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Óscar Belmonte-Fernándeza,b,∗

aDepartment of Computer Languages and Systems, Universitat Jaume I, Castelló de la
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Abstract

Wi-Fi fingerprinting is one of the methods that are widely used to provide

Location Based Services (LBS). Gaussian, or a mixture of Gaussians, is the

preferred model used by Wi-Fi fingerprinting for LBS. Nevertheless, Received

Signal Strength Intensity (RSSI) Wi-Fi histograms are skewed, and a Gaussian

model is not well suited for modeling data when their histogram is skewed. In

addition, another important characteristic present in the RSSI Wi-Fi temporal

series is autocorrelation, which cannot be modeled using a Gaussian model. In

this paper, we explore the feasibility of using Hidden Markov Models (HMM)

to model RSSI Wi-Fi signals. The mathematical derivation of formulas to cal-

culate autocorrelation based on the HMM parameters is presented. Exhaustive

experimentation, using data sampled in a real scenario, was performed to test

the dependency of the autocorrelation coefficients on the number of hidden

states, and the number of iterations used when creating the HMM. The results

are compared with autocorrelation coefficients calculated using the real data.

Kullback-Leibler (KL) divergence was used to compare the similarity of the

real histograms and those provided by a mixture of Gaussians and by an HMM.

HMM models reported more accurate results than a mixture of Gaussians model

in both cases.
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1. Introduction

Indoor location research and indoor-based services have attracted a lot of

attention in recent years, both in the research realm (Farid et al., 2013) and in

the enterprise realm (Werner, 2014). Indoor location has been successfully used

in different fields such as tourism and cultural applications (Alletto et al., 2015),

location in malls (Pritt, 2013) and airports (Molina et al., 2018), and tele-health

monitoring (Santoso & Redmond, 2015), to cite just a few examples. Various

technologies have been used to provide indoor location services ranging from

Bluetooth Low Energy (BLE) (Pu & You, 2018) to sound/ultrasound (Cobos

et al., 2016). Nevertheless, indoor location based on Wi-Fi fingerprinting has

attracted a great deal of research effort in the last few years (He & Chan, 2015;

Yang & Shao, 2015). This is mainly due to the ubiquitous deployment of Wi-Fi

technology, especially in urban areas, and the fact that consumer devices, such

as mobile phones and smart-watches, are equipped with the hardware needed

to use this technology.

The Gaussian probability density function (pdf ), or a mixture of Gaussian

pdfs, is the representation assumed in most works when modeling RSSI Wi-Fi

histograms (Smailagic et al., 2000; Haeberlen et al., 2004; Bose & Foh, 2007;

Fang et al., 2008; Qi et al., 2009; Pritt, 2013; Bisio et al., 2016; Youssef &

Agrawala, 2008). This assumption is usually taken based on the similarity of

the Wi-Fi RSSI histogram to a Gaussian distribution, but the similarity is not

validated using any normality test in most cases.

Another issue when modeling RSSI Wi-Fi signals is the absent readings when

signals coming from different Wireless Access Points (WAP) are measured at

the same time. These absent values in the readings are due to low RSSI values

when the distance between the WAP and the users is high, or when there is a

lot of absorption by the walls and furniture present in the environment. Values
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below -95 dBm. are not measured by common mobile phones or smart-watches.

However, the main drawback when using a Gaussian pdf, or mixture of Gaus-

sians, to model the RSSI Wi-Fi signal is that it cannot model the autocorrelation

characteristic present in the temporal series of the Wi-Fi signal. An alternative

model that maintains the autocorrelation present in the RSSI Wi-Fi signal is

the Hidden Markov Model (HMM), which can be used to model temporal se-

ries when autocorrelation is present in the data (Zucchini et al., 2017). HMM

has been successfully used in bioinformatics (Koski, 2001), speech recognition

(Rabiner, 1989), and stock market prediction (Gupta & Dhingra, 2012).

The main hypothesis of this work is that an RSSI Wi-Fi signal can be mod-

eled in a better way using an HMM, which is able to maintain the autocorrelation

present in the signal better than a Gaussian, or mixture of Gaussians, model.

Once the RSSI Wi-Fi signal has been modeled, the HMM can be used to make

predictions on the new Wi-Fi readings, or to calculate the probability that a

temporal sequence of RSSI data has been generated by the HMM model.

The contributions of this work are:

1. We present the mathematical formulation for calculating the autocorrela-

tion coefficients based on the parameters of an HMM.

2. We model RSSI Wi-Fi signals by means of an HMM and compare its

autocorrelation coefficient with the autocorrelation coefficients present in

the signal.

3. We compare the histograms of the real data with the histograms provided

by an HMM and a mixture of Gaussians when modeling a Wi-Fi signal.

4. We show that an HMM can deal with absent values when sampling Wi-Fi

signals.

Theoretical derivations and extensive experimentation were performed in

order to assess the above contributions.

The rest of the paper is organized as follows: Section 2 summarizes related

work. Section 3 presents the theoretical background on Markov chains and

HMMs. Section 4 shows how to calculate the autocorrelation coefficients and
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the histogram using the parameters of an HMM, and how an HMM can man-

age absent values in a sequence of RSSI Wi-Fi readings. Section 5 presents

the experimentation setup, data acquisition and analysis, results of exhaustive

experimentation to assess the preservation of the autocorrelation coefficients,

and a comparison between the histograms of the real data and those generated

by a mixture of Gaussians and by an HMM. Finally, Section 6 presents the

conclusions and lines of future work.

2. Related work

Wi-Fi fingerprinting methods make use of the already deployed wireless com-

munication infrastructures based on the IEEE 802.11 protocol. Wi-Fi finger-

printing generally consists of two stages: the off-line or training stage, and

the on-line or location estimation stage. During the off-line stage, RSSI Wi-Fi

signals coming from the surrounding WAPs are sampled at different reference

locations within the zone of interest. Then, these data are used to create models

that will be used in the on-line phase to estimate the user’s location. In the

on-line phase, the model will provide a location estimation based on the new

RSSI Wi-Fi signal sampled by the user.

Some Wi-Fi fingerprinting methods model the RSSI Wi-Fi signal histogram

using a pdf. The preferred pdf is the Gaussian function, defined by the mean

and standard distribution of the data.

