
Embedding Ranking-Oriented Recommender System Graphs

Taher Hekmatfar, Saman Haratizadeh, Sama Goliaei

{taher.hekmatfar haratizadeh, sgoliaei}@ut.ac.ir

 ABSTRACT

Graph-based recommender systems (GRSs) analyze the structural information available in the

graphical representation of data to make better recommendations, especially when the direct

user-item relation data is sparse. Ranking-oriented GRSs that form a major class of

recommendation systems, mostly use the graphical representation of preference (or rank) data

for measuring node similarities, from which they can infer a recommendation list using a

neighborhood-based mechanism. In this paper, we propose PGRec, a novel graph-based

ranking-oriented recommendation framework. PGRec models the preferences of the users over

items, by a novel graph structure called PrefGraph. This graph is then exploited by an improved

graph embedding approach, taking advantage of both factorization and deep learning methods,

to extract vectors representing users, items, and preferences. The resulting embeddings are then

used for predicting users’ unknown pairwise preferences from which the final recommendation

lists are inferred.

We have evaluated the performance of the proposed method against the state of the art model-

based and neighborhood-based recommendation methods, and our experiments show that

PGRec outperforms the baseline algorithms up to %3.2 in terms of NDCG@10 in different

MovieLens datasets.

Keywords: Ranking-oriented Recommender System, Deep Learning, Graph Embedding,

Convolution.

1. Introduction

Today with the overload of information, it has been hard to decide about choosing a proper

product or service. Recommender systems are appeared to help people in this situation.

Collaborative Filtering systems which use user-item interaction has become popular in past

years. The neighborhood-based and model-based approaches are two main CF methods. While

the neighborhood-based methods try to find similar users to the target user, the model-based

ones extract some latent factors of users and items from the user-item interaction data(Shams

& Haratizadeh, 2016). Most of the model-based methods apply matrix factorization techniques

like NMF(Luo, Zhou, Xia, & Zhu, 2014), PMF(Ma, Yang, Lyu, & King, 2008) and

SVD(Sarwar, Karypis, Konstan, & Riedl, 2000) on the user-item interaction matrix.

Nevertheless, some researchers have developed new model-based methods with deep learning-

based techniques like MLP(L. Zhang, Luo, Zhang, & Wu, 2018), RBM(Fu, Qu, Yi, Lu, & Liu,

2018; Hazrati, Shams, & Haratizadeh, 2019), and AE(W. Zhang, Zhang, Wang, & Chen, 2019).

Matrix factorization methods extract the linear relationship between users and items; however,

neural network-based methods extract the non-linear relationships which are more effective in

prediction or ranking tasks(D. Zhang, Yin, Zhu, & Zhang, 2018). Both methods work fine when

there are a lot of user-item interaction records; however, such user-item interactions are sparse

in real-world systems(L. Zhang et al., 2018).

One solution to cover the shortcomings of user-item data sparsity is to model the recommender

systems’ data with graphs and enrich the initial data with some new information extracted from

graph structural information(Shams & Haratizadeh, 2016). In recent years different Graph-

based Recommender Systems (GRSs) have been suggested. In many neighborhood-based

GRSs, the general approach is to extend the concept of neighborhood and similarity among

entities by defining and using graph-based distance measures. These methods can directly

estimate the proximity of entities to each other by analyzing specially designed paths or random

walks in the graph. However, the model-based GRSs, usually need to extract vector

representations for entities before they estimate the relations among them. In its simplest form,

each entity can be represented by a vector of features, some of which reflect the local structure

of the graph around the entity. Nonetheless, more recent researches tend to use deep embedding

models to extract better vector representations. In these methods, usually, a preprocessing step

is done, for example, using random walks to map the relations among nodes into

representations that can be processed by standard embedding techniques such as Skip-Gram.

Unfortunately, such a preprocessing step could lose the information, and it is not clear how to

do it in a way that the most relevant information from the graph structure is captured in the

final vector representations. Fortunately, recent advancements in graph embedding field have

made it possible to directly use the graph structure for embedding the entities in a. Such an

approach can be especially useful in the GRS domain in which a diverse set of entities and

relations are modeled by large heterogeneous graphs.

In this paper, we model the data with a novel heterogeneous graph, which we call PrefGraph.

It has fewer nodes in comparison to its predecessors (Shams & Haratizadeh, 2017), and still,

it is able to model the implicit and explicit feedback data more precisely. We introduce a graph-

based framework for the ranking-oriented recommendation that applies a deep-learning method

for direct vectorization of the graph entities as well as predicting the preferences of the users.

A large amount of information in the data graph combined with the deep structure of the model

provides us the ability to combine the personalization and generalization power in order to

achieve high recommendation performance.

We can summarize the main contributions of this paper as follows:

 We introduce PrefGraph, as a new structure for graphical representation of data for the

ranking-oriented recommendation.

 We develop a novel method for embedding nodes in a heterogeneous user-item data

graph of a GRS. It uses a CNN-based graph embedding technique to fine-tune feature

vectors extracted by NMF from a user-item interaction matrix.

 We propose a novel graph-based recommendation framework that uses a deep learning

approach for entity embedding and weight prediction. It can be easily applied either if

content and side information is available or not, in both implicit and explicit feedback

settings.

 Our suggested framework outperforms the state of the art neighborhood-based and

model-based baseline algorithms in different benchmark datasets.

 The rest of the paper is organized as follows: in section 2, we review some of the techniques

in graph-based recommender systems. The main problem in which we are tackling is defined

in section 3. Section 4 presents our proposed method to recommend Top-N items in the

ranking-oriented recommender system. Finally, the experimental evaluations of our proposed

approach with the NDCG metric and some discussions about them are included in section 5.

2. Graph-based recommender system

In recent years, graphical models have been widely used in the recommender system domain.

In the GRSs (graph-based recommender system), users and items are usually modeled as nodes

of the graph, while the interactions between them are represented as edges (Ning, Desrosiers,

& Karypis, 2015; Z. Wang, Tan, & Zhang, 2010). Such graphs make it possible to extract new

information from direct and indirect relations among nodes that are useful for making better

recommendations, especially based on sparse datasets (Tiroshi et al., 2014).

Although some papers have proposed to use homogeneous graphs in the recommender system

applications such as recommending new friends in the social network (Silva, Tsang,

Cavalcanti, & Tsang, 2010) or identifying similar items in an item-item graph (Joorabloo, Jalili,

& Ren, 2019), many kinds of research have used heterogeneous graphs. For example, on

LinkedIn, a heterogeneous graph is the most straightforward method to model the relations

among people, companies, groups, educational institutions, job titles, published texts, and

comments. Such a heterogeneous graph can then be analyzed in order to recommend users to

employers (Vahedian, Burke, & Mobasher, 2017). The simplest form of heterogeneous graphs

in recommender systems is a bipartite user-item graph, as shown in Figure 1.

1

2

3

1 2 3

1 0 0

0 1 1

1 0 1

u

u

u

i i i

Figure 1. An example of representing a rating matrix(left) as a bipartite graph(right)

Even in the simple case of Figure 1, it can be seen that using a graph representation easily

extracts useful information that may not be clear in the simple rating matrix: While it is obvious

from the matrix that item i3 is a candidate for recommendation to user u1, a graph-based

recommender system could also extract the possible interest of user u1 to i2 from the indirect

relation between them via u1—i1—u3—i3—u2—i2 path.

