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Abstract

In this paper, we proposed Transferable Ranking Convolutional Neural Net-

work (TRk-CNN) that can be effectively applied when the classes of images to

be classified show a high correlation with each other. The multi-class classifi-

cation method based on the softmax function, which is generally used, is not

effective in this case because the inter-class relationship is ignored. Although

there is a Ranking-CNN that takes into account the ordinal classes, it cannot

reflect the inter-class relationship to the final prediction. TRk-CNN, on the

other hand, combines the weights of the primitive classification model to reflect

the inter-class information to the final classification phase. We evaluated TRk-

CNN in glaucoma image dataset that was labeled into three classes: normal,

glaucoma suspect, and glaucoma eyes. Based on the literature we surveyed, this

study is the first to classify three status of glaucoma fundus image dataset into

three different classes. We compared the evaluation results of TRk-CNN with

Ranking-CNN (Rk-CNN) and multi-class CNN (MC-CNN) using the DenseNet

as the backbone CNN model. As a result, TRk-CNN achieved an average accu-

racy of 92.96%, specificity of 93.33%, sensitivity for glaucoma suspect of 95.12%
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and sensitivity for glaucoma of 93.98%. Based on average accuracy, TRk-CNN is

8.04% and 9.54% higher than Rk-CNN and MC-CNN and surprisingly 26.83%

higher for sensitivity for suspicious than multi-class CNN. Our TRk-CNN is

expected to be effectively applied to the medical image classification problem

where the disease state is continuous and increases in the positive class direction.

Keywords: Glaucoma; Glaucoma suspect; Convolutional neural networks;

Ranking classification

1. Introduction

The rapid development of deep learning technologies, especially convolu-

tional neural network (CNN), is now considered to be a cutting-edge methodol-

ogy for classifying medical images. The vast majority of recent medical image

analysis literature uses CNN-based methodologies. The main reason CNN is

effective in medical image analysis is that CNN is trained end-to-end. In other

words, CNN’s automated feature extraction process is more effective than tradi-

tional handcrafted feature extraction methods. However medical image classes

are distinguished from general image classes. That is, the classes of medical

images have a strong correlation with each other. In particular, there are in-

numerable intermediate states between the negative class, which is classified as

normal, and the positive class, which is classified as disease. In addition, the

negative class proceeds to a positive class in the direction of increasing the in-

herent characteristic. This characteristic depends on the type of medical image

to be classified. For example, the cancer staging using the TNM system includes

the size of the tumor [1], and in a cataract patient, the degree of turbidity of

the ocular lens may be increased [2].

Thus, the actual disease state is continuous and increases in the positive

class direction. However, when the medical image is taken and the physician

makes a decision, the class of the medical image is determined based on a cer-

tain point on the continuous line. Therefore, depending on the disease, the

intermediate class of the medical image may be defined by the physician, not

2



dichotomous separation into normal and disease. Glaucoma is a representative

example of such diseases. The reason is that glaucoma should be treated appro-

priately before advanced stages where they are already positive, and the disease

is worsening over a long period, it is necessary to observe persistent intermediate

conditions. Glaucoma is an eye disease that causes narrowed vision and even-

tually leads to blindness, which is caused by various reasons such as elevated

intra-ocular pressure (IOP) or blood circulation disorder [3]. Once glaucoma

is diagnosed, it needs constant management for a lifetime, and the damaged

vision is not restored. Therefore, early detection and treatment of glaucoma is

the best prevention, but the optic nerve damage caused by glaucoma gradually

develops, and when symptoms appear, the disease progresses considerably. In

addition, since it is not easy to confirm glaucoma early, various tests including

IOP measurement, optic nerve head examination, and anterior chamber an-

gle examination are conducted and the results are combined to determine the

existence of glaucoma.

As a result, recent glaucoma fundus image dataset includes the glaucoma

suspect class and there are several existing studies that detect glaucoma using

machine learning methods. Most of them use multi-class classification method

that uses CNN as a classifier and utilizes the output values of softmax function.