In (Smailagic et al., 2000), based on the histogram of a series of RSSI Wi-Fi

samples, a Gaussian pdf is assumed in the off-line stage. No statistical test is

performed to assess the normality of the data. In the on-line stage, using a

path loss model and the Gaussian pdf assumption of the data distribution, the

authors were able to estimate the user’s location.

In (Haeberlen et al., 2004) a set of 255 RSSI Wi-Fi samples are used to fit a

Gaussian pdf, in the off-line stage. A Bayesian approach is then used to estimate

the user’s location in the on-line stage. The accuracy of the method is compared

with the results when the histogram of the real data are used to estimate the
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user’s location, concluding that the Gaussian pdf fit works well. No normality

test is performed to assess the normality distribution of the data.

The same approach is used by the authors in (Bose & Foh, 2007), who found

through experimentation that the RSSI Wi-Fi signal histogram can be modeled

by a Gaussian pdf when there is line of sight (LOS) between the WAP and the

user, and also when there is no LOS (non-LOS). As in the previous work, no

normality test is performed to assess the normality of the data distribution.

In (Fang et al., 2008), the authors model the RSSI Wi-Fi signal using a

Gaussian fit in the off-line stage, and then use the logarithmic space to remove

the convolution in the data due to multipath propagation of the signal. In

the on-line stage, Maximum Likelihood Estimation (MLE) is used on the de-

convoluted signal to estimate the user’s location.

Although in (Qi et al., 2009) the authors model the RSSI Wi-Fi signal as

a Gaussian pdf in the off-line stage, the approach used to estimate the user’s

location is different from that employed in the previously presented works. In

this case, several samples are taken by the user and they are fitted to a Gaussian

pdf. Then, using Machine Learning algorithms, the parameters of the user’s

fitted Gaussian pdf are used to estimate the user’s location in the on-line stage.

Again, no test is performed to assess the validity of assuming a Gaussian pdf

for modeling the data.

In (Pritt, 2013) the authors fit RSSI Wi-Fi data to a Gaussian pdf in the

off-line stage, and use MLE to estimate the user’s location in the on-line stage.

The novelty, in the context of this paper, is that low signals that vanish in some

samples are modeled as a Gaussian pdf with mean -95 dBm. and standard

deviation of 4 dBm., so they can be included in the MLE calculations.

In (Bisio et al., 2016) the authors use a similar approach to that implemented

in (Qi et al., 2009). They model the RSSI Wi-Fi signal as a Gaussian pdf, and

also the samples taken by the user in the on-line stage of the localization. In

this case, the computation is simplified, while maintaining accuracy, in order to

save energy consumption by the mobile device.

In (Li et al., 2018), instead of the Gaussian pdf, the Weibull pdf is used
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to model the RSSI Wi-Fi signal for user location purposes using a Bayesian

approach. The rationale behind choosing the Weibull pdf is grounded on the

fact that this pdf is able to model skewed histograms.

In (Youssef & Agrawala, 2008) the authors present the HORUS location

system for location determination. They model the autocorrelation in the RSSI

Wi-Fi data series using a Gaussian fit and a first-order autoregressive model.

Taking into account the autocorrelation present in the temporal data series

enables the authors to improve the accuracy of their location system.

Autocorrelation in the RSSI Wi-Fi temporal series appears in (Kaemarungsi

& Krishnamurthy, 2004, 2012) as an important characteristic of the RSSI Wi-

Fi signal to be modeled, but this is only used by the authors to assess the

stability of the signal over time. In addition, the authors show that RSSI Wi-Fi

histograms are, in general, left-skewed and that a Gaussian fit would not be

valid in most cases.

These previous works show that although the pdf that is most used to model

RSSI Wi-Fi signals is the Gaussian pdf, there are other alternatives for modeling

it. They also demonstrate that the autocorrelation present in the RSSI Wi-Fi

temporal series can be used to better model it.

3. Theoretical background

This section first presents the definition of a Markov chain and the existence

of a stationary state for irreducible and homogeneous Markov chains. This

property will be used in Section 4. Then the HMM is defined, together with a

description of how its parameters can be estimated using data coming from a

time sequence, which is the case of an RSSI Wi-Fi signal.

3.1. Markov chains

A stochastic process of random variables {q1, q2, q3 ...} = {qt : t ∈ T}, where

T = {1, 2, 3, ...} is a time index, with qt ∈ {S1, S2, ..., SN} = {Sj : j ∈ [1, N ]},

called the state space, is a Markov chain if each state qt+1 depends only on the
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current state qt, which is called the Markov property and can be expressed as

follows:

P (qt+1 = Sj+1|qt = Sj , qt−1 = Sj−1, ..., q1 = S1) =

P (qt+1 = Sj+1|qt = Sj)

A Markov chain is said to be homogeneous if the transition probabilities

between states aij = P (qt+1 = Sj |qt = Si) are independent of time t, in which

case the probabilities can be represented by an N ×N matrix:

A =


a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N
...

...
. . .

...

aN,1 aN,2 . . . aN,N


where each row follows the probability condition

∑N
j=1 aij = 1,∀i. It can easily

be proven that the transition probabilities after k steps is given by Ak−1. State

Sj is said to communicate with state Sj (written Si → Sj) if the chain can

at some time visit state Sj with a positive probability starting from state Si.

Furthermore, it is said that states Si and Sj are interconnected (written Si ↔

Sj) if Si → Sj and Sj → Si. A Markov chain is defined as being irreducible if

Si ↔ Sj for all Si, Sj ∈ {S1, S2, . . . , SN}.

Given an irreducible and homogeneous Markov chain with the following ini-

tial probability distribution:

δ(t = 1) = (δ1(t = 1), δ2(t = 1), . . . , δN (t = 1))

= (P (q1 = S1), P (q1 = S2), . . . , P (q1 = SN ))

with the probability condition δ1′ = 1, where 1′ is a column vector of ones, it is

easy to calculate that after t = k state transitions the probability distribution

will be:
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Figure 1: On the left, a graphical representation of an HMM with two hidden states. On the

right, temporal evolution of an HMM.

