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Abstract

Temporal feature extraction is an important issue in video-based action recognition.

Optical flow is a popular method to extract temporal feature, which produces excellent

performance thanks to its capacity of capturing pixel-level correlation information be-

tween consecutive frames. However, such a pixel-level correlation is extracted at the

cost of high computational complexity and large storage resource. In this paper, we

propose a novel temporal feature extraction method, named Attentive Correlated Tem-

poral Feature (ACTF), by exploring inter-frame correlation within a certain region. The

proposed ACTF exploits both bilinear and linear correlation between successive frames

on the regional level. Our method has the advantage of achieving performance com-

parable to or better than optical flow-based methods while avoiding the introduction

of optical flow. Experimental results demonstrate our proposed method achieves the

state-of-the-art performances of 96.3% on UCF101 and 76.3% on HMDB51 bench-

mark datasets.
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1. Introduction

Action recognition has received considerable attention from the vision community

in recent years (Herath et al., 2017; Yang et al., 2019; Carmona & Climent, 2018; Wang

& Wang, 2018; Keeli, 2018; Sahoo & Ari, 2019) thanks to its increasing applications

in various fields, such as surveillance (Danafar & Gheissari, 2007; Yang et al., 2018;

Xiang & Gong, 2008; Li et al., 2017; Mabrouk & Zagrouba, 2018; Kardas & Cicekli,

2017) and smart homes (Wu et al., 2010; Yang et al., 2018; Ortis et al., 2017; Lund-

strm et al., 2016; Lee et al., 2017) etc. Compared with static images, videos contain

additional temporal information. Hence, extracting and handling temporal information

is very critical in action recognition.

To extract temporal features underlying a video, a few methods have been proposed

in the literature. Most of these efforts can be organized into two categories. The first

category is the two-stream methods. A typical work in this category is the one proposed

in (Simonyan & Zisserman, 2014), which conduct the classification using temporal

features and spatial features separately. The two types of features are integrated through

classification decision fusion. The second category is the 3D ConvNet methods, which

extract spatial and temporal features jointly by expanding the convolution kernel of 2D

ConvNets to the temporal dimension. A seminal work in this category is the C3D (Tran

et al., 2015) network. A detailed review of the methods in both categories is given in

Section 2.

The methods in the two categories have their respective merits and limitations. The

two-stream methods often produce the state-of-the-art performance, yet this is achieved

at the cost of heavy reliance on accurate temporal feature. Therefore, the two-stream

methods usually involve computation or estimation of optical flow, both of which re-

quire high computational power and large storage resource. Also, obtaining optical

flow needs to be performed prior to the training of the network, thus methods utilizing

optical flow cannot be trained end-to-end. On the other hand, the 3D ConvNets-based

methods are computationally less demanding, yet their performances are usually in-

ferior to that of the two-stream methods. A possible reason would be the temporal

pooling used for dimension reduction towards the complete representation. Temporal
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(a) Action ”Handstand”

(b) Action ”Brushing Teeth”

Figure 1: Illustration of extracting inter-frame corresponding-regional correlation for action recognition. The

temporal feature of an action is related to the correlation appearance between frames. Actions that are faster

such as ”Handstand” in (a) exhibits obvious change within the indicated box. Slower and more static actions

such as ”Brushing Teeth” in (b) shows little change between frames. To cope with both situations, bilinear

operation is employed to extract the inter-frame corresponding-regional correlation

pooling extracts only linear feature along the temporal dimension of the video through

pooling operation. With only the linear feature being extracted, we argue that part of

the temporal feature is lost during the pooling operation.

In this paper, we present a novel method for temporal feature extraction, which

achieves performance comparable to or even better than two-stream methods, yet de-

mands less computational power. Intuitively, temporal feature of an action is related

to the correlation of appearance between frames within a certain region. For instance,

in Figure 1a, the indicated box across the series of frames shows how a person turns

upside down, and is related to the action of ”Handstand”. Therefore, instead of using

optical flow, our proposed method extracts temporal features by extracting the corre-

lation of neighbouring frames with respect to the corresponding regions. The degree

of change of appearance varies between different actions. For actions that are slower

or more static, neighboring sampled frames could be very similar. One example is the

action of ”Brushing Teeth” shown in Figure 1b. If linear correlation, such as the differ-
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ence in RGB value is employed, the correlation extracted would fail to contain temporal

information of the video. To cope with the various type of actions, the inter-frame cor-

relation would thus be computed through bilinear operation. The complete temporal

feature, named as Attentive Correlated Temporal Feature (ACTF), is obtained through

attentive combination of the inter-frame corresponding-regional correlation feature and

the inter-frame mean feature obtained through inter-frame temporal average pooling.

Our main contributions are summarized as follows:

∗ We propose a novel temporal feature extraction method: Attentive Correlated

Temporal Feature (ACTF), for action recognition. First, ACTF exploits inter-

frame corresponding-regional correlation to implicitly capture temporal infor-

mation without the use of optical flow. Second, by excluding optical flow esti-

mation or calculation, ACTF can be combined with any spatial feature extraction

network under the two-stream structure to implement end-to-end training. Third,

ACTF leads to performance comparable to or even better than optical flow-based

methods, yet it demands less computation and memory due to the exclusion of

optical flow.