Like traditional recommender systems, there are two different approaches in GRSs, too,

similarity-based and model-based. Some researches try to calculate the similarity between

nodes, and some others try to create a model from nodes and their relationships in the graph.

There are different techniques in each approach that we mention some of them here.

Using meta-paths in a heterogeneous graph to define similarity measures is a common approach

in many papers. PathSim (Sun, Han, Yan, Yu, & Wu, 2011) which defines the node similarity

based on the number of symmetric meth-paths that exist between two nodes and from each

node to itself, has been applied in (Yifan Chen, Zhao, Gan, Ren, & Hu, 2016) for Top-N

recommendation in the heterogeneous graph. HeteSim (C. Shi, Kong, Huang, Philip, & Wu,

2014) calculates the similarity between two nodes based on the out-neighbors of the first node

and in-neighbors of the second node. Unlike the previous two measures, SemRec (C. Shi et al.,

2015) considers the weight of edges on defining meta-paths. Random walks and PageRank

scores are other measures of similarity in GRSs. One of the first papers that calculates

similarities in a heterogeneous user-item-content graph, using random walk is (Fouss, Pirotte,

Renders, & Saerens, 2007). They believe that similar nodes will be connected by a larger

number of short paths, and long and few paths between nodes demonstrate a huge, difference

among them. In (Cooper, Lee, Radzik, & Siantos, 2014) the authors define some scoring

method based on random walk in bipartite user-item graph and rank items based on their scores.

Their main proposed method is P3, which is the third power of transition matrix P = D−1A in a

random walk. In (Yao, He, Huang, Cao, & Zhang, 2015), in addition to content information, a

new type of nodes called decision context, which is a combination of time and location, is

added to the user-item graph. The weight of the edge between the decision node and other

nodes shows the co-occurrence of two nodes. Finally, they apply PPR (Personalized Page

Rank) on graph and rank item nodes based on the PPR score. The authors in (Shams &

Haratizadeh, 2017) have adopted a tripartite graph structure to model user priorities with a

user-item-preference graph and calculates Personalized Page Rank (PPR) to recommend top-n

items to each user.

Random walks have also been used for embedding the entities in the recommendation graphs.

They optimize the node embeddings in which co-occurring nodes on the short random walks

over the graph have similar embeddings (Hamilton, Ying, & Leskovec, 2017). In (Palumbo et

al., 2018), Node2Vec (Grover & Leskovec, 2016) as a random walk based embedding

technique, generates vectors for user and item nodes. Then the cosine similarity measure

provides a ranked list of similar items to each user using the generated vectors. Also, Node2Vec

has been used to generate vectors as input for clustering users and items in (J. Chen et al.,

2019). Random Walk based approaches usually provide enough flexibility for capturing the

local information available in small neighborhoods. Also, they enable the system to explore

indirect relations among entities that is useful, especially when dealing with sparse data sets

(Goyal & Ferrara, 2018; D. Zhang et al., 2018). However, these methods can be prone to

unreliable paths among nodes that can mislead the recommendation process by introducing

some noise to the system. So, special care must be taken when using random walks as a base

for measuring proximities among nodes in such systems(Shams & Haratizadeh, 2018b).

Matrix factorization(MF) is a traditional embedding method that can be used in GRSs as well.

It is possible to apply them on any connections between nodes in the form of node adjacency

matrix, Laplacian matrix, node transition probability matrix, or node similarity matrix. HOPE

(Ou, Cui, Pei, Zhang, & Zhu, 2016), which uses SVD to learn user-item embedding vectors, is

an example of the MF approach. The authors in (Li, Tang, & Chen, 2017) use a tripartite item-

user-tag graph. They consider users who tag the same items or use the same tags, as similar

and calculate the amount of similarity based on the diffusion. The similarity acts as the

regularization term in Regularized Matrix Factorization. MF methods are simple to apply;

however, they can be prone to over-generalization and ignorance of fine, local information (D.

Zhang et al., 2018).

Also, deep learning methods could embed nodes in the recommender graphs. They can learn

the structural information as well as the node information (Fan et al., 2019). Unlike matrix

factorization, which is linear, capturing the non-linear relationship between nodes is one of the

capabilities of these methods (D. Zhang et al., 2018). Graph Neural Networks (GNNs) are some

techniques that could learn representation in any graph including recommender graphs through

aggregating information from local neighborhoods using neural networks (Z. Ying et al., 2018).

Based on the different types of neural networks, various GNNs are presented (Wu et al., 2020).

The Recursive GNNs (RecGNNs) iteratively propagate each node representation (which could

be initialized randomly) across the graph, transform received information from neighbor nodes,

and aggregate them as a representation for a current node until the node embeddings converge

(Scarselli, Gori, Tsoi, Hagenbuchner, & Monfardini, 2008). (Yin, Li, Zhang, & Lu, 2019) and

(Fan et al., 2019) are some applications of RecGNNs in recommender systems. Despite the

difference in the heterogeneous graph structure, they both propagate information with an

attention-based method and aggregate user/item feature information iteratively using an MLP

which gets users and items feature vectors as input and provide final vector as output. The

Graph Autoencoders (GAEs) could lean node embeddings through an unsupervised

manner(Wu et al., 2020). In (Berg, Kipf, & Welling, 2017), the authors have applied an encoder

with locality and weight sharing characteristics, on the recommender system bipartite graph

which generates the node embeddings and transforms user/item embedding to the first-order

neighbor item/user, based on the rating provided by each user for each item. Also, a Bilinear

decoder predicts the weights of the user-item edges as unknown ratings. Some researchers have

proposed to use the convolution in the aggregation phase of GNN and called it Graph

Convolutional Neural Network (GCN) (Bruna, Zaremba, Szlam, & LeCun, 2013; Defferrard,

Bresson, & Vandergheynst, 2016; Henaff, Bruna, & LeCun, 2015; Kipf & Welling, 2016). The

convolution could define based on the neighborhood in the spatial domain like PinSage

algorithm (R. Ying et al., 2018) or it could define in the spectral domain (Kipf & Welling,

2016). The PinSage which is applied to the Pinterest graph, uses a random walk as a sampling

method to choose important neighbors and transform their feature vectors through an MLP and

aggregate them. In addition to GNNs, some other models apply deep methods on graphs in

recommender system domain. Some of them use deep methods to extract representation for

user/items like (Hazrati et al., 2019) which some initial feature vectors for users and

preferences are extracted from a bipartite preference-based graph then they feed them to an

RBM to extract final representation for them or like (Kherad & Bidgoly, 2020) which applies

AE to extract initial representation for user/items. Also, there are some researches which embed

user/item side information in the knowledge graph like DKN (Deep Knowledge-Aware

Network) which applies CNN to embed sentences in each news(H. Wang, Zhang, Xie, & Guo,

2018) or CKE (Collaborative Knowledge Base Embedding) which incorporates SDAE to

embed entities textual information(F. Zhang, Yuan, Lian, Xie, & Ma, 2016).

3. PGRec

In this section, the proposed method, PGRec (Preference Graph based Recommendation), is

presented in detail. The main idea of PGRec is to model a recommender system problem as a

weight prediction problem in a new type of heterogeneous graph. It applies this graph structure

to extract better representations for nodes using which it predicts some unknown edge weights

and infer Top-N recommendations. Figure 2 shows the structure of the method.