δ(t = k) = (δ1(t = k), δ2(t = 1), . . . , δN (t = 1))

= (P (qk = S1), P (qk = S2), . . . , P (qk = SN ))

= δ(1)Ak−1

It can be proven (Seneta, 2006) that when t → ∞, δ = δ(t → ∞) =

δ(1)At→∞ converges to a fixed unique vector δ, which is called the stationary

distribution of the probability matrix A, and the Markov chain is also said to

be stationary, that is:

δA = δ with δ1′ = 1 (1)

We will use the stationary distribution in Section 4 when modeling the sta-

tionary autocorrelation and histogram of an HMM that models the RSSI Wi-Fi

signal.

3.2. Hidden Markov models

Following the presentation of HMM given in (Rabiner, 1989), an HMM is

characterized by:

1. The number of hidden states N . An individual state is denoted as S ∈

{S1, S2, ..., SN}, and the state at time t is qt.

2. The number of different observation symbols M . An individual symbol is

denoted as V ∈ {V1, V2, ...VM}.
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3. The probability distributions matrix for transitions between two states

A = {aij}, where aij = P (qt+1 = Sj |qt = Si), 1 ≤ i, j ≤ N .

4. The probability distribution vector for observing a symbol in state j,B =

{bj(k)}, where bj(k) = P (vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M .

5. The probability distributions vector for initial states π = {πi} where

πi = P (q1 = Si), 1 ≤ i ≤ N .

Note that characteristics 1 and 3 are the same as for the definition of a

Markov chain. Note too that due to characteristic 4, the probability of ob-

servation bj(k) only depends on states qt = Sj and it is independent of any

other previous state qt−1, qt−2, ..., q1. An HMM can be compactly represented

as λ = (A,B,π). Thus, an HMM is composed of two processes, a Markov

chain which determines the state at time t (qt = Si), and a stochastic process at

each state j ∈ {1, 2, . . . , N}, which generates the observations with probability

distribution j,B = {bj(k)}. In this work only homogeneous and irreducible

HMMs are considered.

Figure 1, on the left, represents an HMM with two states. Each state is rep-

resented by a node which contains the probability distribution bj(k) of observing

each symbol V ∈ {V1, V2, ...VM}. Each directed edge represents a transition be-

tween two states with probability distribution aij . The arrows represent the

probability distribution for the initial states πi. The emissions vt for each state

qt and the underlying Markov chain are shown on the right of Figure 1.

An interesting question is (Problem 3 in (Rabiner, 1989)) how to find the

HMM λ = (A,B,π) which maximizes P (O|λ) for a given number of hidden

states N , a given number of observation symbols M , and a sequence of ob-

servations O = O1, O2, ..., OT ; Oi ∈ V . One solution to this problem is the

Baum-Welch algorithm, which is a kind of Expectation-Maximization (EM)

method that uses the forward and backward probabilities to estimate A and

B (see references: (Baum et al., 1970; Rabiner, 1989; Jurafsky, 2000)). The

Baum-Welch algorithm has been used to create all the HMMs implemented in

this work.

9



4. Modeling RSSI Wi-Fi signals using HMM

This section first presents how to calculate the autocorrelation coefficients in

a sequence of observations O = O1, O2, ..., OT ; Oi ∈ V from the parameters of

the HMM that models such a sequence. Then, the method used to calculate the

probability histogram from the parameters of the HMM is described. Finally,

the issue of absent values in the sequences of data is presented along with how

an HMM can manage these absent values.

4.1. Autocorrelation for HMM

The autocorrelation ρl of a stochastic process O = O1, O2, . . . , OT with

observations Oi ∈ V of length T for a lag l is the correlation between values

of the process at different lag l times and it is calculated using the following

formula (Murphy, 2012):

ρl =

1
T−l

T−l∑
t=1

(Ot − Ō)(Ot+l − Ō)

1
T−1

T∑
t=1

(Ot − Ō)2
(2)

The denominator of the above formula is the variance of the sequence of obser-

vations O. This formula can be rewritten as:

ρl =

∑
(Vi,Vj)∈V

(Vi − Ō)(Vj − Ō)

[
1

T−l

T−l∑
t=1

P (Vi(t+ l), Vj(t))

]
Vi∈V∑
Vi

(Vi − Ō)2
[

1
T−1

T∑
t=1

P (Vi(t))

] (3)

where P (Vi(t + l), Vj(t)) is the joint probability distribution of observation

Ot+l = Vi at time t + l and observation Ot = Vj at time t regardless of the

states at time t + l and t, respectively. The above formula is computationally

interesting because the sum of observations Oi and Oj is independent of the

sum of the time t and the lag l, so no recalculation of the first sum is needed if

the lag l is changed. If we define V as the matrix:
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V =


(V1 − Ō)(V1 − Ō) (V1 − Ō)(V2 − Ō) . . . (V1 − Ō)(VM − Ō)

(V2 − Ō)(V1 − Ō) (V2 − Ō)(V2 − Ō) . . . (V2 − Ō)(VM − Ō)

...
...

. . .
...

(VM − Ō)(V1 − Ō) (VM − Ō)(V2 − Ō) . . . (VM − Ō)(VM − Ō)


and P l as the matrix:

P l = 1
T−l



T−l∑
t=1

P (V1(t + l), V1(t))
T−l∑
t=1

P (V1(t + l), V2(t)) . . .
T−l∑
t=1

P (V1(t + l), VM (t))

T−l∑
t=1

P (V2(t + l), V1(t))
T−l∑
t=1

P (V2(t + l), V2(t)) . . .
T−l∑
t=1

P (V2(t + l), VM (t))

...
...

. . .
...

T−l∑
t=1

P (VM (t + l), V1(t))
T−l∑
t=1

P (VM (t + l), V2(t)) . . .
T−l∑
t=1

P (VM (t + l), VM (t))


the autocorrelation in Equation 3 can be calculated by the formula:

ρl = sum(V ∗ P T
l ) (4)

where the ∗ operation is the element-by-element multiplication of the two ma-

trices, and sum is the sum of all the elements in the resulting matrix.