The literature on classification of glaucoma from fundus images will be discussed

in more detail in the related work section. Although such machine learning based

eye disease classification studies show reasonable performance, this multi-class

classification method ignores inter-class information of eye diseases. In addition,

in the binary classification problem of classifying normal and glaucoma, the

addition of suspect class results in poor overall classification performance. In

other words, in the case of diseases that show a sequential relationship among

medical image classes, a method that can classify them considering the inter-

class relationship is required.

Therefore, we propose a Transferable Ranking-CNN (TRk-CNN) for glau-

coma detection considering information between three different fundus image

classes. TRk-CNN consists of the following steps: primitive classification, re-
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gion of interest (ROI) extraction, and final classification. Primitive classification

follows the general Ranking-CNN [4] procedure. Ranking-CNN will be described

in detail in the later sections. Briefly, it is a method of aggregating results of

N - 1 binary classifiers to classify N number of ordinal classes. More specifi-

cally, when classifying N ordinal classes, k -th sub-classifier determine whether

the predicted class is higher than the class k which ranges between 1 to N - 1.

The difference from the original Ranking-CNN in primitive classification is that

there are no fully-connected layers at the top-layers of the CNN classifier that

performs binary classification. As a result of the primitive classification, we get

the Class Activation Map (CAM) [5] for the predicted class. The CAM will

also be discussed in detail later, but in a nutshell, it includes the importance

of which spatial location in the input image highly affects the final prediction.

The CAMs obtained from the N -1 sub-classifiers are combined into a single ROI

based on the inter-class distance metrics definition, and the process of extract-

ing the ROI and combining it with the original input is processed in the ROI

extraction step. The new input, combined with the ROI, is used as an input to

the final classification step. In this step, the final class is predicted through a

sophisticated classification process including a fully-connected layer.

We evaluated TRk-CNN in glaucoma image dataset that was collected and

labeled from Korea University Medical Center. Glaucoma dataset was labeled

into three classes: normal, glaucoma suspect, and glaucoma eyes. Based on the

literature we surveyed, this study is the first to classify three status of glaucoma

fundus image dataset into three different classes. We compared the evaluation

results of TRk-CNN with multi-class CNN (MC-CNN) and Ranking-CNN (Rk-

CNN) using the DenseNet [6] as the backbone CNN model. As a result, TRk-

CNN achieved an average accuracy of 92.96%, specificity of 93.33%, sensitivity

for glaucoma suspect of 95.12% and sensitivity for glaucoma of 93.98%. Based

on average accuracy, TRk-CNN is 8.04% and 9.54% higher than Rk-CNN and

MC-CNN and surprisingly 26.83% higher for sensitivity for suspicious than MC-

CNN.

The major contribution of this work is summarized as follows:
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• Our proposed TRk-CNN is a method that can be effectively applied when

the classes of images to be classified show a high correlation with each

other. The multi-class classification method based on the softmax func-

tion, which is generally used, is not effective in this case because the

inter-class relationship is ignored. Although there is the Ranking-CNN

that takes into account the ordinal classes, it cannot reflect the inter-

class relationship to the final prediction. TRk-CNN, on the other hand,

combines the weights of the primitive classification model to reflect the

inter-class information to the final classification phase. Through exten-

sive experiments, we show that TRk-CNN is superior to both multi-class

classification method and Ranking-CNN method.

• We evaluated TRk-CNN in glaucoma fundus images. Glaucoma can be

labeled with suspicious states because it is important to find and take

proper treatment before the condition becomes severe. We think that this

is not a problem specific to glaucoma. Many diseases requiring medical

imaging have intermediate states from negative class to positive class. Our

TRk-CNN is expected to be effectively applied to those medical image

classification problem using CNN.

The abstract version of this paper has been published in [7]. Compared with

[7], this paper presents TRk-CNN as a general classification model that can be

applied not only to three classes but also to N number of classes. We have also

noticed that [7] showed an unusually high classification accuracy because the

train-set and test-set of primitive and final classification steps are divided based

on different random seeds. We have corrected the above error in this paper. In

addition, a more robust evaluation was conducted to compare with the results

of previous glaucoma detection studies. The rest of this paper is structured

as followed. In Section 2, we review the literature using a machine-learning

approach that includes deep-learning for glaucoma detection and also briefly

review the multi-class classification and Ranking-CNN that is the background

of this study. Section 3 explains in detail the three steps of TRk-CNN in the
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general example of classifying N different classes. Section 4 describes the opti-

mal TRk-CNN for glaucoma detection. In Section 5, we evaluate TRk-CNN in

glaucoma dataset and compares the result with multi-class CNN and Ranking-

CNN results. Finally, we conclude this study in Section 6 and discusses future

plans.

