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Abstract

Text has traditionally been used to train automated classifiers for a multi-

tude of purposes, such as: classification, topic modelling and sentiment analysis.

State-of-the-art LSTM classifier require a large number of training examples to

avoid biases and successfully generalise. Labelled data greatly improves classi-

fication results, but not all modern datasets include large numbers of labelled

examples. Labelling is a complex task that can be expensive, time-consuming,

and potentially introduces biases. Data augmentation methods create synthetic

data based on existing labelled examples, with the goal of improving classifica-

tion results. These methods have been successfully used in image classification

tasks and recent research has extended them to text classification. We propose

a method that uses sentence permutations to augment an initial dataset, while

retaining key statistical properties of the dataset. We evaluate our method with

eight different datasets and a baseline Deep Learning process. This permutation

method significantly improves classification accuracy by an average of 4.1%.

We also propose two more text augmentations that reverse the classification of

each augmented example, antonym and negation. We test these two augmen-
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tations in three eligible datasets, and the results suggest an -averaged, across

all datasets- improvement in classification accuracy of 0.35% for antonym and

0.4% for negation, when compared to our proposed permutation augmentation.

Keywords: Text; Augmentation; Multilabel; Multiclass; LSTM

1. Introduction

Text has traditionally been the most common form of asynchronous com-

munication. With the advent of social networks, a new source of textual infor-

mation has emerged: Online Social Network (OSN). OSN users employ text,

amongst other forms of communication, to convey all sorts of information, from

affiliation and political beliefs to emotion or news. From a computer science

perspective we can perform a multitude of processes to better understand and

maximise the information quality of text. These include, but are not limited to,

the analysis of term placement, its syntactic and semantic properties, the calcu-

lation of term frequency, or the removal of miss-spelled terms. Natural Language

Processing (NLP) describes all the computer processing and analysing methods

applied to text (Collobert et al., 2011).

Said processed text can then be used for a multitude of purposes. Machine

Learning (ML) utilises text information to classify new text information into

one or more distinct classes. Text information could refer to a full document of

variable length or even a small part of a sentence, while the classes are respec-

tive of the classification problem. Text (pre-)processing in the ML context has

proven to be beneficial to the classification task (Haralabopoulos et al., 2020a;

Camacho-Collados & Pilehvar, 2017). For example, the removal of marginally

important terms from a text corpus usually improves the classification (Silva &

Ribeiro, 2003).

In supervised learning, a model is trained in prelabelled text data. The labels

for text are most frequently provided by humans, recruited either in-house or

using crowdsourcing applications (Haralabopoulos & Simperl, 2017; Sigurdsson

et al., 2016). Human labelling of subjective text information is challenging
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(Haralabopoulos et al., 2018, 2020b), expensive (Haralabopoulos et al., 2019;

Ye & Kankanhalli, 2017), and time consuming, especially when performed at

a large scale. At the same time, the larger the labelled set, the better the

classification results (Liu et al., 2017). The question still remains: given a

limited number of labelled samples, how can we enhance the dataset with the

goal of improving classification results?

One answer that has been previously studied by the Machine Learning com-

munity is to augment the original dataset through the introduction of synthetic

data or, as it is referred to in the literature, perform data augmentation. Syn-

thetic data refers to new manipulated copies of input dataset samples injected

into the existing dataset. The idea comes from statistics (Tanner & Wong,

1987) and has been successfully applied in Computer Vision tasks (He et al.,

2008; Bolón-Canedo et al., 2013). Images can be processed through filters that

remove a colour channel, flip the images, rotate the image by x degrees, manip-

ulate shape edges and more. Text augmentation studies are limited but have

shown to improve classification accuracy (Wei & Zou, 2019; Dong et al., 2017).

Our contributions are as follows: First, we introduce a text augmentation

method that improves the classification results, while at the same time pre-

serving all the corpus’ statistics, such as term frequency and class distribution.

Furthermore, we propose two negation based augmentations, antonym replace-

ment and negation insertion. These augmentations reverse the classification of

each item, but require mutually exclusive classes. All of the proposed methods

are evaluated on the original dataset with the addition of a single synthetic

dataset. Permutation augmentation can be applied multiple times per dataset

without duplicating entries, thus avoiding overfitting, contrary to previously

proposed methods, such as random token rearrangement (Wei & Zou, 2019).

