field of that

obstacle. The obtained results showed how the implemented methods allow the

robots to reach the goal through smooth paths, avoiding both collisions and670

falling into a local minimum.

3.3. Mathematics model based methods

This section includes algorithms based on mathematical models; such as

Mixed Integer Linear Program (MILP), Mixed Integer Quadratic Program (MIQP),

and Optimal Control.675
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These methods are characterized by establishing kinematic and dynamic

constraints, for modeling the environment and the system. In addition, a cost

function is used to include the limits of constraints as equations or inequalities.

The minimization of this cost function allows for an optimal solution.

The fact that this type of method considers aspects such as dynamic con-680

straints; to achieve an optimal cost, causes that these methods are called as

trajectory planning algorithms.

The methods based on mathematical models tend to have a complex for-

mulation, and therefore, a high computational cost Song et al. (2016). To

face this problem, discrete decision processes are established or, sometimes, the685

algorithms are oriented to describe concrete parts of the problem, combining

methods to cover the whole path planning problem.

3.3.1. Mixed Integer Linear Program

The MILP algorithms are based on a cost function that takes into account

aspects; such as kinodynamic constraints, minimum distance, energy, or threats690

in the environment. Also, the linear algorithms are characterized; by being able

to model both the kinematics and the dynamics of the environment; to represent

the workspace and the systems. In summary, the MILP presents a high capacity

to model the essential aspects of the problem, and to describe almost all the

information Yang et al. (2016).695

In Song et al. (2016), a MILP formulation is proposed to be able to carry out

an escort service with UAVs; that work simultaneously with different clients.

The MILP model allows the problems of this application to be formally rep-

resented, and also introduces the possibility of using a rolling horizon planner

based on the initial locations, and status of the UAV batteries. The work700

presented a path planning formulation based on MILP, in which the objective

function minimizes the sum of the weighted total distance traveled, and the

number of jobs attended. Also, restrictions are introduced within the MILP

model; to allow the coordination of UAV paths. These restrictions consider the

initial location of UAVs, the guarantee that UAVs reach their destination, bat-705
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tery levels, or that tasks are performed by at least one UAV. With the MILP

formulation, and the development of an efficient heuristic, it is possible to de-

velop a tool for the planning of routes on the horizon, so that a set of UAVs can

provide an escort service to a group of consumers.

Another work that presents a MILP algorithm development is Lal et al.710

(2017). The aim of this work is to generate an optimal path planning for an

MRS for pesticide spraying in agricultural fields. For this purpose, extensive

modeling of the workspace and the systems used was carried out, and through

the formulation of MILP, restrictions are established to obtain a complete path

for each robot, so that the robot is able to visit all the nodes previously set.715

3.3.2. Mixed Integer Quadratic Program

The MIQP are related to the MILP algorithms. In this case, the difference

with the previous ones is that the resolution of an objective quadratic function

must be carried out Lazimy (1982).

Mellinger et al. (2012) presented the use of MIQPs for generating 3D paths720

in environments with obstacles. The idea is to create optimal paths in systems

with multiple quadcopters of different sizes, characteristics and capacities. It is

important to emphasize that in this work, the use of piece-wise smooth poly-

nomial functions; to synthesize trajectories in the flat exit space, appears as a

key aspect. This allows reinforcing the continuity between the waypoints until725

arriving at any derivation of the desired position. The results showed a feasible

solution for small teams moving in simple environments, i.e. with a low number

of obstacles. In addition, it is necessary to know both the starting and end posi-

tions of the different agents in the team. This method can impose restrictions on

the positions, speeds, accelerations, shocks, and inputs, allowing different sizes,730

capacities, and dynamic effects vary between different quadcopters. Although

it is capable of reaching feasible solutions in milliseconds. This same research

group presented another work Kushleyev et al. (2013) that collects the use of

the MIQPs method; to generate trajectories in swarms of micro quadcopters.

In order to avoid the increase in computational expenditure suffered by MIQPs735
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algorithms by increasing variables and restrictions, the set of UAVs is divided

into small groups with a small number of robots in rigid formation, reducing

planning time.

Furthermore, the MIQP formulation also extends to the field of autonomous

cars Burger & Lauer (2018). In this work, a cooperative MIQP formulation is740

introduced for the trajectory planning of multiple vehicles. In particular, the

problem of establishing a set of cooperative trajectories in autonomous vehi-

cles, which are communicated between each other, and aimed at non-hazardous

road scenarios, is raised. Using MIQP, a global optimal solution is established,

which, together with the obtained results, showed the viability of this method745

to solve problems of cooperative path planning, in non-hazardous scenarios for

autonomous vehicles.