2. Related Work

2.1. Glaucoma detection

Glaucoma is a disease in which the optic nerve and nerve fiber layers, which

play an important role in delivering visual information received from the eye to

the brain, are damaged and the visual field becomes narrower. Globally, glau-

coma is a major cause of blindness, along with cataracts and diabetic retinopa-

thy, and is one of the most common ophthalmic diseases, with a frequency of

2% of the total population [8] [9] [10]. In the past, glaucoma generally included

increased intra-ocular pressure, but recently, normal tension glaucoma is a very

common disease, and the definition of glaucoma has also changed. Primary

open-angle glaucoma and normal-tension glaucoma, which account for the vast

majority of glaucoma, chronically and slowly damage the optic nerve [11]. As a

result, visual field damage progresses, damage to the peripheral vision first oc-

curs, and central vision is often preserved until the end of the period. Therefore

in the beginning, there is almost no subjective symptom and symptoms do not

appear until glaucoma has progressed to advanced stages. As a result, most of

the patients diagnosed with glaucoma are found incidentally through ophthal-

mologic examination or physical examination regardless of the glaucoma related

symptoms. Figure 1 shows the progression of optic disc changes and visual field

defects with normal, glaucoma suspect, and glaucoma eyes.

To overcome the difficulties in early diagnosis, applying machine learning

methods to classify normal and glaucoma in fundus image have been proposed

to play a supporting role in physician’s glaucoma diagnosis criteria.
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Figure 1: Optic disc changes and visual field loss with normal, glaucoma suspect, and glaucoma

eyes

In 2009, Nayak proposed a method to classify normal and glaucoma with

single hidden-layer neural network (ANN) by extracting features such as cup-

to-disc ratio (CDR), optic nerve head shift, and ISNT ratio from the fundus

image [12]. ISNT ratio is the total area of the blood vessels in the inferior and

superior side of the optic disc to the total area of the blood vessels in the nasal

and temporal area. Of the 24 normal and 37 glaucoma images, 5 normal and 10

glaucoma images were split into test-set. As a result, the specificity (Sp) was

80% and the sensitivity (Se) was 100%. Nayak’s work is meaningful in that it

extracts features and train them by the neural network, although the number

of images is too small.

Bock proposed a method for extracting a probabilistic feature for glaucoma

diagnosis from a fundus image called glaucoma risk index (GRI) in 2010 [13].

First, they perform pre-processing procedures such as illumination correction,

vessel removal, and optic nerve head normalization. Then, Fourier analysis and

spline interpolation are applied, and principal component analysis (PCA) is

7



performed to extract features. Finally, the features extracted by the PCA are

passed into two-stage support vector machine (SVM) classifier and finally the

classifier outputs a GRI indicating the probability for glaucoma. For 575 fundus

images consisting of 336 normal and 239 glaucoma, the GRI method showed

overall 80% accuracy with the area under the receiver operating characteristic

(ROC) curve (AUC) of 0.88, sensitivity of 73%, and specificity of 85%. Bock

work is also a representative approach to extract handcrafted features from

images and use them as inputs for classifiers such as SVM and neural networks.

In 2011, Acharya proposed a method for extracting higher order spectra

(HOS) parameter and texture descriptors from a fundus image and use them as

inputs for four different classifiers [14]. Classifiers are SVM, sequential minimal

optimization (SMO), naive Bayesian, and random-forest. As a result, random

forest classifier showed the best performance with accuracy (Acc) of 91.7% in

60 fundus images composed of 30 normal and 30 glaucoma eyes. For the same

dataset as Acharya’s work, Dua proposed a method for extracting energy sig-

natures as a feature by applying a 2-dimensional discrete wavelet transform to

fundus images in 2012 [15]. Again for the four classifiers including SVM, SMO,

naive Bayesian (NB), and random-forest (RF), Dua’s work achieved the highest

accuracy of 93.33% in both SVM and SMO classifiers.