We compare our proposed augmentation methods with a range of simple

text augmentation approaches in eight diverse datasets. Our results suggest

that our permutation augmentation method improves classification accuracy by

4.1% compared to baseline and by 0.2% when compared to the best perform-

ing -previously introduced- augmentation method. Furthermore, antonym and
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negation augmentations improve classification accuracy by at least 0.35%, when

compared to permutation augmentation.
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Figure 1: Class distribution for multilabel datasets, MPST (a), SEMEVAL (b), TOXIC (c),

ISEAR (d)
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Figure 2: Class distribution for multiclass datasets, AG (a), ROBO (b), CROWD (c), PEMO
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2. Related Work

Data augmentation has a long history in statistics. In 1977 Dempster et. al

(Dempster et al., 1977) introduced an iterative algorithm for Maximum Like-

lihood Estimation from incomplete data. A decade later, Tanner and Wong

(Tanner & Wong, 1987) proposed an iterative filling of missing values in the

calculation of the Posterior Distribution, one of the first publications with syn-

thetic data insertion.

In the early 2000s, “Data Augmentation” was described by Vand Dyk and

Meng (Van Dyk & Meng, 2001) as a “method to create optimisation or sampling

processes with the infusion of unobserved data”. In a machine learning, data

augmentation refers mostly, if not entirely, to the second part of the previous

definition: the introduction of new training data in the process.
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Ko et al. (Ko et al., 2015) proposed the augmentation of a raw signal dataset

by increasing and decreasing its playback speed. Their method achieved a 4.5%

improvement over 4 different tasks. Similarly, Schlüter and Grill (Schlüter &

Grill, 2015) tested a range of audio signal augmentations, of which pitch shifting

was found to be the most effective in improving classification results. The high-

est reported improvement is of 0.1% on classification recall and almost 10.4%

on classification error.

In computer vision, there exist a multitude of data augmentation techniques,

most of which were introduced in the last decade. Miko lajczyk and Grochowski

(Miko lajczyk & Grochowski, 2018) surveyed image transformations, such as ro-

tation, crop and zoom, but also Style Transfer (Gatys et al., 2016) and Gener-

ative Adversarial Networks (Goodfellow et al., 2014). Recent studies also focus

on generative transformations in medicine applications, where data size can be

extremely limited (Zhao et al., 2019; Gupta et al., 2019).

One of the first studies to introduce data augmentation in text classification

dates back to 2006, when Lu et. al augmented the training data by introducing

new unlabelled data and assuming positive samples existed in them as well

(Lu et al., 2006). The proposed augmentation improved the classification Area

Under Curve by an average of 1.93%.

In 2017, Dong et al. (Dong et al., 2017) presented a text augmentation

process, in the context of text-to-image synthesis. Their method mapped syn-

onymous sentences to similar representation vectors which in turn are used

for image synthesis. Saito et. al (Saito et al., 2017) investigated augmenta-

tion for text-normalisation processes. Their proposed augmentation method

crowdsources new dialects for existing sentences. The study was based in three

Japanese dialects and their normalisation, for an encoder-decoder model. The

proposed augmentation improved the normalisation scores by an average of

3.03%. Kobayasi (Kobayashi, 2018) proposed a word replacement by a bi-

directional language model, i.e. a replacement based on paradigmatic relations.

They also fitted a language model with an architecture of label and condition,

which controls the augmentation without worsening the compatibility of labels.
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The average accuracy improvement, over six datasets, is 0.69%.

Data augmentations can also be performed with transformer models such

as BERT (Devlin et al., 2018). Kumar et al. (Kumar et al., 2020) evaluated

transformer models for conditional data augmentation that improved upon ex-

isting methods. Regarding transformer models performance, Ezen-Can (Ezen-

Can, 2020) compared chatbot performance of BERT to simpler models and

concluded that for simple tasks, BERT models require more training time and

achieve similar -or worse- results. Wei and Zou (Wei & Zou, 2019) presented

a set of data augmentation methods for boosting text classification. Their set

includes synonym term replacement, random term insertion, random term swap

and random term deletion. Their observed average performance improvement

across five tasks was 0.79%. Rizos et. al (Rizos et al., 2019) proposed three data

augmentation techniques towards hate speech classification. The augmentations

aim to reduce class imbalance and maximise information from limited datasets.

Their three methods were: term substitution, vector position shift and a neural

generative one. The combined application of all three augmentations improved

the F1 score by an average of 9.48%.