∗ We conduct extensive experiments on two action recognition benchmark datasets:

UCF101 (Soomro et al., 2012) and HMDB51 (Kuehne et al., 2011) with a frame-

work utilizing our proposed ACTF. The results demonstrate that our proposed

ACTF brings noticeable improvements over baseline methods, achieving state-

of-the-art performance for these datasets.

The rest of this paper is organized as follows. Related works for action recognition

tasks and the use of regional correlation are discussed in Section 2. In Section 3, we

introduce the proposed Attentive Correlated Temporal Feature (ACTF) in detail. After

that, we present and analyze the experimental results of our proposed ACTF feature,

with a thorough ablation study on the design of ACTF. Finally, we conclude the paper

in Section 5.
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2. Related Work

Action recognition is one of the core tasks in video understanding. Compared to

image understanding tasks, video understanding tasks are more complex due to the

additional temporal dimension in videos. The extraction and handling of temporal

feature underlying videos is thus the main challenge of the action recognition task.

2.1. Action Recognition with Optical Flow

To extract temporal feature with high quality, previous works (Simonyan & Zisser-

man, 2014; Feichtenhofer et al., 2016; Wang et al., 2016) adopt a two-stream strategy

where temporal feature is extracted in parallel with spatial feature. The temporal fea-

ture extraction is performed by feeding a stack of optical flow frames computed by

TV-L1 (Zach et al., 2007) to a ConvNet. TSN (Wang et al., 2016) improves perfor-

mance of the original two-stream network (Simonyan & Zisserman, 2014) through

segmenting the video and input the RGB alongside optical flow frames for each seg-

ment to ConvNets with shared parameter. The action recognition result is produced

through segmental consensus fusion. Meanwhile, ST-ResNet (Feichtenhofer et al.,

2016) builds upon ResNet (He et al., 2016), which is a deeper 2D ConvNet. These

two-stream methods achieve competitive results in action recognition, but using op-

tical flow for temporal feature extraction has limitations. Optical flow extraction is

known to be computationally expensive and memory intensive. In addition, as opti-

cal flow requires pre-computation, the use of optical flow as temporal feature prohibits

fully end-to-end training of the network.

2.2. Temporal Feature Extraction without Optical Flow

To address the limitations imposed by utilizing optical flow, subsequent works pro-

posed to extract temporal feature to replace optical flow. One category of methods

involves the estimation of optical flow through neural network. FlowNet (Dosovit-

skiy et al., 2015; Ilg et al., 2017), MotionNet (Zhao et al., 2018a), LMoF (Li et al.,

2018), TVNet (Fan et al., 2018) and more recently Representation Flow (Piergiovanni

& Ryoo, 2019) all belong to such category. More specifically, FlowNet (Dosovitskiy

et al., 2015) learns optical flow from synthetic ground truth data. MotionNet (Zhao
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et al., 2018a) produces optical flow through next frame prediction. LMoF (Li et al.,

2018) further constructs a learnable directional filtering layer to cope with optical flow

estimation in blur videos. To further boost the performance of optical flow estimation,

TVNet (Fan et al., 2018) unfolds the TV-L1 (Zach et al., 2007) optical flow extraction

method and formulates it with neural network. Representation Flow (Piergiovanni &

Ryoo, 2019) extends from TVNet (Fan et al., 2018) and constructs fully-differentiable

convolutional layers to estimate optical flow. The layers could be stacked on top of

each other to obtain flow-of-flow features which could capture longer-term motion

representation. Although these optical flow estimation methods render networks to

be trained in an end-to-end manner, they are still expensive in computation and in-

tensive in memory, with longer run-time during inference. Another category extracts

temporal feature jointly with spatial feature by constructing 3D ConvNets. C3D (Tran

et al., 2015), 3D-ResNet(Tran et al., 2018), 3D-ResNext (Hara et al., 2018), I3D (Car-

reira & Zisserman, 2017) and Asymmetric 3D-CNN (Yang et al., 2019) belong to this

category. More specifically, C3D (Tran et al., 2015) is one of the primary works where

the CNN network is expanded to the temporal dimension. Subsequent networks such

as 3D-ResNet (Tran et al., 2018) and 3D-ResNext (Hara et al., 2018) are deeper and

larger 3D ConvNets. To further reduce parameter for even faster training, Carreira et

at. inflates 2D ConvNets into 3D structure. This simplifies the work of constructing 3D

ConvNets by simply convert image classification models to 3D models by endowing

filters and pooling kernels with the additional temporal dimension. Whereas Yang et

al. (Yang et al., 2019) proposed to utilize MicroNets to construct asymmetric 3D Con-

vNets. 3D ConvNets benefit from end-to-end training, and requires only RGB input.

Yet the temporal feature is extracted through pooling along the temporal dimension,

and thus extracts only linear temporal feature. This causes part of the temporal feature

might be lost during feature extraction operation.