The joint probability distribution P (Vi(t + l), Vj(t)) in the numerator of

Eq. 3 can be calculated by applying the chain rule and summing up all the

intermediate states, regardless of the intermediate emissions as follows:

P (Vi(t+ l), Vj(t)) =
∑

Sk(t+l),Sk(t+l−1),...,Sk(t)∈S

P (Vi(t+ l)|Sk(t+ l))P (Sk(t+ l)|Sk(t+ l − 1))

P (Sk(t+ l − 1)|Sk(t+ l − 2)) . . . P (Sk(t+ 1)|Sk(t))P (Vj(t)|Sk(t))P (Sk(t)) =∑
Sk(t+l),Sk(t)∈S

P (Vi(t+ l)|Sk(t+ l)){Al}i,jP (Vj(t)|Sk(t))P (Sk(t))

where P (Vi(t + l)|Sk(t + l)) is the probability of emitting the observation Vi

in state Sk and at time t + l. If we assume that the emission probability is

independent of time, we get P (Vi(t + l)|Sk(t + l) = P (Vi(t)|Sk(t) = P (Vi|Sk),

which can be expressed as a matrix O, where each element Oki = P (Vi|Sk).

Analogously, P (S1(t)), P (S2(t)), . . . p(SN (t)) are the probability of being in state

11



S1, S2, . . . , SN after time t, which can be represented as a vector as S(t) = πAt.

Equation 4.1 can be rewritten using matrices as:

P (Vi(t+ l), Vj(t)) = V ij = {[O∗̄S(t)]
T
AlO}ij

V = [O∗̄S(t)]
T
AlO

where the operation O∗̄S(t) multiplies each column vector in O element by

element by the elements in vector S(t):

O∗̄S(t) =


O1,1S1(t) O2,1S1(t) . . . OM,1S1(t)

O1,2S2(t) O2,2S2(t) . . . OM,2S2(t)
...

...
. . .

...

O1,NSN (t) O2,NSN (t) . . . OM,NSN (t)


Note that for a long sequence of observations with t → ∞ and using Equation

1, one can write:

lim
t→∞

S(t) = lim
t→∞

πAt = δ (5)

and so:

lim
t→∞

P (Vi(t+ l), Vj(t)) = lim
t→∞
{[O∗̄S(t)]

T
AlO}ij = {[O∗̄δ]

T
AlO}ij = Vij (6)

This expression is independent of time t, and only depends on lag l. In addition,

when t→∞ the limit for any element in matrix P l is:

lim
T→∞

P (Vi(T + l), Vj(T )) = lim
T→∞

1

T − l

T−l∑
t=1

P (Vi(t+ l), Vj(t)) = Vij (7)

The same rationale can be applied to the denominator of the autocorre-

lation in Equation 3. Finally, the autocorrelation for an infinite sequence of
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observations generated by an HMM can be written as:

ρl =

∑
(Vi,Vj)∈V

(Vi − Ō)(Vj − Ō)Vij

Vi∈V∑
Vi

(Vi − Ō)2Vii

(8)

This equation provides the autocorrelation coefficient for lag l based only on

the parameters that define an HMM.

4.2. Probability histogram generated by a HMM

The probability histogram of a set of N observations for each element in the

vocabulary, taking into account characteristic 4 of HMMs (see Section 3.2), is

given by:

pT (Oi) =
1

T

T∑
t=1

∑
Sj(t)∈{S1,...,SN}

p(Ot = Oi|Sj(t)) (9)

For all elements in the vocabulary V ∈ {V1, . . . , VM}, the following matrix

expression can be used:

pT (O) =
1

T

T∑
t=1

πAtO (10)

where S(t) = πAt. One could consider the probability histogram when t→∞

using Equation 5:

lim
t→∞

pt(O) = δO (11)

Equation 11 has the following meaning: the probability distribution of ob-

servations in the stationary state is the probability distribution of observations

in each state O weighted by the distribution function of the stationary state δ.

4.3. Absent values in the temporal series

When acquiring Wi-Fi measures in real cases, sometimes no measure might

be obtained for a certain WAP. The main reasons explaining this behavior are:

a) the strength of the Wi-Fi signal is too low to measure due to the long distance
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between the WAP and the point where the measurement was taken; b) the

absorption suffered by the signal when traversing walls and furniture present

in the environment causes the signal to disappear; c) the software or electronic

circuits have been unable to perform the measurement at this time. Commonly,

in the domain of Wi-Fi fingerprinting, absent values are substituted by an ad-

hoc value, −100dBm (see for example the histogram for mac 6 in Figure 4).

In some applications that use Wi-Fi signals to perform their tasks, such as

indoor location (He & Chan, 2015; Torres-Sospedra et al., 2015) where machine

learning algorithms based on some distance metrics are used, this ad-hoc value

could have some impact on the final result.

When using an HMM, an absent value is just another symbol in the vocabu-

lary of possible symbols present in the RSSI Wi-Fi signal; in fact, the vocabulary

for an HMM can be completely replaced by a new one and the HMM will model

the same behavior present in the observations.

Hence, it can be said that an HMM can work naturally with absent values

present in the RSSI Wi-Fi signal.

5. Experimental Results

This section first presents the experimental setup, data acquisition, and data

analysis. It then presents exhaustive experimentation conducted in order to

study the dependency of the calculated autocorrelation coefficients with the

number of iterations and the number of hidden states when creating the HMM.

Finally, the histogram generated using a mixture of Gaussian pdfs and an HMM

are compared with the histogram of the original data using the Kullback-Leibler

(KL) divergence.

5.1. Data acquisition

The data for this work were acquired at the Department of Computer Lan-

guages and Systems, which belongs to Universitat Jaume I in Castelló de la

Plana, Spain. Altogether 500 consecutive Wi-Fi samples were acquired. Not all
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Figure 2: Map of the build where Wi-Fi samples were collected. The building is made of three

plants and the basement. The map shows the location of the WAPs (black circles with plant

number in parenthesis), and the laptop used to collect the data (black cross inside office with

code TI1202DD).The three plants have similar offices distribution.

sampling attempts provided a value: in the case of mac 6, 403 out of a total

of 500 sampling attempts were successful. These absent values were replaced

by the value −100dBm., which is the replacement value typically used in the

domain of Wi-Fi fingerprinting. Only the signals coming from WAPs belonging

to the eduroam Wi-Fi network were used. Signals coming from other Wi-Fi

networks were filtered out. The eduroam network is an academic Wi-Fi network

present on campuses and other research premises. Eduroam WAPs points

were used to avoid any bias when deploying ad-hoc networks for ex-

perimental purposes. Figure 2 presents a map showing the location

of the WAPs and the laptop used to collect the data. Table 1 shows

the Mac addresses of the six WAPs used in this work, and statistics of the

datasets thus acquired. The hardware used to acquire the RSSI Wi-Fi signals

was a Lenovo Ideapad 330 laptop equipped with an Intel Wireless-AC 9560 chip.