From 2015, glaucoma detection studies based on convolutional neural net-

works have become mainstream with the rapid development of deep learning

technology. Chen performed a classification of normal and glaucoma fundus

images using CNN in 2015 [16]. Chen designed the AlexNet [17] based CNN

model, and evaluated with the ORIGA [18] and SCES [19] fundus image dataset.

The ORIGA dataset composed of 168 glaucoma and 482 normal fundus images

and SCES dataset contains 1676 fundus images including 46 glaucoma cases.

As a result, Chen obtained 0.831 and 0.887 AUC on ORIGA and SCES dataset.

Chen’s work is meaningful in that it is the first study which applied CNN’s end-

to-end training to glaucoma detection, deviating from the conventional manual

feature extraction method. However, it did not perform better than the exist-

ing method because it simply applied CNN and did not refine the sophisticated
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optimization process. In 2016, Li proposed a method to apply CNN models to

the disc region and the original fundus image, respectively, and ensemble the

predictions [20]. Li used four well known CNN models including AlexNet [17],

GoogLeNet [21], 16-layer VGGNet [22], and 19-layer VGGNet [22]. Evaluated

with ORIGA dataset, Li achieved AUC of 0.838. CNN is adopted and consid-

ering that the classification was binary classification, performance is not good,

and similar to Chen’s work, there is a limitation that CNN model optimization

is not sophisticated.

In 2018, Fu proposed a disc-aware ensemble network for glaucoma classifica-

tion [23]. U-Net [24] was used for disc region segmentation and re-applied the

resulting region to the original image to reduce the size of the input. Finally, 50-

layer ResNet [25] was applied to fundus images of the various regions including

disc region and original fundus images. The evaluation was performed in SCES

and Singapore Indian Eye Study (SINDI) [23] dataset and showed 0.918 AUC

and 0.817 AUC, respectively. SINDI dataset contains a total of 5783 fundus

images including 113 glaucoma and 5670 normal eyes. Fu’s work has ensured

the results by applying CNN to various regions similar to Li’s work [20], and the

CNN model is well optimized. Also in 2018, Li classified the glaucoma eyes by

applying the GoogLeNet to 48116 fundus images, which is the largest number

of a dataset in the literature [26]. They also labeled the dataset as normal,

glaucoma suspect, and glaucoma eyes, same as in our study. Dataset consists of

31745 train-set and 8000 test-set images. The train-set consists of 23433 normal,

2190 glaucoma suspect, and 6122 glaucoma eyes. The test-set consists of 6033

normal, 430 glaucoma suspect, and 1537 glaucoma eyes. However, the evalua-

tion was performed as a binary classification to classify normal and abnormal

(glaucoma suspect and glaucoma cases). As a result, they obtained 0.986 AUC,

sensitivity of 95.6%, and specificity of 92%.

Overall, none of the studies described above take into account to classify

the three continuous classes of normal, glaucoma suspect, and glaucoma eyes.

Li’s work [26] is the only one that labels the fundus image in three classes but

performs the binary classification by treating glaucoma suspect and glaucoma as
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a single positive class. As we will see later in the evaluation, binary classification

of fundus images with CNN models of the same structure is 10% higher overall

accuracy than three class classification. Therefore, in order to improve the

performance of the normal, glaucoma suspect, and glaucoma classification, TRk-

CNN which considers inter-class information is necessary. In addition, TRk-

CNN can be effectively applied to the classification of other medical images

having intermediate stages between negative and positive cases.

