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Abstract

Graph convolutional neural networks (GCNNs) have received much attention

recently, owing to their capability in handling graph-structured data. Among the

existing GCNNs, many methods can be viewed as instances of a neural message

passing motif; features of nodes are passed around their neighbors, aggregated

and transformed to produce better nodes’ representations. Nevertheless, these

methods seldom use node transition probabilities, a measure that has been found

useful in exploring graphs. Furthermore, when the transition probabilities are

used, their transition direction is often improperly considered in the feature

aggregation step, resulting in an inefficient weighting scheme. In addition,

although a great number of GCNN models with increasing level of complexity have

been introduced, the GCNNs often suffer from over-fitting when being trained

on small graphs. Another issue of the GCNNs is over-smoothing, which tends to

make nodes’ representations indistinguishable. This work presents a new method

to improve the message passing process based on node transition probabilities

by properly considering the transition direction, leading to a better weighting

scheme in nodes’ features aggregation compared to the existing counterpart.

Moreover, we propose a novel regularization method termed DropNode to address

the over-fitting and over-smoothing issues simultaneously. DropNode randomly

discards part of a graph, thus it creates multiple deformed versions of the graph,

leading to data augmentation regularization effect. Additionally, DropNode

lessens the connectivity of the graph, mitigating the effect of over-smoothing in

deep GCNNs. Extensive experiments on eight benchmark datasets for node and

graph classification tasks demonstrate the effectiveness of the proposed methods

in comparison with the state of the art.

Keywords: Graph convolutional neural networks, graph classification, node

classification, geometric deep learning.
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1. Introduction

In the recent years, we have witnessed an increasing interest in deep learning-

based techniques for solving problems with data living in non-Euclidean domains,

i.e., graphs and manifolds. In order to handle data in such domains, graph neural

networks (GNNs) have been proposed. There are several types of GNNs, however

recently graph convolutional neural networks (GCNNs) have attracted a great

deal of attention owing to their state-of-the-art performance in a number of tasks

including text (Yao et al., 2019) and image (Quek et al., 2011) classification,

semantic segmentation (Qi et al., 2017), question answering (Teney et al., 2017)

and matrix completion (Do et al., 2019). There are two main approaches for

GCNNs, namely, spectral and spatial (Zhou et al., 2018) approaches. The

former refers to models which define convolution operators based on graph

Fourier transform (Defferrard et al., 2016; Henaff et al., 2015; Bruna et al.,

2013; Ortega et al., 2018). On the other hand, models that follow the latter

approach directly generalize the classical convolution operator to non-Euclidean

domains (i.e., by spatially aggregating information over nodes’ neighborhoods in

the graphs (Hamilton et al., 2017; Veličković et al., 2017; Niepert et al., 2016;

Gao et al., 2018; Atwood & Towsley, 2016)). The spatial approach has become

more popular lately due to its simplicity, lower computational cost and better

scalability to large graphs.

In general, the operations of most GCNN models can be expressed in two

phases, namely, the (i) Message Passing and (ii) Readout phases. In phase (i),

a node in the graph receives messages from its neighbors, where each message

is computed either from features of a neighboring node or features of an edge

attached to the node. Two steps that are often performed in the message passing

phase are the Aggregate and Update steps (Zhou et al., 2018). In the Aggregate

step, a node gathers messages from its neighbors by performing the weighted

sum operation (Kipf & Welling, 2016; Hamilton et al., 2017; Zhang et al., 2018)

or employing a long short-term memory neural network (LSTM) (Hamilton et al.,

2017). In the Update step, a non-linear transformation is then applied on the
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aggregated messages to produce the updated node representations. Common

transformations used in the Update step include pre-defined functions, such as

sigmoid and ReLU (Bruna et al., 2013; Defferrard et al., 2016), or learnable

functions, such as gated recurrent units (GRU) (Li et al., 2015) and fully

connected neural networks (Kearnes et al., 2016; Battaglia et al., 2016; Hamilton

et al., 2017; Duvenaud et al., 2015; Kipf & Welling, 2016; Zhang et al., 2018).

In GCNN models, the Message Passing phase is often implemented using graph

convolutional layers. By stacking multiple graph convolutional layers, one can

build a deep GCNN model and enable (a) passing messages between nodes that

are more than one hop apart (i.e., nodes connected via other nodes) and (b)

learning abstract intermediate node embeddings through a series of non-linear

transformations. In phase (ii), the learned node embeddings are converted to the

final representations for the nodes or for the whole graph. These representation

are then fed to a classifier to produce suitable outputs depending on downstream

tasks.

In GCNN models, the non-Euclidean characteristics of the data are captured

mainly in the Message Passing phase. As such, designing an effective message

passing scheme is of high importance, however it remains a challenging task.

To address this challenge, various message passing formulations have been pro-

posed (Gilmer et al., 2017; Duvenaud et al., 2015; Kipf & Welling, 2016; Hamilton

et al., 2017). Recently, formulations based on node transition probabilities have

been proven beneficial for multiple graph-based classification tasks (Atwood

& Towsley, 2016; Zhang et al., 2018). Nevertheless, such formulations have

not received enough attention from the research community. In addition, other

challenges such as the over-fitting and over-smoothing problems (e.g., especially

when deploying deep GCNNs) often arise. To mitigate over-fitting, popular

regularization methods such as `1, `2 and dropout (Srivastava et al., 2014) are

usually employed. Nevertheless, performance gains brought by these methods

generally diminish as GCNNs become deeper (Kipf & Welling, 2016). It is worth

noting that over-fitting is general, i.e., it may happens for different types of

neural networks, including GCNNs. On the other hand, over-smoothing (Li
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et al., 2018; Chen et al., 2019) is specific for deep GCNNs as a result of the

inherent smoothing effect of these models. Specifically, when many graph con-

volutional layers are stacked together, the obtained representations of nodes in

different classes (or clusters) become indistinguishable and inseparable, leading

to degraded performance in downstream tasks such as node classification.

In this work, we aim to develop effective GCNN models to handle graph-

structured data by addressing the aforementioned challenges. Firstly, we design

a GCNN message passing scheme employing the transition-based approach.

Specifically, we observe that the transition directions employed in existing

works (Atwood & Towsley, 2016; Zhang et al., 2018) are sub-optimal since

high weights (i.e., influence) are assigned to “popular” nodes (i.e., the ones

with multiple connections). Based on this observation, we propose a novel

message passing scheme that eliminates the aforementioned issue by assigning

balanced weights to all the nodes in the graph. We experimentally validate the

effectiveness of the proposed scheme in multiple graph classification tasks. In

addition, we introduce a novel method called DropNode to address the over-fitting

and over-smoothing problems on GCNNs. The idea behind this method is that

the underlying structure of the graph is modified during training by randomly

sub-sampling nodes from the graph. Despite its simplicity, the DropNode method

is highly effective, especially in training deep GCNN models.

To summarize, our contributions in this paper are three-fold:

• We propose a novel neural message passing scheme for GCNNs, which

leverages the node transition probabilities and also takes the “popularity”

of nodes into account;

• We propose DropNode, a simple and effective regularization method which

is applicable to different GCNN models;

• We carry out comprehensive experiments on eight real-world benchmark

datasets on both node and graph classification tasks to evaluate the pro-

posed models. Experimental results showcase that our models are able to

obtain improved performance over state-of-the-art models.
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The remainder of the paper is organized as follows. Section 2 reviews

the related work on GCNNs and the commonly-used regularization methods.