2.3. Correlation Modeling and Bilinear Pooling

Correlation modeling and bilinear pooling have been used in action recognition

and have shown its success in improving temporal feature extraction. More specifi-

cally, Diba et al. proposed TLE (Diba et al., 2017) which represents the whole video
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Figure 2: Detailed illustration of applying ACTF for action recognition. The sharp rectangles represent the

networks or operations performed, while the rounded rectangles represent the resulting features. The overall

framework takes the raw RGB frames as input. The low-level feature of the RGB frames is extracted through

a ConvNet (CNN). From the low-level feature, we obtain the spatial-temporal pooled feature of the video

through average pooling across both spatial and temporal dimensions. This feature is regarded as the spatial

feature of the video. Simultaneously, we obtain the ACTF as the temporal feature of the video. Both features

are combined attentively to form the whole representation of the video.

by a bilinear model. The input of TLE is the temporal aggregated feature obtained

by aggregating the features of each video segment. Meanwhile, Zhao et al. (Zhao

et al., 2018b) utilizes correlation modeling for the construction of cost volume, which

is an intermediate facility of optical flow estimation. More recently, inspired by the

non-local mean operation for image denoising (Buades et al., 2005; Li & Suen, 2016),

Wang et al. (Wang et al., 2018b) presented non-local operations to capture correlation

on a pixel level as the representation of the temporal feature. Unlike the mentioned

works above, our work utilizes correlation modeling on a frame-wise regional level,

and computes the inter-frame correlation within a certain region through bilinear oper-

ation. This guarantees our temporal feature extraction method to be more computation

efficient while maintaining improvement in temporal feature extraction.

3. Method

The primary goal of our work is to develop an effective video-based action recog-

nition framework with focus on temporal feature extraction. The main idea of the

proposed method is to explore correlation of successive frames within a certain region,
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which captures temporal information. The extracted correlation feature can work with

various low-level feature extraction networks that are normally convolutional neural

networks (ConvNets), e.g. C3D and 3D-ResNet. These networks normally adopt a

simple temporal pooling operation for obtaining the video representation. We propose

an ACTF model to effectively extract the inter-frame corresponding-regional correla-

tion feature and combine it with the feature obtained from simple temporal pooling.

Next, we present a general action recognition framework that uses the proposed ACTF

for temporal feature extraction, and then describe the details of the ACTF. The attention

mechanism employed in ACTF will also be briefly explained.

3.1. General Framework for Action Recognition with ACTF

The prominent methods for action recognition employ multiple modality networks,

e.g. two-stream convolutional networks (Simonyan & Zisserman, 2014). In these

networks, temporal and spatial features are extracted and processed separately. Fig-

ure 2 shows the overall framework in our study. Given an input video as a sequence

of frames, the low-level feature of each frame is first extracted through a convolu-

tional neural network (ConvNet). The resulted low-level feature is denoted by F ∈

Rt×Cout×H×W , where t denotes the number of frames, Cout denotes the number of

channels, and H , W are the height and width. Subsequently, we obtain two fea-

tures from this low-level feature, namely the Spatial-Temporal Pooled feature, and the

ACTF feature. The Spatial-Temporal Pooled feature Vstpooled is obtained by perform-

ing spatial-temporal average pooling over the low-level feature. The ACTF feature

Vactf is obtained through an attentive concatenation of features obtained by perform-

ing both bilinear and linear operations on successive frames. Each of the two features

characterizes a different perspective of the video. Performing average pooling over the

low-level feature results in a feature that provides a general appearance pattern of the

video. Thus the Spatial-Temporal Pooled feature as shown in Figure 2 is referred to as

the spatial feature of the video in this paper. Meanwhile, the ACTF feature captures the

correlation pattern of successive frames within a certain region, and is referred to as the

temporal feature here. Both features have a dimension of Cout, i.e. Vactf ∈ RCout ,

and Vstpooled ∈ RCout .
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Figure 3: Illustration of the pipeline for extracting ACTF. From the low-level feature extracted, we extract

two forms of inter-frame correlation features. A bilinear inter-frame correlation feature, extracted as the

Inter-frame Corresponding-regional Correlation Feature (ICCF), as well as a linear inter-frame correlation

feature, extracted as the Inter-frame Mean Feature (IMF). The features are combined attentively to form the

ACTF.

In certain scenarios, the spatial feature of the video is sufficient to produce satis-

factory action recognition result. This occurs when certain action types are associated

with certain visual elements. Meanwhile, in other scenarios, temporal feature play a

more vital role. This occurs when visual elements of the video may appear in different

actions. Thus, we adopt a feature-wise attentive concatenation method to dynamically

combine the spatial and temporal features.

3.2. Extraction of ACTF feature

Previous works (Simonyan & Zisserman, 2014; Wang et al., 2016; Zhu et al., 2017)

show the importance of temporal feature in action recognition. However, most tempo-

ral information representations, such as optical flow used in two-stream convolutional

network (Simonyan & Zisserman, 2014) or non-local operations in non-local 3D Con-

vNets (Wang et al., 2018b), are computationally expensive. This is due to the fact that

both optical flow and non-local operations compute the correlations between succes-

sive frames on a pixel level. Computationally efficient RGB difference is employed
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in (Wang et al., 2016) to capture inter-frame relation, but shows inferior performance

when used in combination with spatial feature. For slower actions where successive

frames are very similar, RGB difference would return zero-valued correlation, and fail

to capture the temporal feature, which might explain the inferior performance.