2.2. Multi-class classification and Ranking-CNN

The multi-class classification is a method in which the size of the final pre-

diction vector is N for N number of classes. In addition, the N different classes

are converted to one-hot-encoding, where the index to which they belong is 1

and the remainder is 0. Generally, in deep learning, the softmax function is

applied to the output vector to express as the probability between 0 and 1,

although it is not the actual probability, and predict the class with the largest

probability as the final class. In this case, the cross entropy of the probability

of a class that is a true class becomes a loss, which is an error. Therefore,

in the next epoch of training, gradient descent is processed in the direction

of reducing this loss. However, when classes are highly related to each other,

their inter-class relationship disappears because classes are one-hot-encoded in

multi-class classification. Especially, the age prediction problem is where this

problem is obvious. For example, in the case of classifying tree, truck, and cat

images, there is no problem in classifying
[
1,0,0

]
,
[
0,1,0

]
, and

[
0,0,1

]
through

one-hot-encoding. However, when one-hot-encoding is used to classify 10-year-

old, 11-year-old, and 12-year-old face images, the ordinal relationship of the age

disappears.

Ranking-CNN was proposed by Chen in for age estimation from human face

images [4]. Prior to Ranking-CNN, ranking algorithms for machine learning-

based age estimation such as Ranking SVM [27], Rank-Boost [28] [29], and

RankNet [30] were introduced. Ranking-CNN proposed a ranking algorithm

suitable for CNN-based facial age estimation problem. In the case of classifying
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N different ages from images, Ranking-CNN creates N -1 sub-CNN models, and

each model performs binary classification with one age as a reference point. For

example, when predicting the ages of 10 to 19-year-old faces, the first CNN

model classifies whether the face age is older than 10 years or not. Similarly,

the i -th sub-CNN model classifies facial images that are order than i years old

and continues until the 9-th sub-CNN model. For a single facial image, nine

different
[
0,1
]

are output as the result, and the final age is determined based

on the sum of these values. The major contribution of Ranking-CNN is that

by taking the ordinal relation between ages into consideration, Ranking-CNN

is more likely to get smaller estimation errors when compared with multi-class

classification approaches [4].

However, since Ranking-CNN considers only the final binary value of the

trained sub-CNN models, features extracted during the training of each sub-

CNN model cannot be transferred. In addition, age is an ordinal relationship,

but the classes of medical data like normal, glaucoma suspect, and glaucoma

are not always directly proportional to the class relationship. Therefore, our

proposed TRk-CNN can achieve higher accuracy by allowing each sub-CNN

model to transfer the extracted high-dimensional features.

3. Transferable Ranking-CNN

TRk-CNN consists of the following steps: Primitive classification, ROI ex-

traction, and Final classification. Figure 2 shows the overall structure of TRk-

CNN including primitive classification, ROI extraction, and final classification

steps.

Primitive classification step follows the general Ranking-CNN procedure and

its purpose is to extract the major features of the reference class of each sub-

CNN model. The major feature here is that each sub-CNN model should extract

different features according to the result of performing a binary classification

on a given input image. Therefore, we can not generally use the weight of the

last convolutional layer of well known CNN such as VGGNet, GoogLeNet, and
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Figure 2: The overall architecture of TRk-CNN

ResNet. The reason is that the weight of the last convolutional layer contains

the general characteristics of the entire dataset, but of each of the input image,

the weight does not include the characteristics of the classification results the

sub-CNN model. Features extracted from each sub-CNN model in TRk-CNN

should individually represent the characteristics of N different classes. In order

to satisfy these requirements, Class Activation Map (CAM) is extracted for each
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input image as a transferable feature of each sub-CNN model. A more detailed

description of CAM will be discussed in the later section. In other words, the

purpose of primitive classification is to obtain the CAM for input image from

each sub-CNN model through training.

In ROI extraction step, CAM extracted from each sub-CNN model is merged

into a single ROI. However, when CAMs are combined through simple summa-

tion, the low relevant classes and the high relevant classes are treated equally.

So we take into account the association between classes by including the dis-

tance function when merging the CAMs. In this paper, we define the distance

function assuming that classes have a linear relationship. However, the distance

function depends on how the domain expert defines the relationship between

classes. For example, a linear relationship is reasonable for age prediction, but

it is highly likely that it will not be linear in medical data. As a result, the

ROI extraction step is to combine these distance functions with the CAM to

create the final ROI of each input image and pass the generated ROI to the final

classification step.