Section 3 introduces the notation and problem formulation, while Section 4

describes in detail the proposed method. We present the experimental results of

the proposed models in Section 5 and we conclude our work in Section 6.

2. Related Work

2.1. Neural Message Passing

Most existing GCNN models perform one or multiple message passing steps,

in which nodes’ or edges’ features are aggregated following specific message

passing schemes (Gilmer et al., 2017). Early works, which follow the spectral

approach, aggregate messages by summing over transformed features of the

nodes where the transformations are parameterized by the eigenvectors of the

Laplacian graph (Bruna et al., 2013; Defferrard et al., 2016). As these eigenvectors

correspond to the Fourier bases of the graph, each message passing step can

be seen as a convolution operation on the features of the graph. More recently,

Kipf et al. (Kipf & Welling, 2016) proposed the Graph Convolutional Network

(GCN) model which aggregates node features by employing the normalized graph

adjacency matrix as a transformation matrix (in this case, the transformation

is a linear projection). Since the message passing scheme of the GCN (in its

final form) does not rely on the Fourier analysis of the graph, GCN can be

seen as a spatial-based model. Following GCN (Kipf & Welling, 2016), various

models based on the spatial approach have been recently proposed. For instance,

messages are aggregated by averaging nodes’ features in (Hamilton et al., 2017),

summing over concatenated features of nodes and edges in (Duvenaud et al.,

2015), or by applying neural networks on nodes’ features (Hamilton et al., 2017)

and edges’ features in (Battaglia et al., 2016; Schütt et al., 2017). Most of

these spatial-based models utilize the connections between nodes in the graph

directly as weights when aggregating node and edge features. The weight of the

connections can be pre-computed, or can be learned by leveraging the attention
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mechanisms, as in the attention graph neural networks (GAT) model (Veličković

et al., 2017). In addition, other models such as the node transition-based ones

employ transition probabilities between nodes, where these probabilities are

calculated based on random walk procedures (Atwood & Towsley, 2016; Zhang

et al., 2018).

Our message passing scheme is inspired by the node transition-based models

[see (Atwood & Towsley, 2016; Zhang et al., 2018)]. The key difference between

the proposed method and these works is that we do not overestimate the influence

of the popular nodes, which leads to the performance improvement on several

graph classification tasks.

2.2. Graph Regularization Methods

As the second contribution of this work is DropNode, a regularization tech-

nique for GCNNs, this section is dedicated to review existing regularization

methods for GCNNs. Additionally, the relations between our method and the

existing methods are presented.

Dropout (Srivastava et al., 2014) is a commonly used regularization technique

for various types of neural networks, including GCNNs. In dropout, a percentage

of neural units is kept active during training using Bernoulli distribution, which

in turn reduces the co-adapting effect of neural units. In testing, by using the

full architecture, the network is able to approximate the averaging of many

thinned models, leading to better performance. Unlike dropout, our method

(DropNode) randomly removes nodes of the underlying graphs during the training

of GCNNs. Conceptually, DropNode alters the data instead of neural units of

network architecture. DropNode is similar to the work of Chen et al. (Chen

et al., 2018) in terms of random node sampling. However, we take a further

step by adding an upsampling operation, which recovers the dropped nodes

from the previous sampling step. This arrangement allows us to yield the data

augmentation effect following the U-Net principle (Ronneberger et al., 2015).

In the model proposed by Gao et al. (Gao & Ji, 2019), pooling and unpooling

operations are used to create a graph-based U-Net architecture. However, the
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pooling uses top-k selection based on scores of nodes; the scores are computed

using a scalar projection of node features. This is different from our method

as we randomly sample nodes using the Bernoulli distribution. As a result, the

model in (Gao & Ji, 2019) does not have the regularization effect because the

architecture is fixed across training and testing. In the work of (Rong et al.,

2019), edges are randomly removed to regularize GCNNs, which is similar to our

method in terms of modifying the underlying graph. However, as the number of

nodes of the graph is kept unchanged, downsampling and upsampling operations

are not used. As a result, while the method in (Rong et al., 2019) is easy to

integrate to various GNN architectures, the regularization effect is not as strong

as the proposed method, which alters both edges and nodes. Closest in spirit to

our work is GRAND (Feng et al., 2020), where the authors use the Bernoulli

distribution to randomly replace node feature vectors with zero vectors. Still,

GRAND keeps the structure of the original graph unchanged while we modify

the original graph’s structure, changing node transition probabilities. Besides,

GRAND leverages multiple branches to augment the graph features while we

rely on a single branch, which is simpler. Finally, different from GRAND, we

show that the proposed DropNode can be applied to fully supervised tasks such

as graph classification.

3. Preliminaries

3.1. Notation and Problem Formulation

Let G = (V,E) denote an undirected graph, where V is the set of nodes and

E is the set of edges. A ∈ RN×N is the adjacency matrix of G, where Aij is

the weight of the corresponding edge connecting node i and node j. As G is

an undirected graph, the adjacency matrix A is symmetric (i.e., Aij = Aji).

The diagonal matrix D (where Dii =
∑N

j=1 Aij) denotes the degree matrix of

G. The unnormalized Laplacian matrix of G is given by L = D −A (Ortega

et al., 2018). The graph G can be fully represented using either the Laplacian

or the adjacency matrix. Each node of G is characterized by a feature vector
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x ∈ RF , where F is the feature dimensionality. Thus, all the features of the

nodes in G can be represented in the form of a matrix, X ∈ RN×F where each

row corresponds to a node and each column corresponds to a feature.

Two common tasks that graph neural networks often address are (i) node

and (ii) graph classification. Task (i) concerns predicting a label for each node

in a given graph. Specifically, for a graph G = (V,E), the set of labelled nodes

can be symbolized as VL and the set of unlabelled nodes can be symbolized as

VU , such that V = VL ∪ VU . The goal of task (i) is to predict the labels for the

nodes in VU . In the case that the features and the connections of these nodes are

available during the training phase, the task follows the so-called transductive

setting (Kipf & Welling, 2016; Veličković et al., 2017). On the other hand, in the

case that neither the features nor the connections of nodes in VU are given during

training, the task follows the inductive setting (Hamilton et al., 2017; Chen et al.,

2018). Different from the node classification task (i.e., task (i)), the task (ii)

aims at predicting a label for each graph. For this task, only the inductive setting

is considered, that is, given a training set of graphs ST = {G1, G2, . . . , GM} and

the corresponding set of labels LT = {1, 2, . . . , C}M where C is the number of

classes and M is the number of examples in the training set, the goal is to learn

a prediction function that maps an input graph to a label in LT . In this work,

we will consider both the node and graph classification tasks.