3. Methodology

Consider a sentence with n number of terms t1 t2 . . . tn. Our proposed

permutation augmentation methods aims to retain all statistical properties of

the dataset and preserve the information contained within a sentence. While

antonym and negation aim to combine a class reversal with the addition of con-

trasting terms. The data augmentation concept is based on a “more labelled

data – better training results” concept, which has shown to improve classifica-

tion results in both CNN (Krizhevsky et al., 2012) and RNN (Kobayashi, 2018)

architectures. We propose three different text data augmentation techniques:

• Permutation: each sentence is rearranged n! times, where n is the mini-

mum number of terms in a sentence of the corpus. This ensures that every
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sentence is equally permutated and major statistical properties remain in-

tact.

• Antonym: we replace a verb, adjective, or noun with its antonym. The

antonym replacement reverses the sentence meaning, and is followed by

a reversion of the classification. This method is only applicable in cases

where classes are comparable in a polarity spectrum.

• Negation: we negate the meaning within the sentence, by injecting a nega-

tion adverb. This results in the creation of a negated copy of the original

sentence with opposite classification. This method is only applicable in

cases where classes are comparable in a polarity spectrum.

Example of classes that are mutually exclusive can be found in emotion

classification, with opposite emotion classes as defined by Plutchik (Plutchik,

1980) or multi class classification tasks with self-cancelling classes (e.g. correct

versus wrong, right versus left in politics).

3.1. Datasets

We employ eight comprehensive datasets to experiment with the permutation

augmentation, four multilabel, Figure 1, and four multiclass datasets, Figure 2.

The multilabel datasets are: a corpus of Movie Plot Synopses Tags (MPST)

with related thematic classes (Kar et al., 2018), a collection of Tweets with

emotional annotation (SEMEVAL) (Mohammad et al., 2018), an extended set

of Wikipedia Comments with toxicity classes (TOXIC2) (Haralabopoulos et al.,

2020a) and a reannotated International Survey On Emotion Antecedents And

Reactions (ISEAR) dataset (Scherer & Wallbott, 1994; Troiano et al., 2019).

The multiclass datasets are: a multi class dataset of human to robot interac-

tion with specific scenario classes (ROBO) (rob), AG News Topic Classification

Dataset with topic categories (AG) (Zhang et al., 2015), and two crowdsourced

2https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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emotion datasets: one from Crowdflower (CROWD) and one with primary emo-

tion classification (PEMO).

MPSTSEMEVALTOXIC ISEAR AG ROBO CROWD PEMO
100

101

102

103

Figure 3: IQR of sentence length per dataset

The number of classes and the class distribution among the datasets are

varied, as shown in Figure 1 and Figure 2. MPST has 80 classes and each one

represents a movie plot tag. SEMEVAL has 11 classes, each representing an

emotion. TOXIC dataset has 6 classes for varied levels of toxicity or abuse.

AG has 4 classes that represents news categories. While ROBO dataset is

categorised in 5 different scenario classes. Class distribution ranges from equal

distribution, Figure 2a, to low variance, Figures 1a and 2b, and high variance

distributions, Figures 1b, 2d and 1c.

Dataset properties are summarised in Table 1. The number of sentences in

the datasets ranges from 525 in ROBO, to 159571 of TOXIC. The maximum

sentence length ranges from 33 words in MPST to 6434 words in AG. MPST is

a dataset with movie plot synopsis and expectedly the length of each sentence

8



Dataset Sentences Classes Max. Len. Tokens

MPST 15255 80 6434 461782

SEMEVAL 6838 11 33 24449

TOXIC 159571 6 1411 607736

ISEAR 1001 7 267 3944

AG 120000 4 122 123762

ROBO 525 5 29 466

CROWD 40000 11 34 83297

PEMO 2524 18 75 9230

Table 1: Dataset properties

is higher than tweets of SEMEVAL or human to robot interactions of ROBO.

The sentence length boxplots are visible in Figure 3. The highest median length

sentence in MPST is 650 terms and the lowest is 5 in ROBO.

We also process the CROWD, SEMEVAL and PEMO datasets to test our

proposed negation augmentation. We restrict the classes of the dataset to those

that are mutually exclusive as defined by Plutchik (Plutchik, 1980) or English

dictionaries.