Figure 2. The proposed method

In the rest of this section, we first define the problem and then we introduce PrefGraph, the

graph structure used to model the data. Then the details of the representation learning method

for user and preference nodes in PrefGraph are presented. Finally, the preference prediction

and the Top-N recommendation steps are explained.

3.1. Problem Definition

Consider the sets of users and items, U and I, and suppose that each user u shows his interest

to each item i with a rating rui from S (e.g., K=[1,5] or K={0 as dislike/no feedback, 1 as like}).

There is only one rating for any user u and an item i. All these notations are presented in Table

1.

Table 1. All notations used in the problem and proposed solution

Symbol Descriptions

U Set of all users

I Set of all items

Symbol Descriptions

Ui The subset of users that have rated an item i

Iu The subset of items that have been rated by a user u

Nx The neighbor nodes for target node x

Sx The similar nodes for target node x

rmin Minimum feedback possible

rmax Maximum feedback possible

R The matrix of user feedbacks to items

rui Rating or feedback of user u to item i

P The set of pairwise preference

Pu The subset of pairwise preference that user u provides feedback

pij The pairwise preference of rui> ruj

fu The feature vector of user u

fi The feature vector of item i

vx The representation vector of node x

Gp The preference graph

Gh The Heterogeneous Graph

The goal of the recommendation task is to rank the items for a target user and recommend the

top ones to him/her. A well-known metric for evaluating the quality of the resulting Top-N

recommendation is called Normalized Discounted Cumulative Gain(NDCG)(Järvelin &

Kekäläinen, 2000) which is defined as follows:

 𝑁𝐷𝐶𝐺𝑢@𝑁 =
𝐷𝐶𝐺𝑢@𝑁

𝐼𝐷𝐶𝐺𝑢@𝑁
 (1)

Where DCGu@N 𝐷𝐶𝐺𝑢@𝑁 is defined as

NDCGu@N shows how good the predicted list is compared to the actual list. DCGu@N is the

DCG value for the Top-N predicted items in descending order and IDCGu@N is the ideal

recommendation score (based on ground truth data). Using IDCG guarantees score 1 for the

perfect ranking recommendation.

3.2. Graph Construction

We present our method with the help of the data in Figure 3 as a sample of a movie rating

dataset, and that contains some information about the users and items of the system.

1 2 3 4

1

2

3

3 4 5 ?

3 5 ? 2

4 5 3 3

m m m m

u

u

u

Figure 3. A user-item interaction matrix

Table 2. A subset of user side information

Users Movies

u1:(17, Male) m1:(Fantasy-Drama, 1998)

u2:(21, Male) m2:(Fantasy-Drama, 1998)

u3:(20, female) m3:(Drama-Crime, 1990)

 𝐷𝐶𝐺𝑢@𝑁 = ∑
2𝑟𝑢𝑖 − 1

log (𝑖 + 1)

𝑁

𝑖=1

 (2)

 m4:(Drama-Crime, 1994)

This data could be modeled as a heterogeneous graph like the one in Figure 4.

Figure 4. A heterogeneous graph for recommender system

It is similar to the bipartite graph in Figure 1 with some content nodes. However, we add a new

preference node type to that graph and call it PrefGraph. An example of such a graph for

corresponding data is presented in Figure 5 which the new node and edge types are

distinguished by bold color.

Figure 5. A sample heterogeneous PrefGraph

The PrefGraph(V, E) is a heterogeneous weighted graph which in its simplest form, is a

tripartite graph, in which V = U ∪ I ∪ P and E = EUI ∪ EPI ∪ EUP. EUI is the set of weighted

edges between users and items based on rating matrix, EPI represents weighted edges

connecting a preference node to an item node with weight WPI∈{1,1} (𝑤𝑝𝑖𝑗𝑖 = 1 and 𝑤𝑝𝑖𝑗𝑗 =

−1). EUP is the set of weighted edges connecting a user node to a preference node with weight

WUP ∈ [(kmax kmin), (kmax kmin)]. wupij = rui – ruj tells us about how much a user u prefers an

item i over another item j. Content information about users and items are modeled by adding

content nodes. Such nodes are connected with unweighted edges to the corresponding user or

item nodes in the graph. In Figure 5, there are some edges with the unknown weights marked

as '?'. These edges represent the unknown preferences of users, and we need to predict the

weight of such edges, in order to infer the Top-N recommendation lists for users.

3.3. Representation Learning

To predict the unknown weights of user-preference edges in Figure 5, we first extract vector

representations for each user, item, and preference node. We extract vector representations for

users based on information from similar users as well as items rated by the users. Similarly, item

representations are generated using similarity information among items, as well as information

about users that have rated those items. Finally, the representation for a preference is generated

from the vector representations of two items that are connected through that preference. To

extract these representations, we propose a hybrid approach based on matrix factorization and

deep learning methods. Matrix factorization approaches usually lead to representations that

reflect the globally frequent patterns, and combining them with more flexible and sophisticated

deep learning methods can hopefully lead to more informative vector representations.

3.3.1. Extracting initial representations
In the recommender system domain, user feedbacks are always non-negative. We have used

the Non-Negative Matrix Factorization (NMF) (Luo et al., 2014) to factorize the user-item

interaction matrix. This step extracts a set of vector representations for users and items of the

system that will later be used by the algorithm as initial representations of the entities. Given

an n×m user-item interaction matrix R, NMF will find two non-negative n×f and f×m (f << n,m)

matrices like Fu and Fi in such a way that R ≈ FuFi = R% and each matrix contains f-dimensional

vector representations for users or items.

3.3.2. Graph embedding
To consider local relationships between nodes, we apply Convolutional Neural Network

(CNN) (Goodfellow, Bengio, & Courville, 2016) on those nodes. Among all deep method

algorithms, CNN is known for its attention to local structures of the input. When the input has

a graph structure, CNN needs to process the connections among nodes in order to analyze the

local spatial correlation among the elements and extract effective local features (Yushi Chen,

Jiang, Li, Jia, & Ghamisi, 2016). A typical CNN has a multipart structure with many parameters

to learn, and that makes it a powerful tool for extracting complex patterns. Most commonly,

CNNs are designed and applied for processing grid structured data like image (L. Zhang et al.,

2018); however, graphs usually do not have a grid structure, and every node can generally be

adjacent to any other node in the graph. That phenomenon leads to some complications in the

process of applying CNNs on graph structures. Recently some researches (Bruna et al., 2013;

Defferrard et al., 2016; Henaff et al., 2015; Kipf & Welling, 2016; Niepert, Ahmed, & Kutzkov,

2016) have proposed to use the spectrum of the graph to generalize the concept of convolutional

neural networks for the graphical inputs. The suggested framework is called GCN (Graph

Convolutional neural networks).