3.2. Random Walk and Node Transition Matrix

Random Walk is one of the most effective methods to explore a graph

(see Leskovec & Faloutsos (2006)). Given a graph G = (V,E), a length constant

l, and a starting node u0 ∈ V , this method generates a “walk” of length l,

represented by a sequence of nodes {u0, u1, . . . , ul}. A node is sampled for step

k in the walk, k ∈ [1, l], following a distribution P (uk|uk−1), which is expressed

by:

P (uk = vj |uk−1 = vi) =

Pij , if (vi, vj) ∈ E

0, if (vi, vj) /∈ E.
(1)
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In (1), Pij is the probability of transitioning from node vi to node vj . As such,

Pij is often referred to as the node transition probability. The standard way to

compute the transition probabilities is by dividing the weight of the edge (vi, vj)

by the degree of node vi (i.e., Pij =
Aij

Dii
). In general, Pij 6= Pji since the degree

of node vi is not equal to the degree of node vj . All the transition probabilities

of the nodes in G can be represented in the form of a matrix P ∈ RN×N , where:

P = D−1A. (2)

Note that
∑N

j=1 Pij = 1, ∀i ∈ [1, N ].

4. The Proposed Models

In this section, we present in detail the contribution of this work. At the

beginning, we describe existing message passing schemes (Kipf & Welling, 2016;

Zhang et al., 2018). Afterwards, we introduce the proposed scheme (which follows

node transition-based approaches) that leads to a new graph convolutional layer

formulation. Subsequently, we present DropNode, a simple yet effective generic

regularization method, and we compare it with existing methods that are often

employed to regularize GCNN models.

4.1. Graph Convolutional Layers

4.1.1. Existing Formulations

As presented earlier in the Introduction section, the formulation of a graph

convolutional layer in a GCNN model fully expresses the underlying message

passing scheme. Various graph convolutional layers have been proposed in the

literature that generally follow the same formulation:

H(l+1) = σ(MH(l)W), (3)

where H(l) ∈ RN×F is the input to the l-th layer, W ∈ RF×K is the weight matrix

of this layer, M ∈ RN×N is a matrix containing the aggregation coefficients, and

σ is a non-linear activation function such as the sigmoid or the ReLU.
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The message passing scheme, as shown in (3), can be broken down into two

substeps, namely the aggregate and the update substeps. In the former, node

features are first transformed by a linear projection, which is parameterized by

learnable weights W. Subsequently, for a node in the graph, the features of its

neighbors are aggregated by performing a weighted sum with the corresponding

weights defined in M. This substep can be seen as a message aggregation stage

from the neighbors of each node. In the update substep, a non-linear transforma-

tion is applied to the aggregated features to produce new representations H(l+1)

for the nodes.

The aggregation coefficient matrix M defines the message passing scheme,

i.e., the way in which features are exchanged between nodes. An entry Mij of

M represents the coefficient assigned to features of a source node j when being

aggregated toward a destination node i. As such, the i-th row of M specifies the

weights assigned to features of all the nodes when being aggregated toward node

i. The j−th column of M specifies the weights assigned to a node j when being

aggregated toward all the other nodes. Intuitively, the rows and the columns

of matrix M determine the influence of the nodes on a destination node, and

the influence of a source node on the other nodes, respectively. By defining the

aggregation coefficient matrix M, one can specify a message passing scheme. For

instance, in a GCN model (Kipf & Welling, 2016), M is computed by:

M = D̃−
1
2 ÃD̃−

1
2 , (4)

with Ã = A+ IN and IN ∈ RN×N is an identity matrix. By adding the identity

matrix IN , self-connections are taken into account, i.e., a node aggregates features

from both its neighbors and itself. D̃ is a diagonal matrix with D̃ii =
∑N

j=1 Ãij .

In (4) each element of Ã is normalized by a factor equal to the square root of

the product of the degrees of the two corresponding nodes, namely:

Mij =
Ãij√
D̃iiD̃jj

. (5)

Unlike GCN, the DGCNN model (Zhang et al., 2018) calculates the aggre-
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gation coefficients (Mij) as one-hop node transition probabilities (P̃ij) (see

Section 3.2):

M = P̃ = D̃−1Ã. (6)

Therefore, it can be seen that:

Mij =
Ãij

D̃ii

. (7)

Note that in the DGCNN model, the aggregation coefficients are created

by normalizing the adjacency matrix using the degrees of the destination nodes.

Therefore, the neighboring nodes of a destination node have the same influence

(i.e., weights) on the destination node, even though their popularity level (e.g.,

node degrees) may vary significantly. This is not desired as popular nodes are

often connected with many other nodes, thus messages from the popular nodes

are not as valuable as messages from nodes with lower level of popularity. The

issue of popular nodes has been mentioned in (Do et al., 2017; Rahimi et al.,

2015), where connections to these nodes are explicitly removed. In addition,

we observe that in many text retrieval weighing schemes such as TF-IDF, the

popular terms across documents are given smaller weights compared to less

popular terms. This observation leads us to a new message passing formula,

which we describe thoroughly in the next section.

4.1.2. The Proposed Graph Convolutional Layer

In this work, we propose a message passing scheme that makes use of the node

transition probabilities, as in the DGCNN model (Zhang et al., 2018). Unlike

the DGCNN, we use the degrees of the source nodes instead of the destination

nodes for the normalization of the aggregation coefficients. Specifically, in our

scheme, the aggregation coefficient matrix M is calculated as:

M = ÃT D̃−1, (8)

Mij =
Ãji

D̃jj

. (9)
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In (8), M contains one-hop node transition probabilities. Mij is the prob-

ability of transitioning from a source node j to a destination node i. As

these probabilities are normalized using the degrees of the source nodes, we

have
∑N

i=1 Mij = 1,∀j ∈ {1, . . . , N}. It should be noted that in this case,∑N
j=1 Mij 6= 1, which is different from the DGCNN model (as shown in (6)). It

should be noted that D̃ is a diagonal matrix, and all the entries in the main

diagonal are greater than 0, thus the inverse matrix of D̃ can be found by simply

calculating the inverse of the individual entries on the main diagonal.

Substituting M in (8) into the generic formulation in (3), we obtain the

formulation for our graph convolutional layer as follows:

H(l+1) = σ(ÃT D̃−1H(l)W). (10)

We refer to this graph convolutional layer as the transition Probability based

Graph CONVolutional layer, abbreviated as GPCONV (for ease of reference,

we also use GCONV to refer to the graph convolutional layer proposed by (Kipf

& Welling, 2016)). Intuitively, as the adjacency matrix is normalized by the

degrees of source nodes, a node always has the same influence on its neighboring

nodes. Specifically, a node’s message (a.k.a., feature vector) is disseminated to

its neighbors with the same weight.

As a result, a popular node (i.e., high degree) will have a smaller influence

on its neighbors. Considering two nodes, i.e., vi and vj with different degrees

(i.e., deg(vj)� deg(vi)), we can see that:

Mij(PGCN) =
Ãji

D̃jj

<Mij(GCN) =
Ãij√
D̃iiD̃jj

<Mij(DGCNN) =
Ãij

D̃ii

.

(11)

Denote by H̃(l+1) the result of the aggregation step, i.e., the product of the

aggregation coefficient matrix and the input representations, H̃(l+1) = MH(l).

Thus:

H̃
(l+1)
i = Mi1H

(l)
1 + Mi2H

(l)
2 + · · ·+ MiNH

(l)
N =

N∑
j=1

MijH
(l)
j ,
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∀i ∈ {1, . . . , N}. Here, H
(l)
j and H̃

(l+1)
i are row vectors; H

(l)
j is the representation

of node vj at the l-th layer. It can be seen that the proposed message passing

leads to the smallest influence of node vj on the representation of node vi. This

behaviour, which we call popularity penalizing, is desired in the case that the

nodes in the neighborhood of the popular node (i.e., vj) belong to different

clusters (i.e., these nodes belong to different classes) and these clusters have

similar sizes. In that case, the message from the popular node is not helpful in

creating discriminative representations for the neighboring nodes.