The software used was an ad-hoc Java application running with administration

privileges.
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Table 1: Characteristics of the datasets. The column with the heading #Samples shows the

number of samples acquired for each Mac address. Mean and standard deviation are in dBm.

Absent samples were not replaced by -100 dBm before calculating the mean and standard

deviation

ID Mac address #Samples Mean Sd

mac 1 00:1A:6D:9B:9A:21 500 −69.92± 0.18 4.10± 0.13

mac 2 00:1A:A1:5C:F9:61 500 −70.92± 0.19 4.30± 0.14

mac 3 00:13:C3:44:D8:E1 500 −63.02± 0.19 4.24± 0.13

mac 4 00:13:1C:DD:FC:41 500 −60.58± 0.17 3.78± 0.12

mac 5 00:17:59:FB:19:51 500 −77.93± 0.13 2.87± 0.09

mac 6 00:13:C3:44:D6:71 403 −80.69± 0.13 2.56± 0.09

5.2. Data analysis

The column on the left of Figures 3 and 4 shows the histograms of 500

samples for each of the RSSI Wi-Fi signals analyzed. The superimposed curve

is the Gaussian pdf fit of the data. For the case of mac 6, the RSSI = −100

values were excluded before the fit. The column on the right in the same figures

shows the first ten autocorrelation values of the corresponding signals.

Each dataset was fitted to a Gaussian pdf using the R package MASS ; the

fitted parameters are shown in Table 1. To assess the goodness of each fit,

the Pearson (Pearson, 1900), Anderson-Darling (Anderson & Darling, 1954),

Shapiro-Wilk (Shapiro & Wilk, 1965), and Jarque-Bera (Jarque & Bera, 1987)

normality tests were used. The Jarque-Bera normality test is robust regarding

the number of samples used in the test, but the other tests used are less ro-

bust regarding the number of samples. To take this dependency into account,

normality tests were performed on groups of 25, 50, 75 and 100 samples each.

In addition, the normality tests were also performed on data sampled from the

fitted Gaussian pdf using the same group sizes as for the real data, which allows

the results for real and sampled data to be compared. For the Gaussian pdf

fitted, real numbers where rounded to the nearest integer before applying the

normality tests. Results for the p-value are shown in Tables 2 - 4, the header

of each column is the number of consecutive samples used in the test; i.e., for
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Table 2: p-values for the results of the Pearson normality tests. The column headers stand for

the number of samples taken for each test. Each cell is for the mean p-value and its standard

deviation for the sample sizes in each column.

25 50 75 100

mac 1 0.1±0.2 0.04±0.1 0.02±0.03 2e-08±5e-08

normal 0.2±0.2 0.3±0.3 0.3±0.3 0.08±0.2

mac 2 0.05±0.09 0.008±0.02 1e-04±4e-04 9e-09±1e-08

normal 0.4±0.3 0.3±0.3 0.2±0.3 0.3±0.5

mac 3 0.02±0.04 0.03±0.08 0.02±0.05 0.002±0.005

normal 0.3±0.2 0.3±0.3 0.2±0.3 0.3±0.3

mac 4 0.05±0.1 0.01±0.03 0.004±0.01 1e-05±2e-05

normal 0.3±0.3 0.2±0.2 0.2±0.2 0.09±0.1

mac 5 0.02±0.03 9e-06±2e-05 2e-05±4e-05 5e-07±1e-06

normal 0.4±0.3 0.06±0.1 0.002±0.005 9e-07±2e-06

mac 6 9e-06±3e-05 4e-11±1e-10 8e-17±2e-16 2e-19±3e-19

normal 0.2±0.2 0.02±0.07 5e-06±8e-06 7e-13±9e-13

the column with header 25, 20 groups of 25 samples each were used, the first

group with samples for indices from 1 to 25 in the temporal series, the second

group with indices from 26 to 50, and so on. The value in each cell in Table 1 is

the mean and standard deviation of the p-value. Taking the standard rejection

p-value = 0.05 for mac 1, the p-values for all tests are compatible with the no

normality assumption in all cases. For mac 2 and mac 3, the p-values for all

tests are compatible with the no normality assumption, except for the Jarque-

Bera test with a group size of 25 samples (p-value = 0.3 ± 0.2 in both cases).

For mac 4, the p-values for all tests are compatible with the no normality as-

sumption except for the Jarque-Bera test, which, on the contrary, is compatible

with the normality assumption for all grouping sizes. For mac 5 and mac 6, the

p-values for all tests are compatible with the no normality assumption.

Therefore, on the basis of the results provided by the normality tests per-

formed, the assumption of normality on the RSSI Wi-Fi signals analyzed is very

weak.
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Table 3: p-values for the results of the Anderson-Darling normality tests. The column headers

stand for the number of samples taken for each test. Each cell is for the mean p-value and its

standard deviation for the groups of sample sizes in each column.

25 50 75 100

mac 1 0.06±0.1 0.01±0.02 0.008±0.02 8e-06±1e-05

normal 0.5±0.3 0.3±0.1 0.1±0.1 0.2±0.2

mac 2 0.01±0.03 0.003±0.01 4e-04±9e-04 5e-06±1e-05

normal 0.3±0.2 0.2±0.2 0.2±0.2 0.2±0.04

mac 3 0.04±0.1 0.003±0.005 0.04±0.1 0.01±0.03

normal 0.4±0.3 0.3±0.3 0.2±0.1 0.2±0.1

mac 4 0.03±0.07 0.002±0.004 0.01±0.03 5e-04±0.001

normal 0.4±0.2 0.3±0.3 0.2±0.1 0.1±0.02

mac 5 0.03±0.05 0.006±0.01 8e-04±0.002 3e-04±2e-04

normal 0.3±0.2 0.2±0.1 0.09±0.05 0.02±0.02

mac 6 7e-05±3e-04 6e-06±1e-05 5e-05±1e-04 2e-05±3e-05

normal 0.2±0.2 0.1±0.1 0.05±0.04 0.02±0.01

5.3. Assessment in preserving the autocorrelation by HMM Wi-Fi modeling

Figures 3 - 4 show, in the column on the right, the autocorrelation coef-

ficients for each RSSI Wi-Fi signal used in this work. For mac 2, mac 5 and

mac 6, the first ten autocorrelation coefficients are greater than 0.2. For mac 3,

the autocorrelation coefficients alternate between values greater than 0.4 and

values close to 0.1. For mac 4, the autocorrelation coefficients alternate between

positive and negative values. Finally, for mac 1, the autocorrelation coefficients

are low but greater than 0.1 in all cases except for the autocorrelation coefficient

in index 9, which is lower than 0.1. From all these figures a clear autocorrelation

can be observed in the temporal series of the RSSI Wi-Fi signals.

