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Abstract 

A recent set of overused population-based methods have been published in recent years. 

Despite their popularity, as a result of manipulated systematic internet marketing, product 

bundling, and advertising techniques, most of them have uncertain, immature performance, 

partially done verifications, similar overused metaphors, similar immature exploration and 

exploitation components and operations, and an insecure tradeoff between exploration and 

exploitation trends in most of the new real-world cases. Therefore, all users need to 

extensively modify and adjust their operations based on main evolutionary methods to reach 

faster convergence, more stable balance, and high-quality results. To move the optimization 

community one step ahead toward more focus on performance rather than change of 

metaphor, a general-purpose population-based optimization technique called Hunger Games 

Search (HGS) is proposed in this research with a simple structure, special stability features 

and very competitive performance to realize the solutions of both constrained and 

unconstrained problems more effectively. The proposed HGS is designed according to the 

hunger-driven activities and behavioural choice of animals. This dynamic, fitness-wise search 

method follows a simple concept of “Hunger” as the most crucial homeostatic motivation 

and reason for behaviours, decisions, and actions in the life of all animals to make the process 

of optimization more understandable and consistent for new users and decision-makers. The 

Hunger Games Search incorporates the concept of hunger into the feature process; in other 

words, an adaptive weight based on the concept of hunger is designed and employed to 

simulate the effect of hunger on each search step. It follows the computationally logical rules 

(games) utilized by almost all animals and these rival activities and games are often adaptive 

evolutionary by securing higher chances of survival and food acquisition. This method's main 

feature is its dynamic nature, simple structure, and high performance in terms of convergence 

and acceptable quality of solutions, proving to be more efficient than the current optimization 

methods. The effectiveness of HGS was verified by comparing HGS with a comprehensive 

set of popular and advanced algorithms on 23 well-known optimization functions and the 

IEEE CEC 2014 benchmark test suite. Also, the HGS was applied to several engineering 

problems to demonstrate its applicability. The results validate the effectiveness of the 

proposed optimizer compared to popular essential optimizers, several advanced variants of 

the existing methods, and several CEC winners and powerful differential evolution (DE)-

based methods abbreviated as LSHADE, SPS_L_SHADE_EIG, LSHADE_cnEpSi, 

SHADE, SADE, MPEDE, and JDE methods in handling many single-objective problems. 

We designed this open-source population-based method to be a standard tool for 

optimization in different areas of artificial intelligence and machine learning with several new 

exploratory and exploitative features, high performance, and high optimization capacity. The 

method is very flexible and scalable to be extended to fit more form of optimization cases in 

both structural aspects and application sides. This paper's source codes, supplementary files, 

Latex and office source files, sources of plots, a brief version and pseudocode, and an open-

source software toolkit for solving optimization problems with Hunger Games Search and 



online web service for any question, feedback, suggestion, and idea on HGS algorithm will 

be available to the public at https://aliasgharheidari.com/HGS.html. 
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1 Introduction 

The real-world applications in expert systems, information systems, and knowledge-based 

systems often have a limited feature space and constraints based on the priorities and budget 

limits of the project owners. Decision-makers, developers and computer scientists need to 

find some feasible, explainable and sufficient details and solutions during a reasonable time 

using any family of deterministic or approximated algorithms for problems in different areas 

such as operation optimization (E. Liu, Lv, Yi, & Xie, 2019), image segmentation (Abd Elaziz, 

Heidari, Fujita, & Moayedi, 2020; D. Zhao, Liu, Yu, Heidari, Wang, Liang, et al., 2020; D. 

Zhao, Liu, Yu, Heidari, Wang, Oliva, et al., 2020), target tracking systems (Yan, Pu, Zhou, 

Liu, & Bao, 2020), location-based services (X. Li, Zhu, & Wang, 2019), image big data (Q. 

Zhu, 2019), opportunistic networks (Fu, Fortino, Li, Pace, & Yang, 2019), multipath routing 

(Fu, Fortino, Pace, Aloi, & Li, 2020), supply chain development (Y. Chen, He, Guan, Lu, & 

Li, 2017), hydrothermal systems (Deng, Zhang, Sharma, & Nie, 2019), engineering 

applications (Ba, et al., 2020; X. Liang, et al., 2020), video deblurring (T. Wang, et al., 2020; 

X. Zhang, Jiang, Wang, Huang, & Zhao, 2020), social recommendation and QOS-aware 

service composition (J. Li, Chen, Chen, & Tong, 2017; J. Li & Lin, 2020; J. Li, Zheng, Chen, 

Song, & Chen, 2014), image recovery and alignment (X. Zhang, Wang, Zhou, Ma, & 

intelligence, 2019), recognizing landmark architectures (Y. Li, Zhang, & Zhang, 2016), human 

articulated body recognition (Y. Li, Liu, Zhang, & Ye, 2016), secure encryption (Y. Zhou, et 

al., 2019), image filtering (H. Zhao, Gao, Wang, Pan, & Graphics, 2016; H. Zhao, Jiang, Jin, 

Du, & Li, 2018), image editing (Xujie Li, Huang, Zhao, Wang, & Hu, 2020; X. Li, et al., 2016), 

structural topology optimization (Shaohua Zhang, Li, Zhong, & Xiang, 2014), scheduling 

problem (Pang, Zhou, Tsai, & Chou, 2018; H. Zhou, Pang, Chen, & Chou, 2018), face 

recognition and micro-expression recognition (S. J. Wang, Chen, Yan, Chen, & Fu, 2014; Y. 

Wang, et al., 2017), gold price prediction (Wen, Yang, Gong, & Lai, 2017), epileptic seizure 

detection (Y. Li, et al., 2019; Y. Li, et al., 2020), and wireless communication and network 

systems (C. Wu, et al., 2014; Xiong, et al., 2020; Xu, Shi, & Networks, 2015), to name a few 

potential areas for future users in optimization and artificial intelligence (AI) community. On 

the other hand, the effectiveness and complexity of the developed solvers is a central concern 

when the characteristics of the problems get more dynamic or complicated in terms of 

multimodality, uncertainty and vagueness of feature space. For instance, we can point to a 



set of applications in cross-field and computer science such as parameters optimization (Cai, 

et al., 2020), bankruptcy prediction (M. Wang, H. Chen, H. Li, et al., 2017; C. Yu, et al., 2021), 

Prediction problems in educational field (Wei, et al., 2020; W. Zhu, et al., 2020), brain disease 

diagnosis (Fei, Wang, Ying, Hu, & Shi, 2020), thyroid cancer diagnosis (Xia, et al., 2017), 

tuberculous pleural effusion diagnosis (C. Li, et al., 2018), paraquat-poisoned patients 

diagnosis (L. Hu, Hong, Ma, Wang, & Chen, 2015; Lufeng Hu, et al., 2017; X. Zhao, et al., 

2019), Parkinson disease diagnosis (H. L. Chen, et al., 2016), and other medical problems  

(Huiling Chen, et al., 2015; D. Liu, et al., 2016; Shen, et al., 2016; X. Sun, et al., 2013; M. 

Wang & Chen, 2020; M. Wang, H. Chen, B. Yang, et al., 2017), deployment optimization 

(Cao, Zhao, Gu, Fan, & Yang, 2019), optimal resource allocation (Yan, Pu, Zhou, Liu, & 

Greco, 2020), smart agriculture (J. Song, et al., 2020), and intelligent traffic management (Y. 

Liu, Yang, & Sun, 2020). Optimization is a "should" behind most of the AI and industrial 

problems in different disciplines such as neural networks (Huazhou Chen, et al., 2020) and 

deep learning (P. Wang, Xu, Li, Wang, & Song, 2018). It can be in the form of single-objective 

(Hanxin Chen, et al., 2020; L. Yang & Chen, 2019) that we need to prepare all objective in a 

single known function, but it has been extended to many more forms such as multiobjective 

(Cao, Zhao, Yang, et al., 2019), robust optimization (Qu, Han, Wu, & Raza, 2020), many 

objectives (Cao, Dong, et al., 2020; Cao, Wang, Zhang, Song, & Lv, 2020), fuzzy optimization 

(Huang, et al., 2019), large scale optimization (Cao, Fan, et al., 2020; Cao, Zhao, Gu, Ling, & 

Ma, 2020), and memetic methods (Fu, Pace, Aloi, Yang, & Fortino, 2020). There are also two 

philosophical viewpoints to deal with problems and mathematical models that one of them 

rely on the utilization of the gradient and deterministic equations when solving the problem 

(Long, Wu, & Wang, 2015; Zeng, Liu, & Wang, 2019) and another viewpoint has a trial and 

error nature using recursive sensing and evaluating the landscape of the problem based on 

some approximated metrics and info about the problem basin or in a stochastic way. 

Evolutionary and swarm-based optimization method or metaheuristic methods are widely 

used approach in this class (Huiling Chen, Shimin Li, et al., 2020; Huiling Chen, Wang, & 

Zhao, 2020; Huiling Chen, Xu, Wang, & Zhao, 2019; Luo, et al., 2019; Luo, et al., 2018; S. 

Song, et al., 2020; Tu, et al., 2020; X. Wang, et al., 2020; H. Yu, Zhao, Wang, Chen, & Li, 

2020; Xiang Zhang, et al., 2020; Y. Zhang, et al., 2020). 

Finding optimal solutions to multimodal rotated, or composition problems is a difficult 

task without having any gradient information about an objective function. Over the past few 

years, users have become more interested in estimating the best solutions, then utilizing these 

solutions depending on their accuracy level. Hence, the meta-heuristic algorithms (MAs) have 

attracted substantial attention, and they have been applied to various fields of machine 

learning, engineering, and science. The main reason for such a trend is that there is an 

overflow of new problems in the real world and, as such, increasing demands for these solvers 

when the problems become more challenging. The characteristics of MAs, such as avoiding 

local optimum, simplicity, and gradient-free steps, makes it possible to provide satisfactory 

solutions to such complex problems, which typically have many local optima and challenging 



search space. Dealing with multimodal spaces with iterative exploratory and exploitative 

procedures is the central feature of all MAs in literature.  

Nevertheless, there are also some gaps, concerns, and drawbacks within the previous 

swarm-based optimization methods. Recently, some popular methods have been 

proposed that are based on the characters of animals. However, various studies revealed 

that these performance methods were not studied deeply in the original work and their 

mathematical models also suffer from structural defects, mediocre performance, 

problematic verification methods, the apparent similarity in their structure, and slightly 

modified components. As per our rich experience on these methods (Hao Chen, 

Heidari, Zhao, Zhang, & Chen, 2020; Huiling Chen, Yang, Heidari, & Zhao, 2019; C. 

Yu, Heidari, & Chen, 2020), such issues affect their reliability in the optimization 

community without sufficient attention to the performance aspects, complexity, the 

tuning of parameters, comparison with advanced and high-tech optimizers, verification 

using CEC competition sets, and wise interactions among the components. These 

aspects play significant roles when decision-makers or practitioners need to deal with 

some real-world problems. These disputes motivated us to investigate the algorithmic 

behaviours further and develop a more stable logic, especially considering that these 

popular methods require much effort and modifications to jump out of local optima and 

stagnation and their shortcomings. Although general users in industry and inexperienced 

code users can barely detect these issues, these methods are still difficult to 

understand. Hence, we attempted to highlight more aspects in this research and 

compared them to other methods to shift the preferences of the field toward the 

performance. 

The focus of almost all methods is to iteratively evolve the population that appeared in 

the genetic algorithm (GA) (Holland, 1992) and particle swarm optimizer (PSO), which 

were later divided into the evolutionary algorithm (EA) and Swarm Intelligence (SI) 

optimizers. Biological evolutionary operations support the logic of evolutionary 

algorithms and can tackle optimization problems by three operations: selection, 

reorganization, and mutation. The GA (Holland, 1992) is a basic EA proposed by 

Holland based on Darwin's theory of evolution. Simulating organisms' evolution or the 

ideal solution can be performed in the solution space. The evolutionary process of the 

Differential Evolution (DE) algorithm (Storn & Price, 1997) is very similar to that of GA, 

but its specific definition of operation is different. At the same time, it uses the 

cooperative relationship between individuals within a group and the swarm intelligence 

generated by competition to guide the direction of evolution. Besides, EA includes 

Genetic Programming (GP) (Koza & Rice, 1992), Evolution Strategy (ES) (Hansen, 
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Müller, & Koumoutsakos, 2003), and Evolutionary Programming (EP) (Yao, Liu, & Lin, 

1999).  

SI mainly simulates natural organisms' collective behaviour and uses social wisdom to 

search for optimal searching space cooperatively. Ant Colony Optimization (ACO) (Dorigo 

& Blum, 2005) simulates the food collection conducted in ant colonies and has been applied 

in many discrete problems. PSO (Kennedy & Eberhart, 1995) mimics the regularity of bird 

clusters' activities, using information sharing among individuals in the group to move the 

whole group. In addition to the above two representative algorithms, the more recent SI 

algorithms are biogeography-based optimization (BBO) (Simon, 2008), Bat-inspired 

Algorithm (BA) (X.-S. Yang, 2010), Monarch Butterfly Optimization (MBO) (G.-G. Wang, 

Deb, & Cui, 2019), Cuckoo Search (CS) (X.-S. Yang & Deb, 2009), Artificial Bee Colony 

(ABC) (Karaboga & Basturk, 2007), and Harris Hawk Optimizer (HHO)1 (Heidari, et al., 

2019). Another promising method is the slime mould algorithm (SMA)2 (S. Li, Chen, Wang, 

Heidari, & Mirjalili, 2020), which has been recently developed based on slime mould and is 

gaining more attention from experts. In Figure 1, the classification of methods based on 

algorithmic behaviours is shown. Please refer to the original research presented by Molina et 

al. [25] for complete data and further study. 

 
Figure 1 Classification of  optimizers based on the behaviour taxonomy. 

 

Although MAs are divided into several categories, they share the same characteristics in 

that the search steps consist of exploration and exploration. In the first stage, we need to 

ensure the randomness of the search as much as possible and explore the search space 

                                                                 
1 The info and source codes of the HHO algorithm are publicly available at https://aliasgharheidari.com/HHO.html  

2 The info and source codes of the SMA algorithm are publicly available at https://aliasgharheidari.com/SMA.html  

https://aliasgharheidari.com/HHO.html
https://aliasgharheidari.com/SMA.html


broadly. In the second stage, we need to accurately focus on specific regions of the feature 

space found in the previous stage. A promising area focuses on the local search capacity, so 

balancing these two stages is crucial to the algorithm's performance. 

Although many MAs have been proposed, there is no free lunch (Wolpert & Macready, 

1997) in the world, and no algorithm can solve all optimization problems as the best method. 

Since each algorithm shows superiority in some specific optimization problems, researchers 

continuously work to explore and develop better algorithms. Hence, this work proposes a 

new meta-heuristic algorithm, Hunger Games Search (HGS), which is inspired by social 

animals' cooperative behaviour where search activity is proportional to their level of hunger. 

This algorithm is designed and implemented based on the common characteristics of social 

animals and their food search. 

   The remainder of this paper is structured as follows. Section 2 expounds on the 

enlightenment of HGS and establishes the corresponding mathematical model. Section 3 

depicts the experiments involved in this work, qualitative analysis, and comparison with 

traditional and advanced algorithms on 23 benchmark functions, and IEEE CEC benchmark 

functions, and application to engineering problems. Section 4 summarizes the full text and 

future research direction.  

2 Hunger Games Search (HGS)  

In this chapter, the HGS algorithm's details, along with its mathematical model, will be 

introduced. 

2.1 Logic of search, behavioural choice, and hunger-driven games 

Animal follows their sensory info based on some computational rules and in interaction 

with their environment (as a part of their environment) that these rules make the basis of 

their decisions and choices and support for the evolution of their cognitive architecture. It is 

verified that these computationally logical rules utilized by animals will often be adaptive 

evolutionary by securing higher chances of survival, reproduction, and food acquisition (Real, 

1991). Hunger is responsible for one of the most crucial homeostatic motivations and reasons 

for behaviours, decisions, and actions in the life of animals. In spite of the wide variety of 

stimuli and competing demands that always and certainly impinge upon the quality of life of 

animals, they should select and pursue food sources when they face caloric insufficiency. To 

deal with this homeostatic imbalance, they must regularly search for food and move around 

their surroundings in ways that need switching between exploratory, defensive, and 

competing activities, indicating incredible smoothness in feeding strategies (Burnett, et al., 

2016). 

The behavioural choice and choice of activity is universal in the animal monarchy, and it 

is a fundamental law to goal-oriented behaviours witnessed in nature. Various factors or a 

combination of them affect the behaviour of species, and the observed behaviours are subject 

to existing motivational state and the occurrence of stimuli in their locality (Reppucci & 



Veenema, 2020). For any animal, neuroscientists agree that the hunger3 is a strong motivating 

force for activity, learning, and searching for food and it acts as a force toward changing the 

life condition to a more stable state4 (Sutton & Krashes, 2020). Hunger can surpass and 

influence competing drives states such as thirstiness, nervousness, fear of hunters, and 

communal requirements, according to experiments in "Hunger-Driven Motivational State 

Competition" published at Neuron (Burnett, et al., 2016). Hence, neuroscientists discovered that 

hunger possibly is at the top of the motivation hierarchy5. Hunger also trumps communal 

desires for animals when they can find the food and consume it (Burnett, et al., 2016). 

Social life helps animals to avoid predators and find food sources, both other animals and 

vegetables, as they work in natural collaboration, which enhances their chance of survival. 

This is the nature of evolution, whereby healthier animals can find sources of food better and 

have a greater chance of survival over weaker animals. This can be termed as a hunger games 

in nature. Any wrong decision may change the game's outcome, leading to the death of an 

individual or even extinction of an entire species. For example, after hunting, ravens and rats 

tell their companions that their next meal reduces the uncertainty of their next meal (Jarvandi, 

Booth, & Thibault, 2007). The daily behaviour of animals is highly influenced by some 

motivational situations, such as hunger and nervousness of being killed by hunters (Gotceitas 

& Godin, 1991). Hunger is a characteristic of “not eating” for a long time (E Miller, J Bailey, 

& A F Stevenson, 1950), whereby the stronger the hunger, the stronger the craving for food, 

and the more active the organism will be in searching for food in a short time before it gets 

too late and causes starvation or death (I. Friedman & Stricker, 1976). Otherwise, the chance 

of survival will be too low, and the animal dies. Hence, when the source of food is limited, 

there is a logical game between hungry animals to find the source of food and win the 

situation (O’brien, Browman, & Evans, 1990). The game is thus based on the logical decisions 

and motions of species.   

2.2 Mathematical model 

In this sub-section, the mathematical model and proposed HGS method are described in 

detail. Please note that we are constrained to build a mathematical model according to the 

hunger-driven activities and behavioural choice, and it should be as simple as possible and at 

the same time, most efficient performance. 

2.2.1 Approach food 

Social animals often cooperate with each other during foraging, but the possibility that a 

few individuals do not participate in the collaboration is not excluded (Clutton-Brock, 

2009).  