In this work, we propose to explore more sophisticated operations, such as bilinear

function, on successive frames for temporal feature extraction. This is inspired by the

bilinear operation used for fine-grained image recognition (Gao et al., 2016; Lin et al.,

2015), where the within-image bilinear operation is used to learn local pairwise feature

correlation through the outer product at every single position of the image. In this

paper, the bilinear operation is extended across successive frames to discover inter-

frame correlation within a certain region. Figure 3 shows the pipeline for extracting

ACTF.

More specifically, given a video sequence, as described in Section 3.1, the low-level

feature of the video is extracted through a ConvNet, whose output is F ∈ Rt×Cout×H×W .

We then extract a bilinear inter-frame correlation feature, the Inter-frame Corresponding-

regional Correlation Feature (ICCF), and a linear inter-frame feature, the Inter-frame

Mean Feature (IMF). The extraction function for the ICCF is denoted by Pbilinear,

while the extraction function for the IMF is denoted by Pmean.

We first describe Pbilinear, which is the extraction function for the bilinear inter-

frame correlation feature denoted as ICCF. Figure 4 shows the details of extracting

the ICCF. Denote fi ∈ RCout×H×W as the low-level feature extracted for frame i.

To extract the bilinear inter-frame correlation feature, Pbilinear computes the pairwise

bilinear correlation with respect to two successive frames within a certain region as

follows:

bi = Pbilinear(fi, fi+1) (1)

Here bi is the bilinear inter-frame correlation feature, and bi ∈ RCbilinear×H×W ,

where Cbilinear denotes the number of channels of the ICCF.

More specifically, at the spatial location of S, the feature of the current frame and

the next frame is denoted as fi,S and fi+1,S . We denote the bilinear operation function
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at location S to be BS , and is formulated by the following equation:

Bi,S = fi,Sfi+1,S
T (2)

At the spatial location S, the feature for frame i is of size Cout × 1. Thus, from

Equation 2, the bilinear inter-frame correlation feature at location S is of size Cout ×

Cout. We then reshape it such that the result would be of size Cout2 × 1.

Although the bilinear inter-frame correlation feature obtained through Equation 2

is direct, such feature representation is very high-dimensional. In our case where Cout

is around 750, the dimension of the bilinear inter-frame correlation feature at each

spatial location is more than 500,000. Such high dimensional representation is imprac-

tical. Therefore, to obtain the desired bilinear correlation, we adopt a compact form of

bilinear operation as implemented in (Gao et al., 2016).

The basis of the compact form of the bilinear operation is to find a low dimension

projection function of Bi,S , denoted as Ci,S . The two functions are equivalent with

respect to a linear kernel machine. Given two pairs of frames: frames (i, i + 1) and

frames (j, j + 1), a linear kernel machine is formulated as:

〈Bi,S ,Bj,S〉 = 〈fi,Sfi+1,S
T , fj,Sfj+1,S

T 〉

= 〈fi,S , fj,S〉2
(3)

We then find a low dimension projection function as φ(fi,S) ∈ Rd such that 〈φ(fi,S), φ(fj,S)〉 ≈

k(fi,S , fj,S), where k is a polynomial kernel. Such projection function φ(fi,S) would

allow us to approximate Equation 3 by:

〈Bi,S ,Bj,S〉 = 〈fi,S , fj,S〉2

≈ 〈φ(fi,S), φ(fj,S)〉

≡ 〈Ci,S , Cj,S〉

(4)

where Ci,S = φ(fi,S) is the compact form of the bilinear operation Bi,S . Hence to ob-

tain the compact form, we need to find the low dimension approximation of the poly-

nomial kernel k. Here we utilize the Tensor Sketch approximation method proposed

in (Pham & Pagh, 2013). Ultimately, our extraction function Pbilinear computed at

each spatial location S for frame i and the successive frame i + 1 is equivalent to its

compact form Ci,S .
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Figure 4: Illustration of the details for extracting the bilinear inter-frame correlation feature which is the

ICCF. The pairwise bilinear correlation with respect to two successive frames within a certain region is

computed for each pair of successive frames. The complete bilinear feature is extracted through temporal-

wise attentive concatenation of each inter-frame correlation feature.

For image recognition tasks, features extracted through bilinear function go through

a sum pooling operation to extract the complete representation of the image. However,

if such a pooling method is used in videos, the temporal information may be lost. This

conflicts with our goal of extracting temporal information through the bilinear inter-

frame correlation feature. To dynamically combine all bilinear inter-frame correlation

features temporally, we apply a temporal-wise attentive concatenation to each pair of

successive frames. A learnable weight parameter αi is assigned to each inter-frame

correlation feature bi. Such attentive concatenation allows the extracted ICCF to focus

on the pair of frames where the action most likely takes place. The result is a feature

B ∈ R(t−1)×Cbilinear×H×W . For each pair of successive frames, Bi = αibi.