In contrast, the samples generated by a normal distribution, or a mixture of

normal distributions, are independent, and hence no autocorrelation is present

in a sequence of data generated by a normal distribution. Figure 5 shows the

histogram for 500 samples generated by a mixture of normal distributions (de-

tails on fitting the data to a mixture of normal distributions are presented in
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Table 4: p-values for the results of the Shapiro-Wilk normality tests. The column headers

stand for the number of samples taken for each test. Each cell is for the mean p-value and its

standard deviation for the groups of sample sizes in each column.

25 50 75 100

mac 1 0.08±0.2 0.02±0.05 0.02±0.04 1e-04±1e-04

normal 0.4±0.2 0.4±0.2 0.2±0.2 0.3±0.2

mac 2 0.02±0.05 0.007±0.02 6e-04±0.001 6e-05±1e-04

normal 0.4±0.3 0.3±0.3 0.4±0.4 0.4±0.4

mac 3 0.05±0.1 0.007±0.01 0.07±0.2 0.04±0.08

normal 0.4±0.3 0.4±0.2 0.4±0.3 0.1±0.1

mac 4 0.03±0.05 0.003±0.005 0.01±0.03 0.001±0.002

normal 0.5±0.3 0.4±0.2 0.3±0.2 0.3±0.2

mac 5 0.05±0.08 0.02±0.04 0.003±0.004 0.002±0.001

normal 0.4±0.2 0.2±0.2 0.1±0.1 0.1±0.2

mac 6 1e-04±2e-04 7e-05±1e-04 3e-04±5e-04 1e-04±2e-04

normal 0.3±0.2 0.1±0.1 0.1±0.1 0.04±0.04

Section 5.4) on the left, and its autocorrelation coefficients on the right. It can

be observed that all autocorrelation coefficients are close to zero. The same

result was obtained for the other RSSI Wi-Fi datasets used in this work.

In the following sections, we first present the dependency of the autocor-

relation coefficients on the number of iterations used to create an HMM. We

then present the dependency of the autocorrelation coefficients on the number

of hidden states used to create an HMM.

5.3.1. Autocorrelation depending on the number of iterations

This section presents the results on the evolution of the autocorrelation

coefficients depending on the number of iterations used to create an HMM.

Figure 6 shows the results for each of the six WAPs used in the experiments.

The number of hidden states used to create each HMM was 12 in all cases.

The first ten coefficients were studied, labeled lag 1 to lag 10. Equation 4 was

used to calculate the autocorrelation coefficients for an HMM, and a temporal
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Table 5: p-values for the results of the Jarque-Bera normality tests. The column headers

stand for the number of samples taken for each test. Each cell is for the mean p-value and its

standard deviation for the groups of sample sizes in each column.

25 50 75 100

mac 1 0.2±0.2 0.1±0.1 0.1±0.2 0.03±0.04

normal 0.7±0.2 0.6±0.3 0.7±0.2 0.6±0.3

mac 2 0.3±0.2 0.1±0.2 0.05±0.06 0.02±0.02

normal 0.6±0.3 0.6±0.3 0.4±0.3 0.4±0.4

mac 3 0.3±0.2 0.1±0.2 0.1±0.2 0.1±0.2

normal 0.6±0.2 0.6±0.3 0.6±0.3 0.5±0.5

mac 4 0.5±0.3 0.4±0.3 0.3±0.2 0.2±0.1

normal 0.6±0.2 0.6±0.3 0.6±0.3 0.6±0.2

mac 5 0.3±0.3 0.2±0.4 0.1±0.1 0.2±0.3

normal 0.6±0.2 0.5±0.3 0.5±0.2 0.8±0.2

mac 6 0.2±0.2 0.3±0.4 0.4±0.4 0.2±0.2

normal 0.6±0.3 0.5±0.4 0.7±0.2 0.5±0.4

series length of 500 samples. Each curve in a plot shows the evolution of one of

the ten coefficients studied. The last column in each plot shows the value for

the autocorrelation coefficients calculated using the real RSSI Wi-Fi temporal

series.

In a general way, it can be said that the autocorrelation coefficients approach

the real values when more iterations are used to create the HMM. For mac 4,

the autocorrelation coefficients are close to 0 when the number of iterations

used to create an HMM is lower than 50, but when the number of iterations

is equal to or greater than 50, the coefficients quickly approach the real ones.

For mac 1, the trend is much smoother when compared to mac 4. For mac 2,

mac 5 and mac 6, there is a jump when the number of iterations increases from

20 to 30, followed by a plateau afterwards. The autocorrelation coefficients for

mac 3 do not follow the pattern of any other WAP: some coefficients (lag 2 to

lag 4) increase monotonically while others (lag 1, and lag 5 to lag 10) decrease
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monotonically.

5.3.2. Autocorrelation depending on the number of hidden states

This section presents the results on the evolution of the autocorrelation

coefficients depending on the number of hidden states used to create an HMM.

Six different HMMs were created with 6, 12, 25, 50, 75 and 100 hidden states,

using the data acquired for each of the six WAPs, as described in Section 5.1.

Figures 7 to 12 show the results for each of the six WAPs used in the experi-

ments. Each figure shows six different plots, one for each value of the number of

hidden states in the set: 6, 12, 25, 50, 75 or 100. Each plot shows the evolution

of the first ten autocorrelation coefficients, one curve for each coefficient, as the

number of iterations ranges between 10 and 100 in steps of 10 iterations. The

last column for each plot shows the autocorrelation coefficients from the real

temporal series of RSSI Wi-Fi signals calculated using the formula in Equa-

tion 2. The autocorrelation coefficients for the HMM and 500 samples were

calculated using Equation 4.