Let us define a coefficient to quantify the diversity and balance of classes

over the neighborhoods of popular nodes. Denote by Nvj the set of neighboring

nodes of node vj and let C(Nvj ) be the set of the classes of these nodes, namely

that C(Nvj ) contains distinct classes. The coefficient, denoted by γ, is defined

by:

γ =
4

|V |

|Vh|∑
i=1

|C(Nvj )|
|Nvj |

·
−
∑|C(Nvj

)|
k=1

ck
|Nvj

| log( ck
|Nvj

| )

log(|C(Nvj )|)
, (12)

where Vh ⊂ V ; Vh contains nodes with a degree greater than the 75-th percentile

of all node degrees as we are interested in popular nodes. ck indicates the number

of nodes of class k. We can see that γ is the sum of multiple elements where

each element consists of two terms. The first term represents the diversity of

classes over the neighborhood Nvj , ranging in (0, 1). The second term is the

Shannon index (NIST, 2016), indicating the balance of the classes in Nvj and

its value is also in the range (0, 1). Clearly, γ ∈ (0, 1) and a larger value of γ

will lead to a better performance of the proposed message passing.

4.1.3. Comparison with Existing Formulations

To illustrate the difference between the proposed graph convolutional layer’s

formulation and the DGCNN model (Zhang et al., 2018), we consider a simple

graph containing four nodes as shown in Fig. 1. These nodes are associated

with feature vectors X1, X2, X3 and X4 ∈ RF . We denote with P̃ ∈ R4×4 the

transition probability matrix, as calculated in (6), and the aggregate step in the
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Figure 1: A graph with four nodes and four edges (solid lines) with directed transition

probabilities indicated by dashed lines. (a) shows the adjacency matrix with self-connections

added. (b), (c) and (d) show the equations to calculate the aggregated feature representation

(i.e., H̃2) for node 1, following the formulations in the GCN model (Kipf & Welling, 2016),

the DGCNN model (Zhang et al., 2018) and the proposed scheme, respectively. We observe

that in the proposed scheme, (i) the highest-degree node (i.e., node 2) is less influential in

calculating H̃1 than the other nodes, which are of lower degrees, and (ii) the overall influence

of a node on their neighboring nodes are the same (i.e., entries in a column, where there exist

corresponding connections, have the same value.).

DGCNN model produces an aggregated feature representation for node 1 as:

H̃1 = P̃11X1 + P̃12X2 + P̃13X3 + P̃14X4

= 0.33X1 + 0.33X2 + 0.33X4

(13)

Using the proposed scheme (i.e., (8)), we obtain:

H̃1 = P̃11X1 + P̃21X2 + P̃31X3 + P̃41X4

= 0.33X1 + 0.25X2 + 0.33X4

(14)

Even though (14) has the same form as (13), the intuitions behind the two are

different. On one hand, the messages in the DGCNN model are passed following

the transition probabilities from destination nodes to source node. For instance,
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the message of node 2 (X2) is passed with a weight equal to P̃12, which is the

transition probability from node 1 (destination node) to node 2 (source node).

On the other hand, in our formulation, the messages are passed following the

transition probabilities in the reverse direction, namely, from the source nodes to

destination node. This difference results in an important distinction in the way

the influence (i.e., weights) of the nodes are determined. As shown in Fig.1,

the DGCNN model gives a weight of 0.33 to X2 in calculating H̃1 while the

proposed scheme uses a weight of 0.25. Bear in mind that node 2 has the highest

degree of 4 (self-loop added), we can conclude that the proposed scheme gives

lower weight to nodes with a higher degree. This leads to an effect similar to the

TF-IDF weighting scheme as discussed in Section 4.1.1. Next, we will present

how we build GCNN models, with the GPCONV layer as the main building

block, for node and graph classification tasks.

4.2. Node and Graph Classification Models

Using the proposed GPCONV layer as a building block, we construct GCNN

models for the node and graph classification tasks.

4.2.1. Node Classification Model

Our node classification model consists of L GPCONV layers. The model’s

operation can be expressed by:

O = softmax
(
Mσ

(
. . . σ

(
MXW1

)
. . .
)
WL

)
. (15)

In this (15), M contains transition probabilities calculated using (8), O ∈ RN×C

are the predicted class probabilities where C is the number of classes. Note that

the number of GPCONV layers, LGPCONV, is a design choice. We refer to this

model as the PGCNn model where P refers to transition probabilities and n

stands for node classification.

4.2.2. Graph Classification Model

For graph the classification task, we need to predict a single label for the

whole graph. To address this task, we design a model (similar to the node
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classification one) with a global pooling and several fully-connected layers added

on top of the last GPCONV layer. The pooling operator is employed to produce

a single representation for the whole graph, while the fully-connected layers and a

softmax classifier are used to output the predicted label probabilities. There are

several pooling techniques for graph classification, such as SortPooling (Zhang

et al., 2018), DiffPool (Ying et al., 2018), Top-K-Selection (Gao & Ji, 2019),

max-pooling (Zhang et al., 2018) and mean-pooling (Simonovsky & Komodakis,

2017; Monti et al., 2019; Bianchi et al., 2019). In our model, we use the global

mean-pooling as it has been proven effective and is widely used for the task of

graph classification (Monti et al., 2019; Bianchi et al., 2019). We refer to our

graph classification model as the PGCNg. Here, g stands for graph classification,

which differentiates it from the proposed node classification model PGCNn. The

PGCNg can be expressed by:

H = σ
(
Mσ

(
. . . σ

(
MXW1

)
. . .
)
WL

)
(16)

h = mean-pooling
(
H
)

(17)

o = softmax
(
FC
(
h
))

(18)

The (16), (17), (18) are written for one graph, so H ∈ RN×K is a 2−D

matrix, h ∈ RK and o ∈ RC are vectors. FC indicates the fully-connection part

of the PGCNg model. In practice, multiple graphs can be stacked together by

concatenating the corresponding adjacency matrices diagonally and concatenat-

ing the feature matrices vertically. In that case, the pooling operation in (17) is

applied graph-wise.

4.3. DropNode Regularizer

In this section, we present the proposed DropNode regularization method in

detail. After that, we show how this method could be further incorporated into

the node and graph classification models introduced in Section 4.2, and finally

we describe the connection between DropNode and the well-known dropout

regularization method (Srivastava et al., 2014).
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4.3.1. DropNode

The basic idea behind DropNode is to randomly sample sub-graphs from

an input graph at each training iteration. This is achieved by dropping nodes

following a Bernoulli distribution with a pre-defined probability 1− p, p ∈ (0, 1).

Furthermore, an edge is retained if its nodes are kept; otherwise, the edge is

discarded.

Such node dropping procedure can be seen as a downsampling operation.