                                                                 
3 For a deep meaning of the hunger word, interested readers can also refer to (Cannon & Washburn, 1912) 

4 To read more about the motivations, preferences and choices of animals, interested readers can read more at: 

https://www.nature.com/scitable/knowledge/library/measuring-animal-preferences-and-choice-behavior-23590718/ 

5 For more info and learning, interested readers can watch a supplementary video at  

https://tinyurl.com/aliasgharheidaridotcom or https://www.sciencedirect.com/science/article/pii/S0896627316305256 

https://www.nature.com/scitable/knowledge/library/measuring-animal-preferences-and-choice-behavior-23590718/


The following game instructions represent the central equation of the HGS algorithm for 

individual cooperative communication and foraging behaviour: 

𝑋(𝑡 + 1)⃗⃗ ⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ =

{
 
 

 
 𝐺𝑎𝑚𝑒1: 𝑋(𝑡)⃗⃗ ⃗⃗⃗⃗⃗⃗ ∙ (1 + 𝑟𝑎𝑛𝑑𝑛(1)),                                             𝑟1 < 𝑙

𝐺𝑎𝑚𝑒2: 𝑊1⃗⃗⃗⃗⃗ ∙ 𝑋𝑏⃗⃗⃗⃗  + 𝑅⃗ ∙ 𝑊2⃗⃗⃗⃗  ⃗ ∙ |𝑋𝑏⃗⃗⃗⃗  − 𝑋(𝑡)
⃗⃗ ⃗⃗⃗⃗⃗⃗ | ,                  𝑟1 > 𝑙, 𝑟2 > 𝐸

𝐺𝑎𝑚𝑒3:  𝑊1⃗⃗⃗⃗⃗ ∙ 𝑋𝑏⃗⃗⃗⃗  − 𝑅⃗ ∙𝑊2⃗⃗⃗⃗  ⃗ ∙ |𝑋𝑏⃗⃗⃗⃗  −𝑋(𝑡)⃗⃗ ⃗⃗⃗⃗⃗⃗ | ,                 𝑟1 > 𝑙, 𝑟2 < 𝐸

 (2.1) 

where 𝑅⃗  is in the range of [−𝑎, 𝑎];  

𝑟1  and 𝑟2 represent two random numbers, which are in the range of [0,1];   

𝑟𝑎𝑛𝑑𝑛(1) is a random number satisfying normal distribution; 

𝑡 indicates the current iterations; 

𝑊1
⃗⃗ ⃗⃗  ⃗ and 𝑊2

⃗⃗ ⃗⃗  ⃗ represent the weights of hunger; which we designed them based on the fact of 

hunger-driven signals (Betley, et al., 2015); 

𝑋𝑏⃗⃗⃗⃗   represents the location of the best individual of this iteration;  

𝑋(𝑡)⃗⃗ ⃗⃗⃗⃗ ⃗⃗   represents each individual's location;  

the value of l will be discussed in the parameter setting experiment, and it is a parameter 

which is designed to improve the algorithm.  

𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ∙ (1 + 𝑟𝑎𝑛𝑑𝑛(1)) represents how an agent can search for food hungrily and randomly 

at the current location;  

|𝑋𝑏⃗⃗ ⃗⃗ − 𝑋(𝑡)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | models the range of activity of the current individual in the current time and it is 

multiplied by 𝑊2
⃗⃗⃗⃗  ⃗ to affect the influence of hunger on the range of activity. Since an individual 

will stop searching when it be not hungry anymore, 𝑅⃗  is a ranging controller added to limit 

the range of activity, in which the range of 𝑅⃗  is gradually reduced to 0. Adding or subtracting 

the range of activity based on 𝑊1⃗⃗⃗⃗  ⃗ ∙ 𝑋𝑏⃗⃗⃗⃗   simulates the current individual informed by its peers 

when arriving at the food location, and then searching for food again at the current location 

after the acquisition of the food. 𝑊1⃗⃗⃗⃗  ⃗ is introduced as the error in grasping the actual position 

in reality. The definition of the formula of 𝐸, which is a variation control for all positions, is 

as follows: 

𝐸 = sech(|𝐹(𝑖) −𝐵𝐹|) (2.2) 

where 𝑖 ∈ 1,2,… ,𝑛, 𝐹(𝑖) represents the fitness value of each individual;  

𝐵𝐹 is the best fitness obtained in the current iteration process (so far);  

Sech is a hyperbolic function (sech(𝑥) =
2

𝑒𝑥+𝑒−𝑥
).  

The formula for 𝑅⃗  is as follows: 

𝑅⃗ = 2 × 𝑠ℎ𝑟𝑖𝑛𝑘× 𝑟𝑎𝑛𝑑− 𝑠ℎ𝑟𝑖𝑛𝑘 (2.3) 

𝑠ℎ𝑟𝑖𝑛𝑘 = 2 × (1 −
𝑡

𝑇
) (2.4) 

where 𝑟𝑎𝑛𝑑 is a random number in the range of [0,1]; and 𝑇 stands for the maximum number 

of iterations. 

Figure 2 displays the process of searching and logic of HGS in the spaces based on the 

rule in Eq. (2.1).  



As can be seen in the graph, the search directions can be divided into two categories 

according to the classification of source points:  

1. Search on the basis of  𝑿⃗⃗ : The first game instruction simulates the self-dependent one, 

which it has no teamwork spirit, and not involved in the cooperation phase and just 

wants to search for food hungrily. 

2. Search on the basis of  𝑿𝒃⃗⃗⃗⃗  ⃗: The second game instruction is closely related to the 

variables 𝑅⃗ ，𝑊1
⃗⃗ ⃗⃗  ⃗ and 𝑊2

⃗⃗ ⃗⃗  ⃗. By a refinement of  these three factors, the individual's 

position can be evolved within the feature space. This method simulates the cooperation 

between several entities when they search for food.   

The laws or rules in Eq. (2.1) allows individuals to explore possible locations near the optimal 

solution and locations far away from the optimal solution, which guarantees the search of all 

locations inside the boundaries of solution space to a certain extent (diversification). The 

same concept can also be applied to high-dimensional search space. 

 

 
Figure 2 The logic of  Hunger Games Search (HGS) algorithm during optimization. 

2.2.2 Hunger role 

In this part, the starvation characteristics of individuals in search are simulated by a 

proposed model, mathematically. 

The formula of 𝑊1⃗⃗⃗⃗  ⃗ in Eq. (2.1) is as follows: 

𝑊1(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = {
ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) ∙

𝑁

𝑆𝐻𝑢𝑛𝑔𝑟𝑦
× 𝑟4 ,   𝑟3 < 𝑙

1                          𝑟3 > 𝑙

 (2.5) 

The formula of 𝑊2
⃗⃗⃗⃗  ⃗ in Eq. (2.1) is shown as follows: 

𝑊2(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = (1 − 𝑒𝑥𝑝(−|ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) − 𝑆𝐻𝑢𝑛𝑔𝑟𝑦|)) × 𝑟5 × 2 (2.6) 

where ℎ𝑢𝑛𝑔𝑟𝑦 represents the hunger of each individual; 

𝑁 represents the number of individuals;  

𝑆𝐻𝑢𝑛𝑔𝑟𝑦 is the sum of hungry feelings of all individuals, that is 𝑠𝑢𝑚(ℎ𝑢𝑛𝑔𝑟𝑦);  

𝑟3, 𝑟4 and 𝑟5 are random numbers in the range of [0,1]. 



The formula for ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) is provided below: 

ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) = {
0,                                 𝐴𝑙𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) == 𝐵𝐹

ℎ𝑢𝑛𝑔𝑟𝑦(𝑖) +𝐻,        𝐴𝑙𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖)! = 𝐵𝐹
 

 
(2.7) 

where 𝐴𝑙𝑙𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑖) preserves the fitness of each individual in the current iteration. In each 

iteration, the best individual's hunger was set to 0. For other individuals, a new hunger (𝐻) is 

added based on the original hunger. Hence, we understand that the corresponding H of 

different individuals will be different. 

The formula for 𝐻 can be seen as follows: 

𝑇𝐻 =
𝐹(𝑖) −𝐵𝐹

𝑊𝐹 − 𝐵𝐹
× 𝑟6 × 2 × (𝑈𝐵− 𝐿𝐵) (2.8) 

𝐻 = {
𝐿𝐻 × (1+ 𝑟),           𝑇𝐻 < 𝐿𝐻
𝑇𝐻,                   𝑇𝐻 ≥ 𝐿𝐻

 (2.9) 

where 𝑟6 is a random number in the range of [0,1];  

𝐹(𝑖) represents the fitness value of each individual;  

𝐵𝐹 is the best fitness obtained in the current iteration process (so far);  

WF stands for the worst fitness obtained in the current iteration process (so far);  

𝑈𝐵 and 𝐿𝐵 indicate the upper and lower bounds of the feature space, respectively.  

The hunger sensation (Friedman, Ulrich, & Mattes, 1999) 𝐻 is limited to a lower bound, 𝐿𝐻, In 

order to make the algorithm get a better performance, we control the upper and lower limits 

of hunger, and the value of 𝐿𝐻 will be discussed in the parameter setting experiment.  

Since hunger may have both positive and negative effects on the range of activity, 𝑊1⃗⃗⃗⃗  ⃗ and 

𝑊2
⃗⃗⃗⃗  ⃗ are simulated.  

In Eq. (2.8), the difference between UB and LB is used to reflect the individual's greatest 

hunger in different environments;  

 𝐹(𝑖) − 𝐵𝐹 represents the amount of food that an individual still needs not to be hungry 

anymore; In every iteration, the hunger of individual will change. 

𝑊𝐹 −𝐷𝐹 yields the total foraging capacity of an individual in the current process;  

𝐹(𝑖)−𝐷𝐹

𝑊𝐹−𝐷𝐹
 represents the hunger ratio;  

𝑟6 × 2 gives the positive or negative effects of environmental factors on hunger.  

While the HGS algorithm proposed can yield the commonness of social animals, it still 

has much room for improvement. For instance, the algorithm can be improved by mapping 

it according to a living organism and integrating the living organism's unique characteristics. 

It can also be improved by adding other mechanisms. We simplify the algorithm as much as 

possible to maximize its scalability.  

Algorithm 1 shows the pseudo-code of the proposed Hunger Games Search. Also, the 

flowchart is represented in Figure 3. 

 

Algorithm 1 Pseudo-code of Hunger Games Search (HGS) 

Initialize the parameters 𝑁, 𝑇, 𝑙,𝐷,𝑆𝐻𝑢𝑛𝑔𝑟𝑦 
Initialize the positions of Individuals 𝑋𝑖(𝑖 = 1,2,… ,𝑁) 
While (𝑡 ≤ 𝑇) 

Calculate the fitness of all Individuals 
         𝑈𝑝𝑑𝑎𝑡𝑒 𝐵𝐹,𝑊𝐹,  𝑋𝑏 ,𝐵𝐼 

Calculate the 𝐻𝑢𝑛𝑔𝑟𝑦 by Eq. (2.7) 



Calculate the 𝑊1 by Eq. (2.5) 
Calculate the 𝑊2 by Eq. (2.6) 

For 𝑒𝑎𝑐ℎ 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 
    Calculate 𝐸 by Eq. (2.2) 

    𝑈𝑝𝑑𝑎𝑡𝑒 𝑅 by Eq. (2.3) 

    𝑈𝑝𝑑𝑎𝑡𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑏𝑦 𝐄𝐪. (2.1) 
End 𝐅𝐨𝐫 

𝑡 = 𝑡 + 1  
End While 
Return 𝐵𝐹, 𝑋𝑏  

 

Figure 3 Flowchart of  Hunger Games Search (HGS) algorithm. 



2.3 Theoretical and structural qualities of the Hunger Games Search 

As a gradient-free, population-based optimizer, the proposed HGS exhibits efficient performance due 

to the following unique advantages: 

 It is a population-based method with stochastic switching elements that enrich its main exploratory and 

exploitative behaviours and flexibility of  HGS in dealing with challenging problem landscapes. 

 The adaptive and time-varying mechanisms of  HGS allow this method to handle multi-modality, and 

local optima problems more effectively. 

 The consideration of  hunger ratio and influence of  hunger on the range of  activity make the HGS more 

flexible and capable of  changing the performance in a fitness-wise fashion. 

 The application of  individual fitness values enables HGS to consider historical info if  it is required to 

change the behaviour. 

 Parameters 𝑙  and 𝐸  assist HGS in evolving the initial positions and search mode to ensure the 

exploration of  the whole solution space as far as possible and enhance the diversification capacity of  

the algorithm to a great extent. 

 The hunger weights 𝑊1
⃗⃗ ⃗⃗  ⃗ and 𝑊2

⃗⃗ ⃗⃗  ⃗ increase the perturbation of  HGS during the search process and 

prevent the algorithm from trapping in a local optimum. 

 The parameter 𝑅⃗  ensures that the search step of  HGS is reduced at a specific rate; therefore satisfying 

the need to explore the target solution space in a broad range in the early stage and exploit the depth of  

the target search basin in the later stages. 

 The Hunger Games Search can evolve the search agents with regards to best solutions (Xb) and normal 

solutions (X), which is a simple idea to ensure more exploration patterns and more coverage on the 

hidden areas of  the feature space. 

 The structure and logic of  Hunger Games Search are straightforward, and it is easy to be integrated with 

other evolutionary mechanisms for dealing with new practical problems in science and engineering. 

 Despite the simple equations and compared to the existing methods, the Hunger Games Search has a 

very superior performance with high-quality results compared to well-known basic and advanced 

methods for studied benchmark problems. 

 The codes of Hunger Games Search will be publicly available in different languages, and users can easily 

access the software codes and apply it to their target problem based on functional programming.  

 An online, public web service at https://aliasgharheidari.com/HGS.html will be responsible for all users 

regarding any assistance and required supplementary material.  

 

2.4 Computational complexity analysis 

The proposed Hunger Games Search mainly includes the following parts: initialization, fitness 

evaluation, sorting, hunger updating, weight updating, and location updating. In the associated formulas, 𝑁 

indicates the number of individuals in the population, 𝐷 is the dimension of the problem, and 𝑇 represents 

the maximum quantity of iterations. During the initial stage, the computational complexity of fitness 

evaluation and hunger update are both 𝛰(𝑁), the computational complexity of sorting is 𝛰(𝑁𝑙𝑜𝑔𝑁), and 

the computational complexity of weight and location update is 𝛰(𝑁 ×𝐷). From the above analysis, we can 

acquire the complexity of the whole algorithm: 𝛰(𝑁 ∗ (1+ 𝑇 ∗𝑁 ∗ (2+ 𝑙𝑜𝑔𝑁+ 2 ∗𝐷))). 



3 Experiments and results 

In this chapter, the proposed HGS algorithm is compared against some well-established counterparts. 

All experiments were conducted on a Windows Server 2008 R2 operating system with Intel (R) Xeon (R) 

CPU E5-2650 v4 (2.20 GHz) and 128 GB of RAM. All algorithms were coded in the MATLAB R2014b 

for a fair comparison. 

3.1 Qualitative analysis 

Figure 4 shows the qualitative analysis of 23 well-known benchmark functions using the HGS algorithm, 

which includes the search history, trajectory of the first individual, average fitness of all individuals, and 

convergence behaviour. The search history shows the location and distribution of individuals in each 

iteration. The first individual's trajectory reveals the motion patterns of the first individual in the whole 

iteration process. The average fitness of all individuals monitors how the average fitness of the entire 

population changes during optimization. The convergence behaviour reveals the changing trend of optimal 

fitness and indirectly shows how well exploratory trends change to exploitative drifts.  

By observing the individual's historical position, we can first observe that the individual has explored 

major portions of the search space, showcasing that the algorithm has a strong search ability and can avoid 

falling into a locally optimal solution. Simultaneously, we also see that most of the search locations are 

around the optimal solution, which indicates that the algorithm can accurately progress in the target area, 

and the convergence speed is fast. The algorithm has a good measurement between the two phases of 

exploration and exploration, in which we can detect the advantages of HGS. 

The trajectory graph shows that individuals have strong fluctuations in the initial stage of the search, and 

the range of fluctuation coverage exceeds 50% of the solution space. This proves that the search ability of 

the HGS algorithm is very strong, and it can focus on high-quality solutions. As the number of iterations 

increases, the fluctuation tends to be more stable, which indicates that the algorithm has found a promising 

region, and it is still exploring the region. For some functions, such as F7 and F8, it is apparent that the 

fluctuation tends to stabilize and then oscillation occurs, meaning that the HGS algorithm can jump out of 

local optimum and avoid falling into local optima, which is also a validation of the balanced performance 

of the proposed algorithm. 

The algorithm tends to converge very quickly in the early stages of iteration by monitoring the overall 

average fitness. Although the downward trend slows down with the iteration and is accompanied by 

variations, the average fitness gradually decreases, reflecting the well-prepared search and high searching 

capabilities of the algorithm. The convergence curve reveals the convergence speed of the algorithm and 

the time point of conversion between exploration and exploration. The convergence curves show that HGS 

can demonstrate a fast tendency in dealing with F8-F10, and there is no stagnation problem. 



 

Figure 4 Qualitative analysis of  HGS on some typical functions 



3.2 Validation on commonly used benchmark functions 

In this part, we tested the proposed HGS algorithm on 23 benchmark unimodal and multi-modal 

functions. Details of these 23 functions can be found in Table 1, where Dim denotes the dimensions of the 

functions, Range refers to the definition domain of the function, and 𝑓𝑚𝑖𝑛 reveals the optimal solution of 

the function. 

One point is so critical in the verification of computational intelligence methods, and it is the detailed 

report of the used parameters for a fair, justifiable comparative analysis and the same conditions of test 

(Hao Chen, Ali Asghar Heidari, Huiling Chen, et al., 2020; Shi, et al., 2018; Shi, Wang, Tang, & Zhong, 

2020; Shi, Wang, Zhong, Tang, & Cheng, 2020). This matter is to ensure the results of any kind of algorithm 

are gathered in the same condition and with no bias toward any specific method that used a better testing 

condition, as it followed by reference literature as well (Fan, et al., 2020; Huang, et al., 2020; Ni, et al., 2020; 

S. Yang, et al., 2019; Silu Zhang, et al., 2018). 

For the experimental results' credibility, all experiments were conducted under the same conditions: 

population size was set to 30; and maximum iterations and dimensions were set to 1000 and 30, respectively. 

At the same time, to exclude the influence of random factors, we tested each algorithm 30 times. For this 

paper, the Friedman test (Derrac, García, Molina, & Herrera, 2011) and the Wilcoxon sign-rank test (García, 

Fernández, Luengo, & Herrera, 2010) were applied to identify the algorithms' significant differences. The 

Friedman test is a non-parametric statistical program that allows us to perform further analysis through the 

algorithm's average performance ranking. The Wilcoxon sign-rank test is used as a statistical significance 

test, where a p-value lower than 0.05 reveals that HGS performs significantly better than its competitors. 