For mac 1 and 6 hidden states (Figure 7, the evolution of the autocorrelation

coefficients provided by the HMM is far from the real autocorrelation coefficients

regardless of the number of iterations used to create the HMM. In contrast, for

12 hidden states and 100 iterations, the coefficients are much closer to the real

values than in the case of 6 hidden states. The same results can be observed in

the evolution of the autocorrelation coefficients for plots when 25, 50, 75 and

100 hidden states were used to create the corresponding HMM.

For mac 2, mac 5 and mac 6 (Figures: 8, 11 and 12), even when the number

of hidden states is 6, if the number of iterations used to create the model was

greater than 50, the autocorrelation coefficients calculated for the corresponding

HMM are close to the real autocorrelation coefficients.

The evolution patterns of the autocorrelation coefficients for mac 3 and

mac 4 are not so clear as in the previous cases. But for mac 3 and mac 4

(Figures: 9 and 10), it can be seen that the number of iterations needed to

create the corresponding HMM in order to provide autocorrelation coefficients
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Table 6: Euclidean distance between the real autocorrelation coefficients and the autocorre-

lation coefficients for an HMM calculated with Equation 4 for each WAP studied. The Ratio

column stands for the ratio between the module of the vector of real autocorrelation coeffi-

cients and the module of the vector of HMM autocorrelation coefficients. The Cosine column

stands for the cosine between the vector of the real autocorrelation coefficients and the vector

of the HMM autocorrelation coefficients.

WAP States Iterations Distance Ratio Cosine

mac 1 50 80 0.04389 1.16251 0.91891

mac 2 75 60 0.02000 1.01248 0.99383

mac 3 75 90 0.05308 1.21710 0.98976

mac 4 6 100 0.08866 1.44270 0.97576

mac 5 75 60 0.00709 0.97476 0.99779

mac 6 50 70 0.00804 0.99312 0.99899

other than zero increases as the number of hidden states also increases.

Table 6 shows, for each WAP analyzed, the combination of the number of

states and the number of iterations used to create an HMM with the shortest

Euclidean distance between the real autocorrelation coefficients and the autocor-

relation coefficients for the corresponding HMM. While the Euclidean distance

is useful to compare the accuracy of the autocorrelation coefficients for the same

HMM using different combinations of the number of states and the number of

iterations, this distance is not so useful when comparing the autocorrelation

coefficients provided by an HMM for RSSI Wi-Fi signals generated by different

WAPs. In this last case, it can be useful to compare the ratio between the

module of the 10-dimensional vector for the first ten real autocorrelation coef-

ficients, and the autocorrelation coefficients provided by an HMM and also the

cosine between the two vectors. The closer the ratio and the cosine are to 1,

the greater the accuracy will be between real and HMM-provided autocorrela-

tion coefficients. Table 6 shows, in addition to the Euclidean distance, the ratio

between modules and the cosine between autocorrelation vectors for all RSSI

Wi-Fi signals used.

For all WAP analyzed, the shortest Euclidean distance between the real
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autocorrelation coefficients and the autocorrelation coefficients provided by an

HMM is 0.00709 for mac 5 with a combination of 50 hidden states and 80

iterations (see Table 6). But if the ratio between the vector modules and the

cosine between vectors are used, the ”closest” autocorrelation coefficients are

for mac 6 with 50 hidden states and 70 iterations (ratio = 0.99312, cosine =

0.99899). Leaving to one side mac 4, which provides the highest Euclidean

distance, the results in Table 6 show that the shortest distances are provided

by an HMM having 50 or 75 hidden states, and when the number of iterations

used to create them were between 60 and 90.

From the results shown in Table 6 for the RSSI Wi-Fi signal studied, it can be

said that a good choice to create an HMM from an RSSI Wi-Fi temporal series

is to choose between 50 and 75 hidden states and a number of iterations equal

to or greater than 60, to preserve the autocorrelation present in the original

signal.

5.4. Generated histograms

This section presents the accuracy between the histogram for the real data,

and the histograms provided by a mixture of Gaussian pdfs and by an HMM.

The real data were fitted to a mixture of normal probability distribution

functions before comparing their generated histograms with the histogram for

the real data. Table 7 shows the fitted mixtures determined for each WAP. The

R package mixtools was used to perform the fit. The number of normal distri-

butions for each WAP was set to the maximum number of normal distributions

that performed a convergent fit. The probability for each RSSI value in the

histogram was calculated by integrating the mixture of Gaussian pdfs between

x ∈ [RSSIn−1, RSSIn).

For each HMM, two histograms were calculated for each WAP. The first

histogram was calculated using the probability given by Equation 10 and a

length for the sequence of 500 samples. The second histogram was calculated

using the probability given by Equation 11 when t → ∞; we name this result

”KL-divergence for theoretical HMM”.
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Table 7: Mixture fits for each WAP. The number of Gaussian pdfs in the fit is the optimum

number that provides the lowest KL-divergence regarding the real data.

Mac µ σ λ Mac µ σ λ

1

-79.39057 1.16038 0.07381

4

-67.69326 1.91877 0.11290

-70.16000 1.14648 0.12401 -62.32896 1.26513 0.42604

-68.62251 2.27171 0.43916 -58.52591 0.92952 0.18611

-61.27791 0.70445 0.05236 -56.34613 1.05006 0.27492

-68.61769 0.64507 0.18644

5

-79.93687 2.23901 0.34554

-74.27176 1.36520 0.12420 -78.48352 1.33541 0.43515

2

-78.87969 1.29469 0.11639 -73.65112 0.95534 0.21929

-72.18136 1.35310 0.51508

6

-84.03421 1.48227 0.19544

-69.39329 0.70383 0.15841 -81.63146 0.67906 0.33126

-64.57878 1.20245 0.21010 -73.77455 1.03478 0.03534

3

-69.85665 1.63068 0.12973 -79.04889 1.16163 0.43794

-63.74287 2.21468 0.64044

-57.15481 0.98498 0.22981

KL-divergence (Kullback & Leibler, 1951) was used to compare real and

calculated histograms. Results for the KL-divergence are shown in Table 8.