Considering ℒ as Laplacian matrix of an undirected graph G, it is possible to factorize it as

ℒ=VɅVT where Ʌ is a diagonal matrix of its eigenvalues (Ʌii = λi) and the set V = [v0, v1,…,

vn−1] ∈ ℝn×n is the matrix of all eigenvectors ordered according to their corresponding

eigenvalues (Defferrard et al., 2016). The convolution of a filter g on feature vector node x is

defined as follows:

 x *G g =V (VT g Ꙩ VT x) (3)

Equation (3) is the main equation that is used in GCN for implementing the filter convolution

over a neighborhood in a graph, while the task of designing good filters remains an active

research line. For example, in (Bruna et al., 2013), the filter is replaced with a diagonal matrix,

which should be learned, and in (Henaff et al., 2015) the authors considered the filter as

smoothing kernel such as splines. In (Defferrard et al., 2016) the authors proposed to apply a

polynomial parametric filter gθ(ℒ) which ℒ is Laplacian matrix of an undirected graph G and

in (Kipf & Welling, 2016) a first-order approximation of the filter proposed in (Defferrard et

al., 2016) has been presented which is the filter we intend to use in our approach. The suggested

filter leads to the following convolution operation:

 𝑌 = 𝑋 ∗𝐺 𝑔𝜃 = �̃�−0.5�̃��̃�−0.5𝑋𝜃 (4)

In which Y ∈ ℝn×f is the convolved signal matrix of the filter matrix θ ∈ ℝc×f on a signal matrix

X ∈ ℝn×c, Ã =A+In is the normalized adjacency matrix and �̃�𝑖𝑖 = ∑ �̃�𝑖𝑗𝑗 . This operation could

act in the neural network as:

 𝐻(𝑙+1) = 𝜎(�̃�−0.5�̃��̃�−0.5𝐻(𝑙)𝜃(𝑙)) (5)

Where H(l) is the output value in the lth layer (for the first hidden layer H(0) = X) and σ(·)

denotes a nonlinear activation function.

3.3.2.1. Modifying GCN

The proposed convolution operation in equation (5) is simple and effective, however, it has

some important drawbacks. The convolution operation in equation (5) for the target node is a

kind of taking the average of its neighbor nodes' representations. This operation uses the

adjacency matrix or neighbor nodes of the target node. In the adjacency matrix, there is not any

difference between neighbor nodes. So, based on this convolution operation all neighbors have

the same impact on the final representation of a node. However, in the graph, neighbor nodes

are of different types and we may need them to have different impacts on the final

representation of the target node. Also, in its current form, the approach defines Ã =A+In which

means that the impact of the target node itself on the final representations is the same as the

neighbors. However, one can expect that the target node's initial representation has a larger

impact on its final representation compared to other nodes.

To handle the aforementioned drawbacks, we propose to adapt the weight matrix W instead of

the adjacency matrix. The elements of the weight matrix show the impact of each neighbor

node on the target node’s representation. Also, we consider weighted self-loops in our graphs

as �̃� = 𝑊 + 𝛽𝐼, in which 𝛽 is the impact weight of the target node on its final representation.

We expect that 𝛽 should be larger than other weights in the weight matrix (𝛽 >wij∈W). Also,

we redefine the degree matrix �̃� as �̃�𝑖𝑖 = ∑ �̃�𝑖𝑖𝑖𝑗 . So the modified convolution operation which

we use in the layer H(l+1) of our neural network will be as follows:

 𝐻(𝑙+1) = σ(�̃�−0.5�̃��̃�−0.5𝐻(𝑙)𝜃(𝑙)) (6)

In which σ is a Rectifier function as σ(x) = x+.

3.3.2.2. Extracting Item Representation

As it is presented in Figure 6 (a), we define the final representation for an item i as F'i =

concatenate(FiSi, FiUi) which means the representation F'i is defined based on the similar items

to item i and also users who have rated it. To calculate the FiSi, as it will be demonstrated in the

user/item similarity sub-section (section 3.3.2.5), we define an item-item graph which its edges

show the similarity between items and apply the modified GCN in equation (6) on that graph.

Also, we get FiUi from applying the modified GCN on the user-item interaction subgraph of

PrefGraph.

3.3.2.3. Extracting Preference Representation

A preference node pij shows a comparison between two items i and j, so we represent a

preference node based on vectors of corresponding items as FPij = concatenate(F'i, F'j) as shown

in Figure 6 (b). We have considered users and items embedding size as the same. However,

because of the concatenation of two item vectors, the size of embedding for preference node is

twice the embedding of users and items and in continue, we have to do some operation on both

user and preference embedding and their size should be the same. So we pass the concatenated

embedding from a single layer neural network to reshape and shrink it half to be the same size

as users and items.

3.3.2.4. Extracting User Representation

A user u can be presented based on his known preferences. stated previously and also other

users who may have similar tastes or characteristics with him. Figure 6 (c) shows the

representation of user u as Fu = concatenate(FuSu, FuPu). The vector FuSu is the embedding of

similar users to user u, resulting from applying the modified GCN in equation (6) on the user-

user similarity graph which its construction will be presented in the user/item similarity sub-

section (section 3.3.2.5),. The vector FuPu shows the embedding of preferences that the user u

is connected to in PrefGraph. To get this embedding we apply the modified GCN on the user-

preference subgraph in PrefGraph.

Figure 6. (Left) Extracting representation for items (Middle) Generating representation for preference nodes

(Right) Extracting representation for items. In this figure (*) shows the modified convolution operation on the

input graph in equation (6) and (||) means concatenation of two input vectors.

3.3.2.5. User/Item similarity

As it was mentioned before, part of the representation comes from similar neighbor users/items.

By default, there is not any inner edge in users/items layer in PrefGraph, however, it is possible

to define some virtual edges and construct user-user/item-item subgraph GU(U, EU, WU)/GI(I,

EU, WI). The edges EU/EU show similarity between users/items and there are different

approaches to define them. Here we consider them as the count of the paths among nodes that

are compatible with User-Content-User or Item-Content-Item meta-paths. The GU and GI

graphs for the example data in Table 2 is shown in Figure 6:

Figure 7. (Left) The user-user sub-graph. (right) The item-item subgraph

Because of the limit in the number of contents, these graphs are almost dense, however, all

users/items are not completely similar. So, we try to remove some edges in these graphs by

clustering nodes. We only keep the edges between nodes that are placed in the same cluster.

We apply a recursive two-way spectral clustering algorithm on GU and GI which calculates the

second eigenvalue λ2 of ℒ and its associated eigenvector v2. Spectral Graph Clustering method

considers both feature vectors and the structural information of nodes in the graph. For all node

i ∈ VG, if v2i> 0, i ∈ cluster1, otherwise, i ∈ cluster2 and it continues by recursively clustering

each cluster until c good clusters are found (Nascimento & De Carvalho, 2011). We try to

cluster each graph into c well-separated subgraphs which c is different for each dataset and

each graph.

It is important to mention that if no content is available, it is possible to use alternative

information like co-rating as a similarity measure instead of content-based meta-paths.

However, as it will be demonstrated in section 4.7, using content could provide better results

in the similarity of nodes.

3.4. Preference Prediction

With the representation extracted for user and preference nodes, it is possible to predict the

weight between those nodes using a Neural Network with a structure like the one shown in

Figure 8.

Figure 8. Predicting weight between user and preference in PrefGraph

It is a regression network that gets two representations for the target user and the preference

node, then concatenates them as a single vector to predict a number as a weight for the edge

between the user and preference nodes.

Many deep learning-based GRSs extract final representations first and then apply deep methods

on the representations for making predictions. However, an end-to-end training phase may

lead to a higher performance according to some studies (Berg et al., 2017). In the end-to-end

technique, the embedding and prediction modules are trained together. Following this

approach, we train the whole model as a single network and try to minimize the final loss that

is the RMSE error of predicted weights for user-preference edges.