Table 1 Description of the 23 benchmark functions 

ID Function Equation Dim Range fmin 

F1 𝑓1 (𝑥) = ∑ 𝑥 𝑖
2𝑛

𝑖=1   30 [-100,100] 0 

F2 𝑓2 (𝑥) = ∑ |𝑥 𝑖|+ ∏ |𝑥 𝑖|
𝑛
𝑖=1

𝑛
𝑖=1   30 [-10,10] 0 

F3 𝑓3 (𝑥) = ∑ (∑ 𝑥𝑗
𝑖
𝑗−1 )2𝑛

𝑖=1   30 [-100,100] 0 

F4 𝑓4(𝑥) = 𝑚𝑎𝑥 𝑖{|𝑥 𝑖|,1 ≤ 𝑖 ≤ 𝑛} 30 [-100,100] 0 

F5 𝑓5 (𝑥) = ∑ [100(𝑥 𝑖+1 − 𝑥 𝑖
2)2 + (𝑥 𝑖− 1)

2]𝑛−1
𝑖=1   30 [-30,30] 0 

F6 𝑓6 (𝑥) = ∑ ([𝑥 𝑖+ 0.5])
2𝑛

𝑖=1    30 [-100,100] 0 

F7 𝑓7 (𝑥) = ∑ 𝑖𝑥 𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚 [0,1)𝑛

𝑖=1   30 [-1.28,1.28] 0 

F8 𝑓8 (𝑥) = ∑ −𝑥 𝑖𝑠𝑖𝑛 (√|𝑥 𝑖|)
𝑛
𝑖=1       30 [-500,500] - 418.982 

F9 𝑓9 (𝑥) = ∑ [𝑥 𝑖
2 −10 𝑐𝑜𝑠(2𝜋𝑥 𝑖) + 10]

𝑛
𝑖=1    30 [-5.12,5.12] 0 

F10 
𝑓10 (𝑥) = −20 𝑒𝑥𝑝 {−0.2√

1

𝑛
∑ 𝑥𝑖
𝑛
𝑖=1

} −

𝑒𝑥𝑝{1
𝑛
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑛
𝑖=1 } + 20 +  𝑒  

30 [-32,32] 0 

F11 𝑓11 (𝑥) =
1

4000
∑ 𝑥𝑖

2− ∏ 𝑐𝑜𝑠 (
𝑥𝑖

√𝑖
) + 1𝑛

𝑖=1
𝑛
𝑖=1   30 [-600,600] 0 

F12 𝑓12 (𝑥) =
𝜋

𝑛
{10 𝑠𝑖𝑛(𝑎𝑦1) + ∑ (𝑦𝑖 − 1)

2[1 +𝑛−1
𝑖=1

10𝑠𝑖𝑛2(𝜋𝑦𝑖+1)] + (𝑦𝑛 − 1)
2 +

∑ 𝜇(𝑥 𝑖 ,10,100,4)
𝑛
𝑖=1 }  

30 [-50,50] 0 

F13 𝑓13 (𝑥) = 0.1{𝑠𝑖𝑛
2(3𝜋𝑥 𝑖) + ∑ (𝑥𝑖 − 1)

2[1 +𝑛
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥 𝑖+ 1)] + (𝑥𝑛 − 1)
2[1 +

𝑠𝑖𝑛2(2𝜋𝑥𝑛)] + ∑ 𝜇(𝑥 𝑖 ,5,100,4)
𝑛
𝑖=1   

30 [-50,50] 0 



3.2.1 Comparison with basic optimizers 

In this part, HGS was compared with 15 other methods that can be categorized into two classes: well-

established methods and recent methods. The recent methods 6 include Sine Cosine Algorithm (SCA) 

(Mirjalili, 2016), Salp Swarm Algorithm (SSA) (Mirjalili, et al., 2017), Grey Wolf Optimizer (GWO) (Mirjalili, 

Mirjalili, & Lewis, 2014), Moth-flame Optimization (MFO) (S. Mirjalili, 2015), Whale Optimization 

Algorithm (WOA) (Mirjalili & Lewis, 2016), Grasshopper Optimization Algorithm (GOA) (Saremi, 

Mirjalili, & Lewis, 2017), Dragonfly Algorithm (DA) (Seyedali Mirjalili, 2015b), Ant Lion Optimizer (ALO) 

(Seyedali Mirjalili, 2015a), and Multi-Verse Optimizer (MVO) (Mirjalili, Mirjalili, & Hatamlou, 2015). The 

well-established methods include Biogeography-based Optimization (BBO) (Simon, 2008), Particle Swarm 

Optimization (PSO) (Kennedy & Eberhart, 1995), Differential Evolution (DE) (Storn & Price, 1997), 

Firefly Algorithm (FA) (X. S. Yang, 2009), Bat Algorithm (BA)7 (X.-S. Yang, 2010), and Flower Pollination 

Algorithm (FPA) (X.-S. Yang, Karamanoglu, & Xingshi, 2014). For complete descriptions of those 

F14 𝑓14 (𝑥)

= (
1

5000
+∑

1

𝑗 + ∑ (𝑥 𝑖+ 𝑎𝑖𝑗 )
6

2
𝑖=1

25

𝑗=1
)

−1
2 [-65,65] 1 

F15 
𝑓15 (𝑥) = ∑ [𝑎𝑖 −

𝑥1(𝑏𝑖
2+ 𝑏𝑖𝑥2)

𝑏𝑖
2 +𝑏𝑖𝑥3+ 𝑥4

]2
11

𝑖=1
 

4 [-5,5] 0.00030 

F16 
𝑓16 (𝑥) = 4𝑥1

2− 2.1𝑥1
4+

1

3
𝑥1

6+ 𝑥1𝑥2−4𝑥2
2

+ 4𝑥2
4

2 [-5,5] -1.0316

F17 
𝑓17 (𝑥) = (𝑥2−

5.1

4𝜋2
𝑥1

2+
5

𝜋
𝑥1− 6)

2

+10 (1 −
1

8𝜋
) 𝑐𝑜𝑠 𝑥1+ 10

2 [-5,5] 0.398 

F18 𝑓18 (𝑥) = [1 + (𝑥1+ 𝑥2+ 1)
2(19 − 14𝑥1

+ 3𝑥1
2− 14𝑥2+ 6𝑥1𝑥2

+ 3𝑥2
2)]

× [30 + (2𝑥1− 3𝑥2)
2 × (18 − 32𝑥1+ 12𝑥1

2

+48𝑥2− 36𝑥1𝑥2+ 27𝑥2
2)]

2 [-2,2] 3 

F19 
𝑓19 (𝑥) = −∑ 𝑐𝑖

4

𝑖=1
𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗 (𝑥𝑗

3

𝑗=1

− 𝑝𝑖𝑗 )
2)

3 [1,3] -3.86

F20 
𝑓20 (𝑥) = −∑ 𝑐𝑖

4

𝑖 =1
𝑒𝑥𝑝 (−∑ 𝑎𝑖𝑗(𝑥𝑗

6

𝑗=1

− 𝑝𝑖𝑗 )
2)

6 [0,1] -3.32

F21 
𝑓21 (𝑥) = −∑ [(𝑋 − 𝑎𝑖 )(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

5

𝑖=1

4 [0,10] -10.1532

F22 
𝑓22 (𝑥) = −∑ [(𝑋 − 𝑎𝑖 )(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

7

𝑖=1

4 [0,10] -10.4028

F23 
𝑓23 (𝑥) = −∑ [(𝑋 − 𝑎𝑖 )(𝑋 − 𝑎𝑖)

𝑇 + 𝑐𝑖]
−1

10

𝑖=1

4 [0,10] -10.5363



methods, please refer to the original research. The parameter settings of these algorithms are shown in 

Table 2. 

 

Table 2 Parameter settings of the involved MAs 

Class Algorithm Parameter settings 

Well-

established 

BBO 𝑒𝑙𝑖𝑡𝑖𝑠𝑚= 2; 𝜆𝑙𝑜𝑤𝑒𝑟 = 0; 𝜆𝑢𝑝𝑝𝑒𝑟 = 1; 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒= 1 

PSO 𝑐1 = 2; 𝑐2 = 2;  𝑣𝑀𝑎𝑥 = 6;  𝑤 = 1  
DE 𝑠𝑐𝑎𝑙𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟 = 0.5;  𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 0.5  
FA 𝛼 = 0.5;  𝛽 = 0.2;  𝛾 = 1  
BA 𝐴 = 0.5;  𝑟 = 0.5  
FPA 𝑈~𝑁(0,𝜎2); 𝑉~𝑁(0,1);𝑝 = 0.5 

Recent 

methods 

SCA 𝐴 = 2  
SSA 𝑐1 ∈ [0 1]; 𝑐2 ∈ [0 1];   
GWO 𝑎 = [2,0]  
MFO 𝑏 = 1;  𝑡 = [−1,1];  𝑎 ∈ [−1,−2]  
WOA 𝑎1 = [2,0]; 𝑎2 = [−2,−1];  𝑏 = 1  
GOA 𝑐𝑚𝑎𝑥 = 1; 𝑐𝑚𝑖𝑛 = 0.00001; 𝑏 = 1  
DA β = 1.5 
ALO 𝑘 = 500  
MVO 𝑒𝑥𝑖𝑠𝑡𝑒𝑛𝑐𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 ∈ [0.2 1];  𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑒 ∈ [0.6 1]  

 

The data in Table 3 represent the results of comparing HGS with other traditional MAs, where "+", 

"−" and "=" indicate that HGS performs better, worse, and equal to the corresponding algorithm, 

respectively. Avg, which is the average ranking result of the algorithm, is based on the Freidman test. From 

the table, we can intuitively find that HGS ranks first. For each opponent, it is difficult to defeat HGS on 

most 23 benchmark functions. Although DE defeats HGS in the largest number of functions, only five, 

and other algorithms do not even defeat HGS on anyone. The average value of our method is only 2.17, 

which is much smaller than other algorithms. Compared with the second-ranked DE, the average value of 

HGS is about half of DE. We can conclude that the performance of HGS is superior to the other 

counterparts. 

Table A.1 in Appendix A shows the consequences of the Wilcoxon sign-rank test performed by HGS 

and other algorithms. Most p-values are less than 0.05, accounting for 93.0% of all data. Even in SCA, PSO, 

BA, and FPA, all p-values are less than 0.05. Although the numbers of p-values that are higher than 0.05 

are the largest on DE and MFO, there are only five cases. This fact further shows that HGS has a strong 

statistical significance compared to the other methods. 

 

Table 3 Comparison results of  HGS algorithm on the 23 benchmark functions with traditional algorithms  

 F1   F2   F3  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 5.10E-304 0.00E+00  6.00E-168 0.00E+00  1.20E-167 0.00E+00 

SCA 7.19E-02 2.66E-01  2.65E-05 5.47E-05  3.76E+03 3.61E+03 

SSA 1.15E-08 2.52E-09  7.03E-01 5.97E-01  2.73E+02 1.96E+02 

GWO 3.85E-59 6.10E-59  1.20E-34 1.48E-34  2.00E-15 4.12E-15 

MFO 2.67E+03 4.50E+03  3.57E+01 1.98E+01  2.28E+04 1.41E+04 

WOA 8.30E-150 3.40E-149  8.10E-105 1.90E-104  1.92E+04 1.15E+04 



GOA 7.90E+00 5.18E+00  8.00E+00 1.05E+01  2.05E+03 9.88E+02 

DA 1.10E+03 5.10E+02  1.48E+01 5.47E+00  1.20E+04 7.10E+03 

ALO 1.25E-05 8.89E-06  4.26E+01 4.93E+01  1.22E+03 5.52E+02 

MVO 3.03E-01 8.98E-02  3.71E-01 1.03E-01  4.49E+01 1.89E+01 

BBO 1.28E+01 5.11E+00  0.00E+00 0.00E+00  7.72E+03 2.67E+03 

PSO 1.26E+02 1.52E+01  7.29E+01 1.56E+01  4.20E+02 8.46E+01 

DE 2.86E-12 1.42E-12  3.71E-08 1.17E-08  2.46E+04 4.20E+03 

FA 2.81E-03 7.78E-04  1.47E-01 7.82E-02  7.93E+02 3.95E+02 

BA 1.48E+01 2.02E+00  2.53E+03 1.37E+04  6.70E+01 1.40E+01 

FPA 2.41E+02 7.87E+01  1.56E+01 3.68E+00  3.67E+02 1.27E+02 

 F4   F5   F6  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.50E-137 9.80E-137  1.92E+01 9.77E+01  7.78E-07 1.17E-06 

SCA 1.95E+01 1.08E+01  2.80E+02 5.07E+02  4.63E+00 4.82E-01 

SSA 8.97E+00 4.01E+00  1.37E+02 1.77E+02  1.17E-08 3.42E-09 

GWO 1.31E-14 1.59E-14  2.68E+01 7.76E-01  6.34E-01 3.50E-01 

MFO 6.86E+01 7.66E+00  6.47E+03 2.27E+04  1.66E+03 4.59E+03 

WOA 4.40E+01 2.89E+01  2.71E+01 4.67E-01  9.51E-02 1.14E-01 

GOA 1.09E+01 3.50E+00  1.21E+03 1.50E+03  7.33E+00 6.11E+00 

DA 2.42E+01 7.91E+00  1.25E+05 1.02E+05  1.20E+00 5.20E+02 

ALO 1.18E+01 3.13E+00  1.34E+02 2.22E+02  8.28E-06 7.32E-06 

MVO 9.40E-01 3.14E-01  3.98E+02 7.26E+02  3.07E-01 9.51E-02 

BBO 3.83E+01 1.25E+01  4.34E+02 2.46E+02  1.70E+01 8.78E+00 

PSO 4.47E+00 1.95E-01  1.45E+05 3.43E+04  1.30E+02 1.26E+01 

DE 1.92E+00 3.59E-01  4.46E+01 2.20E+01  2.62E-12 1.36E-12 

FA 6.62E-02 1.51E-02  2.02E+02 3.94E+02  2.81E-03 8.27E-04 

BA 1.90E+00 2.27E-01  4.05E+03 1.29E+03  1.47E+01 1.84E+00 

FPA 1.59E+01 3.40E+00  7.52E+03 4.57E+03  2.22E+02 8.13E+01 

 F7   F8   F9  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 3.43E-04 4.66E-04  -1.26E+04 1.40E-01  0.00E+00 0.00E+00 

SCA 3.95E-02 3.76E-02  -4.00E+03 3.04E+02  9.00E+00 1.23E+01 

SSA 8.58E-02 2.84E-02  -7.58E+03 8.00E+02  6.22E+01 2.09E+01 

GWO 8.84E-04 4.59E-04  -5.98E+03 5.83E+02  9.40E-01 3.04E+00 

MFO 2.12E+00 4.15E+00  -8.58E+03 9.21E+02  1.55E+02 3.86E+01 

WOA 1.50E+00 1.99E-03  -1.16E+04 
4 

1.30E+03  0.00E+00 0.00E+00 

GOA 2.10E-02 8.21E-03  -7.49E+03 7.50E+02  9.61E+01 3.46E+01 

DA 3.28E-01 1.74E-01  -5.61E+03 6.62E+02  1.48E+02 3.10E+02 

ALO 1.01E-01 4.17E-02  -5.61E+03 5.34E+02  7.78E+01 1.95E+01 

MVO 1.93E-02 8.42E-03  -7.59E+03 5.93E+02  1.08E+02 2.81E+01 

BBO 7.76E-04 8.31E-04  -1.25E+04 1.16E+01  0.00E+00 0.00E+00 

PSO 1.10E+02 3.11E+01  -7.09E+03 8.76E+02  3.66E+02 2.13E+01 

DE 2.72E-02 5.77E-03  -1.25E+04 9.61E+01  5.94E+01 6.45E+00 

FA 6.27E-03 2.27E-03  -6.98E+03 5.10E+02  4.01E+01 1.16E+01 

BA 1.59E+01 9.77E+00  -7.11E+03 6.34E+02  2.63E+02 2.47E+01 

FPA 1.47E-01 5.47E-02  -7.99E+03 1.87E+02  1.12E+02 2.08E+01 

 F10   F11   F12  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 8.88E-16 0.00E+00  0.00E+00 0.00E+00  1.07E-08 1.61E-08 

SCA 1.47E+01 8.94E+00  3.79E-01 2.70E-01  5.98E+01 3.08E+02 

SSA 1.99E+00 5.25E-01  1.04E-02 9.53E-03  5.65E+00 2.82E+00 



GWO 1.59E-14 2.90E-15  3.07E-03 7.78E-03  4.04E-02 2.10E-02 

MFO 1.28E+01 7.57E+00  3.01E+01 4.94E+01  8.53E+06 4.67E+07 

WOA 3.61E-15 2.22E-15  0.00E+00 0.00E+00  7.51E-03 8.42E-03 

GOA 4.18E+00 9.64E-01  8.04E-01 1.70E-01  6.05E+00 2.59E+00 

DA 8.87E+00 1.69E+00  1.27E+01 7.85E+00  1.95E+02 6.17E+02 

ALO 1.97E+00 5.68E-01  1.55E-02 1.49E-02  9.83E+00 4.73E+00 

MVO 1.10E+00 7.29E-01  5.66E-01 1.35E-01  1.07E+00 1.20E+00 

BBO 4.55E-01 4.17E-01  1.13E+00 5.14E-02  4.52E-02 4.21E-02 

PSO 8.28E+00 4.02E-01  1.03E+00 1.08E-02  4.86E+00 7.09E-01 

DE 4.48E-07 1.20E-07  3.82E-10 1.38E-09  3.56E-13 2.55E-13 

FA 1.38E-02 2.44E-03  4.00E-03 2.36E-03  2.51E-05 1.17E-05 

BA 4.36E+00 1.90E-01  5.59E-01 6.27E-02  1.20E+01 4.37E+00 

FPA 8.68E+00 1.09E+00  3.07E+00 6.95E-01  4.36E+00 1.03E+00 

 F13   F14   F15  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 9.91E-08 6.74E-08  1.97E+00 2.98E+00  6.80E-04 3.47E-04 