Therefore, DropNode can be implemented as an individual downsampling layer,

which can be integrated to different levels of a graph neural network. Denote by

H(l) ∈ RN×Kl the input of the l-th downsampling layer, the following equations

describe how DropNode works:

r = (r1, . . . , rN )T , (19)

ri ∼ Bernoulli(p), i ∈ {1, . . . , N}, (20)

H(l+1), ID(l) = SELECT(H(l), r). (21)

In (19), r is a vector containing i.i.d random variables responsible for deciding

which nodes should be kept. In (21), only rows corresponding with ri = 1

are retained, leading to a sub-matrix H(l+1) ∈ RNl×Kl , where Nl = pN on

average. The second output ID(l) is a vector containing indices of selected rows,

corresponding to the retained nodes. The output of the downsampling layer can

become the input for a graph convolutional layer. Thus, the adjacency matrix

also needs to be modified by

Ã(l+1) = SELECT(Ã(l), r), (22)

where only rows and columns corresponding to ri = 1 are kept. The new

adjacency matrix in (22) is then used for computing the aggregation coefficient

matrix M following the chosen message passing formulation (see Section 4.1).

Depending on specific tasks (e.g., node classification), upsampling layers

might be needed to reconstruct the original graph structure. An upsampling
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layer is paired with a downsampling layer and uses the index vector of the

downsampling layer for the reconstruction. Specifically, suppose the l-th

downsampling layer is paired with the k-th upsampling layer where k > l, this

upsampling layer takes as input a matrix H(k) ∈ RNl×Kk and produces an

output matrix H(k+1) ∈ RN×Kk . Each row in H(k) is copied to a row in H(k+1)

according to the index vector ID(l) obtained by the l-th downsamling layer. The

rows in H(k+1) that do not correspond to a row in H(l) are filled in with zeros.

Similar to dropout, the proposed DropNode method operates only during

the training phase. During the testing phase, all the nodes in the graph are used

for prediction. We should note that in the case that the upsampling layers are

not employed, the output of each downsampling layer needs to be scaled by a

factor of 1
p . This scaling operation is to maintain the same expected outputs for

neurons in the subsequent layer during the training and testing phases (similar

to dropout).

An important property of DropNode is that one or multiple sub-graphs are

randomly sampled at each training iteration. Hence, the model does not see

all the nodes during the training phase. As a result, the model should not rely

on only a single prominent local pattern or on a small number of nodes, but to

leverage information from all the nodes in the graph. The risk for the model to

memorize the training samples, therefore, is reduced, avoiding over-fitting. In

addition, the model is trained using multiple deformed versions of the original

graphs. This can be considered as a data augmentation procedure, which is

often used as an effective regularization method (DeVries & Taylor, 2017). On

the other hand, the DropNode method reduces connectivity between nodes in

the graph. Lower connectivity helps alleviate the smoothing of representation

of the nodes when the GCNN model becomes deeper (Rong et al., 2019). As a

result, features of nodes in different clusters will be more distinguishable, which

could lead to an improved performance on different downstream tasks for deep

GCNN models.

4.3.2. Dropping Strategies
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In Section 4.3.1, we have presented DropNode, which relies on the Bernoulli

distribution to sample sub-graphs from the original graph. While this strategy

is simple, it is structure-agnostic. In literature, there are many approaches for

sampling graphs, including Random Page Rank Node (RPN), Random Edge (RE),

Random Node Neighbo (RNN) and Random Walk (RW) (Leskovec & Faloutsos,

2006). It is found that RW is one of the most effective graph sampling approaches

w.r.t. preserving graph properties such as clustering coefficient (Leskovec &

Faloutsos, 2006). Therefore, it is tempting to investigate the RW-based node

dropping for DropNode. In this section, we look into the detailed effect of the

Bernoulli-based dropping introduced earlier and the RW-based dropping.

Let us first study the Bernoulli-based dropping approach (B-dropping) by

considering a graph G = (V,E), where |V | = N and |E| = M . Thus the

probability of the existence of an edge of G is p(u,v) = M

(N
2 )

. As the probability

for selecting a node is p, on average n = bpNc nodes will be retained. Sub-graphs

thus have the expected number of edges as follows:

m =
M
(
n
2

)(
N
2

) . (23)

Therefore, the sub-graphs created by the B-dropping approach can be modelled

by an Erdős–Rényi (ER) process (Erdős & Rényi, 1960), with n = bpNc nodes

and m edges. We will show later that the sub-graphs created by the B-dropping

have some properties of the ER model.

Different from the B-dropping, the RW-dropping statistically maintains the

local structure of the underlying graph. The RW-dropping follows the random

walk procedure introduced in Section 3.2 with two small modifications. First,

if a node is re-visited, we ignore it and move to another node. Furthermore, if

the walk is stuck (e.g., if we visit a small connected component), we jump to a

node which has not been visited. These modifications will allow a deterministic

number of nodes for each sampling step. We will see later that the RW-dropping

approach tends to preserve local clusters, leading to a clustering coefficient

similar to that of the original graph. Eventually, this approach tends to produce

small-world sub-graphs (Watts & Strogatz, 1998). As a result, RW-dropping
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Figure 2: The structure of the PGCNn + DropNode model with two GPCONV layers and one

pair of downsampling-upsampling layers for the node classification task.

may result in better node representations, leading to better performance for

downstream tasks. However, as the RW-dropping has to be done step by step,

thus this approach is slower compared to the B-dropping.

4.3.3. Incorporating DropNode into the PGCNn Model

Figure 2 shows an example of how we incorporate DropNode into a PGCNn

model for the node classification task. In this example, we employ three GPCONV

layers and a pair of downsampling and upsampling layers. Given a graph G with

input features X, the model transforms X through the first GPCONV layer into

H(1). Subsequently, the downsampling layer randomly drops a subset of rows of

the transformed feature vectors H(1). The remaining features H(2) are fed into

the second GPCONV layer. For the node classification task, it is essential to

keep the same number of nodes at the output. To this end, an upsampling layer

(see Section 4.3.1) is used to reconstruct the original graph structure. The output

of this layer serves as input to the third GPCONV and a softmax classifier to

produce class probabilities for all the nodes of the graph. It should be noted that

the number of GPCONV layers LGPCONV and downsampling-upsampling layer

pairs LDU are hyper-parameters of this model, thus more complex architectures

can be formed by increasing these parameters. We refer to this model as the
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Figure 3: The PGCNg + DropNode model for graph classification. A GPCONV layer is

combined with a downsampling layer to create a GPD block. Several GPD blocks can be

stacked together to achieve better expressiveness power. The output of the final GPD block

will be globally mean pooled making the final representation of the graph as denoted by H.

One or several fully-connected layer(s) (FC layers) and a softmax classifier are employed to

predict the label of the graph.

PGCNn + DropNode model.

4.3.4. Incorporating DropNode into the PGCNg Model

Figure 3 shows an example of how DropNode can be integrated with the

PGCNg model for the graph classification task. We refer to this model as

PGCNg + DropNode. The model has a block consisting of one GPCONV

layer and one downsampling layer, which is abbreviated to “GPD” block. The

GPD block is followed by a simple mean-pooling layer which produces a single

representation vector for the whole graph. While there exist several more

advanced pooling techniques such as DiffPool (Ying et al., 2018) and k-max

pooling (Gao & Ji, 2019), we choose the mean-pooling as it is simple and pooling

is not a focus of this work. Then, two fully-connected layers act as a classifier

on that representation vector. Similar to the PGCNn + DropNode model (see

Section 4.3.3), the numbers of GPD blocks LGPD and fully-connected layers LFC

are hyper-parameters of the PGCNg + DropNode model. In graph classification,

the reconstruction of the graph structure is not needed as we only need a single

label for an input graph (i.e., unlike the case of the node classification task). As

such, it is not necessary to employ upsampling layers in the PGCNg + DropNode

model. As a result, the outputs of each downsampling layer need to be scaled by

a factor of 1
p during training as mentioned earlier in Section 4.3.1.
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Figure 4: Dropout applied to feature matrix X. Several neural units corresponding to elements

on each row of X are randomly deactivated during the training phase. This operation produces

matrix X′ of the same shape as the input.
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Figure 5: DropNode applied to feature matrix X. Unlike dropout, some rows are randomly

eliminated, leading to matrix X′′ with smaller number of rows.