3.3.3. Optimal Control

The third algorithm included in the mathematical models is planning through

Optimal Control (OC). Optimal control seeks to find the state and path based750

on control from a set of differential equations. It is considered an extension of

the linear methods, but it works with an infinite number of variables. To solve

the problems through optimal control, the Hamiltonian is used; to solve the

optimization problem based on the maximum principle, and to continue with a

standard optimal solution procedure; to generate a global optimal path Yang755

et al. (2016).

The optimal control is not centered in a single type of algorithms, but under

a similar initial plant, different procedures are established; that allow reaching

the final objective that a MRS navigates in an autonomous way.

One of the most popular techniques within optimization-based methods is760

the Model Predictive Control (MPC). The main idea of the MPC is to find

the optimal control actions, which must be carried out in the future, from

the prediction of the system behavior. In the Spurny et al. (2016), an MPC

algorithm is formulated to allow the planning of trajectories of a leader, and

to control the navigation of the follower robots. The obtained results allow765
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observing how the MPC method is capable of generating collision-free paths,

with static and dynamic obstacles while maintaining a pre-set formation.

A Distributed MPC (DMPC) is presented in Luis et al. (2020); to gener-

ate paths in real-time for multiple robots. Through the parallelization of the

method, the authors obtained high scalability in their work. The obtained re-770

sults showed the possibility to send paths for a swarm of 20 UAVs at a frequency

of 20Hz. Furthermore, with the DMPC, it is possible to reduce up to 50% of

the flight time required to complete the whole path, compared to the buffered

Voronoi cell approach.

Another technique included in this section is the Covariant Hamiltonian775

Optimization for Motion Planning (CHOMP). CHOMP is a method that allows

the optimization of paths and improves the quality of initial paths by optimizing

a functional objective. This optimization is done by looking for path smoothing

and obstacle avoidance. Its development is based on the use of superior notions

of geometry, and allows the algorithm to be positioned with a powerful tool in780

the field of path planning Ratliff et al. (2009).

Works such as David et al. (2016), showed how CHOMP could be used to

solve path planning problems in MRS. Specifically, in this work, the authors

uses CHOMP for a path refinement phase, which allows a set of autonomous

guided vehicles (AGVs) to move autonomously and safely, while performing785

work at loading terminals. CHOMP is used as a local planner to avoid dynamic

obstacles, and to consider the curvature limitations of AGVs. Also, an extension

of the method is included to be able to resolve potential path conflicts between

multiple AGVs.

3.4. Bio-inspired methods790

These methods seek to mimic biological behavior to try to obtain a solution

to the planning problem. Unlike mathematical methods, bio-inspired methods

do not focus on modeling the environment and present a development that

avoids problems such as falling into local minima or solving complex objective

functions.795
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The bio-inspired algorithms try to imitate how living organisms behave and

act, to try to generate an optimal path. Among the main characteristics of these

methods are: not being fully deterministic, presenting parallel structures, and

being adaptive. This set of factors allows these methods to generate optimal

solutions to path-finding problems without having to know, in an exhaustive800

manner, the environment in which the mission is being carried out. This fact

makes them effective methods to solve multi-objective problems Guzmán et al.

(2013).

Within these methods, two differentiated groups are established: the Evo-

lutionary algorithms, which analyze the behavior of a species, and the Neural805

Networks (NN), based on imitating the connections and functioning of neurons

when processing information.

3.4.1. Neuronal Network

Since the last decade of the last century, Neural Networks (NN) have been

used for navigation and obstacle avoidance with applications of path planning,810

both ground and aerial vehicles Glasius et al. (1995).

The idea of NN is to generate a dynamic landscape, which shares some stan-

dards with APF methods; in particular, in unexplored areas, they try to attract

vehicles along with the whole environment. Therefore, NNs are designed to es-

tablish the maximum neuronal activity between the different layers of neurons.815

Then, by introducing the dynamics of the vehicles into the NN, it is guaran-

teed that the neuronal activity spreads throughout the free space, being able to

navigate through safe paths in an autonomous way.

Although in recent years there has been an expansion of these techniques,

their main disadvantage is that being a bio-inspired method, they cannot be820

standardized, that is, they cannot form either rules or canonical models. There-

fore, finding an optimal solution does not guarantee that it is applicable to a

path planning problem in a different environment Yang et al. (2016).