To extract the temporal feature of the video more accurately, besides the bilinear

inter-frame correlation feature, we would also need the linear inter-frame correlation

feature denoted as IMF. The IMF provides a baseline for the bilinear inter-frame corre-

lation feature, and is important when actions are similar temporally but very different

in appearance. Following this idea, we feed the low-level feature F to extract the IMF

in parallel with the ICCF. Unlike common temporal pooling layers where the average

pooling is performed across the whole temporal dimension, the purpose of the extrac-

tion function Pmean is to capture the average of two successive frames. More specifi-
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cally, the extraction function for IMF is an average pooling function with a kernel size

of (ki, kh, kw). Here kh and kw are the kernel size corresponding to the spatial di-

mensions. As we need to preserve all information along the spatial dimensions, hence

kh, kw = 1. To obtain the average pooling along successive temporal features fi and

fi+1, the kernel size along the temporal dimension ki is set to 2 instead of the whole

temporal dimension length. The IMF L ∈ R(t−1)×Cout×H×W is computed by:

L = Pmean(F) (5)

Similar to the temporal-wise attentive concatenation for bilinear inter-frame corre-

lation features, we adopt a feature-wise attentive concatenation approach to combine

the bilinear inter-frame correlation feature with the linear inter-frame correlation fea-

ture. Each of the two types of features is assigned a separate weight parameter, denoted

as β, γ respectively. This allows the network to dynamically focus on either feature for

different actions. The result of the attentive concatenation H ∈ R(t−1)×Cconcat×H×W

is obtained as follows:

H = βB⊕ γL (6)

where ⊕ denotes the concatenation operation along the feature channel dimension.

Cconcat is the total number of feature channels, which is the sum ofCout andCbilinear.

The complete ACTF feature Vactf is obtained as follows:

Vactf = L(Paverage(H)) (7)

Where Paverage is an average pooling operation with a kernel size of ((t− 1), H,W )

corresponding to the temporal and spatial dimensions respectively. ACTF feature sum-

marizes both the ICCF and the IMF. L is a linear dimension reduction function, con-

structed as a multi-layer linear neural network. This allows L to be learnable and the

overall system to be trainable in an end-to-end manner. The resulting feature is thus

the ACTF feature Vactf ∈ RCout .

3.3. Attentive Concatenation of Features

Our network is designed to focus on the pairs of time steps which are more relevant

to the action. Meanwhile, it is also designed to focus on the more important type of
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feature, i.e. the spatial or temporal feature . To achieve both goals, we adopt attentive

concatenation at each location where different features are combined. In this section,

we describe how to extract the ICCF by the temporal-wise attentive concatenation of

bilinear inter-frame correlation features. The combination of features Vstpooled and

Vactf mentioned in Section 3.1 as well as the combination of features B and L men-

tioned in Section 3.2 follow similar implementations.

The attentive concatenation of all (t−1) bilinear correlation features is achieved by

assigning each feature with a weight αi for the ith correlation feature bi. Inspired by

the cascade attention network proposed in (Wang et al., 2018a), we adopt an attentive

concatenation approach for the computation of weight αi. Formally, αi is computed

by:

αi = g(h((Pspatial(bi))W )) (8)

More specifically, given the ith bilinear correlation feature bi ∈ RCbilinear×H×W ,

Pspatial is a spatial average pooling function with kernel size (H,W ). The output of

Pspatial is a pooled feature vector bpooled,i ∈ RCbilinear . W ∈ RCbilinear×1 denotes a

trainable parameter matrix, shared among all (t− 1) bilinear correlation features. The

result of this matrix multiplication is a primitive weight parameter denoted as αprime,i.

To scale the primitive weight parameter αprime,i to a range of [0, 1], we apply a

sigmoid function denoted as h(αprime,i), which is computed by:

h(αprime,i) =
1

1 + e−αprime,i
(9)

The weight αi is then further processed from h(αprime,i) to satisfy Σαi = 1. This is

achieved by applying a softmax function denoted by g(·), and the weight αi is calcu-

lated as follows:
αi = g(h(αprime,i))

=
eh(αprime,i)∑t−1
i=1 e

h(αprime,i)

(10)

The weight αi indicates the importance of the ith bilinear inter-frame correlation fea-

ture, bi.
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4. Experiments

In this section, we present our evaluation results of the proposed work. The eval-

uation is conducted through action recognition experiments on two public benchmark

datasets. We present state-of-the-art results on a competitive architecture, and prove

the novelties on another similar baseline. We also present detailed ablation study of the

components of our proposed framework to verify our design.

4.1. Experimental Settings

We conduct experiments on two benchmark datasets of action recognition: UCF101 (Soomro

et al., 2012) and HMDB51 (Kuehne et al., 2011). The UCF101 dataset contains 13,320

videos from 101 action categories while the HMDB51 dataset contains 6,766 videos

from 51 action categories. We follow the experiment settings as in (Chen et al., 2018;

Tran et al., 2015, 2018) that adopt the three training/testing splits for evaluation. We

report the average top-1 accuracy of the three splits. Our proposed framework for tem-

poral feature extraction can be used in any ConvNet based networks. To obtain the

state-of-the-art result, we instantiate MFNet (Chen et al., 2018).