4.3.5. Connection between DropNode and Dropout

DropNode and dropout both involve dropping activations in a layer of a neural

network, yet, they are conceptually different. In DropNode, all the activations

of a node are dropped. On the contrary, in dropout, the dropping is distributed

across the nodes, so that on average, each node has a ratio of activations dropped.

In addition, with DropNode, the structure of the graph is altered, while this

does not happen in dropout. Implementation-wise, let X ∈ RN×K be the input,

dropout produces a matrix X′ ∈ RN×K of the same dimensions as X in which

some entries are randomly set to zero; whereas, DropNode produces a sub-matrix

X′′ ∈ RbpNc×K where p ∈ (0, 1). Figures 4, 5 show the difference between

dropout and DropNode.
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Table 1: Datasets for the node classification tasks. +/− indicates whether the corresponding

features are available or unavailable. The numbers in parentheses denote the dimensionality of

the corresponding feature vectors. γ is the diversity-balance coefficient defined in Section 4.1.2.

CORA CITESEER PUBMED

# Nodes 2708 3327 19, 717

# Edges 5429 4732 44, 338

# Labels 7 6 3

Node Attr. +(1433) +(3703) +(500)

Edge Attr. − − −

γ 0.15 0.33 0.13

5. Experiments

5.1. Datasets

In our experiments, we consider both node and graph classification tasks.

For node classification, we use three benchmark citation network datasets1,

namely, CORA, CITESEER and PUBMED (Sen et al., 2008). Graphs are

created for these datasets by considering scientific papers as nodes and references

between the papers as edges. Each node is represented by a bag-of-words

feature vector extracted from the corresponding document. In these datasets,

all the nodes are labeled. Following Kipf et al. (Kipf & Welling, 2016) and

Veličković et al. (Veličković et al., 2017), we consider the graphs of CORA,

CITESEER and PUBMED undirected, although the references are actually

directed. The description of the considered datasets for node classification is

presented in Table 1.

Concerning the graph classification task, we employ the following datasets2:

the bioinformatics datasets, namely ENZYMES, PROTEINS, D&D, MUTAG;

the scientific collaboration dataset COLLAB (Kersting et al., 2016); the chemical

compound dataset NCI1. In the bioinformatics datasets, each graph represents

1https://linqs.soe.ucsc.edu/data
2https://ls11-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets
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Table 2: Datasets for graph classification task. +/− indicates whether the corresponding

features are available or unavailable. The numbers in parentheses denote the dimensionality of

the corresponding feature vectors. γ is the average diversity-balance coefficient calculated on a

set of graphs.

PROTEINS D&D ENZYMES MUTAG NCI1

# Graph 1113 1178 600 188 4110

# Label 2 2 6 2 2

# Avg. Node 39.06 284.32 32.63 17.93 29.87

# Avg. Edge 72.82 715.66 62.14 19.79 32.30

Node Label + + + + +

Edge Label − − − + −

Node Attr. +(29) − +(18) − −

Edge Attr. − − − − −

γ 0.25 0.56 0.29 0.0005 0.03

a biological structure. For the COLLAB dataset, a graph represents an ego-

network of researchers who have collaborated with each other (Gomez et al.,

2017). The NCI1 dataset represents the activity against non-small cell lung

cancer (Gomez et al., 2017). The description of these datasets is presented in

Table 2.

5.2. Experimental Setup

For both node and graph classification tasks, we employ classification accu-

racy as the performance metric. Concerning the node classification task, similar

to (Kipf & Welling, 2016; Veličković et al., 2017), we consider the transductive ex-

perimental setting (see Section 3). We employ the standard train/validation/test

set splits of all the considered datasets for node classification to guarantee a

fair comparison with prior works (Kipf & Welling, 2016; Veličković et al., 2017;

Gao & Ji, 2019). That is, (140/500/1000) nodes are used for the CORA dataset,

(120/500/1000) nodes are used for the CITESEER dataset and (60/500/1000)

nodes are used for the PUBMED dataset. It is worth mentioning that the

amount of labelled nodes is much smaller than the amount of test nodes, which

makes the task highly challenging. Similar to (Veličković et al., 2017; Gao & Ji,
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2019; Veličković et al., 2018), we report the mean and standard deviation of the

results over 100 runs with random weight initialization.

Concerning the graph classification task, following existing works (Ying et al.,

2018; Zhang et al., 2018), we employ a 10-fold cross validation procedure and

report the average accuracy over the folds. Among the graph classification

datasets, only PROTEINS and ENZYMES provide node features (see Table 2),

which can be used directly as input to the proposed models. For the rest of the

datasets, we use the degree and the labels of the nodes as features.

We compare the performance of our models with state-of-the-art baseline

models. Specifically, for the node classification task, the selected baselines are the

GCN (Kipf & Welling, 2016), GAT (Veličković et al., 2017), GraphSAGE (Hamil-

ton et al., 2017), DGI (Veličković et al., 2018), GMNN (Qu et al., 2019), Graph

U-Net (Gao & Ji, 2019), DGCNN (Zhang et al., 2018), and DropEdge (Rong

et al., 2019) models. The DGCNN model is originally designed for graph classi-

fication. In order to use this model for node classification, we employ only its

message passing mechanism (see Section 4.1.1), ignoring its pooling part. For the

graph classification task, the Graph U-Net (Gao & Ji, 2019), DGCNN (Zhang

et al., 2018), DiffPool (Ying et al., 2018), GraphSAGE (Hamilton et al., 2017),

CapsGNN (Xinyi & Chen, 2019) and SAGPool (Lee et al., 2019) models are

selected. In addition, following (Luzhnica et al., 2019), we employ two simple

baseslines including a fully-connected neural network with two hidden layers

denoted by FCN, and a combination of FCN with one graph convolutional layer

(GCONV) from the popular GCN model (Kipf & Welling, 2016) (see Section

Section 4.1.1) denoted as GCN + 2FC. For each baseline model and a bench-

mark dataset, we select the best results reported in the corresponding paper (if

available). Otherwise, we collect the results using either the implementations

released by the corresponding authors or self-implemented source code.

5.3. Hyperparameter Settings

Hyperparameters of the proposed models are found empirically via tun-

ing. For the node classification model PGCNn, we use two GPCONV layers
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(LGPCONV = 2). This choice also follows the best configuration suggested

in (Kipf & Welling, 2016). Each GPCONV layer has a hidden dimension of

64. In addition, dropout is added after each GPCONV layer with a dropping

rate of 0.7. When DropNode is used (i.e., the PGCNn + DropNode model), we

employ three GPCONV layers (LGPCONV = 3), also with a hidden dimension of

64, and a pair of downsampling-upsampling layers. Compared to the PGCNn

model, one additional GPCONV layer is added between the downsampling and

upsampling layers. The downsampling layer of DropNode has the keep ratio p

selected in such a way that 200 nodes are retained for all the datasets. We do

not employ dropout for PGCNn + DropNode as the DropNode has already had

the regularization effect on the considered model. We train the two models with

learning rates of 0.01 and 0.001, respectively.