SCA 1.01E+01 3.09E+01  1.66E+00 9.49E-01  9.00E-04 3.72E-04 

SSA 3.09E+00 7.64E+00  9.98E-01 2.31E-16  1.54E-03 3.56E-03 

GWO 5.40E-01 2.47E-01  4.07E+00 3.68E+00  5.10E-03 8.57E-03 

MFO 1.37E+07 7.49E+07  2.81E+00 2.01E+00  1.90E-03 3.76E-03 

WOA 2.38E-01 2.08E-01  2.56E+00 3.33E+00  6.76E-04 3.49E-04 

GOA 2.43E+01 1.43E+01  9.98E-01 4.03E-16  9.66E-03 1.26E-02 

DA 3.38E+04 6.34E+04  9.98E-01 5.02E-10  2.59E-03 4.72E-03 

ALO 8.36E-01 2.29E+00  1.62E+00 1.26E+00  8.44E-04 2.07E-04 

MVO 7.76E-02 5.78E-02  9.98E-01 9.70E-12  5.33E-03 8.44E-03 

BBO 3.67E-01 2.06E-01  9.98E-01 5.65E-16  6.70E-02 1.54E-02 

PSO 2.25E+01 3.34E+00  3.56E+00 2.49E+00  1.23E-03 4.14E-04 

DE 1.69E-12 1.14E-12  1.16E+00 9.00E+00  6.91E-04 1.70E-04 

FA 3.40E-04 1.80E-04  1.35E+00 5.98E-01  9.26E-04 1.16E-03 

BA 2.25E+00 3.03E-01  4.43E+00 4.03E+00  8.79E-03 1.34E-02 

FPA 2.56E+01 5.57E+00  9.98E-01 2.79E-08  4.38E-04 1.11E-04 

 F16   F17   F18  

Algorithm AVG STD  AVG STD  AVG STD 

HGS -1.03E+00 5.45E-16  3.98E-01 0.00E+00  3.00E+00 3.56E-15 

SCA -1.03E+00 2.37E-05  3.98E-01 1.00E-03  3.00E+00 3.93E-05 

SSA -1.03E+00 7.61E-15  3.98E-01 3.81E-15  3.00E+00 4.50E-14 

GWO -1.03E+00 8.53E-09  3.98E-01 3.42E-07  3.00E+00 1.03E-05 

MFO -1.03E+00 6.78E-16  3.98E-01 0.00E+00  3.00E+00 2.14E-15 

WOA -1.03E+00 1.44E-10  3.98E-01 8.35E-07  3.00E+00 2.54E-05 

GOA -1.03E+00 2.39E-14  3.98E-01 2.59E-14  5.70E+00 1.48E+01 

DA -1.03E+00 1.88E-06  3.98E-01 9.99E-07  3.00E+00 6.12E-05 

ALO -1.03E+00 5.83E-14  3.98E-01 1.30E-14  3.00E+00 4.22E-13 

MVO -1.03E+00 9.74E-08  3.98E-01 2.59E-08  5.70E+00 1.48E+01 

BBO 0.00E+00 0.00E+00  6.45E-01 0.00E+00  3.00E+00 0.00E+00 

PSO -1.03E+00 1.28E-03  3.98E-01 6.87E-04  3.09E+00 7.39E-02 

DE -1.03E+00 6.78E-16  3.98E-01 0.00E+00  3.00E+00 1.21E-15 

FA -1.03E+00 1.31E-09  3.98E-01 6.21E-10  3.00E+00 9.77E-09 

BA -1.03E+00 3.85E-04  3.98E-01 1.66E-04  3.04E+00 3.41E-02 

FPA -1.03E+00 1.09E-11  3.98E-01 3.69E-15  3.00E+00 3.40E-12 

 F19   F20   F21  

Algorithm AVG STD  AVG STD  AVG STD 



HGS -3.86E+00 2.45E-15  -3.25E+00 6.68E-02  -9.98E+00 9.31E-01 

SCA -3.86E+00 2.34E-03  -2.80E+00 4.67E-01  -2.95E+00 1.86E+00 

SSA -3.86E+00 4.92E-14  -3.24E+00 5.66E-02  -7.72E+00 2.92E+00 

GWO -3.86E+00 2.41E-03  -3.23E+00 1.09E-01  -9.48E+00 1.75E+00 

MFO -3.86E+00 2.71E-15  -3.20E+00 4.90E-02  -7.06E+00 3.46E+00 

WOA -3.86E+00 3.19E-03  -3.24E+00 1.17E-01  -9.29E+00 1.93E+00 

GOA -3.81E+00 1.11E-01  -3.26E+00 6.13E-02  -6.72E+00 3.39E+00 

DA -3.86E+00 1.01E-04  -3.26E+00 6.90E-02  -6.85E+00 2.81E+00 

ALO -3.86E+00 1.57E-14  -3.27E+00 6.03E-02  -7.30E+00 3.21E+00 

MVO -3.86E+00 5.92E-07  -3.27E+00 5.95E-02  -7.71E+00 2.70E+00 

BBO -3.35E-01 1.69E-16  -1.66E-01 2.82E-17  -6.49E+00 3.57E+00 

PSO -3.86E+00 1.05E-02  -2.78E+00 2.08E-01  -4.00E+00 1.23E+00 

DE -3.86E+00 2.71E-15  -3.32E+00 9.45E-05  -9.63E+00 1.90E+00 

FA -3.86E+00 3.91E-10  -3.29E+00 5.57E-02  -9.66E+00 1.90E+00 

BA -3.84E+00 1.27E-02  -2.91E+00 1.09E-01  -4.56E+00 2.41E+00 

FPA -3.86E+00 2.09E-11  -3.32E+00 6.03E-03  -1.02E+01 6.87E-05 

 F22   F23    

Algorithm AVG STD  AVG STD +/-/= Avg Rank 

HGS -1.04E+01 1.07E-05  -1.05E+01 3.94E-15 ~ 2.17 1 

SCA -3.87E+00 1.95E+00  -4.14E+00 1.77E+00 22/1/0 11.39 13 

SSA -8.38E+00 3.21E+00  -9.65E+00 2.35E+00 21/1/1 6.83 6 

GWO -1.02E+01 9.70E-01  -1.05E+01 2.83E-04 20/0/3 6.48 4 

MFO -8.30E+00 3.27E+00  -8.43E+00 3.29E+00 18/0/5 11.13 12 

WOA -9.08E+00 2.46E+00  -8.16E+00 3.00E+00 19/0/4 6.61 5 

GOA -5.84E+00 3.39E+00  -5.74E+00 3.80E+00 21/0/2 10.26 11 

DA -8.42E+00 2.87E+00  -8.17E+00 3.21E+00 21/1/1 11.91 14 

ALO -6.37E+00 3.22E+00  -7.14E+00 3.33E+00 21/1/1 8.34 9 

MVO -8.33E+00 3.06E+00  -9.19E+00 2.52E+00 21/1/1 7.91 7 

BBO -8.42E+00 3.14E+00  -9.23E+00 2.71E+00 20/2/1 9.22 10 

PSO -5.09E+00 1.27E+00  -4.61E+00 1.29E+00 23/0/0 12.96 16 

DE -1.02E+01 9.72E-01  -1.05E+01 5.41E-02 12/5/6 4.04 2 

FA -1.04E+01 8.88E-07  -1.05E+01 6.40E-07 19/2/2 5.74 3 

BA -6.45E+00 2.76E+00  -6.02E+00 3.02E+00 23/0/0 12.09 15 

FPA -1.04E+01 2.54E-03  -1.05E+01 1.70E-03 19/4/0 8.30 8 



 

 

Figure 5 Comparisons between HGS and traditional MAs. 

 

Inspecting the results in Figure 5 shows that the convergence rate of HGS is fast. From F1 to F4, we can 

see that HGS converges the fastest among all the algorithms, other algorithms converge quite slowly, and 

some even fall into local optimum. F5 and F9-F11 indicate that HGS has high accuracy in solving problems 

and can quickly find the global optimum at the beginning of the iteration. Although some algorithms' 

convergence speed is also very competitive in some stages, the accuracy of the solution of those methods 

is not as high as that of HGS, and the solution found by HGS has a higher quality. Based on the results of 



F7 and F8, the convergence speed of HGS slows down, but it still finds the global optimum first compared 

to the other algorithms. Some algorithms even fall into local optimum at the beginning of the iterations. 

Observing the performance algorithms on F22 and F23 functions, it can be concluded that HGS has a 

strong ability for global exploration. L can effectively switch between the two modes of starvation, and LH 

intuitively defines the minimum value of an individual's hunger. To prevent HGS from falling into local 

optima when faced with some multimodal landscapes, both of them directly affect hunger weights, which 

contribute to the improved rates of HGS in the iterative process and a better balance of the search and 

discovery stages. In the search phase, the solution space can be searched as complete as possible, so that 

the algorithm can achieve the effect of fast convergence at the early stage. In the mining stage, the optimal 

solution can be found nearby, which ensures the accuracy of the solution. 

3.2.2 Comparison with improved metaheuristic methods  

To further illustrate the effectiveness of the HGS algorithm, we compared HGS with ten state-of-the-

art advanced algorithms: IWOA (Tubishat, Abushariah, Idris, & Aljarah, 2018), OBWOA (Elsayed abd el 

aziz & Oliva, 2018), ACWOA (Khashan, El-Hosseini, Y. Haikal, & Badawy, 2018), SCADE (Nenavath & 

Jatoth, 2018), CGSCA (Kumar, Hussain, Singh, & Panigrahi, 2017), m_SCA (Gupta & Deep, 2018), RCBA 

(H. Liang, Liu, Shen, Li, & Man, 2018), CBA (Adarsh, Raghunathan, Jayabarathi, & Yang, 2016), and 

CDLOBA (Yong, He, Li, & Zhou, 2018). For the full names of these methods and complete descriptions, 

please refer to the original works. 

Based on the test data in Table 4, it can be recognized that HGS exhibits powerful performance on 

multimodal functions, especially on fixed dimension multimodal functions. The average value, based on 

Friedman test's value, is only 1.78, which is much smaller than other algorithms and is only about a fifth of 

the maximum average of CDLOBA. None of the five algorithms, IWOA, CGSCA, RCBA, CBA, or 

CDLOBA, can beat HGS on 23 benchmark functions. Although SCADE defeats HGS in dealing with 

some functions, there are only five cases. This observation clarifies that HGS has strong optimization ability 

in terms of exploration and exploitation trends. One of the effective mechanisms resulting in the improved 

solutions of the proposed HGS is that it is equipped with two rates, l and E. These features assist HGS in 

changing the initial positions and search mode, which ensure the in-depth exploration of the whole solution 

space as far as possible and enhance the exploratory traits of the algorithm to a great extent. Also, hunger 

weights can emphasize the perturbation trends of the HGS optimizer during iteration. This feature also 

reduces the change in stagnation due to the existence of several local optima. 

Table A.2 in Appendix A reveals the p-value of HGS and its comparisons on all test functions. From 

the table, we can see that all values in CDLOBA are less than 0.05. The CGSCA, RCBA, and CBA have 

only one data value greater than 0.05 at most. Although OBWOA values greater than 0.05 are the most, 

there are only seven cases. We can also see from the table that the difference between values higher than 

0.05 and 0.05 is not significant. These test results indicate that the HGS algorithm is significantly superior 

compared to the other algorithms. 

 



Table 4 Comparison results on the 23 benchmark functions with advanced algorithms 

 F1   F2   F3  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 0.00E+00 0.00E+00  4.83E-166 0.00E+00  1.54E-152 8.45E-152 
 

IWOA 5.58E-150 2.2E-149 
 

 2.94E-102 9.1E-102 
 

 1.40E+04 6.03E+03 

OBWOA 0.00E+00 0.00E+00  6.25E-289 0.00E+00  1.49E+04 1.09E+04 

ACWOA 6.87E-222 0.00E+00  1.15E-113 5.69E-113 
 

 8.95E-177 0.00E+00 

SCADE 8.94E-217 0.00E+00  3.58E-124 1.96E-123 
 

 3.81E-183 0.00E+00 

CGSCA 1.07E-57 5.85E-57  7.92E-33 4.32E-32  6.71E-44 3.67E-43 

m_SCA 8.40E-48 3.48E-47  2.86E-31 1.54E-30  1.05E-11 5.76E-11 

RCBA 1.62E-01 5.90E-02  9.94E+00 2.74E+01  9.54E+01 3.12E+01 

CBA 2.90E-02 1.38E-01  1.49E+02 6.65E+02  7.90E+01 4.02E+01 

CDLOBA 6.17E-03 1.90E-03  3.95E+02 1.43E+03  4.55E-01 1.35E+00 

 F4   F5   F6  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.32E-132 1.27E-131 
 

 1.52E+01 1.18E+01  8.72E-07 1.16E-06 

IWOA 1.09E+01 1.75E+01  2.67E+01 7.48E-01  2.30E-02 6.25E-02 

OBWOA 3.24E+01 1.90E+01  2.72E+01 7.07E-01  4.13E-01 2.57E-01 

ACWOA 8.81E-99 3.96E-98  2.68E+01 2.24E-01  2.72E-02 7.77E-03 

SCADE 5.16E-38 1.84E-37  2.64E+01 7.18E+00  3.47E-06 2.65E-06 

CGSCA 1.49E-24 8.18E-24  2.83E+01 5.00E-01  4.85E+00 2.43E-01 

m_SCA 4.03E-14 1.29E-13  2.72E+01 8.29E-01  2.48E+00 5.24E-01 

RCBA 1.01E+01 6.13E+00  3.11E+02 4.86E+02  1.76E-01 4.19E-02 

CBA 1.85E+01 7.79E+00  2.98E+02 4.86E+02  1.07E-01 5.81E-01 

CDLOBA 4.70E+01 8.78E+00  9.68E+01 1.39E+02  5.92E-03 1.67E-03 

 F7   F8   F9  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 6.46E-04 9.46E-04  -1.25E+04 6.05E+02  0.00E+00 0.00E+00 

IWOA 2.07E-03 2.36E-03  -1.08E+04 1.76E+03  0.00E+00 0.00E+00 

OBWOA 1.53E-04 2.14E-04  -1.15E+04 1.29E+03  0.00E+00 0.00E+00 

ACWOA 7.06E-05 5.92E-05  -1.26E+04 4.09E+01  0.00E+00 0.00E+00 

SCADE 6.26E-04 3.29E-04  -1.24E+04 2.89E+02  0.00E+00 0.00E+00 

CGSCA 5.28E-04 3.59E-04  -4.19E+03 7.06E+02  0.00E+00 0.00E+00 

m_SCA 7.87E-04 6.22E-04  -6.13E+03 8.70E+02  0.00E+00 0.00E+00 

RCBA 5.38E-01 1.92E-01  -7.42E+03 7.53E+02  8.23E+01 2.18E+01 

CBA 3.03E-01 2.38E-01  -7.17E+03 7.04E+02  1.36E+02 4.19E+01 

CDLOBA 2.82E+01 3.50E+01  -7.40E+03 7.95E+02  2.59E+02 4.39E+01 

 F10   F11   F12  

Algorithm AVG STD  AVG STD  AVG STD 

HGS 8.88E-16 0.00E+00  0.00E+00 0.00E+00  5.87E-09 6.40E-09 

IWOA 3.49E-15 2.27E-15  1.64E-03 6.28E-03  5.57E-03 1.07E-02 

OBWOA 2.55E-15 2.03E-15  0.00E+00 0.00E+00  2.06E-02 1.06E-02 

ACWOA 2.55E-15 1.80E-15  0.00E+00 0.00E+00  2.13E-03 1.12E-03 

SCADE 8.88E-16 0.00E+00  0.00E+00 0.00E+00  8.11E-08 1.09E-07 

CGSCA 8.88E-16 0.00E+00  0.00E+00 0.00E+00  5.40E-01 7.60E-02 

m_SCA 3.44E+00 7.60E+00  4.93E-03 2.70E-02  1.68E-01 5.98E-02 

RCBA 4.54E+00 4.97E+00  3.45E-02 1.75E-02  1.46E+01 6.07E+00 

CBA 1.56E+01 2.51E+00  1.67E-01 1.33E-01  1.66E+01 6.48E+00 

CDLOBA 1.95E+01 9.51E-01  1.41E+02 9.60E+01  2.01E+01 5.45E+00 

 F13   F14   F15  

Algorithm AVG STD  AVG STD  AVG STD 



HGS 6.55E-03 3.59E-02  1.65E+00 2.48E+00  6.45E-04 2.24E-04 

IWOA 1.53E-01 1.61E-01  2.34E+00 2.95E+00  6.30E-04 3.14E-04 

OBWOA 7.36E-01 3.04E-01  3.29E+00 3.51E+00  6.90E-04 3.27E-04 

ACWOA 5.65E-02 3.41E-02  2.01E+00 2.49E+00  3.35E-04 4.31E-05 

SCADE 1.05E-06 7.27E-07  9.98E-01 3.13E-08  3.15E-04 2.84E-06 

CGSCA 2.49E+00 9.86E-02  1.66E+00 9.51E-01  8.74E-04 4.41E-04 

m_SCA 1.64E+00 2.36E-01  1.39E+00 8.07E-01  8.21E-04 4.20E-04 

RCBA 9.86E-02 4.12E-02  5.88E+00 4.90E+00  7.26E-03 1.25E-02 

CBA 4.63E+01 1.67E+01  3.32E+00 3.48E+00  4.85E-03 7.89E-03 

CDLOBA 3.99E+01 1.43E+01  2.91E+00 1.51E+00  4.20E-03 7.36E-03 

 F16   F17   F18  

Algorithm AVG STD  AVG STD  AVG STD 

HGS -1.03E+00 5.13E-16  3.98E-01 0.00E+00  3.00E+00 2.16E-15 

IWOA -1.03E+00 8.70E-11  3.98E-01 2.98E-07  3.00E+00 3.01E-06 

OBWOA -1.03E+00 6.51E-09  3.98E-01 1.11E-06  3.00E+00 3.68E-05 

ACWOA -1.03E+00 2.49E-04  4.01E-01 1.11E-02  3.00E+00 1.29E-03 

SCADE -1.03E+00 1.57E-05  3.98E-01 1.90E-04  3.00E+00 1.26E-03 

CGSCA -1.03E+00 4.16E-05  3.99E-01 1.78E-03  3.00E+00 2.06E-05 

m_SCA -1.03E+00 4.76E-08  3.98E-01 8.72E-07  3.00E+00 5.70E-06 

RCBA -1.03E+00 1.58E-06  3.98E-01 3.71E-07  3.00E+00 7.90E-05 

CBA -1.03E+00 1.92E-05  3.98E-01 7.20E-06  3.00E+00 7.49E-04 

CDLOBA -1.03E+00 2.48E-04  3.98E-01 8.03E-05  3.01E+00 9.31E-03 

 F19   F20   F21  

Algorithm AVG STD  AVG STD  AVG STD 

HGS -3.86E+00 2.40E-15  -3.27E+00 7.29E-02  -1.02E+01 5.68E-15 

IWOA -3.86E+00 2.42E-06  -3.26E+00 6.38E-02  -9.14E+00 2.35E+00 

OBWOA -3.86E+00 4.26E-06  -3.28E+00 6.72E-02  -1.02E+01 9.54E-05 

ACWOA -3.86E+00 3.74E-03  -3.21E+00 1.14E-01  -8.94E+00 2.18E+00 

SCADE -3.86E+00 3.17E-03  -3.19E+00 6.82E-02  -1.02E+01 2.01E-04 

CGSCA -3.85E+00 2.11E-03  -2.87E+00 3.43E-01  -2.58E+00 2.15E+00 

m_SCA -3.86E+00 2.29E-03  -3.21E+00 8.39E-02  -9.13E+00 2.05E+00 

RCBA -3.86E+00 4.30E-04  -3.27E+00 6.11E-02  -8.22E+00 2.86E+00 

CBA -3.86E+00 1.04E-03  -3.25E+00 7.79E-02  -6.71E+00 3.19E+00 

CDLOBA -3.85E+00 8.20E-03  -2.98E+00 9.97E-02  -6.01E+00 3.34E+00 

 F22   F23    

Algorithm AVG STD  AVG STD +/-/= Avg Rank 

HGS -1.04E+01 1.19E-15  -1.02E+01 1.37E+00 ~ 1.78 1 

IWOA -8.65E+00 2.77E+00  -8.47E+00 3.04E+00 19/0/4 4.57 5 

OBWOA -1.04E+01 9.23E-05  -1.05E+01 9.49E-05 15/1/7 4.00 3 

ACWOA -9.85E+00 1.61E+00  -1.05E+01 8.14E-02 16/3/4 4.09 4 

SCADE -1.04E+01 1.58E-04  -1.05E+01 1.64E-04 14/4/5 3.39 2 

CGSCA -3.78E+00 2.07E+00  -3.85E+00 1.86E+00 19/0/4 6.52 7 

m_SCA -9.52E+00 2.00E+00  -9.82E+00 1.85E+00 19/1/3 5.57 6 

RCBA -7.82E+00 3.30E+00  -8.49E+00 3.25E+00 22/0/1 7.00 8 

CBA -6.86E+00 3.68E+00  -6.63E+00 4.01E+00 21/0/2 7.87 9 

CDLOBA -6.76E+00 3.48E+00  -6.25E+00 3.83E+00 23/0/0 8.65 10 

 

The convergence curves of HGS are depicted in Figure 6, which shows that the speed and accuracy of 

HGS are better than its competitors. On the F4 test function, the convergence rate of HGS is relatively 



constant, and the global optimal solution is found at a very fast speed during the entire process. At the same 

time that HGS finds the optimal solution, some algorithms have just started to converge to some solutions. 

From curves of F5 and F9-F11, it can be observed that HGS finds the optimal solution at a very fast speed 

during the initial iterations, but some of the compared algorithms that have fallen into local optimum. From 

these results, we can infer that the HGS has a strong ability of exploration and exploration propensities, 

and the two phases have excellent stability due to the impacts of L and LH. In the search phase, both of 

them expand the search scope as much as possible and ensure that the individual can search in a small range 

in the mining stage. 



 

Figure 6 Comparisons between HGS and advanced MAs. 