In all cases, the KL-divergence between the real histogram and the histograms

generated by an HMM are lower than the KL-divergence between the real his-

togram and the histogram generated by a mixture of Gaussian pdfs. Note that

for mac 6 the high value of the KL-divergence for the mixture of normal distri-

bution functions is due to the absent values (codified as RSSI = −100) that

where excluded before the fit. Note also that for all HMM the KL-divergence

for the theoretical histogram and the histogram calculated for 500 samples are

very similar, with the exception of mac 6. The KL-divergence provided by the

theoretical HMM is very similar to the KL-divergence provided by the HMM

using 500 samples.

It can be concluded that, for all cases studied, an HMM which fits a real

RSSI Wi-Fi signal is able to generate a more accurate histogram than a fit to a

mixture of Gaussian pdfs.
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Table 8: KL-divergence between the histogram from the real sequence of data and the his-

tograms for the HMM of length 500, the histogram for a length tending to infinity, and the

optimum mixture of Gaussian pdfs to fit the real data.

Mac
KL-div.

HMM(500)

KL-div.

HMM theoretical

KL-div.

Gauss. mixture

mac 1 0.0003 0.0003 0.0510

mac 2 0.0005 0.0005 0.1562

mac 3 0.0139 0.0140 0.0862

mac 4 0.0323 0.0326 0.0587

mac 5 0.0065 0.0065 0.0508

mac 6 0.0027 0.0015 10.4443

6. Conclusions and future work

Wi-Fi fingerprinting uses RSSI Wi-Fi signals to provide location-based ser-

vices. Although representing RSSI Wi-Fi signals using a Gaussian pdf is the

preferred model in the domain of Wi-Fi fingerprinting, this work has shown that

HMMs are a better model in terms of histogram accuracy and autocorrelation

preservation. A well-known characteristic of RSSI Wi-Fi histograms is their be-

ing skewed, and this cannot be modeled using only one Gaussian pdf. Although

using a mixture of Gaussian pdfs could be a solution to model the skewed RSSI

Wi-Fi histogram, we have shown, using a KL-divergence analysis between the

real and modeled histograms, that HMM models RSSI Wi-Fi signals better than

a mixture of Gaussian pdfs.

Another characteristic present in the RSSI Wi-Fi temporal series is autocor-

relation, which cannot be preserved by means of a mixture of Gaussian pdfs.

Again, HMM can naturally model the autocorrelation present in the RSSI Wi-

Fi signal. We have developed the mathematical formulation to calculate the

autocorrelation coefficient from the HMM parameters. Through extensive ex-

perimentation we have shown the dependency of the calculated autocorrelation

coefficients regarding the number of hidden states, and the number of iterations

used to create an HMM model. In addition, we have developed the mathemat-
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ical formulation for calculating autocorrelation coefficients for the static case.

HMM models have two interesting properties that may be used in the domain

of Wi-Fi fingerprinting. The first one is that they can be applied to forecast a

temporal series in the future, which could be used to create ”virtual” WAPs by

generating such temporal series. This is one of our lines of future work, to create

such ”virtual” WAPs in order to improve the accuracy of a Wi-Fi fingerprinting

method. The second property is that, like any other generative model, they

can offer the probability of generating a sequence of RSSI Wi-Fi samples by the

HMM, which could be used to develop a location algorithm. This is another

of our lines of future work: to develop an indoor location algorithm which

will use the probability of generating a temporal series to estimate the user’s

location. Device diversity is a challenging issue when developing indoor

location algorithms. The work presented in this paper might be useful

to address this issue since RSSI Wi-Fi signal presents autocorrelation

regardless the devices used as emitter (WAPs) or receiver (mobile

phones, laptops, smart-watches, etc.).

The main drawback in the use of the HMM to model RSSI Wi-Fi signals is

the amount of information needed to store the models compared with a mix-

ture of Gaussian pdfs, where only two parameters are needed per Gaussian pdf.

Nevertheless, we think that the two aforementioned properties of the HMM are

very interesting regardless of the overhead in storage space.

Regarding the complexity to use this model in a real scenario, to

work with HMMs mostly implies matrix multiplication operations.

The size of such a matrix depends on the number of states used in

the model. In the experiments presented in this paper, we have used

up to 100 states which means a matrix of size 100x100. Although

the size of the matrix could seem big, even current hardware present

in mobile phones is powerful enough to perform these operations in

milliseconds. This operational time could be even reduced if ma-

trix multiplication were performed using graphics hardware already

present in most consumer mobile phones. Regarding database cre-
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ation time, fingerprinting database creation is made of two stages:

i) data collection, and ii) model creation. Data collection is a time

consuming task, but it is performed only once. In our case to collect

500 Wi-Fi samples took almost 10 minutes. To create a HMM using

the Waum-Welch algorithm depends on two factors: i) the number

of samples, and ii) the number of iterations used to fit the model.

Although this could be a time consuming task, it is performed only

once. In our case, to create a HMM using 500 samples and 100 itera-

tions took almost 20 minutes using an Ideapad laptop equipped with

an i7-8750 CPU, 16 GB of RAM and running Ubuntu 20.04.
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Figure 3: The histograms for mac 1 to mac 4 using 500 samples are shown on the left. The

first ten autocorrelation coefficients are shown in plots on the right; the horizontal dotted lines

represent the value 0.1 (top) and the value -0.1 (bottom).
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Figure 4: The histograms for mac 5 amd mac 6 using 500 samples are shown on the left. The

first ten autocorrelation coefficients are shown in plots on the right; the horizontal dotted lines

represent the value 0.1 (top) and the value -0.1 (bottom).

Figure 5: Data histogram and autocorrelation coefficients for real RSSI Wi-Fi signals for

mac 2, and for the fit of a mixture of normal distributions for mac 2. The superimposed

curve in the histogram figure is for the Gaussian pdf fit of the data.
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Figure 6: Accuracy of autocorrelation coefficients regarding the number of iterations to create

the HMM. The number of states was 12 for all the HMMs created. The data in the last row

of the x-axis (solid circles) is for the autocorrelation values calculated from the real data.
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Figure 7: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 in steps of 10.
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Figure 8: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 in steps of 10.
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Figure 9: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 in steps of 10.
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Figure 10: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 in steps of 10.
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Figure 11: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 in steps of 10.
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Figure 12: Autocorrelation coefficients when the number of hidden states used to create the

HMM was 6, 12, 25, 50, 75 and 100. Each plot shows the evolution, for a fixed number of

hidden states, when the number of iterations ranges between 10 and 100 by 10 steps.
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