For our graph classification models, namely, PGCNg and PGCNg+DropNode,

we employ one GPCONV layer (LGPCONV = 1) and a single GPD block (LGPD =

1), respectively. Both models use two fully-connected layers (LFC=2). The

GPCONV and the fully-connected layers have 512 hidden units each. We

employ dropout after each layer with a dropping ratio of 0.5 in the PGCNg

model. Similar to the PGCNn + DropNode model, we do not use dropout for

PGCNg + DropNode. For the PGCNg + DropNode, the keep ratio p is set to

p = 0.75, which is much higher than that used for the node classification models.

This is due to the fact that in the considered graph classification datasets, the

graph sizes are much smaller than those in the node classification datasets (see

Table 2). We train both models using a small learning rate of 0.0001.

5.4. Experimental Results

5.4.1. Node Classification

The node classification results of different models are reported in Table 3.

The reported results include the mean and standard deviation of classification

accuracy over 100 runs. The results show that the PGCNn and GCN (Kipf

& Welling, 2016) models achieve higher accuracy compared to the DGCNN

model. This can be attributed to better message passing schemes giving smaller
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Table 3: Node classification results in terms of the accuracy evaluation metric (%). We report

the mean and standard deviation of the accuracy over 100 runs. The bold font indicates

the best performance. Our models include PGCNn and PGCNn + DropNode. In addition,

we apply DropNode to the common GCN model (Kipf & Welling, 2016), referred to as

GCNn + DropNode. The asterisk (*) for DGCNN indicates that the result is obtained by

using our own implementation, where only the message passing formulation of the original

method is employed.

Method CORA CITESEER PUBMED

GCN + DropEdge (2019) 82.80 72.30 79.60

GMNN (2019) 83.7 72.9 81.8

GCN (2016) 81.9 ± 0.7 70.5 ± 0.8 78.9 ± 0.5

DGCNN∗ (2018) 81.4 ± 0.5 69.8 ± 0.7 78.1 ± 0.4

GAT (2017) 83.0 ± 0.7 72.5 ± 0.7 79.0 ± 0.3

Graph U-Net (2019) 84.4 ± 0.6 73.2 ± 0.5 79.6 ± 0.2

DGI (2018) 82.3 ± 0.6 71.8 ± 0.7 76.8 ± 0.6

PGCNn 81.7 ± 0.5 70.6 ± 0.7 78.4 ± 0.4

GCNn + DropNode 84.6 ± 1.0 74.3 ± 0.5 82.7 ± 0.2

PGCNn + DropNode 85.1± 0.7 74.3± 0.6 83.0± 0.3

weights to popular nodes presented in Section 4.1.2 as these three models

have similar configuration including number of graph convolutional layers and

number of hidden units in each layer. Furthermore, the PGCNn model achieves

marginally better performance compared to the popular GCN model on the

CITESEER dataset, reaching 70.6% compared to 70.5% obtained by the GCN

model. Nevertheless, the PGCNn model performs slightly worse than the GCN

model on the CORA and PUBMED datasets, amounting to a 0.2% and 0.5%

drop in terms of accuracy. This can be explained by the fact that the diversity-

balance coefficient (γ) of the CITESEER dataset is the highest (i.e., γ = 0.33)

compared to the CORA and PUBMED datasets (i.e., γ = 0.15 and γ = 0.13,

respectively, see Table 1). The coefficient γ reflects the diversity and balance of

classes in the neighborhoods of high-degree nodes, and a higher value of γ means

that messages from high-degree nodes are not useful. Recall that the PGCNn

model assigns lower weights on high-degree nodes. Therefore, the PGCNn favors
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the CITESEER dataset compared to the others. In addition, compared to the

other baseline models, the PGCNn model achieves lower accuracy on CORA,

whereas it produces comparable results on CITESEER and PUBMED. When

DropNode is used, it consistently improves the performance of all considered

models. Specifically, PGCNn + DropNode and GCNn + DropNode significantly

improve the performance of PGCNn and GCNn by around 4 percentage points

of accuracy. In particular, GCNn +DropNode can reach 84.6%, 74.3% and 82.7%

while PGCNn + DropNode achieves the best performance with 85.1%, 74.3%

and 83.0% on the CORA, CITESEER and PUBMED datasets, respectively.

It is worth recalling that in our setting, the number of training examples is

much smaller compared to the number of testing examples. By using DropNode,

deformed versions of the underlying graph are created during each training epoch.

In other words, DropNode acts as an augmentation technique on the training

data which leads to an increased performance.

5.4.2. Graph Classification

The results for graph classification are given in Table 4. In addition to the

models mentioned in Section 4.2 and Section 4.3.1, we also provide the result

produced by a simple fully-connected neural network, denoted by FCN, with

two hidden layers; each has size of 512 units. We observe that the simple FCN

can achieve high classification accuracy compared to presented strong baselines

on some datasets. For instance, FCN obtains 74.68% on PROTEINS, which

is around 4 percentage points higher than the performance of GraphSAGE

and SAGPoolg, and approximately 3 percentage points higher than SAGPoolh.

The good performance of structure-blind fully-connect neural network has been

reported by (Luzhnica et al., 2019), which is also confirmed in our work. By

adding a GCONV or GPCONV layer on top of the FCN model (GCN + 2FC,

PGCNg + 2FC) the accuracy on PROTEINS, DD and ENZYMES is marginally

improved while the accuracy on NCI1 is improved by 6 percentage points. This is

because the GCONV / GPCONV layers are able to exploit the graph structure of

the considered bioinformatics datasets. Additionally, the PGCNg + 2FC model
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Table 4: Graph classification result in terms of percent (%). FCN stands for fully-connected

neural network (2 FC layers). N/A stands for not available. Daggers mean the results are

produced by running the code of the authors on corresponding datasets (the results are not

available in the original paper).

Method PROTEINS DD ENZYMES MUTAG NCI1

Diff-Pool (GraphSAGE) (2018) 70.48 75.42 54.25 N/A N/A

Diff-Pool (Soft Assign) (2018) 76.25 80.64 62.53 88.89† 80.36†

Graph U-Net (2019) 77.68 82.43 48.33† 86.76† 72.12†

CapsGNN (2019) 76.28 75.38 54.67 86.67 78.35

DGCNN (2018) 75.54 79.37 46.33† 85.83 74.44

SAGPoolg (2019) 70.04 76.19 N/A N/A 74.18

SAGPoolh (2019) 71.86 76.45 N/A N/A 67.45

FCN (2FC) 74.68 75.47 66.17 87.78 69.69

GCN + 2FC 74.86 75.64 66.45 86.11 75.90

PGCNg + 2FC 75.13 78.46 66.17 85.55 75.84

GCNg + DropNode 76.58 79.32 69.00 87.27 79.03

PGCNg + DropNode 77.21 80.69 70.50 89.44 81.11

favors the DD dataset as the coefficient γ is the highest compared to other

datasets, which is similar to node classification results (see Table 2). By using

DropNode, the performance of our models is further improved. Specifically,

our model with a single GPCONV layer, two FC layers and DropNode (i.e.,

PGCNg + DropNode) outperforms all the baselines on PROTEINS, ENZYMES,

MUTAG and NCI1, except for DD where our models perform slightly worse

compared to the Graph U-Net model. Even we do not outperform the Graph

U-Net on the DD dataset, is is clear that DropNode improves the PGCNg by

more than 2% accuracy point. This again confirms the consistency of DropNode

in improving GCNN models.