3.3 Validation of IEEE CEC2014 functions 

To further illustrate the performance of the HGS algorithm, we tested it on the IEEE CEC2014 

benchmark set. The data set is divided into Unimodal Functions, Simple Multimodal Functions, Hybrid 

Functions, and Composition Functions. Details of the functions can be found in Table 5. In this part, for 



the reliability of the experiment, the conditions related to the test were adjusted the same as before: the 

maximum number of iterations was set to 1000, the population size and dimension were set to 30, and the 

involved algorithm was tested 30 times randomly on each function. The Friedman test [32] and Wilcoxon 

sign-rank test [33] were utilized to evaluate the experimental results. 

Table 5 Description of the IEEE CEC2014 functions 

3.3.1 Comparison with other optimizers 

The proposed HGS was compared with 12 traditional MAs on the IEEE CEC 2014 dataset, including 

SCA (Mirjalili, 2016), SSA (Mirjalili, et al., 2017), GWO (Mirjalili, et al., 2014), MFO (S. Mirjalili, 2015), 

WOA (Mirjalili & Lewis, 2016), GOA (Saremi, et al., 2017), DA (Seyedali Mirjalili, 2015b), ALO (Seyedali 

Mirjalili, 2015a), PSO (Kennedy & Eberhart, 1995), DE (G. Sun, Yang, Yang, & Xu, 2019), BA, and FPA 

(X.-S. Yang, et al., 2014). The parameter settings of the mentioned algorithms are listed in Table 2. 

The detailed comparison results are listed in Table 6. We found that HGS ranks first among all 

algorithms, with a much smaller Avg. HGS shows a strong ability to search for optimal solutions on most 

of the functions. It is well known that DE exhibits excellent performance on contest datasets, but it only 

defeats HGS on eight functions, while HGS defeats HGS on 19 functions. As a fixed-dimensional multi-

modal function, composition functions have a large number of local optima, which requires an algorithm 

ID Function Equation Dim Range fmin 

Unimodal Functions    

F1 Rotated High Conditioned Elliptic Function 30 [-100,100] 100 

F2 Rotated Bent Cigar Function 30 [-100,100] 200 

F3 Rotated Discus Function   30 [-100,100] 300 

Simple Multimodal Functions    

F4 Shifted and Rotated Rosenbrock’s Function  30 [-100,100] 400 

F5 Shifted and Rotated Ackley’s Function  30 [-100,100] 500 

F6 Shifted and Rotated Weierstrass Function  30 [-100,100] 600 

F7 Shifted and Rotated Griewank’s Function  30 [-100,100] 700 

F8 Shifted Rastrigin’s Function  30 [-100,100] 800 

F9 Shifted and Rotated Rastrigin’s Function  30 [-100,100] 900 

F10 Shifted Schwefel’s Function  30 [-100,100] 1000 

F11 Shifted and Rotated Schwefel’s Function   30 [-100,100] 1100 

F12 Shifted and Rotated Katsuura Function  30 [-100,100] 1200 

F13 Shifted and Rotated HappyCat Function   30 [-100,100] 1300 

F14 Shifted and Rotated HGBat Function  30 [-100,100] 1400 

F15 Shifted and Rotated Expanded Griewank′s plus  
Rosenbrock’s Function  

30 [-100,100] 1500 

F16 Shifted and Rotated Expanded Scaffer’s F6 Function  30 [-100,100] 1600 

Hybrid Functions    

F17 Hybrid Function 1 (N= 3)  30 [-100,100] 1700 

F18 Hybrid Function 2 (N= 3)  30 [-100,100] 1800 

F19 Hybrid Function 3 (N= 4)  30 [-100,100] 1900 

F20 Hybrid Function 4 (N= 4)  30 [-100,100] 2000 

F21 Hybrid Function 5 (N= 5)  30 [-100,100] 2100 

F22 Hybrid Function 6 (N= 5)  30 [-100,100] 2200 

Composition Functions    

F23 Composition  function 1 (N = 5)  30 [-100,100] 2300 

F24 Composition  function 2 (N = 3)  30 [-100,100] 2400 

F25 Composition  function 3 (N = 3)  30 [-100,100] 2500 

F26 Composition  function 4 (N = 5)  30 [-100,100] 2600 

F27 Composition  function 5 (N = 5)  30 [-100,100] 2700 

F28 Composition  function 6 (N = 5)  30 [-100,100] 2800 

F29 Composition  function 7 (N = 3)  30 [-100,100] 2900 

F30 Composition  function 8 (N = 3)  30 [-100,100] 3000 



with excellent performance. HGS ranks first in the composite functions, including F23, F24, F25, F27, F28, 

and F30, which shows that the overall performance of HGS is powerful so that it can perform a smoother 

transition between exploration and exploration trends. 

Table A.3 in Appendix A lists the p-value of HGS versus the other algorithms. Among the 360 data 

sets, 318 are less than 0.05, comprising 88.1% of the total data. It is worth noting that these data sets are 

far less than 0.05. Although there are more than 0.05 data in ALO, there are only 7 data sets. The number 

of it in SCA and DA is even reduced to only one. This shows that HGS has statistical advantages over the 

other competitive MAs. 

Table 6 Comparison results on the CEC2014 functions with traditional MAs 

 F1  F2  F3 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 9.56E+06 7.25E+06  4.53E+06 1.46E+07  1.62E+04 1.57E+04 

SCA 4.24E+08 1.39E+08  2.57E+10 4.62E+09  5.95E+04 1.06E+04 

SSA 2.39E+07 1.41E+07  9.64E+03 9.52E+03  7.31E+04 2.22E+04 

GWO 9.07E+07 5.57E+07  3.16E+09 2.60E+09  4.55E+04 1.07E+04 

MFO 8.69E+07 9.20E+07  1.41E+10 1.08E+10  1.09E+05 6.24E+04 

WOA 1.31E+08 3.88E+07  2.26E+09 1.15E+09  9.91E+04 4.99E+04 

GOA 3.29E+07 1.45E+07  1.87E+07 1.11E+07  6.58E+04 2.69E+04 

DA 3.48E+08 1.93E+08  5.37E+09 3.23E+09  1.57E+05 2.77E+04 

ALO 1.43E+07 7.01E+06  1.08E+04 7.92E+03  1.48E+05 3.72E+04 

PSO 1.75E+07 5.95E+06  1.96E+08 2.46E+07  4.12E+04 1.10E+04 

DE 1.01E+08 3.01E+07  2.13E+03 4.05E+03  3.02E+03 2.46E+03 

BA 9.52E+06 4.20E+06  2.28E+07 4.00E+06  8.77E+04 2.46E+04 

FPA 7.38E+06 4.03E+06  2.07E+09 1.10E+09  2.96E+04 7.20E+03 

 F4  F5  F6 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 5.25E+02 4.11E+01  5.20E+02 9.51E-02  6.20E+02 3.26E+00 

SCA 2.42E+03 7.11E+02  5.21E+02 5.65E-02  6.37E+02 2.89E+00 

SSA 5.50E+02 4.66E+01  5.20E+02 1.27E-01  6.26E+02 3.47E+00 

GWO 7.02E+02 1.55E+02  5.21E+02 5.54E-02  6.16E+02 3.10E+00 

MFO 1.44E+03 9.57E+02  5.20E+02 1.95E-01  6.24E+02 3.55E+00 

WOA 8.72E+02 1.56E+02  5.21E+02 1.25E-01  6.37E+02 3.15E+00 

GOA 5.35E+02 4.00E+01  5.20E+02 7.82E-02  6.22E+02 3.67E+00 

DA 1.37E+03 5.52E+02  5.21E+02 8.22E-02  6.37E+02 3.50E+00 

ALO 5.46E+02 3.55E+01  5.20E+02 1.52E-01  6.26E+02 3.76E+00 

PSO 4.82E+02 3.87E+01  5.21E+02 5.30E-02  6.25E+02 2.98E+00 

DE 5.50E+02 1.86E+01  5.21E+02 5.32E-02  6.29E+02 1.27E+00 

BA 5.08E+02 3.11E+01  5.21E+02 5.96E-02  6.36E+02 3.06E+00 

FPA 6.79E+02 7.50E+01  5.21E+02 5.08E-02  6.32E+02 1.32E+00 

 F7  F8  F9 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 7.01E+02 2.34E+00  8.26E+02 1.01E+01  1.04E+03 3.16E+01 

SCA 9.33E+02 3.28E+01  1.07E+03 2.43E+01  1.20E+03 2.61E+01 

SSA 7.00E+02 1.37E-02  9.52E+02 3.86E+01  1.05E+03 3.87E+01 

GWO 7.22E+02 2.18E+01  8.97E+02 2.37E+01  1.01E+03 2.16E+01 

MFO 7.90E+02 6.93E+01  9.42E+02 4.51E+01  1.09E+03 4.24E+01 

WOA 7.13E+02 6.46E+00  1.01E+03 4.77E+01  1.17E+03 4.25E+01 



GOA 7.01E+02 1.19E-01  9.51E+02 4.05E+01  1.07E+03 4.85E+01 

DA 7.75E+02 3.13E+01  1.09E+03 5.48E+01  1.21E+03 5.89E+01 

ALO 7.00E+02 8.36E-03  9.23E+02 3.29E+01  1.05E+03 4.32E+01 

PSO 7.03E+02 2.09E-01  9.87E+02 2.14E+01  1.14E+03 2.72E+01 

DE 7.00E+02 1.82E-02  8.51E+02 5.28E+00  1.07E+03 1.28E+01 

BA 7.01E+02 3.01E-02  1.03E+03 4.05E+01  1.17E+03 5.55E+01 

FPA 7.21E+02 8.15E+00  9.78E+02 2.74E+01  1.11E+03 3.19E+01 

 F10  F11  F12 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.62E+03 3.00E+02  4.27E+03 5.46E+02  1.20E+03 1.09E-01 

SCA 7.54E+03 4.61E+02  8.65E+03 4.29E+02  1.20E+03 4.10E-01 

SSA 4.91E+03 7.59E+02  5.21E+03 8.92E+02  1.20E+03 3.93E-01 

GWO 3.64E+03 6.95E+02  4.45E+03 5.73E+02  1.20E+03 1.25E+00 

MFO 4.62E+03 7.61E+02  5.52E+03 6.54E+02  1.20E+03 2.38E-01 

WOA 5.79E+03 7.30E+02  6.95E+03 8.14E+02  1.20E+03 5.47E-01 

GOA 5.13E+03 7.35E+02  5.36E+03 7.23E+02  1.20E+03 5.15E-01 

DA 7.01E+03 8.11E+02  7.61E+03 6.85E+02  1.20E+03 6.23E-01 

ALO 4.55E+03 6.54E+02  5.43E+03 7.00E+02  1.20E+03 3.24E-01 

PSO 5.46E+03 4.70E+02  6.44E+03 6.44E+02  1.20E+03 3.80E-01 

DE 2.02E+03 1.71E+02  7.17E+03 3.13E+02  1.20E+03 2.05E-01 

BA 5.86E+03 8.22E+02  6.04E+03 6.73E+02  1.20E+03 3.43E-01 

FPA 4.49E+03 2.32E+02  5.54E+03 3.38E+02  1.20E+03 2.09E-01 

 F13  F14  F15 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.30E+03 1.46E-01  1.40E+03 3.27E-01  1.52E+03 4.76E+00 

SCA 1.30E+03 3.85E-01  1.47E+03 1.58E+01  1.80E+04 1.07E+04 

SSA 1.30E+03 1.31E-01  1.40E+03 1.89E-01  1.51E+03 3.87E+00 

GWO 1.30E+03 4.13E-01  1.41E+03 1.02E+01  1.92E+03 6.96E+02 

MFO 1.30E+03 1.43E+00  1.43E+03 2.11E+01  1.22E+05 2.74E+05 

WOA 1.30E+03 1.00E-01  1.40E+03 5.18E+00  1.76E+03 1.58E+02 

GOA 1.30E+03 1.47E-01  1.40E+03 3.06E-01  1.52E+03 4.78E+00 

DA 1.30E+03 9.87E-01  1.42E+03 1.04E+01  8.86E+03 1.08E+04 

ALO 1.30E+03 8.46E-02  1.40E+03 6.71E-02  1.51E+03 4.22E+00 

PSO 1.30E+03 1.01E-01  1.40E+03 1.93E-01  1.52E+03 1.89E+00 

DE 1.30E+03 5.45E-02  1.40E+03 7.80E-02  1.52E+03 1.30E+00 

BA 1.30E+03 1.28E-01  1.40E+03 4.87E-02  1.53E+03 3.53E+00 

FPA 1.30E+03 7.47E-02  1.40E+03 5.02E+00  1.58E+03 4.59E+01 

 F16  F17  F18 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.61E+03 5.62E-01  1.75E+06 1.30E+06  1.08E+04 9.18E+03 

SCA 1.61E+03 2.84E-01  1.59E+07 7.68E+06  2.78E+08 1.17E+08 

SSA 1.61E+03 7.18E-01  1.35E+06 9.67E+05  8.53E+03 7.14E+03 

GWO 1.61E+03 7.40E-01  4.02E+06 4.60E+06  1.82E+07 2.64E+07 

MFO 1.61E+03 5.11E-01  3.46E+06 3.36E+06  8.78E+06 4.71E+07 

WOA 1.61E+03 4.15E-01  1.51E+07 9.17E+06  5.03E+05 4.83E+05 

GOA 1.61E+03 4.80E-01  1.27E+06 1.11E+06  1.09E+04 2.03E+04 

DA 1.61E+03 3.02E-01  1.37E+07 9.24E+06  1.81E+07 3.42E+07 

ALO 1.61E+03 5.78E-01  1.44E+06 9.30E+05  4.59E+03 2.46E+03 

PSO 1.61E+03 4.09E-01  8.01E+05 5.69E+05  3.69E+06 9.03E+05 

DE 1.61E+03 2.38E-01  4.99E+06 1.84E+06  2.64E+05 2.01E+05 

BA 1.61E+03 2.48E-01  6.09E+05 3.60E+05  4.29E+05 1.49E+05 



FPA 1.61E+03 1.97E-01  4.59E+04 3.75E+04  7.70E+03 3.84E+03 

 F19  F20  F21 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.93E+03 3.97E+01  3.26E+04 1.84E+04  8.03E+05 7.29E+05 

SCA 2.03E+03 3.35E+01  4.36E+04 1.75E+04  3.75E+06 2.51E+06 

SSA 1.92E+03 1.08E+01  2.54E+04 1.29E+04  4.00E+05 4.31E+05 

GWO 1.95E+03 2.80E+01  2.88E+04 1.52E+04  1.08E+06 2.00E+06 

MFO 1.97E+03 6.66E+01  6.13E+04 4.23E+04  7.91E+05 5.50E+05 

WOA 1.99E+03 4.26E+01  1.47E+05 1.43E+05  7.03E+06 5.92E+06 

GOA 1.92E+03 1.86E+01  1.74E+04 1.48E+04  3.41E+05 2.52E+05 

DA 1.99E+03 5.67E+01  1.50E+05 1.41E+05  4.21E+06 6.33E+06 

ALO 1.92E+03 2.26E+01  4.20E+04 2.13E+04  4.23E+05 3.63E+05 

PSO 1.92E+03 2.49E+00  1.78E+04 8.48E+03  2.72E+05 1.84E+05 

DE 1.91E+03 4.12E+00  1.21E+04 4.78E+03  8.01E+05 3.62E+05 

BA 1.92E+03 1.59E+01  2.58E+04 1.35E+04  2.38E+05 1.58E+05 

FPA 1.92E+03 9.13E+00  9.83E+03 4.28E+03  1.45E+04 3.40E+03 

 F22  F23  F24 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.96E+03 2.40E+02  2.50E+03 0.00E+00  2.60E+03 1.30E-03 

SCA 3.27E+03 1.67E+02  2.71E+03 2.26E+01  2.61E+03 1.90E+01 

SSA 2.81E+03 1.91E+02  2.63E+03 7.71E+00  2.64E+03 6.13E+00 

GWO 2.68E+03 1.91E+02  2.64E+03 9.93E+00  2.60E+03 1.08E-02 

MFO 3.01E+03 2.59E+02  2.66E+03 5.12E+01  2.68E+03 2.32E+01 

WOA 3.10E+03 2.79E+02  2.68E+03 2.46E+01  2.61E+03 6.86E+00 

GOA 2.80E+03 1.88E+02  2.64E+03 1.05E+01  2.64E+03 7.77E+00 

DA 3.37E+03 2.85E+02  2.72E+03 3.51E+01  2.67E+03 1.04E+01 

ALO 3.03E+03 2.77E+02  2.63E+03 7.06E+00  2.66E+03 1.05E+01 

PSO 2.97E+03 2.20E+02  2.62E+03 1.50E+00  2.63E+03 4.71E+00 

DE 2.64E+03 1.11E+02  2.62E+03 2.91E-03  2.63E+03 2.20E+00 

BA 3.45E+03 3.22E+02  2.62E+03 1.61E+00  2.66E+03 2.41E+01 

FPA 2.79E+03 1.20E+02  2.63E+03 4.54E+00  2.65E+03 2.91E+00 

 F25  F26  F27 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.70E+03 0.00E+00  2.74E+03 4.94E+01  2.90E+03 0.00E+00 

SCA 2.74E+03 1.13E+01  2.70E+03 4.01E-01  3.87E+03 2.88E+02 

SSA 2.72E+03 5.28E+00  2.70E+03 1.38E-01  3.57E+03 1.50E+02 

GWO 2.71E+03 5.50E+00  2.74E+03 4.93E+01  3.37E+03 1.49E+02 

MFO 2.72E+03 8.26E+00  2.70E+03 1.18E+00  3.60E+03 2.22E+02 

WOA 2.72E+03 1.81E+01  2.73E+03 6.52E+01  3.84E+03 3.69E+02 

GOA 2.71E+03 3.99E+00  2.78E+03 5.52E+01  3.44E+03 2.36E+02 

DA 2.75E+03 1.80E+01  2.74E+03 4.96E+01  3.65E+03 3.98E+02 

ALO 2.73E+03 6.88E+00  2.73E+03 4.52E+01  3.56E+03 2.50E+02 

PSO 2.72E+03 6.28E+00  2.78E+03 4.08E+01  3.46E+03 3.21E+02 

DE 2.72E+03 3.45E+00  2.70E+03 6.78E-02  3.48E+03 1.38E+02 

BA 2.73E+03 1.28E+01  2.71E+03 5.60E+01  4.00E+03 3.15E+02 

FPA 2.71E+03 2.74E+00  2.70E+03 2.46E-01  3.17E+03 5.32E+01 

 F28  F29  F30 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 3.00E+03 0.00E+00  8.55E+05 2.59E+06  5.23E+03 2.63E+03 

SCA 5.65E+03 4.49E+02  3.25E+07 1.51E+07  5.59E+05 2.18E+05 

SSA 4.28E+03 4.16E+02  4.81E+06 7.30E+06  3.71E+04 2.10E+04 



GWO 4.06E+03 3.53E+02  2.05E+06 4.36E+06  7.75E+04 4.45E+04 

MFO 3.95E+03 2.04E+02  3.54E+06 4.04E+06  5.66E+04 5.40E+04 

WOA 5.59E+03 6.37E+02  1.35E+07 9.72E+06  2.91E+05 2.41E+05 

GOA 4.39E+03 4.04E+02  3.30E+06 1.02E+07  5.36E+04 2.94E+04 

DA 7.12E+03 1.00E+03  6.70E+07 5.00E+07  4.34E+05 2.79E+05 

ALO 5.79E+03 5.15E+02  5.49E+07 1.11E+08  5.61E+04 1.12E+05 

PSO 7.49E+03 1.03E+03  9.87E+04 2.92E+05  2.54E+04 1.87E+04 

DE 3.72E+03 2.88E+01  1.07E+04 1.37E+04  1.13E+04 2.17E+03 

BA 5.37E+03 7.26E+02  7.36E+07 5.70E+07  3.41E+04 5.59E+04 

FPA 4.21E+03 2.53E+02  3.56E+05 1.70E+06  1.31E+04 5.43E+03 

 

Algorithm +/-/= Avg Rank 

HGS ~ 3.73 1 

SCA 29/0/1 11.33 12 

SSA 16/8/6 5.00 3 

GWO 22/4/4 6.73 8 

MFO 26/0/4 8.30 10 

WOA 26/2/2 9.47 11 

GOA 18/6/6 5.63 5 

DA 29/0/1 11.60 13 

ALO 17/6/7 5.67 6 

PSO 21/6/3 6.40 7 

DE 19/8/3 4.63 2 

BA 20/6/4 7.50 9 

FPA 20/7/3 5.00 3 

 

According to the analysis of Figure 7, we see that the convergence speed of HGS in F8, F10, and F11 

is fast, and the accuracy of the solution is very high. Some algorithms even fall into the local optimum in 

the middle of the iteration. F23-F25, F27, F28, F30 are composite functions with a large number of local 

optima. Interestingly, we can observe that the convergence speed of the HGS algorithm is superior and fast 

on these types of problems. The target region can be found in the initial iteration period, which shows that 

the exploratory trends of HGS are influential and can effectively avoid falling into local optimum. These 

rates more intuitively show that HGS has the right sense of balance between exploration and exploration. 