The NNs encompass a wide range of techniques, such as Deep Learning (DL),

Reinforcement Learning (RL), or a combination of both, as shown below, where825
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works in the recent literature show that there is a set of techniques within the

NN that are applicable to MRS path planning problem.

The authors in Bae et al. (2019), proposed a path planning algorithm for

MRS based on Deep Q-Learning combined with Convolutional Neural Networks

(CNNs). The idea of using this combination is to generate an agile situation830

analysis. While the CNN analyzes the situation using the information cap-

tured by the robots, the Deep Q-Learning generates the actions for the robot

to navigate. The obtained results showed how this technique eliminates prob-

lems of conventional methods, as the network learns through the information

collected by all the robots, which have a mutual influence. Furthermore, the835

results showed how this kind of technique is applicable in static and dynamic

environments, thanks to the robots sharing the memory used for learning.

In Qie et al. (2019), an NN-based algorithm is presented, which tries to

give an optimal solution not only to the path planning problem, but also to

the task assignment. The technique used in this work is based on a Multi-840

Agent Deep Deterministic Policy Gradient (MADDPG), which belongs to the

field of multi-agent reinforcement learning. The procedure followed consists of

using the MADDPG algorithm to train the system, simultaneously solving the

assignment of objectives and the path planning, following the corresponding

reward structure. To guarantee the application of this development in dynamic845

environments, and in real-time, a simple NN is used in the system. The results

showed that the implemented algorithm is effective in several scenarios, and

applicable to a scalable set of UAVs.

Other works such as Cruz & Yu (2017), looked for modifications in the RL

algorithms; to solve problems like a slow learning speed, or the impossibility850

to learn in completely unknown environments. For this purpose, a multi-agent

reinforcement learning algorithm called WoLF-PHC (Win or Learn Fast Policy

Hill-Climbing) is proposed, which is modified to adapt it to unknown envi-

ronments. The main modification is to ensure that any robot has its answers

when the rest remains in a stationary state. In this way, it makes that the855

performance of the agent resembles a deterministic strategy, in which previous
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knowledge as the transition function, or the reward functions are not necessary.

The results showed that the technique allows a set of mobile robots to generate

paths in dynamic environments, where there are coordination or dimensionality

problems.860

Finally, in Afifi et al. (2019), an RL-based algorithm is proposed to allow

the navigation of an MRS in a given formation; to achieve the objective, a

multi-layer architecture is implemented to be able to control the formation of

several vehicles, through the planning of the movements. This multi-layer is

divided into two subsets with different tasks. Firstly, a Q-Learning algorithm865

to determine the configuration of the vehicles. Secondly, a deep reinforcement

policy-gradient algorithm is established to carry out the planning of collision-free

paths. The idea of using a combination of these methods is that the Q-Learning

algorithm has a low computational time and cost, while the deep reinforcement

policy-gradient algorithm allows training the system in new environments and870

discover them by trial and error. The results showed how the agents are able to

establish an optimal path; to deploy in the environment with a given formation.

3.4.2. Evolutionary Algorithms

Evolutionary algorithms are implemented to solve traditional linear and dy-

namic programming problems that provide a large number of variables. Their875

implementation is based on a stochastic search; that imitates the evolution and

social behavior of biological systems Back (1996).

The procedure followed by the evolutionary algorithms consists, first, in

randomly selecting the possible solutions with a first-generation. In the next

step, aspects are considered, such as the capacity of the robots, the objective880

to achieve, or existing limitations in the whole environment-systems. Then, a

set of parents of the first generation are selected for the next generation, for in

the last step; to perform a process of mutation and crossover, which is repeated

until the goal is achieved. Finally, the best individuals are decoded and used as

nodes to establish the optimal path.885

The evolutionary algorithms comprise a set of techniques that follow this
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procedure, which are the Genetic Algorithm (GA), Memetic Algorithm (MA),

Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Differ-

ential Evolution (DE) and Shuffled Frog Leaping Algorithm (SFLA). The GA

was the first proposal for an evolutionary algorithm, and later, the rest of the890

techniques appeared inspired by different processes in nature.

In Bai et al. (2019), a coevolutionary multi-population genetic algorithm

(CMGA) is proposed; to minimize the total travel time of a set of vehicles. In

addition to path planning, the algorithm is oriented to task assignment, where

different vehicles must reach a set of destinations. The problem applies to895

a set of autonomous marine/airborne vehicles navigating in a drift field. The

obtained results showed that the CMGA has an excellent performance in solving

path planning problems with multiple objectives compared to classical GA, for

a heterogeneous team of vehicles.