3.2. Pre-processing

The pre-processing entails a robust cleaning of the data. The first step is to

remove contractions. The most precise automated method is based on GloVe

embeddings (Pennington et al., 2014) and the calculation of a probability for

each uncontracted phrase. The most probable one is chosen as the contraction

replacement. We then remove non-alphanumeric characters from the dataset,

followed by lowercase conversion. After the lowercase conversion, we remove a

number of insignificant frequent terms, based on an expanded list of English

stop-words (Popova & Skitalinskaya, 2017). Finally, we remove sentences with

less than 3 terms to retain sentences with at least 6 possible permutations.
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Figure 4: IQR of sentence length per dataset, post pre-processing

3.2.1. Representation

In our Bag of Words (BoW) model, each sentence is represented by a nu-

merical vector, referred to as an embedding. The length of each embedding is

determined by the length of the maximum sentence, and the number of total

tokens in the dataset. To reduce the length of each sentence and the number of

unique terms, which can have detrimental effects during training, we perform

a lemmatisation of terms in all datasets, followed by term-filtering based on

Term Frequency - Inverse Document Frequency ( tf-idf) (Chen et al., 2016) for

AG, CROWD, TOXIC and MPST datasets (denoted by *), as seen in Table 2.

Boxplot from the cleaned sentences’ length can be seen in Figure 4. The new

highest median length sentence is still found in MPST with 22 terms and the

lowest sentence length is in ROBO with 3 terms.

For the datasets that were tf-idf filtered, we calculated the tf-idf on the

pre-processed dataset and retained the 10% top scoring terms. This 10%-
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Dataset Sentences Classes Max. Len. Tokens

MPST* 14747 80 133 11076

SEMEVAL 6495 11 22 14110

TOXIC* 138719 6 163 16225

ISEAR 905 7 80 2412

AG* 88431 4 22 4730

ROBO 254 5 10 149

CROWD* 11377 11 11 1458

PEMO 2077 18 34 5565

Table 2: Dataset properties, post pre-processing

subset showed an average accuracy deterioration of -0.2% across all datasets,

but greatly reduced training times by an average of 530%, Table 3. Training

time reduction is due to the lower embedding dimension, which -as mentioned-

varies according to the number of term and the maximum sentence length.

Dataset Accuracy Improvement Training time reduction

MPST 0.94% 1080%

TOXIC -1.31% 212%

AG -2.08% 430%

CROWD 1.62% 400%

Table 3: TF-IDF filtering improvement

3.2.2. Permutation

Our proposed permutation augmentation method is based on all the possible

sentences that can be created from a predefined number of terms. For each

sentence in the corpus we create extra sentences by randomly re-positioning

all the terms. The exact same number of extra sentences is created for each
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sentence in the corpus. This ensures that the distribution of classes and term

frequency remains unaffected.

Our proposed augmentation is tested against a set of previously proposed

text augmentations:

• Random Deletion (RD) (Wei & Zou, 2019): Randomly remove one word

in each sentence.

• Synonym Replacement (SR) (Wei & Zou, 2019): Replace one word with

one of its synonyms chosen at random.

• Random Synonym Insertion (RSI) (Wei & Zou, 2019): Insert a random

synonym into a random position in the sentence.

The first augmentations simply deletes a single term from the sentence. The

second pair of augmentations, SR and RSI, is implemented with pre-trained

GloVe (Pennington et al., 2014) word vectors, although the original authors

most probably used fixed lexicons. For SR, we randomly select a term from

each sentence and calculate a similarity value with every term in GloVe. The

term with the highest similarity vector replaces the initial term. For RSI, a

random term is selected, for which we again calculate a similarity value through

GloVe, and the most similar term is inserted in a random position inside the

sentence. Both in SR and RSI, the synonym selected must not be the word

itself or its plural form.

For each augmentation a synthetic dataset is created. This synthetic dataset

is concatenated with the original dataset, creating a hybrid dataset that is

exactly twice the size of the original. Contrary to our augmentation method,

the hybrid dataset for: RD, SR and RSI, no longer retains the term statistical

properties of the initial dataset, since words are replaced, inserted or removed.

3.2.3. Datasets formulation

For the needs of antonym and negation augmentation methods we use sub-

sets of CROWD*, SEMEVAL and PEMO datasets. These datasets include
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opposite emotions, as described by Plutchik (Plutchik, 1980), and other oppo-

site classes as defined by English dictionaries. Out of the 11 original classes

in CROWD*, we define 2 pairs with opposite emotions: sadness-happiness and

hate-love, and one pair of opposite psychological state: boredom-fun. The rest

of the CROWD* classes are discarded. In SEMEVAL dataset, we identify 4

pairs of opposite emotions: joy-sadness, fear-anger, trust-disgust, anticipation-

surprise, along with a set of opposite mental attitudes: optimism-pessimism.