5.5. The Effect of DropNode on Deep GCNNs

In this section, we investigate the effect of DropNode on deeper graph

convolutional models. Specifically, we run our best model, which is comprised of

many GPCONV layers with and without DropNode for node classification on

the CORA and CITESEER datasets. The number of GPCONV layers LGPCONV
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Table 5: Number of nodes kept for downsampling layers. 3GPCONV indicates that there are

three GPCONV layers used. #DL stands for downsampling layer dimensionality. “−” means

not applicable.

3GPCONV 5GPCONV 7GPCONV 9GPCONV

#DL 1 200 200 200 200

#DL 2 − 150 150 150

#DL 3 − − 100 100

#DL 4 − − − 50

is set to 5, 7 and 9; each GPCONV layer has a hidden dimension of 64. The

numbers of nodes that are kept in each case are shown in Table 5. The rest of the

parameters have the same values as presented in Section 5.3. The corresponding

results are presented in Table 6.

We observe that the performance of the GCN and PGCNn models decreases

significantly when the number of hidden layers increases. Specifically, 9GPCONV-

layer GCN produces an accuracy score of only 13% on CORA and 22.2% on

CITESEER while similar performance is produced by a PGCNn model with

9GPCONV layers. This can be explained by the fact that (i) deep GCN /

PGCNn models have many more parameters compared to the shallow ones,

which are prone to over-fitting, and (ii) the deep models suffer from over-

smoothing (Li et al., 2018; Chen et al., 2019), which results in indistinguishable

node representations for the different classes. By applying DropNode on both

models, the classification accuracy is improved significantly, especially in the

case that 7 and 9 layers are used. This is because the effects of over-fitting and

over-smoothing are alleviated.

5.5.1. The Effect of Dropping Strategies

To see the impact of the dropping strategy used in DropNode, we re-run

the node classification experiments on the CORA, CITESEER and PUBMED

datasets with PGCNg model and use the RW-dropping for DropNode. The

results are presented in Table 7. It can be seen that the RW-dropping-based

DropNode leads to a better node classification performance compared to the
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Table 6: Accuracy (%) of deep GCNNs with DropNode integrated.

3 layers 5 layers 7 layers 9 layers

CORA CITESEER CORA CITESEER CORA CITESEER CORA CITESEER

GCN 79.1 69.0 78.8 61.8 46.2 23.0 13.0 22.2

PGCN 79.8 69.0 77.6 64.4 52.7 35.4 13.0 25.10

GCNn +

DropNode
84.60 74.30 80.80 72.10 71.80 70.40 51.20 66.70

PGCNn +

DropNode
85.10 74.30 81.40 72.30 75.10 70.70 49.60 66.90

B-dropping-based DropNode for all considered datasets. It is because the RW-

dropping tends to produce small-world sub-graphs while the B-dropping tends

to produce ER sub-graphs. The small-world sub-graphs have a high clustering

coefficient, which statistically retains local topology of the original graph. On

the other hand, the ER sub-graphs do not take into account the local structure

of the original graphs, leading to a lower performance.

In Table 8, we present several statistical properties of the original graphs

and sub-graphs including the average shortest path length (L), clustering coef-

ficient (C) and a small-world coefficient typically denoted by σ (Humphries &

Gurney, 2008); the sub-graphs are created by the B-dropping and RW-dropping

approaches. These statistics are calculated for 100 individual sub-graphs and we

report the averaged numbers. We can see that sub-graphs created by B-dropping

have small value for C, meaning that the number of triangles is small as the

nodes are picked randomly. Inversely, sub-graphs produced by RW-dropping

tends to preserve clusters, leading to much higher values for C and σ. In order

to compute σ for a sub-graph, an ensemble of 100 equivalent ER graphs is

generated. The average shortest length (Lr) and clustering coefficient (Cr) are

computed for this ensemble, which are then used to calculate σ. Typically, a

value of σ greater than 1 indicates the small-worldness of a graph. These facts

justify that the B-dropping and RW-dropping approaches tend to produce ER

and small-world graphs, respectively.
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Table 7: Node classification performance using B-dropping and RW-dropping approaches.

Method CORA CITESEER PUBMED

PGCNn + DropNode (B-dropping) 85.1 ± 0.7 74.3 ± 0.6 83.0 ± 0.3

PGCNn + DropNode (RW-dropping) 85.9± 0.4 74.9± 0.5 83.3± 0.4

Table 8: Graph properties with respect to different sampling strategies. L denotes the average

shortest length, C denotes the clustering coefficient and σ indicates the small-world coefficient.

For sub-graphs, all criteria (L, C, and σ) are the average numbers calculated on a set of 100

sub-graphs generated by the considered dropping strategies. The small-world coefficient σ is

not available for PUBMED because of the extremely computational expensiveness.

Dataset Avg. Length (L) Clustering Coeff. (C) σ

CORA 6.31 0.2407 158.70

CORA B sub-graphs 1.81 0.0086 0.66

CORA RW sub-graphs 7.28 0.2651 14.72

CITESEER 9.33 0.1415 190.18

CITESEER B sub-graphs 1.47 0.0021 0.24

CITESEER RW sub-graphs 5.63 0.2111 16.15

PUBMED 6.34 0.0602 N/A

PUBMED B sub-graphs 1.79 0.0011 0.13

PUBMED RW sub-graphs 8.43 0.1163 5.55

6. Conclusion

In this work, we have proposed a new graph message passing mechanism,

which leverages the transition probabilities of nodes in a graph, for graph convo-

lutional neural networks (GCNNs). The proposed message passing mechanism is

simple, however, it achieves good performance for the common tasks of node and

graph classification compared to several existing message passing formulations.

We further showed that the proposed message passing tends to work well in the

case that the neighborhoods of high-degree nodes are diversified and balanced

and we proposed a coefficient to quantify the diversity and balance. Addition-

ally, we have introduced a novel technique termed DropNode for regularizing

the GCNNs. The DropNode regularization technique can be integrated into

existing GCNN models leading to noticeable improvements for popular tasks
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(i.e., node and graph classification) on benchmark datasets. DropNode can

be realized with several node dropping strategies such as B-dropping or RW

leading to different types of random graphs such as ER or small-world graphs.

We empirically showed that the RW dropping outperforms the B-dropping.

Furthermore, it has been shown that DropNode works well under the condition

that the number of labelled examples is limited, which is useful in many real-life

applications when it is normally hard and expensive to collect a substantial

amount of labelled data. Our future work will focus on generalizing the proposed

method on large graphs, e.g., reducing the computational cost of re-computing

intermediate aggregation coefficient matrices in case multiple downsampling

layers are employed. Another direction for future work is to investigate different

graph sampling techniques, which can be used for DropNode. In addition,

as our method is general, it could be applied to a wide range of applications

involving graph-structured data such as social media or Internet-of-Things data.
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