In works such as Han et al. (2017), an improved genetic algorithm is pre-900

sented for path planning in multiple automated guided vehicles (AGVs), the

improvements implemented of which consists of: using three crossover heuristic

operators, producing optimal offspring characterized by more information; and

exercising double-track restrictions to minimize the total distance traveled by

all AGVs, and the distance traveled by each AGV. The results guarantee that905

these improvements make it possible to reduce the distances traveled by each

AGV, and failing that, by the whole set, compared with the use of classical

genetic algorithms.

The use of Enhanced Genetic Algorithms (EGA) is also studied in Nazara-

hari et al. (2019). The authors presented a method that combines APF and910

EGA to be able to plan paths of multiple robots in continuous environments.

The APF generates all possible paths between the initial and final points. While

the EGA finds the optimal paths between the locations. In this work, the EGA

employs five cross and mutation operators; to improve the initial paths. In ad-

dition, the EGA includes within the objective function a parameter; to avoid915

possible collisions between the paths. The results showed the efficiency of this

method compared to other classical methods, or other evolutionary algorithms
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such as PSO, not only establishes collision-free paths, but the solution found

for all robots is the optimal one.

Finally, although the GA are the most used in the field of path planning,920

there are evolutionary algorithms such as PSO that are also used in recent work

to solve this problem. In Zhen et al. (2020), an improved PSO is presented

for establishing UAV paths in known, rough, and static environments. The

improvement introduced in the PSO consists of a vibration function which im-

proves the collided solutions rather than forsaking them. The obtained results925

showed how the implemented method is able to set multiple paths for a set of

UAVs in rough terrain.

Within the evolutionary methods, there is also differential evolution (DE),

which is considered an optimization method applied to the resolution of com-

plex problems. This feature has caused that within the literature appear a set930

of works that use this technique to carry out the planning of trajectories for

different types of vehicles.

A field of application of this type of algorithm is the underwater vehicle

gliders. In works such as Zamuda & Sosa (2019) a trajectory planner based

on the Success History Adaptive Differential Evolution (SHADE) algorithm is935

presented. The proposed algorithm adds the linear reduction of the population

size (L-SHADE) in order to achieve an optimal trajectory planner in underwater

glider missions whose efficiency is compared with similar algorithms present in

the literature obtaining a competitive result and, establishing this method as an

effective alternative to the problem of trajectory planning for underwater glider940

vehicles. In addition, the introduction of the L-SHADE improvement in other

classical evolutionary algorithms allows them to improve their performance in

some cases.

In line with the previous work is MahmoudZadeh et al. (2018). In this

work, the differential evolution algorithm is used to establish a solution to the945

problem of trajectory planning for unmanned underwater vehicles. In this case,

it is demonstrated the performance of this planner to generate time-efficient

trajectories that allow the underwater vehicles to reach a location of interest in
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an adverse and dynamic environment such as the ocean floor. The results of this

work demonstrate the efficiency of the algorithm to be able to extract feasible950

areas of a real environment and determine the spaces allowed for the navigation

of the vehicle, considering aspects such as marine disturbances, desired currents,

or collision avoidance.

Although this algorithm has not been exploited only in the field of UAVs,

works such as Yu et al. (2020) use as a basis the differential evolution algorithm955

to establish a solution to trajectory planning in the field of UAVs. In this case,

the planning is modeled as an optimization problem of proficiency functions that

include aspects such as distance traveled or risk of UAVs and include constraints

such as flight altitude or course of the UAVs. In this case, the differential

algorithm presents an adaptive selection mutation, in which individuals are960

selected according to their aptitude values and the violation of the imposed

restrictions. These individuals are used to make the mutation, and the algorithm

is responsible for finding the best individual among those selected. Thus, the

results show a competitive algorithm that allows planning optimal trajectories

for UAVs in natural disaster environments.965

This section, discussed the most recent used methods and implemented al-

gorithms for path planning in MRS. In which, and as shown in Tables 1 and 2,

the advantages and disadvantages of each method are highlighted.
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4. Applications