Our experiments are implemented using PyTorch (Paszke et al., 2017). Following

the implementation in (Chen et al., 2018), the input is a frame sequence with each

frame of size 224 × 224. The output from MFNet (Chen et al., 2018) is a low-level

feature of size 8 × 768 × 7 × 7, where the number of output channels is 768 . Each

frame is represented by a feature of size 7 × 7. We set the number of channels of

our ICCF to 3,840. Thus, the size of H, described in Section 3.2 of the paper, is

7× 4608× 7× 7. We design the linear dimension reduction function in Equation 7 as

a three-layer linear neural network with RELU activation. For training, we utilize the

pretrained model of MFNet (Chen et al., 2018) trained on Kinetics (Kay et al., 2017),

a large-scale human action dataset. To accelerate our training, the pretrained model is

used for the initialization of the network which includes our framework for temporal

feature extraction. We use stochastic gradient descent algorithm (Bottou, 2010) for

optimization, setting the weight decay to 0.0001 and the momentum to 0.9. For both

datasets, our initial learning rate is set to 0.005. For UCF101 (Soomro et al., 2012)
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dataset, the learning rate is decreased for four times, while for HMDB51 (Kuehne

et al., 2011) dataset, the learning rate is decreased for three times. The learning rate is

decreased with a factor of 0.1.

To prove that our approach can be applied to other 3D ConvNet approaches, we

also apply our proposed ACTF in another 3D ConvNet. We instantiate C3D (Tran

et al., 2015), a classical 3D ConvNet baseline for action recognition. Our proposed

ACTF is extracted after conv5 layer of the C3D network, in parallel with the spatial-

temporal pooling layer pool5, as well as the linear layer that follows. We follow the

setup as in (Tran et al., 2015), using stochastic gradient descent (Bottou, 2010) with ini-

tial learning rate of 0.001. We compare the results of the C3D network with and without

the temporal feature extracted by our proposed framework on HMDB51 dataset.

4.2. Results and Comparison

Table 1 shows the comparison of top-1 accuracy on UCF101 and HMDB51 datasets

with other state-of-the-art methods including:

1. Two-stream methods: the original two-stream method (original TS) (Simonyan

& Zisserman, 2014), Hidden Two-Stream (Hidden TS) (Zhu et al., 2017), Long-

term Temporal Convolutions (LTC) (Varol et al., 2018), ActionVLAD (Girdhar

et al., 2017) and Temporal Segment Network (TSN) (Wang et al., 2016)

2. 3D ConvNets-based methods: C3D (Tran et al., 2015), TSN with RGB in-

put (Wang et al., 2016), Res3D (Tran et al., 2017), ST-ResNet (Feichtenhofer

et al., 2016), 3D-ResNext (Hara et al., 2018), R(2+1)D with RGB input (Tran

et al., 2018), I3D with RGB input (Carreira & Zisserman, 2017), TVNet (Fan

et al., 2018), MFNet (Chen et al., 2018) and T-C3D (Liu et al., 2018)

Our state-of-the-art performance is achieved by instantiating MFNet, denoted as

MFNet-ACTF. For this experiment, we set our batch size to 80 and conduct the exper-

iment using four NVIDIA Tesla P100 GPUs.

The performance results in Table 1 show that our network achieves the best results

on both benchmark datasets. More specifically, our MFNet-ACTF network achieves

a 1.7% improvement on HMDB51 dataset over the networks whose input are solely
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Method UCF101 HMDB51 FPS

Two-stream

original TS 88.0% 59.4% 14

Hidden TS 90.3% 58.9% <14

LTC 91.7% 64.8% <14

TSN 94.2% 69.4% 5

3D ConvNets

C3D 85.2% 65.5% 314

TSN (RGB) 86.2% - N/A

Res3D 85.8% 54.9% N/A

T-C3D 91.8% 62.8% 969

ST-ResNet 93.5% 66.4% N/A

3D-ResNext 94.5% 70.2% <314

R(2+1)D (RGB) 93.6% 66.6% N/A

I3D (RGB) 95.6% 74.8% N/A

TVNet 95.4% 72.5% N/A

MFNet 96.0% 74.6% N/A

Ours MFNet-ACTF 96.3% 76.3% 478

Table 1: Comparison of top-1 accuracy and speed with state-of-the-art methods on UCF101 and HMDB51

datasets.
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Method Top-1 HMDB51

C3D 65.5%

C3D-single-ACTF 67.9%

C3D-ACTF 69.2%

Table 2: Top-1 accuracy of C3D network on HMDB51 dataset with and without our proposed framework.

RGB frames. Our method even surpasses several networks with both RGB and optical

flow as input. For UCF101 dataset, our MFNet-ACTF also produces the best result. It

is noted that the improvement is not as significant as that on HMDB51 dataset, mainly

due to the fact that there is little room for improvement.

The speed results in Table 1 show that our proposed method balances between high

accuracy and relatively high inference speed. Despite achieving high accuracy on both

dataset, two-stream methods such as TSN could not achieve real-time requirements,

reaching only 5 FPS. Compared with two-stream methods, our proposed method is

much faster in inference speed, reaching a speed of 478 FPS, which is well above

real-time requirements. Our speed is even faster than that achieved by C3D network.

Note that our speed is slower than that achieved by T-C3D network, but we achieved a

much higher accuracy compared to theirs, with a 13.5% increase in top-1 accuracy on

HMDB51 dataset.