The only class discarded from SEMEVAL is ’love’. Lastly, in PEMO dataset,

out of the 18 original classes, we retain the classes in any of the following pairs:

fear-anger, joy-sadness, trust-disgust and anticipation-surprise.

3.2.4. Antonym

The first implementation of a class reversing augmentation is antonym. Ini-

tially, we replace the verb with its antonym in each valid sentence. If no verb

exists, we replace the adjective with its antonym, and if no adjective exists we

replace a noun with its antonym. The second step is to reverse the classes for

these valid sentences. A valid sentence translates to a sentence that: has a clas-

sification in the required classes and where an antonym can be found. The items

in the dataset that are not valid, are augmented via the permutation method.

Therefore this method is creating a same size synthetic dataset to the original,

comprised of permutation and antonym augmented items.

Part of speech (POS) tagging was made possible with nltk3 python4 package

and WordNet corpus reader. We created a fully automated algorithm that

detects and replaces verbs, adjectives or nouns. For each verb/adjective/noun

identified a WordNet antonym search was performed. If a verb antonym was

found, then it would be replaced in the sentence. If not, then the next POS

would be checked. If no POS had an antonym or the sentence had no suitable

POS, then the sentence would not be used in the antonym augmentation process.

3https://www.nltk.org/
4https://www.python.org/
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3.2.5. Negation

The second implementation is negation. A negation adverb is first inserted

in the middle of valid sentences. A valid sentence has a classification in any

of the remaining classes. Since not all the initial classes are mutually exclusive

and therefore kept in the dataset, non valid sentences are bound to exist. Valid

sentence with the inserted adverb then have their classification reversed. Once

more, items in the dataset that are not valid, are augmented via the permutation

method. Similarly, this method creates a same size synthetic dataset to the

original, comprised of permutation and negation augmented items.

TokenizeText
Embedding 

layer
Spatial 
Dropout

LSTM
Pooling

LSTM
Pooling

Flatten

Flatten

Dense 
Layer

Class

Figure 5: Our LSTM model

3.3. Model

Our deep learning model is based on Long Short Term Memory Networks

as proposed by Gers and Schmidhuber (Gers et al., 1999). The models utilises

two stacked LSTM layers that provide greater feature representation complexity

(Graves et al., 2013) and allow each hidden state to operate on a different time

frame (Pascanu et al., 2013). It has demonstrated excellent performance in

NLP classification tasks (Haralabopoulos et al., 2020a), outperforming modern

CNN architectures. After the pre-processing, data is tokenized and fed into the

embedding layer, where the text sentence is transformed to a numerical vector.

This vector functions as input to two Bi-directional LSTM Networks, a layer

of Average and Maximum Pooling, and a Flatten Layer. The pooling layers

discard non important data. The flatten layer converts the multi dimensional

input to a single dimension vector, which is fed in a densely connected layer

with fully connected neurons in accordance with the number of classes in each

dataset. Figure 5 shows the architecture of the network.
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4. Results

We evaluate each augmentation method based on the testing accuracy after

a 10-fold cross validation training and testing. The accuracy evaluation allows

for a direct comparison to similar data augmentation related studies (Wei &

Zou, 2019; Coulombe, 2018; Malandrakis et al., 2019). Baseline model is fed

the original dataset, after pre-processing but without any augmentation. In ad-

dition, hyper-parameters are constant throughout all datasets, 10 epochs with

batch size of 128. We present the mean accuracy score and the standard devia-

tion in parenthesis. The star symbol (*) in the dataset name denotes that the

dataset was filtered according to TF-IDF.

4.1. Permutation

Our multilabel datasets demonstrated the longest sentence sizes and rich vo-

cabularies. The sentence length plays a key role in the association of terms and

classes within the model (Acharya et al., 2019). This is reflected by the MPST*

results, where SR and RD both perform better than our proposed permutation

augmentation. RSI, with a low standard deviation, is the second most effec-

tive augmentation in ISEAR dataset, behind our proposed permutation with a

higher standard deviation. For SEMEVAL and TOXIC*, our permutation aug-

mentation is the top performing augmentation. The extra training data benefits

SEMEVAL the most, where our permutation improved classification accuracy

by 9.2%.