The coordinated and autonomous work of several vehicles in the same work-970

ing environment allows, among other aspects, to improve the response times,

which is a crucial aspect in most of the applications. The cooperative work of

the MRS has some advantages over individual use, which makes them the best

solution in achieving a specific type of missions; by performing different tasks

simultaneously, increasing the overall efficiency of the system. Moreover, by975

setting different configurations, this will provide the multi-robot teams with a

series of heterogeneous skills, which leads to adapting each agent to the mission

that best suits its specifications. Finally, presents higher levels of robustness,

due to the ability to tolerate failures or breakdowns; by having different sources

of information.980

The field of MRS systems has undergone exponential development, present-

ing innovative solutions with a wide range of applications. Among them, this

work throws light on the emergency missions Gregory et al. (2016); Mouradian

et al. (2017); Huang et al. (2015); such as fire-fighting, search and rescue, or

surveillance.985

Works such as Couceiro et al. (2019), presented a project called SEMFIRE,

where a system formed by a UAV and a UGV destined; to carry out actions

that help to prevent forest fires. The UGV’s main mission is to eliminate forest

residues, while the UAV works in coordination with the UAV; to explore areas

where the UGV’s action is necessary, and also to monitor the area.990

In Marchant & Tosunoglu (2016), a tool based on a swarm of UAVs that

can support emergency teams is proposed. The idea is to have a set of UAVs

equipped with different sensors, so that, they can autonomously access remote

areas, collecting information, and even, through portable fire-fighting technol-

ogy, carry out fire mitigation.995

Innocente & Grasso (2019) presented a work that shows that the use of

robotic swarms is a viable and powerful solution; to be used in fire-fighting

in an autonomous way. The idea of this work is to develop self-coordinating
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mechanisms that allow effective swarm behaviour in fire fighting. The authors

presented a self-organizing algorithm for UAVs capable of adapting to physical1000

models of fire propagation, whose results showed an effective, scalable and fault-

tolerant solution.

In Gregory et al. (2016), a tool based on an MRS is presented, which supports

human teams deployed in the field. The objective of the work is to provide the

MRS with autonomous navigation, so that in case of communication losses, and1005

therefore the possibility of teleoperation, it can continue its function. There-

fore, the authors presented an MRS capable of navigating autonomously, with

the mission of gathering information from the environment, in areas of natural

disaster where communication losses have occurred.

In addition, search and rescue missions have been encountered a great focus1010

within MRS; taking the advantage of having a set of vehicles available to explore

a wide range of terrain, in a coordinated manner, which in turn reduces the time

required to search for survivors or missing persons.

In Fung et al. (2019), a search algorithm of a team of robots is presented to

explore the environment, collecting information about the areas, and providing1015

high priority points of interest. From this output, a division of the terrain into

regions is established; according to the effort required to explore that region,

and then the divisions are assigned to the different robots; to try to achieve a

fast and coordinated exploration.

Work such as Bakhshipour et al. (2017), focuses on the use of coordinated1020

robotic swarms to search for victims at disaster sites. The authors proposed

a heuristic algorithm that solves nonlinear continuous optimization problems.

With this implementation, they achieves that the location of the victim is the

best solution to the algorithm. Within the swarm, the a master robot supervises

the swarm, and collaboratively, it tries to reach the victim’s location. The1025

proposed algorithm is compared with other methods and showed good results

in terms of speed of convergence.

Finally, in Tardós et al. (2018), a swarm formed by UGV and UAV is pre-

sented. The idea of this work is to combine the information collected by both
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platforms, so that, a reconstruction of the environment is obtained with infor-1030

mation from two different points of view. The authors proposed two strategies to

solve the problem of coverage in communications, and simultaneous monitoring.

With these proposals, the authors implemented two solutions to deploy in an

area of interest UGV and UAV teams that can explore the region, establishing

a communication link between both, and allowing the robots to have a mutual1035

tracking of their navigation; in order not to lose the link in the communications.

5. Conclusion

In this work, trajectory planning methods have been reviewed as a whole

methodology to cope with cutting-edge Multi-Robot System (MRS) technology,

where motion planning has been studied as a complex and essential task for1040

swarm of vehicles. This work gathers a study of the current state of the litera-

ture in the field of path planning oriented mainly to MRS. This survey aims to

complement previous studies in this field, analyzing a set of techniques, meth-

ods, and algorithms, through recent and innovative work, aimed at solving the

problem of path planning for MRS.1045

In this work also analyzes the progress in the field of the MRS and its increas-

ing application in real civil applications in different situations, such as swarm of

robots, formation, and type of robots. A field in which the MRS are presented

as a technological solution of high applicability is that of emergencies, where a

rapid response time is critical to the success of the operation. Thus, in this work,1050

recent work in which the MRS are used in critical tasks and applications within

the field of emergencies have been collected, and have highlighted the difficulties

of application of the same, which are lines of research to be addressed.

Furthermore, the presented survey provides a full review of the methods and

applications in the last decade; to provide full understanding to the importance1055

of MRS in critical missions of emergency.
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