We suggest in Section 3 that our proposed framework which includes ACTF fea-

ture can be used in combination with any ConvNet-based low-level feature extraction

networks, such as C3D network. To verify this, we conducted experiments on the

baseline network C3D with and without ACTF. We first perform action recognition

with only the temporal feature extracted through our proposed ACTF. The low-level

feature is extracted through conv5 layer of the C3D network. We denote this network

as C3D-single-ACTF. We then perform action recognition by attentively combining the

ACTF feature as well as the Spatial-Temporal Pooled feature which is extracted from

pool5 layer of C3D, similar to the implementation of MFNet-ACTF. We denote this

modification as C3D-ACTF. The top-1 accuracy of the networks are shown in Table 2.

The results in Table 2 clearly show that applying our proposed framework in the
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Figure 5: Accuracy comparisons of 20 classes on split 1 of the HMDB-51 between our proposed MFNet-

ACTF network and the original MFNet network.

C3D network improves the accuracy of the baseline C3D network. Even by only uti-

lizing the extracted ACTF feature as temporal feature, we obtain an improvement of

2.4%. This shows that our ACTF feature effectively represent the temporal pattern in

the video and thus lead to better results. A larger gain of 3.7% is achieved when the

extracted ACTF feature is used with the Spatial-Temporal Pooled feature. The results

are consistent with that shown in Table 1, where using ACTF feature improves the ac-

curacy of MFNet. This suggests that our proposed framework is generic, and can be

used with other baselines.

We further investigate the improvement of performance over different actions and

present the comparison of performance between our proposed MFNet-ACTF network

and the original MFNet network. Figure 5 shows the accuracy of 20 classes from split-

1 of the HMDB51 dataset, where our network outperforms the original network by a

noticeable margin. It is worth noticing that for actions with similar spatial appearance

but different actions, e.g. ”Sword” and ”Sword Exercise”, our network performs sig-

nificantly better than the original network. Our network obtains a 23.3% performance

gain over the original MFNet on the action class ”Sword Exercise”. The large perfor-
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Ground Truth: Sword Exercise

Network 1: MFNet-ACTF (Ours)

Sword Exercise    0.3703

Draw Sword    0.2566

Sword    0.2198

Fencing    0.0506

Hit 0.0220

Network 2: MFNet

Draw Sword    0.5181

Sword    0.2437

Handstand    0.1190

Sword Exercise    0.0466

Hit    0.0170

Ground Truth: Wave

Network 1: MFNet-ACTF (Ours)

Wave    0.4595

Pick    0.1001

Fall Floor 0.0895

Throw    0.0605

Run    0.0447

Network 2: MFNet

Climb    0.5401

Wave    0.1367

Pick    0.1296

Run    0.0778

Talk    0.0572

Ground Truth: Turn

Network 1: MFNet-ACTF (Ours)

Turn    0.7219

Sit    0.1849

Walk    0.0237

Stand    0.0230

Kiss    0.0064

Network 2: MFNet

Drink    0.3571

Turn    0.2485

Sit    0.1320

Walk    0.1169

Brush Hair 0.0361

Ground Truth: Kick Ball

Network 1: MFNet-ACTF (Ours)

Kick Ball 0.3703

Jump    0.2566

Cartwheel    0.2198

Flic Flac 0.0506

Run    0.0220

Network 2: MFNet

Dive    0.5181

Jump    0.2437

Kick Ball 0.1190

Cartwheel    0.0466

Flic Flac 0.0170

Figure 6: Examples from HMDB51 dataset where our proposed MFNet-ACTF succeeds in recognizing the

action while the original MFNet fails.

mance gain proves the effectiveness of the additional temporal feature extracted as the

ACTF feature in improving the complete video representation. Several examples from

HMDB51 dataset is presented in Figure6 where our proposed MFNet-ACTF could ac-

curately recognize the respective actions while the original MFNet network could not.

It could be observed that the spatial features of the given examples, or more intuitively

the appearance of the given examples, could not provide effective representation for ac-

curate action recognition. For example, for the first video, the scenario as shown could

be present in action classes ”Sword”, in which most videos present people fighting with

a sword, and ”Draw Sword”, in which videos present the action of a sword drawn out.

The difference between these action classes could only be determined through the tem-

poral feature instead of the spatial feature. Thus the original network which can only

extract the spatial feature of the video cannot distinguish the actions correctly while

our proposed framework succeeds in recognizing the different actions.

4.3. Ablation Study

In this section, we justify our proposed design of the ACTF feature through ablation

study. Specifically, we examine the performance of our proposed ICCF and the ACTF
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Method Top-1 HMDB51 split-1

MFNet 70.8%

MFNet-ICCF 72.6%

MFNet-single-ACTF 72.9%

Table 3: Comparison of the network architectures that use only temporal feature for action recognition.

Method Top-1 HMDB51 split-1

MFNet-ACTF-no-attn 72.5%

MFNet-attn@ACTF 73.3%

MFNet-attn@final 73.0%

MFNet-ACTF 73.6%

Table 4: Comparison of the network architectures that use all or partial attentive concatenation.

feature separately. We then examine the performance of the attention mechanisms used

to combine the different modules of our proposed generic action recognition frame-

work as discussed in Section 3. All experiments conducted in our ablation study are

performed on split 1 of the HMDB51 dataset. We set our batch size to 16 and conduct

the experiment using one NVIDIA TITAN Xp GPU. The much smaller batch size is a

key reason of the lower accuracy reported than that in Table 1.