Composite cases can challenge the capacity of utilized methods in harmonizing the main searching phases. 

The results show that HGS yields superior results and satisfactory performance. The reason for the 

satisfactory efficacy of HGS is the high capacity of this method in harmonizing the diversity of solutions 

and focusing on the locality of high-quality solutions in later phases. These two reasons are based on the L 

and LH parameters, which weigh the change of individual search range in the process of iteration. The 

HGS has a useful feature that ensures the search steps of HGS will be concentrated based on a specific 

rate. This feature assists this method in exploring the solution space in-depth, while it explores the feature 

space extensively during the initial stages. 



 

Figure 7 Comparisons between HGS and traditional MAs. 

3.3.2 Comparison with advanced MAs 

To further prove the effectiveness of the proposed HGS, we further compared HGS with some state-

of-the-art advanced algorithms on CEC2014 benchmark functions. 

Table 7 shows the comparison between HGS and the advanced MAs on the CEC2014 test suite. As 

shown from the results, we can intuitively see that HGS ranks first amongst ten algorithms and first on 17 

functions, accounting for 56.7% of the total number of functions, concentrating on simple multimodal 

functions and composition functions. From this point, we can see that HGS has excellent performance. 

The average value of HGS is only 2.37, which is about half of the average value of m_SCA, which ranks 

second. This indicates that the search ability of HGS is efficient, and it can avoid falling into local optimum. 

Table A.4 in Appendix A lists the p-value of HGS versus the other involved MAs. Data sets less than 

0.05 in Table A.4 in Appendix A accounted for 91.1% of the total, revealing that HGS has distinct statistical 

advantages compared with its competitors. For IWOA, HGS has statistical significance on all functions. 

Table 7 Comparison results on the CEC2014 functions with advanced algorithms 

 F1  F2  F3 



Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.13E+07 8.82E+06  7.84E+07 4.28E+08  2.11E+04 1.95E+04 

IWOA 9.18E+07 3.89E+07  1.17E+09 1.19E+09  6.42E+04 3.26E+04 

OBWOA 2.50E+08 1.51E+08  5.05E+09 2.43E+09  6.58E+04 2.30E+04 

ACWOA 2.67E+08 5.76E+07  2.06E+10 4.93E+09  6.74E+04 7.29E+03 

SCADE 5.71E+08 1.01E+08  3.90E+10 5.66E+09  6.55E+04 5.78E+03 

CGSCA 4.73E+08 1.28E+08  3.00E+10 4.90E+09  6.11E+04 6.93E+03 

m_SCA 1.25E+08 7.83E+07  1.27E+10 4.72E+09  4.16E+04 8.98E+03 

RCBA 6.02E+06 2.07E+06  3.31E+05 8.07E+04  8.18E+04 2.81E+04 

CBA 1.37E+07 5.83E+06  9.63E+05 2.21E+06  1.31E+05 3.63E+04 

CDLOBA 5.81E+06 4.51E+06  1.84E+04 1.10E+04  1.27E+05 3.24E+04 

 F4  F5  F6 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 5.27E+02 3.05E+01  5.20E+02 5.99E-02  6.20E+02 2.42E+00 

IWOA 7.51E+02 1.17E+02  5.21E+02 1.35E-01  6.36E+02 3.42E+00 

OBWOA 1.30E+03 6.16E+02  5.21E+02 7.76E-02  6.37E+02 2.65E+00 

ACWOA 2.09E+03 4.11E+02  5.21E+02 9.28E-02  6.36E+02 2.51E+00 

SCADE 3.67E+03 8.98E+02  5.21E+02 4.17E-02  6.36E+02 2.70E+00 

CGSCA 2.79E+03 6.10E+02  5.21E+02 7.53E-02  6.37E+02 2.19E+00 

m_SCA 9.97E+02 2.82E+02  5.21E+02 9.85E-02  6.25E+02 2.73E+00 

RCBA 5.09E+02 3.82E+01  5.20E+02 1.35E-01  6.39E+02 3.58E+00 

CBA 5.10E+02 3.09E+01  5.20E+02 2.53E-01  6.40E+02 3.60E+00 

CDLOBA 5.04E+02 3.90E+01  5.21E+02 8.92E-02  6.36E+02 3.19E+00 

 F7  F8  F9 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 7.02E+02 3.95E+00  8.31E+02 1.65E+01  1.05E+03 2.66E+01 

IWOA 7.06E+02 2.19E+00  9.88E+02 3.40E+01  1.15E+03 5.24E+01 

OBWOA 7.30E+02 2.46E+01  1.04E+03 3.84E+01  1.18E+03 4.62E+01 

ACWOA 8.39E+02 3.89E+01  1.04E+03 3.44E+01  1.18E+03 2.82E+01 

SCADE 9.73E+02 4.14E+01  1.09E+03 1.30E+01  1.22E+03 2.04E+01 

CGSCA 9.67E+02 4.72E+01  1.09E+03 1.73E+01  1.21E+03 1.87E+01 

m_SCA 7.88E+02 3.66E+01  9.72E+02 2.50E+01  1.08E+03 2.98E+01 

RCBA 7.01E+02 1.25E-01  1.02E+03 6.47E+01  1.17E+03 5.66E+01 

CBA 7.00E+02 1.65E-01  1.00E+03 5.48E+01  1.16E+03 7.33E+01 

CDLOBA 7.00E+02 1.21E-02  1.06E+03 5.24E+01  1.25E+03 5.52E+01 

 F10  F11  F12 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.59E+03 2.57E+02  4.08E+03 5.73E+02  1.20E+03 8.38E-02 

IWOA 4.27E+03 6.70E+02  6.37E+03 6.45E+02  1.20E+03 5.27E-01 

OBWOA 5.68E+03 7.69E+02  7.08E+03 8.67E+02  1.20E+03 5.71E-01 

ACWOA 6.00E+03 6.50E+02  7.47E+03 9.30E+02  1.20E+03 6.24E-01 

SCADE 7.73E+03 2.71E+02  8.62E+03 3.42E+02  1.20E+03 3.17E-01 

CGSCA 7.66E+03 4.46E+02  8.61E+03 4.07E+02  1.20E+03 3.28E-01 

m_SCA 5.22E+03 7.60E+02  6.02E+03 5.98E+02  1.20E+03 5.33E-01 

RCBA 5.48E+03 6.67E+02  5.62E+03 6.81E+02  1.20E+03 3.96E-01 

CBA 5.72E+03 8.05E+02  5.80E+03 6.13E+02  1.20E+03 7.78E-01 

CDLOBA 5.34E+03 6.88E+02  5.58E+03 5.70E+02  1.20E+03 2.86E-01 

 F13  F14  F15 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.30E+03 1.44E-01  1.40E+03 3.37E-01  1.51E+03 3.83E+00 

IWOA 1.30E+03 1.15E-01  1.40E+03 1.83E+00  1.62E+03 8.55E+01 



OBWOA 1.30E+03 6.21E-01  1.42E+03 1.10E+01  5.86E+03 7.68E+03 

ACWOA 1.30E+03 4.47E-01  1.46E+03 1.31E+01  3.63E+03 1.15E+03 

SCADE 1.30E+03 4.19E-01  1.51E+03 1.25E+01  3.75E+04 1.19E+04 

CGSCA 1.30E+03 4.29E-01  1.48E+03 1.53E+01  2.66E+04 1.73E+04 

m_SCA 1.30E+03 9.94E-01  1.43E+03 1.23E+01  3.82E+03 3.40E+03 

RCBA 1.30E+03 1.54E-01  1.40E+03 9.53E-02  1.54E+03 8.65E+00 

CBA 1.30E+03 1.56E-01  1.40E+03 1.66E-01  1.57E+03 1.72E+01 

CDLOBA 1.30E+03 1.25E-01  1.40E+03 1.10E-01  1.72E+03 7.39E+01 

 F16  F17  F18 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.61E+03 8.07E-01  1.96E+06 1.74E+06  1.65E+04 1.10E+04 

IWOA 1.61E+03 5.60E-01  1.12E+07 8.85E+06  1.72E+05 2.73E+05 

OBWOA 1.61E+03 3.90E-01  1.72E+07 1.58E+07  9.68E+06 1.84E+07 

ACWOA 1.61E+03 5.28E-01  4.77E+07 2.06E+07  2.05E+08 1.06E+08 

SCADE 1.61E+03 1.92E-01  2.41E+07 1.06E+07  3.15E+08 2.12E+08 

CGSCA 1.61E+03 1.82E-01  1.44E+07 5.09E+06  3.13E+08 2.18E+08 

m_SCA 1.61E+03 5.20E-01  3.59E+06 2.74E+06  4.10E+07 4.92E+07 

RCBA 1.61E+03 3.65E-01  6.30E+05 3.67E+05  9.35E+03 1.23E+04 

CBA 1.61E+03 5.39E-01  9.21E+05 5.88E+05  2.42E+04 4.54E+04 

CDLOBA 1.61E+03 3.26E-01  2.27E+05 2.14E+05  1.54E+04 7.00E+03 

 F19  F20  F21 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.93E+03 3.94E+01  2.80E+04 1.96E+04  6.44E+05 5.18E+05 

IWOA 1.97E+03 3.81E+01  6.33E+04 4.90E+04  3.82E+06 3.79E+06 

OBWOA 2.02E+03 6.08E+01  7.78E+04 3.55E+04  6.30E+06 5.52E+06 

ACWOA 2.06E+03 5.10E+01  1.01E+05 4.48E+04  1.54E+07 1.25E+07 

SCADE 2.05E+03 2.51E+01  5.07E+04 2.44E+04  4.67E+06 2.50E+06 

CGSCA 2.02E+03 2.35E+01  5.90E+04 2.70E+04  4.15E+06 1.99E+06 

m_SCA 1.97E+03 3.32E+01  2.20E+04 7.70E+03  6.38E+05 6.70E+05 

RCBA 1.94E+03 3.64E+01  2.91E+04 1.48E+04  3.85E+05 3.23E+05 

CBA 1.94E+03 3.54E+01  4.92E+04 2.75E+04  4.24E+05 3.66E+05 

CDLOBA 1.98E+03 4.23E+01  4.91E+04 2.37E+04  1.59E+05 1.42E+05 

 F22  F23  F24 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.93E+03 2.63E+02  2.50E+03 0.00E+00  2.60E+03 1.18E-03 

IWOA 3.09E+03 2.60E+02  2.64E+03 5.02E+01  2.62E+03 4.04E+01 

OBWOA 3.17E+03 2.91E+02  2.69E+03 2.09E+01  2.60E+03 4.12E+00 

ACWOA 3.37E+03 3.34E+02  2.53E+03 7.94E+01  2.60E+03 7.79E-05 

SCADE 3.33E+03 1.62E+02  2.50E+03 0.00E+00  2.60E+03 9.05E-06 

CGSCA 3.37E+03 1.82E+02  2.50E+03 0.00E+00  2.60E+03 3.13E-04 

m_SCA 2.71E+03 1.78E+02  2.65E+03 1.46E+01  2.60E+03 5.70E-03 

RCBA 3.52E+03 3.02E+02  2.62E+03 1.83E+00  2.69E+03 3.41E+01 

CBA 3.52E+03 3.12E+02  2.62E+03 1.87E+00  2.68E+03 3.02E+01 

CDLOBA 3.39E+03 2.42E+02  2.62E+03 5.52E+00  2.72E+03 4.80E+01 

 F25  F26  F27 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.70E+03 0.00E+00  2.74E+03 4.94E+01  2.90E+03 0.00E+00 

IWOA 2.72E+03 1.52E+01  2.72E+03 3.77E+01  3.84E+03 2.89E+02 

OBWOA 2.71E+03 1.25E+01  2.72E+03 3.77E+01  3.46E+03 2.97E+02 

ACWOA 2.70E+03 0.00E+00  2.76E+03 4.84E+01  3.89E+03 2.80E+02 

SCADE 2.70E+03 0.00E+00  2.70E+03 6.94E-01  3.43E+03 3.83E+02 



CGSCA 2.70E+03 0.00E+00  2.70E+03 4.96E-01  2.90E+03 0.00E+00 

m_SCA 2.72E+03 5.39E+00  2.70E+03 6.57E-01  3.28E+03 2.36E+02 

RCBA 2.74E+03 1.64E+01  2.73E+03 4.65E+01  4.04E+03 3.85E+02 

CBA 2.73E+03 1.41E+01  2.73E+03 6.76E+01  3.99E+03 4.51E+02 

CDLOBA 2.73E+03 1.21E+01  2.74E+03 9.25E+01  3.87E+03 3.99E+02 

 F28  F29  F30 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 3.00E+03 0.00E+00  2.86E+05 1.53E+06  5.43E+03 2.92E+03 

IWOA 5.18E+03 6.98E+02  1.08E+07 7.09E+06  1.19E+05 1.00E+05 

OBWOA 5.44E+03 1.21E+03  1.22E+07 8.07E+06  3.69E+05 2.17E+05 

ACWOA 4.11E+03 1.51E+03  4.27E+07 3.78E+07  1.05E+06 7.13E+05 

SCADE 5.83E+03 2.63E+02  2.94E+07 1.24E+07  7.63E+05 1.94E+05 

CGSCA 3.00E+03 0.00E+00  3.40E+06 7.18E+06  2.78E+05 2.61E+05 

m_SCA 4.27E+03 3.10E+02  7.16E+06 9.73E+06  1.09E+05 6.47E+04 

RCBA 5.70E+03 9.81E+02  3.62E+07 5.22E+07  4.18E+04 1.01E+05 

CBA 5.78E+03 9.81E+02  6.70E+07 5.33E+07  6.34E+04 9.45E+04 

CDLOBA 5.53E+03 8.42E+02  2.26E+07 2.60E+07  6.61E+04 1.08E+05 

 

Algorithm +/-/= Avg Rank 

HGS ~ 2.37 1 

IWOA 27/3/0 4.9 4 

OBWOA 28/1/1 6.47 7 

ACWOA 27/1/2 7.20 9 

SCADE 26/0/4 7.53 10 

CGSCA 23/1/6 6.57 8 

m_SCA 26/2/2 4.47 2 

RCBA 19/8/3 4.80 3 

CBA 19/5/6 5.40 6 

CDLOBA 20/8/2 4.93 5 

 

Figure 8 shows the convergence curves of the algorithms. At the beginning of the iteration, the 

convergence speed of HGS is very fast. With the increase of iteration times, the convergence speed slows 

down, but it is still the first one to find the optimal solution with high accuracy. F6, F8-12, and F16 show 

that HGS has a distinct advantage over simple multimodal functions. F29-30 reveals that HGS can find a 

better solution to composition functions with much faster convergence than the other counterparts. In the 

search phase, l and LH can dynamically expand the scope of individual search with the iteration to ensure 

that the algorithm can search the solution space as much as possible and can converge quickly. In the 

mining stage, after finding the possible region of the optimal solution, the search scope can be reduced to 

achieve the purpose of excavation and ensure the high-precision solution. The combination of these two 

phases can effectively balance the search and excavation phases. 



 

Figure 8 Comparisons between HGS and advanced MAs. 

3.4 Comparisons with DE variants 

This chapter compares HGS with some improved versions of DE, including MPEDE (G. Wu, 

Mallipeddi, Suganthan, Wang, & Chen, 2015), SPS_L_SHADE_EIG (Guo, Tsai, Yang, & Hsu, 2015), 

LSHADE_cnEpSi (Awad, Ali, & Suganthan, 2017), SHADE (Tanabe & Fukunaga, 2014), SADE (Qin, 

Huang, & Suganthan, 2009), LSHADE (Tanabe & Fukunaga, 2014), JDE (Brest, Greiner, Boskovic, 

Mernik, & Zumer, 2006) and DE (Storn & Price, 1997) on 21 functions, which were selected from the first 

13 of 23 benchmark functions and the last 8 composite functions of CEC2014 functions. All functions can 

be divided into three categories: single-mode (F1- F7), multimodal (F8-F13), and composite functions (F14-

F21). In this experiment, the population size N was set to 30, the dimension of the optimization problem 

D was taken as 30, the maximum evaluation number MaxFES was taken as 300000 times, and each 

algorithm was executed 30 times randomly. 

Table 8 shows the comparison between HGS and the improved version of DE. The results show that 

the HGS algorithm ranks first among the ten algorithms and first among the 15 functions, accounting for 

71.4% of the total number of functions. From this point, we can see that HGS exhibits excellent 



performance with an average value of only 2.33. These results indicate that the search ability of HGS is 

effective and can avoid falling into local optimum. 