3.5. Top-N item recommendation

The interest of a user u in an item i can be simply inferred from the predicted weights wup using

the following equation:

1

(,)
()(1)m uax min

up pi
p

f i
k k

u w w
I

 (7)

The f (u, i) shows how much the user u prefers the item i over all other items. It is simply

based on multiplying the weight of the user-preference edge and preference-item edge. The

maximum value of the f (u, i) is +1, which means the user u prefers the item i over all other

items severely, and the minimum value of it is -1, which means the user does not prefer the

item i over any other items. Finding Top-N items that maximize fu, (arg max u
i

f), will provide

the N most favorite.

4. Experiments and Results

In this section, we explain the experimental setup for the evaluation of our suggested

recommendation algorithm against the state of the art methods in the literature.

4.1. Datasets

To compare the proposed method with baseline algorithms two public real-world datasets

MovieLens100K and MovieLens1M (Harper & Konstan, 2016) which are available at

GroupLens website1 are used. In both datasets, each user has rated at least 20 movies, in a 5-

level rating system (1, 2, ..., 5). The details of the datasets are shown in Table 3. In our

experiments, we used age, gender, occupation as user side information, and genres and release

date as movie side information and ignored other contents like zip code or IMDB URL. To

model this data with the graph, we converted the “user age” and “release date” to categorical

data by assigning appropriate category names to ages (teenager, young, …) and categorizing

the release dates into decades (the 40s, 50s, …).

Table 3. The details of evaluated datasets

Datasets Users User side information Movies Movie side information Ratings

MovieLens100K 943
Age, gender, zip code, occupation (21
occupations)

1682
Title, Movies genres (19 genres), release
date, IMDb URL

99992

MovieLens1M 6041
Age range, gender, zip code,

occupation (21 occupation)
3779

Title, Movies genres (18 genres), IMDB

URL
1000162

4.2. Experimental Setting

We have followed the weak generalization methodology as a standard and widely used protocol

to evaluate our model. In this method, a fixed number of ratings, called UPL (User Profile

Length), is selected randomly from each user feedback set as the training dataset. We have

considered UPL={10, 20, 50} in our experiments. The remaining rating data are used as the

testing set for evaluate the performance of the model. We removed the users whose UPL size

is less than our UPL condition plus 10 as we evaluate the method for predicting the top 10

items per user. So, as an example, for UPL = 20, only users with UPL ⩾ 30 (20 items for the

training and 10 items for testing) are considered. Also, the movies that have not appeared in

the training set are removed from the test set. The preferences are generated based on training

and testing data according to the procedure explained in section 3.2.

4.3. Experimental Environment

We trained and tested our model on a PC with the Ubunto 16.04 operating system and Cori5

Intel CPU, 16GB of Ram and an NVIDIA 1050 Ti graphic card with 4GB memory. Because

of good machine learning libraries in Python like Pandas and Numpy, we implemented our

proposed approach using version 3.5 of this language and Keras library with Tensorflow 1.13.

We used version 1.9.7 of Anaconda to simplify package management. Using GPU speeded up

the execution of the training and testing phases, more than 20 times.

4.4. Evaluation Measure

To evaluate the performance of our developed model, we adopt the NDCG@n metric which n

is the number of top-ranked items. On each test run, the average NDCG score of all users is

calculated as the performance of the model. For each UPL, we repeated the process of splitting

1 https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/movielens/

the data into train and test sets, training and performance evaluation 5 times and reported the

average performance of the model over those 5 independent experiments for NDCG@5

(recommending 5 best items) and NDCG@10 (recommending 10 best items).

4.5. Baselines

We have compared the proposed method with some state of the arts different methods in which

some are factorization based, some are graph-based and some are neural network-based. It is

important to note that our algorithm is designed for making recommendations based on explicit

feedback data, for the evaluations to be fair, baseline methods must be selected that can directly

handle the explicit feedbacks. So we selected the following set of baseline algorithms that

include classic and state of the art methods and ignored some other methods that like NCF (He

et al., 2017), NeuRec (S. Zhang et al., 2018), GCF (Yin et al., 2019), and DeepCF (Deng,

Huang, Wang, Lai, & Yu, 2019) which can only make a recommendation based on implicit

feedback data:

 NMF (Luo et al., 2014) is one of the factorization based algorithms which is described

in detail previously.

 PMF (Ma et al., 2008) is a scalable recommender system. It models ratings as a

Gaussian distribution. Unlike the most factorization methods which consider unknown

values as 0 to reproduce the entire rating matrix, PMF just uses the known values.

 SVD++ (Koren, 2008) is a variant of SVD(Sarwar et al., 2000) which incorporates

implicit information and generally acts better than SVD. It is developed by Koren to

get Netflix prize. The Netflix dataset is explicit (rating of users to movies), so Koren

considered the action of providing a rating as implicit feedback, regardless of its value.

 EigenRank (Liu & Yang, 2008) is one of the first memory-based ranking-oriented CF

methods. It considers users' similarities as the Kendall Rank Correlation Coefficient

between their rankings of the items and calculates the item ranking-oriented on a

random walk on preference information.

 CofiRank (Weimer, Karatzoglou, Le, & Smola, 2008) is one of the first methods which

adapt matrix factorization in item ranking task. It tries to maximize NDCG, while, the

loss function is replaced with a regularized matrix factorization method.

 SibRank (Shams & Haratizadeh, 2016) is a ranking-oriented recommender system

which provides recommendation based on users/items similarity in a preference

Bipartite graph.

 GRank (Shams & Haratizadeh, 2017) is a graph-based method that adapts similarity

rules on the tripartite graph. Users who have the same opinions about some pairwise

comparisons are similar. Items that are similarly favored/disfavored by the same users

are similar.

 PreNIT (Shams & Haratizadeh, 2018a) is an item-based collaborative ranking

algorithm that models user preferences as labeled edges in the bipartite graph. It

recommends items that are similar to the user's preferred items.

 DCR (Hu & Li, 2017) considers the ratings {1, 2, ..., S} as S ordinal categorical labels

in which each category is presented with a binary matrix. By applying matrix

factorization, DCR predicts the probability of each item in each class.

 ListRank-MF (Y. Shi, Larson, & Hanjalic, 2010) is one of the states of the art ranking-

oriented collaborative filtering methods that minimizes loss function over matrix

factorization.

 BoostMF (Chowdhury, Cai, & Luo, 2015) is a ranking-oriented method that

decomposes given S-level rating matrix to S binary matrices and applies matrix

factorization on them and calculates the probability that a rating predicted as each label

and adapt pointwise ranking on them.

 Wide&Deep (Cheng et al., 2016)2 is a joint double component model. The wide

component is a single layer perceptron that can memorize historical data, while the deep

component which is an MLP, can generalize the model and predict unseen data.

4.6. Parameter Settings

To get the best result of the algorithm, we first trained the algorithm using the k-fold technique

with random weight initialization. We considered k = 5 which means that 20% of training data

will be used as a validation set. After pre-training, we used the model parameters as the

initialization and then used the whole training set to train the final model. The whole parameter

settings are presented in Table 4.

To avoid overfitting, we use three different techniques which are: regularization, dropout, and

batch normalization. The regularization penalizes the coefficients of a neural network to reduce

the complexity of the model (Wellner et al., 2017). The dropout adds some noise to units in the

training phase (Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014) and batch

normalization standardizes inputs of a unit by changing the distributions of them (Ioffe &

Szegedy, 2015).