We instantiate MFNet to justify our proposed ICCF and the ACTF feature intro-

duced in Section 3.2 and utilize only temporal feature for action recognition. First the

proposed ICCF is extracted as our temporal feature. The network that utilizes only

ICCF is denoted as MFNet-ICCF. We then employ the ACTF feature as our temporal

feature. Similar to the previous denotation, the network that utilizes only the ACTF fea-

ture is denoted as MFNet-single-ACTF. The comparison of the performances of these

two networks with the baseline MFNet is shown in Table 3.

The result in Table 3 shows that by utilizing only temporal feature, even with only

bilinear inter-frame correlation, the performance of the network is improved by a mar-

gin of 1.8%, indicating that utilizing inter-frame correlation information helps to ex-

tract high-quality temporal feature of the video. The improvement achieved by using
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high quality temporal feature over feature obtained from spatial-temporal pooling coin-

cides with findings in preceding works (Wang et al., 2016; Carreira & Zisserman, 2017;

Feichtenhofer et al., 2016). However, our temporal feature is obtained from RGB input

through inter-frame correlation rather than using optical flow.

Table 3 shows further improvement when we employ the ACTF feature. As de-

scribed in Section 3.2, the ACTF feature is a weighted combination of ICCF, which is

a bilinear inter-frame correlation feature, and IMF, which is a linear inter-frame corre-

lation feature. This result proves that the bilinear inter-frame correlation feature and

linear inter-frame feature complements each other.

To better combine the features extracted from different modules, we introduced

attentive concatenation of features as mentioned in Section 3.3. Here we justify the

need for utilizing attentive concatenation of features. Table 4 presents the comparison

between the networks that utilize attentive concatenation at every step and the net-

works that partially or do not utilize attentive concatenation for feature combination.

Here MFNet-ACTF-no-attn denotes the network where all feature combination utilizes

direct concatenation instead of attentive concatenation. Meanwhile, MFNet-ACTF de-

notes the network utilizing our proposed temporal feature extraction framework with

attentive concatenation at every step of feature combination. MFNet-attn@ACTF de-

notes the network that performs temporal-wise attentive concatenation when construct-

ing ICCF, and feature-wise attentive concatenation of ICCF and IMF as shown in

Figure 3. The concatenation of the temporal feature and spatial feature is by direct

concatenation. Similarly, MFNet-attn@final denotes that attentive concatenation is

adopted only for ACTF and Spatial-Temporal Pooled feature combination while direct

concatenation is adopted at other stages.

The result given in Table 4 clearly shows the advantage of adopting attentive con-

catenation for feature combination. We note that if the network combines features with

only direct concatenation, its performance would be even worse than that of MFNet-

single-ACTF, whose ACTF feature is constructed with attentive concatenation of ICCF

and IMF features. The performance is improved even when attentive concatenation is

used in some stages of feature combination only. It can be observed that applying

attentive concatenation at different stages complements each other, with over 1% im-
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Video 1: ACTF Weight δ: 0.67; MSA Weight ε: 0.33

Video 2: ACTF Weight δ: 0.36; MSA Weight ε: 0.64

Figure 7: The weights of ACTF feature δ and the weights of Spatial-Temporal Pooled feature ε for two

videos. Attentive concatenation learns these weights dynamically.

provement made when all stages adopt attentive concatenation.

We also investigate the weights δ and ε on the ACTF feature and the Spatial-

Temporal Pooled feature for different videos. Figure 7 shows examples where either

temporal feature or spatial feature dominates the feature combination process. Video 2

shows a video where the Spatial-Temporal Pooled feature, or the spatial feature, dom-

inates the feature combination. These videos tend to have clear visual characteristics,

such as the soccer goal that appears in most videos describing the sport soccer. The

appearance of these videos are therefore sufficient for action recognition, and domi-

nate the feature combination process. By contrast, feature combination in Video 1 is

dominated by ACTF feature, which is the temporal feature. We observe that similar

videos tend to have actions that would mix up with other categories. In this case, the

handstand action is similar to actions that may occur in diving or in somersault, where a

person would also go upside down. Also, there is no iconic background items in Video

1. For these videos, the temporal features dominate the feature combination, thus has a

larger weight δ. The different weights with respect to the different videos could prove

that adopting attentive concatenation could attend to the more important feature which

is related to the characteristic of the video itself.

5. Conclusion

In this work, we propose a new method for extracting the temporal feature of a

video while avoiding the use of optical flow. The new temporal feature namely At-
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tentive Correlated Temporal Feature (ACTF) is an attentive combination of both bi-

linear inter-frame correlation and linear inter-frame correlation features. The bilinear

inter-frame correlation feature is extracted through a bilinear operation with respect to

successive frames within a certain region, while the linear inter-frame feature is ex-

tracted through inter-frame temporal pooling. For overall evaluation on UCF101 and

HMDB51, our method obtains state-of-the-art results when instantiating MFNet com-

bined with our ACTF feature. We verify our design through thorough ablation study,

and then further demonstrate that the proposed feature can be introduced to other sim-

ilar action recognition networks instead of using optical flow.
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