For the multiclass datasets, our proposed permutation method outperformed

all of the previously proposed permutations. ROBO dataset demonstrates the

highest improvement with the extra training data. ROBO is the smallest dataset

in our experiments and benefits from extra training data. The CROWD* dataset

accuracy plateaus at 92.37%, achieved by all three RSI, SI and RD. Our per-

mutation augmentation manages to overcome that but only slightly. AG has

the longest sentence length out of the multiclass datasets and its baseline accu-

racy is better than RD. This is probably due to tf-idf filtering, which already
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discarded unimportant terms from the dataset and any extra term removed has

a negative effect. With the exception of RD in AG, the extra training data

manages to improve the baseline accuracy on every occasion.

In seven out of the eight datasets we tested, our proposed permutation is

the most effective data augmentation method. Our permutation augmentation

improved classification accuracy over baseline methods by an average of 4.1%

and, compared to the best performing augmentation (RSI/SR/RD), our method

improved classification accuracy by an average of 0.22%.

Method MPST* SEMEVAL TOXIC* ISEAR

Baseline 95.99% (0.06%) 83.95% (0.38%) 97.65% (0.14%) 77.48% (1.90%)

RSI 96.21% (0.05%) 91.40% (0.21%) 98.15% (0.05%) 83.98% (0.96%)

SR 96.63% (0.04%) 90.57% (0.35%) 98.12% (0.04%) 83.26% (1.42%)

RD 96.65% (0.05%) 91.07% (0.34%) 98.13% (0.06%) 83.62% (1.00%)

Permutation 96.45% (0.07%) 91.66% (0.47%) 98.23% (0.03%) 84.05% (1.15%)

Table 4: Permutation Augmentation Accuracy (Standard Deviation), multi-label datasets

Method AG* ROBO CROWD* PEMO

Baseline 92.72% (0.14%) 80.14% (1.60%) 92.29% (0.06%) 92.79% (0.19%)

RSI 93.59% (0.16%) 83.94% (1.29%) 92.37% (0.06%) 98.42% (0.30%)

SR 93.05% (0.06%) 82.66% (2.74%) 92.37% (0.04%) 97.56% (0.26%)

RD 92.66% (0.12%) 82.80% (1.11%) 92.37% (0.05%) 97.89% (0.20%)

Permutation 93.79% (0.09%) 84.60% (1.63%) 92.54% (0.04%) 98.42% (0.26%)

Table 5: Permutation Augmentation Accuracy (Standard Deviation), multi-class datasets

4.2. Subsets for reverse class augmentation

For negation and antonym augmentations we use a subset of the CROWD*

dataset (CROWD B*), a subset of SEMEVAL (SEMEVAL B) and a subset of

PEMO (PEMO B). We retain all the training examples, but limit the classes

into three pairs of mutually exclusive emotions. For CROWD B* these are
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sadness-happiness, hate-love and boredom-fun. Similarly for SEMEVAL B we

keep all rows but we remove class ’love’ since it has no opposite class in the

dataset. The pairs of mutually exclusive classes are optimism-pessimism, sadness-

joy, anticipation-surprise, fear-anger and disgust-trust. Lastly, for PEMO B

we follow the same process and define the pairs as: anger-fear, disgust-trust,

sadness-joy and anticipation-surprise.

SEMEVAL is the only multilabel dataset suitable for negation and antonym

augmentation. After removing the ’love’ class, for which no opposite class exists

in the dataset, 97.1% of the dataset is suitable for our augmentations. However,

since it’s a multilabel dataset, the process of reversing its classes becomes more

complex. For each sentence we have to calculate the opposite emotion per pair,

since more than one emotions can coexist in the classification. This doesn’t

seem to improve classification accuracy at all. On the contrary, when all the

eligible rows are used to create the negation synthetic dataset, the augmentation

under-performs the baseline.

4.3. Antonym

Antonym augmentation improves baseline classification accuracy in all three

datasets. The average accuracy improvement is 4.77% over baseline, Table 6.

When compared to permutation augmentation, it also manages to improve clas-

sification accuracy in all three datasets by an average of 0.35%. The highest im-

provement compared to baseline and permutation is observed in SEMEVAL B,

which has the highest median sentence length. The best results were obtained

when 2-3% of the dataset was augmented via antonym augmentation.