Table 4. The parameter settings

Parameter Value

Learning rate for Adam optimizer 0.0001

L2 Regularization 0.0055

Dropout rate 0.4 in the middle layers to 0.8 in the last layer

Embedding sizes 64

4.7. Comparison Result

The performance of PGRec and other baseline algorithms in each dataset is presented in Table

5 and Table 6. The recommendation performance of PGRec is reported over 5 independent

experiments, but for the baseline algorithm, their best result has been reported. Three different

variations of PGRec called PGRecC, PGRecCo, and PGRecS are presented which in these

tables. These methods refer to the content-based PGRec, co-rating based PGRec, and the

simple form of PGRec without any side information or co-rating relations.

Table 5. Performance comparison of the proposed method and baseline algorithm in terms of NDCG for the 100K

MovieLens dataset.

Method
UPL = 10 UPL = 20 UPL = 50

Top5 Top10 Top5 Top10 Top5 Top10

NMF 0.605 0.635 0.611 0.618 0.621 0.613

PMF 0.633 0.661 0.676 0.686 0.676 0.682

SVD++ 0.681 0.705 0.683 0.685 0.687 0.680

EigenRank 0.572 0.600 0.643 0.656 0.697 0.697

CofiRank-NDCG 0.602 0.631 0.603 0.617 0.609 0.616

CofiRank-Ordinal 0.573 0.605 0.582 0.607 0.615 0.627

SibRank 0.622 0.650 0.660 0.672 0.711 0.710

GRank 0.593 0.624 0.642 0.658 0.719 0.717

PreNIT 0.663 0.685 0.698 0.709 0.713 0.718

DCR 0.681 0.690 0.693 0.708 0.716 0.724

ListRank-MF 0.672 0.683 0.684 0.694 0.687 0.697

2 It is implemented as an official model in TensorFlow repository at

www.github.com/tensorflow/models/tree/master/official/r1/wide_deep

Method
UPL = 10 UPL = 20 UPL = 50

Top5 Top10 Top5 Top10 Top5 Top10

BoostMF 0.672 0.703 0.692 0.701 0.711 0.713

Wide&Deep 0.646 0.677 0.658 0.663 0.659 0.662

PGRecS 0.673 0.701 0.696 0.709 0.710 0.721

PGRecCo 0.686 0.709 0.719 0.724 0.727 0.739

PGRecC 0.699 0.731 0.723 0.733 0.741 0.748

Table 6. Performance comparison of the proposed method and baseline algorithm in terms of NDCG for 1M

MovieLens dataset.

Method
UPL = 10 UPL = 20 UPL = 50

Top5 Top10 Top5 Top10 Top5 Top10

NMF 0.648 0.659 0.656 0.661 0.674 0.665

PMF 0.681 0.684 0.703 0.704 0.722 0.718

SVD++ 0.712 0.727 0.737 0.741 0.746 0.748

EigenRank 0.606 0.614 0.700 0.699 0.693 0.692

CofiRank-NDCG 0.685 0.685 0.676 0.685 0.642 0.645

CofiRank-Ordinal 0.630 0.637 0.643 0.646 0.670 0.675

SibRank 0.669 0.674 0.701 0.701 0.727 0.723

GRank 0.640 0.655 0.692 0.694 0.757 0.755

PreNIT 0.713 0.718 0.735 0.736 0.741 0.738

DCR 0.719 0.726 0.744 0.743 0.754 0.762

ListRank-MF 0.701 0.714 0.720 0.729 0.728 0.733

BoostMF 0.743 0.743 0.738 0.748 0.752 0.751

Wide&Deep 0.735 0.739 0.736 0.730 0.740 0.732

PGRecS 0.726 0.739 0.740 0.744 0.741 0.750

PGRecCo 0.731 0.748 0.750 0.757 0.749 0.755

PGRecC 0.737 0.752 0.750 0.764 0.753 0.768

The following facts can be observed in the results:

- The PGRecC has achieved the highest NDCG scores on almost every experiment on

both MovieLens 100K and 1M datasets. However, the NDCG scores for PGRecS and

PGRecCo are lower than some baseline algorithms in both datasets.

- Content-based PGRec performs better than co-rating-based PGRec and the simple form

of PGRec in all experiments. Its performance in MovieLens 100K is 3.7% and 1.6%

higher than the other two algorithms. Also, it improves NDCG scores of the other two

algorithms by 1.8% and 0.7% in MovieLens 1M.

- In MovieLens 100K, PGRecC beats all baseline methods. In MovieLens 1M, PGRecC

acts better than other algorithms except the BoostMF in predicting top5 items in UPLs

10 and the GRank in predicting top5 items in UPLs 50.

- In MovieLens 100K, PGRecC on average improves GRank and PreNIT which are

baseline GRS algorithms by 11% and 4.5%, Wide&Deep as deep learning-based

method by 10.4%, SVD++, DCR and BoostMF as baseline factorization-based methods

by 6.2%, 3.9%, and 4.4%. Also, in MovieLens 1M, PGRecC on average acts better than

GRank and PreNIT which are baseline GRSs by 8.3% and 3.3%, Wide&Deep as a deep

learning-based method by 2.6%, SVD++, DCR and BoostMF as baseline factorization-

based methods by 2.6%, 1.8%, and 1.1%.

4.8. Discussion

We have provided three different variations of PGRec which in the simplest form there is not

any intra-layer relation between nodes in the users’/items layer, so users are just represented

based on preferences and items are represented by users only. However, in the two others, we

consider some relationships between users/items based on co-rating or side information, and

the difference in the NDCG result of them shows the impact of enriching the basic user-item

information. However, it has some computational cost and the simple form of PGRec could be

trained faster than the PGRecC and PGRecCo by 19% and 23% in UPL=50 on MovieLens

100K. So it is a trade-off between computational cost and accuracy.

Between those three variations, the best NDCG scores belong to PGRecC which is faster than

PGRecCo too, because calculating the co-rating relationship has more computational cost than

using content information. So, in this section, we discuss PGRecC. First, we talk about the

performance of PGRecC. Like most of the model-based methods, in the sparser datasets (lower

UPLs) (Aggarwal, 2016), PGRec improves NDCG significantly over neighborhood-based

methods like GRank and SibRank. However, the difference between these methods reduces as

training datasets grow in larger UPLs, and GRank supers PGRec in Top@5 item

recommendation of UPL = 10 in MovieLens 1M.

The PGRecC takes 505 seconds (1.4 seconds for each user) of training in UPL=50 on

MovieLens 100K. It takes 8.6 seconds to recommend Top@10 items to each user. It is slower

than some simple and very fast model-based algorithms like SVD++ which could create the

model in less than 1 second and recommend Top@10 items for each user in less than 10

milliseconds. However, its training time is acceptable in comparison with ranking-oriented

model-based algorithms like CofiRank-NDCG which takes 199 seconds to create the model

and 0.1 seconds to recommend Top@10 items to each user. One reason for the slower

recommendation phase of PGRec is that it needs to predict weights for user-preference edges

before it can infer the recommendation list. Since the number of preferences is quadratic in the

number of items, PGRec has to make many more predictions compared to algorithms that

directly predict user-item relations.

 In comparison to other GRSs, PGRecC recommendation time is better than some like SibRank

and worse than some others like GRank which both use preference data for item prediction.

SibRank and GRank need 32.1 and 2.1 seconds to recommend items to each user. In preference-

based GRSs, the most important factor that affects the computational time is the structure of

the graph. Small and simpler graphs could reduce computational time.