Table 8 Comparison results with traditional DE variants 

 F1  F2  F3 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 0.00E+00 0.00E+00  0.00E+00 0.00E+00  0.00E+00 0.00E+00 

MPEDE 1.86E-226 0.00E+00  1.43E-111 6.59E-111  1.08E-35 4.20E-35 

SPS_L_SHADE_EIG 2.86E-241 0.00E+00  5.81E-123 2.19E-122  1.84E-38 8.22E-38 

LSHADE_cnEpSi 5.09E-197 0.00E+00  5.56E-69 3.04E-68  2.92E-49 1.32E-48 

SHADE 2.08E-224 0.00E+00  4.20E-95 2.02E-94  4.83E-52 2.62E-51 

SADE 3.10E-151 1.68E-150  7.73E-104 4.23E-103  4.33E-06 8.07E-06 

LSHADE 1.79E-206 0.00E+00  2.48E-86 9.48E-86  8.06E-45 2.10E-44 

JDE 2.66E-197 0.00E+00  1.78E-123 3.83E-123  2.47E-12 4.73E-12 

DE 1.41E-159 2.59E-159  1.53E-94 1.68E-94  1.49E+03 8.15E+02 

 F4  F5  F6 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 0.00E+00 0.00E+00  1.11E+01 8.39E+00  6.06E-10 8.67E-10 

MPEDE 3.48E-05 1.02E-04  9.30E-01 1.71E+00  3.60E-33 4.51E-33 

SPS_L_SHADE_EIG 6.13E-09 1.17E-08  6.64E-01 1.51E+00  0.00E+00 0.00E+00 

LSHADE_cnEpSi 3.18E-04 9.16E-04  9.30E-01 1.71E+00  1.26E-32 1.73E-32 

SHADE 9.30E-18 3.76E-17  7.97E-01 1.62E+00  4.11E-34 1.07E-33 

SADE 1.19E-05 3.28E-05  2.19E+01 2.44E+01  1.95E-33 3.29E-33 

LSHADE 1.33E-04 1.95E-04  9.30E-01 1.71E+00  2.05E-33 3.74E-33 

JDE 1.78E+01 4.95E+00  5.32E-01 1.38E+00  2.05E-33 3.06E-33 

DE 3.47E-14 1.46E-13  3.27E+01 2.07E+01  0.00E+00 0.00E+00 

 F7  F8  F9 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 1.44E-05 2.50E-05  -1.26E+04 1.25E-03  0.00E+00 0.00E+00 

MPEDE 2.72E-03 1.34E-03  -1.18E+04 3.62E+02  8.23E+00 5.45E+00 

SPS_L_SHADE_EIG 3.27E-03 1.56E-03  -1.25E+04 8.07E+01  3.32E-02 1.82E-01 

LSHADE_cnEpSi 9.89E-03 8.74E-03  -1.28E+04 2.91E+02  3.65E-01 8.05E-01 

SHADE 2.50E-03 1.29E-03  -1.22E+04 1.52E+02  6.63E-14 3.02E-14 

SADE 4.31E-03 2.08E-03  -1.26E+04 3.00E+01  1.09E+00 9.90E-01 

LSHADE 6.99E-03 3.96E-03  -1.89E+03 4.55E+01  3.58E+00 1.00E+01 

JDE 2.08E-03 8.28E-04  -1.25E+04 1.11E+02  6.63E-02 2.52E-01 

DE 2.44E-03 5.34E-04  -1.25E+04 1.21E+02  6.63E-02 2.52E-01 

 F10  F11  F12 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 8.88E-16 0.00E+00  0.00E+00 0.00E+00  2.50E-14 5.92E-14 

MPEDE 1.76E+00 9.89E-01  1.50E-02 1.97E-02  1.94E-01 3.32E-01 

SPS_L_SHADE_EIG 7.76E-15 9.01E-16  9.04E-04 2.78E-03  1.57E-32 5.57E-48 

LSHADE_cnEpSi 3.37E+00 8.40E-01  1.88E-02 2.00E-02  1.31E-01 3.16E-01 

SHADE 2.77E-01 4.73E-01  6.40E-03 1.03E-02  3.80E-02 1.07E-01 

SADE 1.01E+00 8.08E-01  1.91E-02 2.80E-02  1.73E-02 7.74E-02 

LSHADE 3.37E-14 3.58E-15  1.31E-02 1.91E-02  1.61E+00 2.17E+00 

JDE 7.88E-15 3.43E-15  8.23E-03 1.99E-02  3.46E-03 1.89E-02 

DE 7.64E-15 1.08E-15  0.00E+00 0.00E+00  1.57E-32 5.57E-48 

 F13  F14  F15 

Algorithm AVG STD  AVG STD  AVG STD 



HGS 1.36E-12 4.00E-12  2.50E+03 0.00E+00  2.60E+03 0.00E+00 

MPEDE 2.09E-01 7.85E-01  2.62E+03 1.21E-12  2.64E+03 8.00E+00 

SPS_L_SHADE_EIG 1.35E-32 5.57E-48  2.62E+03 1.48E-12  2.63E+03 1.20E+00 

LSHADE_cnEpSi 1.45E+00 3.58E+00  2.61E+03 1.28E-01  2.64E+03 5.43E+00 

SHADE 1.80E-03 4.94E-03  2.62E+03 2.09E-12  2.64E+03 6.70E+00 

SADE 3.66E-04 2.01E-03  2.62E+03 1.34E-12  2.63E+03 4.53E+00 

LSHADE 2.93E-03 4.94E-03  2.62E+03 1.98E-12  2.64E+03 6.58E+00 

JDE 1.55E-32 4.86E-33  2.62E+03 1.52E-12  2.63E+03 5.92E+00 

DE 1.35E-32 5.57E-48  2.62E+03 1.39E-12  2.63E+03 3.09E+00 

 F16  F17  F18 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 2.70E+03 0.00E+00  2.76E+03 5.00E+01  2.90E+03 0.00E+00 

MPEDE 2.71E+03 4.94E+00  2.72E+03 4.29E+01  3.27E+03 1.38E+02 

SPS_L_SHADE_EIG 2.70E+03 2.56E+00  2.71E+03 3.45E+01  3.11E+03 4.25E+01 

LSHADE_cnEpSi 2.71E+03 3.34E+00  2.73E+03 4.48E+01  3.30E+03 1.19E+02 

SHADE 2.71E+03 2.96E+00  2.71E+03 3.44E+01  3.15E+03 7.33E+01 

SADE 2.71E+03 1.80E+00  2.73E+03 4.78E+01  3.19E+03 7.07E+01 

LSHADE 2.71E+03 2.99E+00  2.71E+03 3.04E+01  3.26E+03 9.41E+01 

JDE 2.71E+03 1.94E+00  2.70E+03 1.82E+01  3.11E+03 5.81E+01 

DE 2.71E+03 8.27E-01  2.70E+03 4.72E-02  3.22E+03 7.34E+01 

 F19  F20  F21 

Algorithm AVG STD  AVG STD  AVG STD 

HGS 3.00E+03 0.00E+00  3.10E+03 0.00E+00  3.20E+03 0.00E+00 

MPEDE 3.86E+03 1.89E+02  5.67E+05 3.09E+06  5.52E+03 1.09E+03 

SPS_L_SHADE_EIG 3.71E+03 1.11E+02  6.40E+05 2.44E+06  4.77E+03 1.07E+03 

LSHADE_cnEpSi 3.97E+03 3.03E+02  1.30E+06 3.99E+06  6.23E+03 1.59E+03 

SHADE 3.71E+03 1.18E+02  7.07E+05 2.71E+06  5.73E+03 9.44E+02 

SADE 3.72E+03 4.13E+01  4.06E+03 2.21E+02  5.10E+03 5.14E+02 

LSHADE 3.71E+03 1.09E+02  3.71E+03 1.48E+02  5.38E+03 1.06E+03 

JDE 3.66E+03 4.52E+01  3.67E+03 3.72E+01  5.27E+03 9.90E+02 

DE 3.63E+03 2.16E+01  6.59E+03 1.01E+04  6.56E+03 1.32E+03 

 

Algorithm +/-/= Avg Rank 

HGS ~ 2.33 1 

MPEDE 16/3/2 6.76 8 

SPS_L_SHADE_EIG 13/5/3 3.05 2 

LSHADE_cnEpSi 16/4/1 7.10 9 

SHADE 17/3/1 4.57 5 

SADE 18/2/1 5.95 6 

LSHADE 17/3/1 6.00 7 

JDE 16/4/1 3.95 3 

DE 15/4/2 4.29 4 

 

Based on the analysis in Figure 9, we can observe that the convergence rate of HGS in F1, F2, and F11 

is fast, the solution accuracy is very high, and the optimal solution is found in the early iteration stage. 

Through the convergence graphs of F10, F14, F15, F18, and F19, it can be found that although all the 

algorithms have fast convergence speed in the initial stage, the convergence accuracy is not as high as HGS. 

On F7 and F21, HGS has high convergence accuracy and can find the global optimum. 



 

Figure 9 Comparisons between HGS and DE variants. 

3.5 Parameter sensitivity analysis 

In this chapter, we analyze the parameters involved in the algorithms: population size (𝑁), the maximum 

number of iterations (𝑇), parameter (𝑙), moreover, and hunger threshold (𝐿𝐻). These parameters affect 

the convergence speed and accuracy of HGS. When testing 𝑙, we fixed 𝐿𝐻 to 100, and set l to start at 0.01, 

with a step of 0.01 between every two numbers, a total of 10 values. Similarly, when we analyzed 𝐿𝐻, we 

initialized 𝑙 to 0.08 and 𝐿𝐻 as 10, 100, 1000, and 1000. When testing 𝑙 and 𝐿𝐻, 𝑁 and 𝑇 were set to 30 and 

1000, respectively, and remain unchanged. Each algorithm was tested 30 times. All experiments were 

conducted on 23 well-regarded benchmark functions. 

The comparison results of the different values for parameter 𝑙 are found in Table 9. From the table, we 

see that 𝑙 has a significant influence on the performance of the algorithm. In the experiment, when 𝑙 was 



0.08, the performance is the best. Also, the maximum difference between the average values can reach 2.66. 

The average value of 0.01 is about 1.88 times that of 0.08. 

Table 10 presents the comparison of different values of 𝐿𝐻. Of the four values in this experiment, 

𝐿𝐻 ranked first when 𝐿𝐻 was 10000. Nevertheless, the influence of 𝐿𝐻 is less exaggerated than that of 𝑙. 

From the above results, we can draw the following conclusions: L and LH's values have a certain impact 

on the search ability and solution accuracy of HGS. The balance between the two stages of exploration and 

exploration is closely related to these two parameters. Readers can set values for both variables according 

to specific conditions. 

Table 9 Ranking of  results with different values of  parameter 𝑙 

Fun 𝑙=0.01 𝑙=0.02 𝑙=0.03 𝑙=0.04 𝑙=0.05 𝑙=0.06 𝑙=0.07 𝑙=0.08 𝑙=0.09 𝑙=0.1 

ARV 5.70 4.96 4.96 3.26 3.13 3.91 3.2 3.04 3.17 4.43 

Rank 10 8 8 5 2 6 4 1 3 7 

 

Table 10 Ranking of  results with different values of  parameter 𝐿𝐻 

Fun 𝐿𝐻 = 10 𝐿𝐻 = 100 𝐿𝐻 = 1000 𝐿𝐻 = 10000 

ARV 2.17 2.04 2.06 2.00 

Rank 4 2 3 1 

 

When testing the influence of 𝑁 and 𝑇 on HGS, we use F13 in 23 benchmark functions as the test 

examples. Note that 𝑁 was set to 5, 10, 30, 50, 100, and 200, respectively, and 𝑇 was initialized to 50,100, 

200, 500, 1000 and 2000. The test results can be visually observed in Figure 10. The increase of 𝑁 and 𝑇 

will improve the solution accuracy of HGS, but after reaching a certain level, this effect will become 

minimal. Given the long-time consumed when the value is too large, and the unsatisfactory experimental 

results are too small, the user can set it according to the experiment's actual needs. 



 

Figure 10 The influence of 𝑁 and 𝑇 (it is shown by Max_iter in the above plot) 

3.6 Experiments on engineering design problems 

It is well known that there are many constraints in practical problems. In dealing with engineering 

scenarios, there is one main difference with global benchmark cases, and there is a concern on how to 

consider the restrictions and constraints of the variables and their impact on the 

minimization/maximization of the objective function (Yun Liu, et al., 2020; Lv & Qiao, 2020; Ridha, et al.; 

G. Zhu, Wang, Sun, Ge, & Zhang, 2020). Therefore, we further evaluated the efficiency of HGS by applying 

it to engineering problems. Several constraint handling methods were considered, including the death 

penalty, annealing, static, dynamic, co-evolutionary, and adaptive (S. Li, et al., 2020). When searching 

individuals violate any constraints, the method assigns a large objective function value to them. In the 

optimization of the heuristic algorithm, this method will help to eliminate infeasible solutions automatically, 

so it is not necessary to calculate this scheme's infeasibility. The death penalty's most prominent advantages 

are simplicity and low time consumption (S. Li, et al., 2020). 

In this work, HGS was tested on four engineering constraints: welded beam, I-beam, and multiple disk 

clutch brake. 

3.6.1 Welded beam design problem 

The welded beam design problem aims to find the lowest consumption of welded beams under the four 

constraints of shear stress (𝜏), bending stress (𝜃), buckling load (𝑃𝑐 ) and deflection (𝛿) (J. Liu, Wu, Wu, & 



Wang, 2015). The problem involves the following four variables: welding seam thickness (ℎ); welding joint 

length (𝑙); beam width (𝑡); beam thickness (𝑏). The mathematical model is as follows: 

 

Consider   𝑥→ = [𝑥1,𝑥2,𝑥3,𝑥4] = [ℎ 𝑙 𝑡 𝑏] 

Minimize  𝑓(𝑥→) = 1.10471𝑥1
2+ 0.04811𝑥3𝑥4(14.0+𝑥4) 

Subject to  𝑔1( 𝑥
→) = 𝜏(𝑥→)− 𝜏𝑚𝑎𝑥 ≤ 0 

          𝑔2( 𝑥
→)= 𝜎(𝑥→)− 𝜎𝑚𝑎𝑥 ≤ 0 

          𝑔3( 𝑥
→)= 𝛿(𝑥→)− 𝛿𝑚𝑎𝑥 ≤ 0 

          𝑔4( 𝑥
→)= 𝑥1 −𝑥4 ≤ 0 

          𝑔5( 𝑥
→)= 𝑃 −𝑃𝐶( 𝑥

→) ≤ 0 

          𝑔6( 𝑥
→)= 0.125− 𝑥1 ≤ 0 

          𝑔7( 𝑥
→)= 1.10471𝑥1

2 + 0.04811𝑥3𝑥4(14.0+ 𝑥2)− 5.0 ≤ 0 

Variable range 0.1 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥4 ≤ 2 

where 𝜏( 𝑥→) = √(𝜏′)2+2𝜏′𝜏′′
𝑥2

2𝑅
+ (𝜏′′)2 𝜏′ =

𝑃

√2𝑥1𝑥2
  𝜏′′ =

𝑀𝑅

𝐽
  𝑀 = 𝑃 (𝐿 +

𝑥2

2
) 

           𝑅 = √
𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2

  

           𝐽 = 2 {√2𝑥1𝑥2[
𝑥2
2

4
+ (

𝑥1+𝑥3

2
)
2
]} 

           𝜎(𝑥→) =
6𝑃𝐿

𝑥4𝑥32
，𝛿(𝑥→) =

6𝑃𝐿3

𝐸𝑥3
2𝑥4

 

           𝑃𝐶( 𝑥
→) =

4.013𝐸√
𝑥3
2𝑥4
6

36

𝐿2
(1−

𝑥3

2𝐿
√
𝐸

4𝐺
) 

           𝑃 = 60001𝑏，𝐿 = 14 ∈ ..𝛿𝑚𝑎𝑥 = 0.25 ∈.. 

           𝐸 = 30× 16𝑝𝑠𝑖，𝐺 = 12× 106𝑝𝑠𝑖 

         𝜏𝑚𝑎𝑥 = 13600𝑝𝑠𝑖，𝜎𝑚𝑎𝑥 = 30000𝑝𝑠𝑖 

On this subject, HGS was compared with HS (Lee & Geem, 2005) and CBO (Kaveh & Mahdavi, 2014). 

The results in Table 11 show that HGS has the best performance and solution. The main reason is the 



satisfactory performance of this method in harmonizing the diversity of solutions and later focusing on the 

locality of high-quality variable sets inside a constrained feature space. 

Table 11 Results of  welded beam design problem compared with other methods 

Algorithm 
Optimal values for variables Optimum 

cost h l t b 

HGS 0.207739 3.230642 8.988778 0.207926 1.703355 
HS(Lee & Geem, 
2005) 

0.2442 6.2231 8.2915 0.2433 2.3807 

CBO (Kaveh & 
Mahdavi, 2014) 

0.2434 6.2552 8.2915 0.2444 2.38411 

3.6.2 I-beam design problem 

The goal of this problem is to decrease the vertical deflection of the I-beams based on related parameters, 

including are length, height, and two thicknesses. The mathematical model of the problem is as follows: 

Consider       𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4] = [𝑏 ℎ 𝑡𝑤  𝑡𝑓] 

Objective      𝑓(𝑥 )𝑚𝑖𝑛 =
5000

𝑡𝑤(ℎ−2𝑡𝑓)
3

12
+
𝑏𝑡𝑓
3

6
+2𝑏𝑡𝑓(

ℎ−𝑡𝑓

2
)2

 

Subject to      g(𝑥 ) = 2b𝑡𝑤+ 𝑡𝑤(h− 2𝑡𝑓) ≤ 0 

Variable range   10 ≤ 𝑥1 ≤ 50 

               10 ≤ 𝑥2 ≤ 80 

               0.9 ≤ 𝑥3 ≤ 5 

               0.9 ≤ 𝑥4 ≤ 5 

 

Table 12 presents the comparisons between HGS and ARSM (G. G. Wang, 2003) IARSM (G. G. Wang, 

2003), CS (Gandomi, Yang, & Alavi, 2013), and SOS (Cheng & Prayogo, 2014) on the I-beam problem. 

From the table, we see that HGS minimizes the vertical deflection of the I-beam more than the other four 

algorithms, demonstrating its superior efficacy for this engineering problem. 

Table 12 Results of  I-beam design problem compared with other methods 

Algorithm 
Optimal values for variables Optimum 

cost B h   

HGS 49.40795 77.42892 1.30856 4.58526 0.007855 
ARSM(G. G. 
Wang, 2003) 

48.42 79.99 0.90 2.40 0.0157 

IARSM(G. G. 
Wang, 2003) 

48.4200 79.9900 0.9000 2.4000 0.1310 

CS(Gandomi, et 
al., 2013) 

50 80 0.9 2.321675 0.0130747 

SOS(Cheng & 
Prayogo, 2014) 

50 80 0.9 2.32179 0.0130741 



3.6.3 Multiple disk clutch brake 

The objective of this minimization problem, categorized as a discrete optimization problem, is to use 

five discrete design variables to minimize the quality of multi-disc clutch brakes. The five variables are 

actuating force, inner and outer radius, number of 27 friction surfaces, and thickness of discs. The 

mathematical model for this problem is as follows: 

𝑓(𝑥) = Π(𝑟0
2 − 𝑟𝑖

2)𝑡(𝑍 + 1)ρ 

subject to: 

g1(𝑥) = 𝑟0 − 𝑟𝑖 − ∆𝑟 ≥ 0 

g2(𝑥) = 𝑙𝑚𝑎𝑥 − (𝑍 + 1)(𝑡 + 𝛿)≥ 0 

g3(𝑥) = 𝑃𝑚𝑎𝑥 − 𝑃𝑟𝑧 ≥ 0 

g4(𝑥) = 𝑃𝑚𝑎𝑥𝑣𝑠𝑟𝑚𝑎𝑥−𝑃𝑟𝑧𝑣𝑠𝑟 ≥ 0 

g5(𝑥) = 𝑣𝑠𝑟𝑚𝑎𝑥 −𝑣𝑠𝑟 ≥ 0 

g6 = 𝑇𝑚𝑎𝑥 −𝑇 ≥ 0 

g7(𝑥) = 𝑀ℎ − 𝑠𝑀𝑠 ≥ 0 

g8(𝑥) = 𝑇 ≥ 0 

𝑀ℎ =
2

3
𝜇𝐹𝑍

𝑟0
3−𝑟𝑖

2

𝑟0
2−𝑟𝑖

3  𝑃𝑟𝑧 =
𝐹

Π(𝑟0
2−𝑟𝑖

2)
  𝑣𝑟𝑧 =

2𝛱𝑛(𝑟0
3−𝑟𝑖

3)

90(𝑟0
2−𝑟𝑖

2)
   𝑇 =

𝐼𝑧𝛱𝑛

30(𝑀ℎ+𝑀𝑓)
 

∆𝑟 = 20 𝑚𝑚 𝐼𝑧 = 55 𝑘𝑔𝑚𝑚
2 𝑃𝑚𝑎𝑥 = 1 𝑀𝑃𝑎 𝐹𝑚𝑎𝑥 = 1000 𝑁 𝑇𝑚𝑎𝑥 = 15 𝑠 𝜇 = 0.5 s = 1.5 𝑀𝑠 =

40 𝑁𝑚 𝑀𝑓 = 3 𝑁𝑚 n = 250 𝑟𝑝𝑚 𝑣𝑠𝑟𝑚𝑎𝑥 = 10 𝑚/𝑠 𝑙𝑚𝑎𝑥 = 30 𝑚𝑚 𝑟𝑖 𝑚𝑖𝑛 = 60  𝑟𝑖𝑚𝑎𝑥 = 80 

𝑟0𝑚𝑖𝑛 = 90 𝑟0𝑚𝑎𝑥 = 110 𝑡𝑚𝑖𝑛 = 1.5 𝑡𝑚𝑎𝑥 = 3 𝐹𝑚𝑖𝑛 = 600 𝐹𝑚𝑎𝑥 = 1000 𝑍𝑚𝑖𝑛 = 2 𝑍𝑚𝑎𝑥 = 9 

 

In order to minimize the quality of multi-disc clutch brakes, HGS was compared with WCA (Eskandar, 

Sadollah, Bahreininejad, & Hamdi, 2012), PVS (Rao, Savsani, & Vakharia, 2011), and TLBO (Savsani & 

Savsani, 2016). Details of the comparison results can be found in Table 13. From the table, we can see that 

the quality of HGS is far less than that of other algorithms, which shows that HGS has better vital 

optimization ability and can find more high-quality solutions. 