Method CROWD B* SEMEVAL B PEMO B

Baseline 91.96% (0.25%) 83.39% (0.34%) 94.69% (0.57%)

Permutation 92.07% (0.18%) 91.70% (0.26%) 98.35% (0.36%)

Antonym 92.14% (0.19%) 91.92% (0.31%) 98.38% (0.25%)

Negation 92.42% (0.22%) 92.21% (0.38%) 98.43% (0.34%)

Table 6: Negation and Antonym Augmentation Accuracy (Standard Deviation)
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4.4. Negation

Negation augmentation mproves classification accuracy over all methods as

well, Table 6. It outperforms baseline by an average of 5.01%, permutation

augmentation by 0.4% and antonym augmentation by 0.22%. The grade of

improvement over permutation depends, amongst other parameters, on the sen-

tence length, since the dataset with the highest median sentence length SE-

MEVAL B is the one mostly improved, with a 0.55% increase in accuracy.

These accuracy improvements might seem minor, but their value is two-fold.

Not only they demonstrate that extra training dataset can improve classification

results -already demonstrated by other augmentations, but a careful selection

of the synthetic dataset composition can lead to improvements without extra

computation costs. Similarly to antonym, the best results were obtained when

approximately 2.5-5% of the dataset was augmented via negation augmentation.

5. Conclusions

Evidently, extra training data can benefit most text classification tasks. Our

proposed permutation method demonstrated better classification accuracy in

seven out of eight datasets. Our permutation method can create n! unique

synthetic datasets without duplicating any sentence in the corpus, where n is the

maximum number of terms in a sentence. All methods are capable of creating

at least a single unique synthetic dataset without duplication, thus testing was

performed with exactly one unique synthetic dataset.

Our permutation augmentation improves baseline classification accuracy by

4% on average and outperforms all previously proposed augmentations by an

average of 0.2%. Although more limited in their application, negation and

antonym augmentations further improve classification results by at least 0.4%,

when compared to our best performing permutation augmentation. However,

six out of eight datasets do not include a separate test dataset that would allow

for a better evaluation of our proposed augmentations. Model performance is

assessed via k-fold cross validation,and although there might be an occurrence
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of similar examples within each fold, our proposed augmentations do not lead

to overfitting.

Emotion datasets are only one type of datasets suitable for negation and

antonym augmentations. Suitable datasets for this type of augmentations are

datasets with classes that can be put in the poles of a certain spectrum. Random

term swap, as proposed in (Wei & Zou, 2019), is similar to permutation aug-

mentation but prone to overfitting, since each synthetic dataset -after the first

one- could include duplicates. However, if we had datasets with differentiated

training and testing data, we could further experiment on multiple synthetic

datasets and their effects on overfitting and generalisation. Extra training data

comes with extra training time. In cases where training requires large com-

pute capacity, even without augmentations, there exists a stricter cost-benefit

relation of data size and results.

Our preliminary results show that multiple synthetic datasets, derived from

the set of possible permutations, can further improve classification results with

no overfitting issues. As mentioned before, the size of a hybrid training dataset is

proportional to the training time for the respective model. We aim to optimise

synthetic text dataset creation based on the importance of each item in the

dataset. The creation of reduced size, selective synthetic datasets aims to reduce

training time and further improve classification results.
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Troiano, E., Padó, S., & Klinger, R. (2019). Crowdsourcing and Validating

Event-focused Emotion Corpora for German and English. In Proceedings

of the Annual Conference of the Association for Computational Linguistics.

Florence, Italy: Association for Computational Linguistics.

Van Dyk, D. A., & Meng, X.-L. (2001). The art of data augmentation. Journal

of Computational and Graphical Statistics, 10 , 1–50.

Wei, J. W., & Zou, K. (2019). Eda: Easy data augmentation tech-

niques for boosting performance on text classification tasks. arXiv preprint

arXiv:1901.11196 , .

Ye, H. J., & Kankanhalli, A. (2017). Solvers’ participation in crowdsourcing

platforms: Examining the impacts of trust, and benefit and cost factors. The

Journal of Strategic Information Systems, 26 , 101–117.

24



Zhang, X., Zhao, J., & LeCun, Y. (2015). Character-level convolutional net-

works for text classification. In Advances in neural information processing

systems (pp. 649–657).

Zhao, A., Balakrishnan, G., Durand, F., Guttag, J. V., & Dalca, A. V. (2019).

Data augmentation using learned transformations for one-shot medical image

segmentation. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 8543–8553).

25