To verify the effect of embedding size on the result of our experiments, we selected various

values in the power of 2 for initial embeddings of users and items. Embeddings with the size

of power of 2 are more efficient in time and space. The results as the RMSE loss function in

predicting the weights of user-preference edges in UPL = 50 in 100K MovieLens dataset are

presented in Figure 9.

Figure 9. Train loss in each epoch for different initial embedding size in UPL = 50 of 100k MovieLens dataset

The result of experiments shows that embedding size 16 and 32 are too small to contain enough

information for predicting train dataset. However, increasing embedding size to 64 could

improve the performance of the algorithm, while embedding over 128 causes the algorithm to

lose performance. The performance of 64 and 128 is almost similar, so it makes more sense to

use smaller embedding which is computationally cheaper. Very large embeddings usually lead

to overfitting unless a very large train dataset is available. It is worthy to mention that the

algorithm starts to converge fast in less than 10 iterations.

Also, we did another experiment to check how NDCG changes on different Top-N

recommendation in different UPLs. We considered N as {1, 2, …, 10} and UPLs as {10, 20,

30, 40, 50}. Figure 10 shows the result of this experiment on the 100K MovieLens dataset.

Figure 10. NDCG improves in larger UPLs and Top-N recommendation

There are some interesting characteristics of the presented results. First, the NDCG value in

Top-1 is in a wider range for different UPLs, however, the range is getting smaller as N

increases. UPL = 50 improves NDCG of UPL = 10 more than 13% in Top@1 item

recommendation however, this improvement is 6% for Top@5 and 2% for Top@10 item

recommendation. It seems that increasing the size of training data does not change the items

that are recommended but it can lead to some slight changes in the order of them. So, if it is

possible to present a larger list of the recommended items to the user, one can prefer to use

smaller samples of data for training to speed up the training phase.

5. Conclusion

In our experiments, we developed a model-based GRS for the ranking-oriented

recommendation that directly uses a graphical model of data for embedding the entities and

predicting the users’ unknown pairwise preferences. The proposed graph structure that is used

to represent the preference data is smaller than previous ones and is able to model the intensity

of preferring one item over another one. The embedding module adopts the modifies GCN, a

method to apply deep algorithms on the graph, to represent user, item, and preference nodes.

We modified GCN to support a heterogeneous network in which the local information available

in a neighborhood, comes from different node types with possibly different degrees of

importance. The modified GCN improves the initial NMF-generated representations to achieve

more reliable embeddings for entities. The resulted embeddings are used to predict the

unknown pairwaise preferences and generating the final recommendation list.

The experiments show that the proposed innovations in graphical modeling of data and the

embedding and prediction process lead to significant improvements over the state of the art

baseline model-based and neighborhood-based recommendation methods. However, since the

suggested approach is designed for the ranking-oriented recommendation, its runtime is rather

high compared to some baseline algorithms. Applying PGRec as a general GRS framework for

the ranking-oriented recommendation in other recommendation domains with more diverse

types of entities can be the subject of further research. Also PGRec, like many other methods

that infer the recommendation list from predicted pairwise preferences, deals with the problem

of high recommendation time and trying to find a solution for that problem is another possible

direction for further research.

References
Aggarwal, C. C. (2016). Recommender systems (Vol. 1): Springer.

Berg, R. v. d., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv

preprint arXiv:1706.02263.

Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected

networks on graphs. arXiv preprint arXiv:1312.6203.

Chen, J., Wu, Y., Fan, L., Lin, X., Zheng, H., Yu, S., & Xuan, Q. (2019). N2VSCDNNR: A Local

Recommender System Based on Node2vec and Rich Information Network. IEEE

Transactions on Computational Social Systems, 6(3), 456-466.

Chen, Y., Jiang, H., Li, C., Jia, X., & Ghamisi, P. (2016). Deep feature extraction and classification of

hyperspectral images based on convolutional neural networks. IEEE Transactions on

Geoscience and Remote Sensing, 54(10), 6232-6251.

Chen, Y., Zhao, X., Gan, J., Ren, J., & Hu, Y. (2016). Content-based top-n recommendation using

heterogeneous relations. Paper presented at the Australasian Database Conference.

Cheng, H.-T., Koc, L., Harmsen, J., Shaked, T., Chandra, T., Aradhye, H., . . . Ispir, M. (2016). Wide

& deep learning for recommender systems. Paper presented at the Proceedings of the 1st

Workshop on Deep Learning for Recommender Systems.

Chowdhury, N., Cai, X., & Luo, C. (2015). BoostMF: boosted matrix factorisation for collaborative

ranking. Paper presented at the Joint European Conference on Machine Learning and

Knowledge Discovery in Databases.

Cooper, C., Lee, S. H., Radzik, T., & Siantos, Y. (2014). Random walks in recommender systems:

exact computation and simulations. Paper presented at the Proceedings of the 23rd

International Conference on World Wide Web.

Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs

with fast localized spectral filtering. Paper presented at the Advances in neural information

processing systems.

Deng, Z.-H., Huang, L., Wang, C.-D., Lai, J.-H., & Yu, P. S. (2019). Deepcf: A unified framework of

representation learning and matching function learning in recommender system. arXiv

preprint arXiv:1901.04704.

Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019). Graph neural networks for

social recommendation. Paper presented at the The World Wide Web Conference.

Fouss, F., Pirotte, A., Renders, J.-M., & Saerens, M. (2007). Random-walk computation of

similarities between nodes of a graph with application to collaborative recommendation.

IEEE Transactions on Knowledge and Data Engineering, 19(3), 355-369.

Fu, M., Qu, H., Yi, Z., Lu, L., & Liu, Y. (2018). A novel deep learning-based collaborative filtering

model for recommendation system. IEEE transactions on cybernetics(99), 1-13.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning: MIT press.

Goyal, P., & Ferrara, E. (2018). Graph embedding techniques, applications, and performance: A

survey. Knowledge-Based Systems, 151, 78-94.

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for networks. Paper presented

at the Proceedings of the 22nd ACM SIGKDD international conference on Knowledge

discovery and data mining.

Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Representation learning on graphs: Methods and

applications. arXiv preprint arXiv:1709.05584.

Harper, F. M., & Konstan, J. A. (2016). The movielens datasets: History and context. Acm

transactions on interactive intelligent systems (tiis), 5(4), 19.

Hazrati, N., Shams, B., & Haratizadeh, S. (2019). Entity representation for pairwise collaborative

ranking using restricted Boltzmann machine. Expert Systems with Applications, 116, 161-171.

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T.-S. (2017). Neural collaborative filtering.

Paper presented at the Proceedings of the 26th International Conference on World Wide Web.

Henaff, M., Bruna, J., & LeCun, Y. (2015). Deep convolutional networks on graph-structured data.

arXiv preprint arXiv:1506.05163.

Hu, J., & Li, P. (2017). Decoupled collaborative ranking. Paper presented at the Proceedings of the

26th International Conference on World Wide Web.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167.

Järvelin, K., & Kekäläinen, J. (2000). IR evaluation methods for retrieving highly relevant documents.

Paper presented at the Proceedings of the 23rd annual international ACM SIGIR conference

on Research and development in information retrieval.

Joorabloo, N., Jalili, M., & Ren, Y. (2019). A Probabilistic Graph-Based Method to Improve

Recommender System Accuracy. Paper presented at the International Conference on

Engineering Applications of Neural Networks.