Table 13 Results of  Multiple disk clutch brake compared with other methods 

Algorithm   𝑡 𝐹 𝑍 
Optimal cost 

HGS 80 103 1 910 2 0.309417 

WCA(Eskandar, et 
al., 2012) 

70 90 1 910 3 0.313656 

PVS(Rao, et al., 
2011) 

70 90 1 980 3 0.31366 

TLBO(Savsani & 
Savsani, 2016) 

70 90 1 810 3 0.313656 

 



4 Conclusions and future perspectives     

This study presents a novel population-based model to tackle optimization problems based on social 

animals' characteristics in searching for food. More specifically, in each iteration, the algorithm searches 

around the optimal location, in the same manner, that animals forage, where the weights, or hunger values, 

mimic the impact of hunger on an animal’s individual activity. Qualitative analysis of the algorithm was 

carried out using four indicators, including search history, the trajectory of the first dimension, average 

fitness, and convergence curve. The proposed Hunger Games Search (HGS) was validated on a 

comprehensive collection of 23 benchmark functions and IEEE CEC2014 functions. The Wilcoxon sign 

rank test and the Freidman test were utilized to assess the statistical significance between HGS and other 

well-known MAs. The experimental results show that HGS has an efficient searching ability compared with 

other algorithms, and it can quickly find and develop the target solution space. Overall, HGS is very good 

at balancing exploration and exploration. Simultaneously, to confirm the applicability of HGS to practical 

problems, four engineering problems were considered, including welded beam, I-beam, and multiple disk 

clutch brake. From the experimental results, HGS can satisfy the optimization effect of production 

engineering problems and significantly reduce manufacturing costs. 

In this paper, we followed the most straightforward rules for developing HGS to make it easier to expand 

and integrate with existing artificial intelligence methods. There are many windows for the future directions 

of this new efficient HGS algorithm. First, researchers can investigate the effectiveness of this open-source 

HGS code for solving real-world problems in parameter optimization for machine learning models, binary 

feature selection, and image segmentation. Another window is how to enhance the performance of the 

basic version proposed in this research. Possible chances and future proposals are the application of 

oppositional based learning (OBL), Orthogonal learning (OL), chaotic signals instead of random variables, 

applying evolutionary population dynamic (EPD), advantages of mutation and crossover on the exploration 

and exploitation cores of the method, ensemble mutation-based strategies, role of levy flight, application 

of greedy search, co-evolutionary methods, quantum computing, parallel computing, ranking-based 

schemes, random spare schemes, multi-population structures, dimension-wise operations, and their various 

combination8. Lastly, the proposed Hunger Games Search is a single-objective approach in the currently 

released version, and the next task can be to develop the binary, multiobjective and many-objective variants 

of the developed Hunger Games Search to deal with more variety of multiobjective, binary, and many-

objective problems. 
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Appendix A 

Tables A.1-A.4 Describing the corresponding p-values of the four experiments 

Table A.1 The p-value of  the Wilcoxon test obtained from comparison with traditional algorithms on 23 benchmark 

functions 

Function SCA SSA GWO MFO WOA GOA DA ALO 

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 1.73E-06 1.92E-06 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 2.88E-06 

F6 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 8.47E-06 

F7 1.73E-06 1.73E-06 1.36E-04 1.73E-06 3.32E-04 1.73E-06 1.73E-06 1.73E-06 

F8 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.73E-06 1.73E-06 3.91E-03 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F10 1.73E-06 1.73E-06 5.98E-07 1.73E-06 2.30E-05 1.73E-06 1.73E-06 1.73E-06 

F11 1.73E-06 1.73E-06 6.25E-02 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F12 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 1.73E-06 3.61E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F14 2.77E-03 7.27E-01 7.71E-04 6.65E-02 1.20E-03 1.07E-01 2.06E-02 3.72E-02 

F15 1.32E-02 2.30E-02 7.66E-01 6.42E-03 9.92E-01 5.71E-04 2.60E-05 2.70E-02 

F16 1.73E-06 5.05E-06 1.73E-06 1.00E+00 1.73E-06 2.55E-06 1.96E-04 2.52E-06 

F17 1.73E-06 1.22E-04 1.73E-06 1.00E+00 1.73E-06 1.71E-06 5.96E-05 5.76E-05 

F18 1.73E-06 1.70E-06 1.73E-06 3.11E-01 1.73E-06 1.73E-06 3.15E-06 1.73E-06 

F19 1.73E-06 1.80E-06 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.35E-06 

F20 1.73E-06 2.56E-02 1.31E-01 4.80E-03 2.45E-01 1.99E-01 2.54E-01 3.71E-01 

F21 1.73E-06 1.02E-05 3.11E-05 4.88E-04 1.97E-05 1.13E-05 1.73E-06 1.02E-05 

F22 1.73E-06 1.36E-05 1.73E-06 3.91E-03 1.73E-06 1.73E-06 1.73E-06 5.22E-06 

F23 1.73E-06 1.73E-06 1.73E-06 3.91E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

Table A.1(continued) The p-value of  Wilcoxon test obtained from comparison with traditional algorithms on 23 

benchmark functions 

Function MVO BBO PSO DE FA BA FPA 

F1 1.73E-06 1.69E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 1.56E-02 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.72E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F7 1.73E-06 3.33E-02 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F8 1.73E-06 1.73E-06 1.73E-06 3.88E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F10 1.73E-06 1.52E-04 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F11 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F12 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F14 2.77E-03 9.97E-04 2.77E-03 9.38E-02 2.77E-03 7.71E-04 2.77E-03 

F15 4.39E-03 1.72E-06 4.73E-06 8.13E-01 5.58E-01 7.69E-06 2.26E-03 

F16 1.73E-06 4.32E-08 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F17 1.73E-06 4.32E-08 1.73E-06 1.00E+00 1.73E-06 1.73E-06 3.13E-02 



F18 1.73E-06 5.80E-07 1.73E-06 2.91E-03 1.73E-06 1.73E-06 1.73E-06 

F19 1.73E-06 4.32E-08 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F20 6.73E-01 9.51E-07 1.73E-06 2.48E-04 7.81E-01 1.73E-06 8.73E-03 

F21 1.73E-06 7.36E-06 1.73E-06 3.22E-02 1.73E-06 1.73E-06 3.11E-05 

F22 1.73E-06 6.03E-07 1.73E-06 1.95E-02 3.11E-05 1.73E-06 1.73E-06 

F23 1.73E-06 3.34E-07 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

 

Table A.2 The p-value of  Wilcoxon test obtained from comparison with advanced algorithms on 23 benchmark 

functions 

Fun IWOA OBWOA ACWOA SCADE CGSCA m_SCA RCBA CBA CDLOBA 

F1 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F2 1.73E-06 3.96E-01 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F3 1.73E-06 1.73E-06 3.39E-01 8.29E-01 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F5 
1.73E-06 1.73E-06 1.73E-06 5.79E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.49E-05 1.73E-06 1.73E-06 1.73E-06 5.45E-02 1.73E-06 

F7 2.58E-03 5.19E-02 1.71E-03 6.44E-01 7.19E-01 1.31E-01 1.73E-06 1.73E-06 1.73E-06 

F8 1.13E-05 1.80E-05 2.45E-01 2.83E-04 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F10 3.81E-05 2.44E-04 1.22E-04 1.00E+00 1.00E+00 1.51E-06 1.73E-06 1.73E-06 1.73E-06 

F11 5.00E-01 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 

F12 
1.73E-06 1.73E-06 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 
1.24E-05 1.73E-06 2.84E-05 3.72E-05 1.73E-06 1.73E-06 2.16E-05 1.73E-06 1.73E-06 

F14 2.22E-04 1.60E-04 2.61E-04 3.59E-04 3.59E-04 3.59E-04 1.97E-05 2.41E-04 3.59E-04 

F15 6.58E-01 3.93E-01 1.24E-05 7.69E-06 4.72E-02 2.70E-02 1.59E-03 2.37E-05 3.52E-06 

F16 2.56E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F17 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F18 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F19 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F20 
1.16E-01 2.71E-01 5.32E-03 3.59E-04 1.73E-06 2.11E-03 2.06E-01 1.92E-01 1.73E-06 

F21 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F22 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F23 6.89E-05 3.59E-04 3.59E-04 3.59E-04 1.73E-06 2.83E-04 1.15E-04 8.47E-06 7.69E-06 

 

Table A.3 P-value of  Wilcoxon test obtained from HGS versus other traditional algorithms on IEEE CEC2014 

functions 

Function SCA SSA GWO MFO WOA GOA 

F1 1.73E-06 4.45E-05 1.73E-06 1.92E-06 1.73E-06 2.13E-06 

F2 1.73E-06 3.41E-05 1.73E-06 1.73E-06 1.73E-06 2.22E-04 

F3 3.88E-06 1.73E-06 1.80E-05 1.73E-06 1.92E-06 1.73E-06 

F4 1.73E-06 2.85E-02 1.92E-06 2.13E-06 1.73E-06 5.17E-01 

F5 1.73E-06 1.71E-01 1.73E-06 2.22E-04 1.73E-06 1.31E-01 

F6 1.73E-06 3.52E-06 1.96E-03 1.60E-04 1.73E-06 1.85E-02 

F7 1.73E-06 1.73E-06 2.60E-06 1.92E-06 1.92E-06 1.85E-02 

F8 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.73E-06 5.17E-01 8.19E-05 1.36E-04 1.92E-06 2.43E-02 

F10 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F11 1.73E-06 3.41E-05 1.47E-01 3.88E-06 1.73E-06 1.49E-05 



F12 1.73E-06 5.75E-06 4.73E-06 3.72E-05 1.73E-06 2.35E-06 

F13 1.73E-06 3.38E-03 2.77E-03 4.45E-05 2.60E-05 1.20E-03 

F14 1.73E-06 1.02E-05 1.40E-02 3.52E-06 3.71E-01 1.24E-05 

F15 1.73E-06 3.16E-02 2.35E-06 1.92E-06 1.73E-06 7.52E-02 

F16 1.73E-06 1.06E-04 2.70E-02 2.35E-06 1.73E-06 6.98E-06 

F17 1.73E-06 1.59E-01 4.39E-03 6.04E-03 1.73E-06 1.65E-01 

F18 1.73E-06 1.92E-01 6.34E-06 2.29E-01 1.73E-06 1.78E-01 

F19 1.92E-06 3.71E-01 3.00E-02 2.85E-02 2.60E-05 3.39E-01 

F20 3.68E-02 6.87E-02 4.53E-01 8.94E-04 2.88E-06 2.96E-03 

F21 4.73E-06 1.04E-02 4.78E-01 6.73E-01 5.22E-06 8.94E-04 

F22 4.29E-06 1.40E-02 1.49E-05 4.65E-01 5.71E-02 9.84E-03 

F23 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F24 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F25 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.93E-04 1.73E-06 

F26 2.06E-01 2.13E-06 8.45E-01 1.71E-01 1.11E-02 2.05E-04 

F27 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F28 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F29 1.73E-06 1.25E-04 3.06E-04 3.32E-04 1.73E-06 2.58E-03 

F30 1.73E-06 1.73E-06 1.73E-06 2.35E-06 1.73E-06 1.73E-06 

 

Table A.3(continued) The p-value of  Wilcoxon test obtained from HGS versus other traditional algorithms on 

IEEE CEC2014 functions 

Function DA ALO PSO DE BA FPA 

F1 1.73E-06 1.40E-02 2.61E-04 1.73E-06 8.29E-01 3.39E-01 

F2 1.73E-06 4.45E-05 1.73E-06 2.60E-06 6.32E-05 1.73E-06 

F3 1.73E-06 1.92E-06 3.11E-05 5.75E-06 1.73E-06 1.60E-04 

F4 1.73E-06 2.18E-02 1.04E-03 9.84E-03 1.11E-01 1.73E-06 

F5 1.73E-06 1.06E-01 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F6 1.73E-06 1.24E-05 3.18E-06 1.73E-06 1.73E-06 1.73E-06 

F7 1.73E-06 1.73E-06 2.96E-03 1.73E-06 1.75E-02 1.73E-06 

F8 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.73E-06 4.53E-01 1.73E-06 9.63E-04 1.92E-06 3.18E-06 

F10 1.73E-06 1.73E-06 1.73E-06 1.02E-05 1.73E-06 1.73E-06 

F11 1.73E-06 8.47E-06 1.92E-06 1.73E-06 2.35E-06 1.73E-06 

F12 1.73E-06 2.60E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F13 4.20E-04 2.35E-06 1.64E-05 3.52E-06 3.41E-05 1.92E-06 

F14 1.92E-06 2.35E-06 5.22E-06 7.69E-06 3.88E-06 8.73E-03 

F15 1.73E-06 4.05E-01 4.20E-04 2.85E-02 3.18E-06 1.73E-06 

F16 1.73E-06 2.37E-05 1.73E-06 2.88E-06 1.73E-06 1.73E-06 

F17 2.60E-06 2.71E-01 1.59E-03 4.29E-06 8.19E-05 1.73E-06 

F18 1.73E-06 6.16E-04 1.73E-06 1.73E-06 1.73E-06 2.62E-01 

F19 5.79E-05 1.71E-01 3.71E-01 1.20E-01 2.71E-01 3.71E-01 

F20 4.29E-06 4.49E-02 1.38E-03 1.64E-05 5.71E-02 4.29E-06 

F21 1.60E-04 1.66E-02 1.48E-04 3.09E-01 3.72E-05 1.73E-06 

F22 5.31E-05 3.82E-01 9.75E-01 3.41E-05 1.97E-05 2.77E-03 

F23 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F24 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F25 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F26 2.13E-01 1.92E-01 3.11E-05 1.92E-06 4.45E-05 8.47E-06 



F27 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F28 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F29 1.73E-06 7.43E-05 8.45E-01 5.04E-01 2.88E-06 2.26E-03 

F30 1.73E-06 1.73E-06 7.69E-06 3.52E-06 1.73E-06 2.13E-06 

 

Table A.4 P-value of  Wilcoxon test obtained from comparison with advanced algorithms on IEEE CEC2014 

functions 

Fun IWOA OBWOA ACWOA SCADE CGSCA m_SCA RCBA CBA CDLOBA 

F1 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.29E-03 5.19E-02 2.58E-03 

F2 2.37E-05 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.48E-02 4.53E-01 2.07E-02 

F3 5.22E-06 2.88E-06 2.35E-06 3.18E-06 2.88E-06 1.60E-04 2.13E-06 1.73E-06 1.92E-06 

F4 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 3.16E-02 3.16E-02 1.75E-02 

F5 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.92E-06 1.59E-03 1.73E-06 

F6 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.92E-06 1.73E-06 1.73E-06 1.73E-06 

F7 
2.11E-03 2.13E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 6.58E-01 8.47E-06 1.73E-06 

F8 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F9 1.92E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 3.88E-04 1.73E-06 2.88E-06 1.73E-06 

F10 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F11 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.35E-06 3.18E-06 1.73E-06 2.60E-06 

F12 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 5.75E-06 

F13 1.80E-05 2.29E-01 1.73E-06 1.73E-06 1.73E-06 2.84E-05 3.06E-04 5.31E-05 8.47E-06 

F14 
1.38E-03 7.69E-06 1.73E-06 1.73E-06 1.73E-06 1.92E-06 2.88E-06 4.29E-06 1.02E-05 

F15 
1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F16 3.52E-06 7.69E-06 1.36E-05 1.73E-06 1.73E-06 1.24E-05 1.73E-06 1.73E-06 1.73E-06 

F17 1.36E-05 4.73E-06 1.73E-06 1.73E-06 1.73E-06 1.57E-02 1.15E-04 6.64E-04 3.18E-06 

F18 4.29E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 1.73E-06 2.11E-03 4.17E-01 6.29E-01 

F19 8.94E-04 1.64E-05 2.88E-06 1.73E-06 2.35E-06 8.19E-05 3.00E-02 1.99E-01 1.59E-03 

F20 8.94E-04 4.29E-06 4.29E-06 5.29E-04 6.89E-05 1.92E-01 6.14E-01 1.83E-03 4.90E-04 

F21 7.69E-06 3.52E-06 1.73E-06 1.73E-06 1.92E-06 6.14E-01 4.28E-02 7.86E-02 8.19E-05 

F22 
3.50E-02 4.11E-03 5.75E-06 5.22E-06 6.34E-06 3.61E-03 2.35E-06 8.47E-06 1.49E-05 

F23 5.61E-06 1.73E-06 2.50E-01 1.00E+00 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F24 1.73E-06 2.85E-06 4.07E-02 6.96E-01 2.46E-03 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F25 1.96E-04 3.13E-02 1.00E+00 1.00E+00 1.00E+00 3.79E-06 1.73E-06 1.73E-06 1.73E-06 

F26 1.91E-04 1.22E-03 7.88E-03 2.06E-01 2.06E-01 3.16E-02 1.06E-01 5.45E-02 8.22E-02 

F27 1.73E-06 1.73E-06 1.73E-06 4.01E-05 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F28 2.56E-06 8.30E-06 2.44E-04 1.73E-06 1.00E+00 1.73E-06 1.73E-06 1.73E-06 1.73E-06 

F29 
3.51E-06 2.88E-06 1.11E-05 1.73E-06 3.96E-01 1.92E-06 1.73E-06 1.73E-06 3.88E-06 

F30 
1.73E-06 1.73E-06 1.92E-06 1.73E-06 1.83E-04 1.73E-06 1.92E-06 1.92E-06 1.73E-06 
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1. A novel algorithm (HGS) is proposed for global search and Optimization in real world.

2. HGS simulates the collaborative interactions of animals based on individual hunger.

3. The extensive results on benchmark problems and real datasets have been performed.

4. HGS is applied in engineering optimization to reduce the consumption .
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