Kherad, M., & Bidgoly, A. J. (2020). Recommendation system using a deep learning and graph

analysis approach. arXiv preprint arXiv:2004.08100.

Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907.

Koren, Y. (2008). Factorization meets the neighborhood: a multifaceted collaborative filtering model.

Paper presented at the Proceedings of the 14th ACM SIGKDD international conference on

Knowledge discovery and data mining.

Li, J., Tang, Y., & Chen, J. (2017). Leveraging tagging and rating for recommendation: RMF meets

weighted diffusion on tripartite graphs. Physica A: Statistical Mechanics and its Applications,

483, 398-411.

Liu, N. N., & Yang, Q. (2008). Eigenrank: a ranking-oriented approach to collaborative filtering.

Paper presented at the Proceedings of the 31st annual international ACM SIGIR conference

on Research and development in information retrieval.

Luo, X., Zhou, M., Xia, Y., & Zhu, Q. (2014). An efficient non-negative matrix-factorization-based

approach to collaborative filtering for recommender systems. IEEE Transactions on

Industrial Informatics, 10(2), 1273-1284.

Ma, H., Yang, H., Lyu, M. R., & King, I. (2008). Sorec: social recommendation using probabilistic

matrix factorization. Paper presented at the Proceedings of the 17th ACM conference on

Information and knowledge management.

Nascimento, M. C., & De Carvalho, A. C. (2011). Spectral methods for graph clustering–a survey.

European Journal of Operational Research, 211(2), 221-231.

Niepert, M., Ahmed, M., & Kutzkov, K. (2016). Learning convolutional neural networks for graphs.

Paper presented at the International conference on machine learning.

Ning, X., Desrosiers, C., & Karypis, G. (2015). A comprehensive survey of neighborhood-based

recommendation methods Recommender systems handbook (pp. 37-76): Springer.

Ou, M., Cui, P., Pei, J., Zhang, Z., & Zhu, W. (2016). Asymmetric transitivity preserving graph

embedding. Paper presented at the Proceedings of the 22nd ACM SIGKDD international

conference on Knowledge discovery and data mining.

Palumbo, E., Rizzo, G., Troncy, R., Baralis, E., Osella, M., & Ferro, E. (2018). Knowledge graph

embeddings with node2vec for item recommendation. Paper presented at the European

Semantic Web Conference.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2000). Application of dimensionality reduction in

recommender system-a case study. Retrieved from

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., & Monfardini, G. (2008). The graph neural

network model. IEEE Transactions on Neural Networks, 20(1), 61-80.

Shams, B., & Haratizadeh, S. (2016). SibRank: Signed bipartite network analysis for neighbor-based

collaborative ranking. Physica A: Statistical Mechanics and its Applications, 458, 364-377.

Shams, B., & Haratizadeh, S. (2017). Graph-based collaborative ranking. Expert Systems with

Applications, 67, 59-70.

Shams, B., & Haratizadeh, S. (2018a). Item-based collaborative ranking. Knowledge-Based Systems,

152, 172-185.

Shams, B., & Haratizadeh, S. (2018b). Reliable graph-based collaborative ranking. Information

Sciences, 432, 116-132.

Shi, C., Kong, X., Huang, Y., Philip, S. Y., & Wu, B. (2014). Hetesim: A general framework for

relevance measure in heterogeneous networks. IEEE Transactions on Knowledge and Data

Engineering, 26(10), 2479-2492.

Shi, C., Zhang, Z., Luo, P., Yu, P. S., Yue, Y., & Wu, B. (2015). Semantic path based personalized

recommendation on weighted heterogeneous information networks. Paper presented at the

Proceedings of the 24th ACM International on Conference on Information and Knowledge

Management.

Shi, Y., Larson, M., & Hanjalic, A. (2010). List-wise learning to rank with matrix factorization for

collaborative filtering. Paper presented at the Proceedings of the fourth ACM conference on

Recommender systems.

Silva, N. B., Tsang, R., Cavalcanti, G. D., & Tsang, J. (2010). A graph-based friend recommendation

system using genetic algorithm. Paper presented at the IEEE congress on evolutionary

computation.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a

simple way to prevent neural networks from overfitting. The journal of machine learning

research, 15(1), 1929-1958.

Sun, Y., Han, J., Yan, X., Yu, P. S., & Wu, T. (2011). Pathsim: Meta path-based top-k similarity

search in heterogeneous information networks. Proceedings of the VLDB Endowment, 4(11),

992-1003.

Tiroshi, A., Berkovsky, S., Kaafar, M. A., Vallet, D., Chen, T., & Kuflik, T. (2014). Improving

business rating predictions using graph based features. Paper presented at the Proceedings of

the 19th international conference on Intelligent User Interfaces.

Vahedian, F., Burke, R., & Mobasher, B. (2017). Weighted random walk sampling for multi-

relational recommendation. Paper presented at the Proceedings of the 25th Conference on

User Modeling, Adaptation and Personalization.

Wang, H., Zhang, F., Xie, X., & Guo, M. (2018). DKN: Deep knowledge-aware network for news

recommendation. Paper presented at the Proceedings of the 2018 world wide web conference.

Wang, Z., Tan, Y., & Zhang, M. (2010). Graph-based recommendation on social networks. Paper

presented at the 2010 12th International Asia-Pacific Web Conference.

Weimer, M., Karatzoglou, A., Le, Q. V., & Smola, A. J. (2008). Cofi rank-maximum margin matrix

factorization for collaborative ranking. Paper presented at the Advances in neural information

processing systems.

Wellner, B., Grand, J., Canzone, E., Coarr, M., Brady, P. W., Simmons, J., . . . Sylvester, P. (2017).

Predicting unplanned transfers to the intensive care unit: a machine learning approach

leveraging diverse clinical elements. JMIR medical informatics, 5(4), e45.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive survey on

graph neural networks. IEEE Transactions on Neural Networks and Learning Systems.

Yao, W., He, J., Huang, G., Cao, J., & Zhang, Y. (2015). A graph-based model for context-aware

recommendation using implicit feedback data. World wide web, 18(5), 1351-1371.

Yin, R., Li, K., Zhang, G., & Lu, J. (2019). A deeper graph neural network for recommender systems.

Knowledge-Based Systems, 185, 105020.

Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W. L., & Leskovec, J. (2018). Graph

convolutional neural networks for web-scale recommender systems. Paper presented at the

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph

representation learning with differentiable pooling. Paper presented at the Advances in neural

information processing systems.

Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2018). Network representation learning: A survey. IEEE

transactions on Big Data.

Zhang, F., Yuan, N. J., Lian, D., Xie, X., & Ma, W.-Y. (2016). Collaborative knowledge base

embedding for recommender systems. Paper presented at the Proceedings of the 22nd ACM

SIGKDD international conference on knowledge discovery and data mining.

Zhang, L., Luo, T., Zhang, F., & Wu, Y. (2018). A recommendation model based on deep neural

network. IEEE Access, 6, 9454-9463.

Zhang, S., Yao, L., Sun, A., Wang, S., Long, G., & Dong, M. (2018). Neurec: On nonlinear

transformation for personalized ranking. arXiv preprint arXiv:1805.03002.

Zhang, W., Zhang, X., Wang, H., & Chen, D. (2019). A deep variational matrix factorization method

for recommendation on large scale sparse dataset. Neurocomputing, 334, 206-218.