Final classification step combines the ROI, which received from the previous

ROI extraction stage, with the original image to create a new input for clas-

sification. Although there are many possible ways to combine the ROI with

the original image, we concatenate the ROIs on the additional channels of the

input to preserve the information of the original image. In other words, if the

original image has three channels, the number of channels for the new input is

now four. We will explain other possible methods in more detail in the later

section. Since this step leads to the final prediction, hyper-parameter tuning is

strict and regularization is applied more strongly than primitive classification.

In addition, the final classification also follows the Ranking-CNN structure and

starts to converge from the earlier epoch by loading the pre-trained weights of

the model from the primitive classification stage. A detailed description of each

stage is provided in the following section.
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3.1. Primitive Classification

Since primitive classification is almost similar to general Ranking-CNN, we

will explain it with the notation from the original paper almost as it is. Let

us first assume that the number of classes in the image dataset X we want to

classify is N. Each class is labeled from 0 to N -1 depending on the direction

in which the state of the class is increasing. Here, the examples of increasing

refers to the age in the facial age estimation problem and severity of lesion in

the medical image classification problem. When the arbitrary sample belonging

to dataset X is x, the corresponding label of x is y, where y ∈ {0, 1, ..., N -1}.

As described in the related work section, Ranking-CNN creates N -1 number of

sub-CNN models to classify dataset X. The role of k -th sub-CNN model is to

perform binary classification in dataset X based on reference class k. If x is

classified to be greater than or equal to k, the output is 1 and if it is classified to

be smaller than k, the output is 0. After training k -th sub-CNN model, dataset

X is divided into two subsets as shown below.

X0
k = {(x, 0)|y < k}

X1
k = {(x, 1)|y ≥ k}

(1)

Let the output value of the k -th sub-CNN model for arbitrary input x is pk(x )

where the value is 0 or 1. The role of primitive classification here is to optimize

each k -th sub-CNN model to minimize the binary classification error. After

error is reduced enough, we aggregate the pk(x ) of all sub-CNN models for

arbitrary input x as follows.

P(x) =

N−1∑
k=1

pk(x) (2)

where P(x ) corresponds to the predicted class of primitive classification for

arbitrary input x. The important point here is that the class we deliver to the

ROI extraction step should be the predicted class P(x ), not the actual class y.

The reason is that if the ROI is created through an actual class, we can not

generate the ROI for test-set where the actual class is only available in the final

evaluation phase. In other words, if ROI is created with an actual class, test-set
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cannot be evaluated after the final classification step because the input is an

original image without ROI. In the primitive classification, the fully-connected

layer cannot come after the last convolutional layer, and the class classifier

should follow immediately after the Global Average Pooling (GAP) layer. The

reason for this will be explained in detail in the next section, ROI extraction step.

Algorithm 1 provides the entire process of training and validation procedure of

primitive classification step.

Algorithm 1 Primitive Classification

1: procedure Training Procedure

2: for k = 1 to N − 1 do

3: initialize k-th sub-CNN

4: top:

5: for k = 1 to N − 1 do

6: X0
k = {(x, 0)|y < k}

7: X1
k = {(x, 1)|y ≥ k}

8: fine-tune k-th sub-CNN

9: if not converged then

10: goto top

11: procedure Prediction Procedure

12: for k = 1 to N − 1 do

13: pk(x)← k-th sub-CNN

14: P(x)←
∑N−1

k=1 pk(x)

3.2. ROI Extraction

The outputs from primitive classification step to ROI extraction step are the

predicted value P(x ) for input x and the weights of trained sub-CNN models.

In the previous section, we explained that the Global Average Pooling layer

comes after the last convolutional layer of each sub-CNN model, and the fully-

connected layers can not. The reason is that Class Activation Map is the feature

of input x that we want to extract from each sub-CNN model and it requires
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GAP layer directly after the last convolutional layer. CAM is a concept intro-

duced by Zhou, and it schematically shows which spatial location of the input

image played an important role when classified as the final class [5]. In general,

combining CAM with original input in case of training a single CNN model is

not expected to have a great effect on performance, but when combining re-

sults trained by multiple CNN models, such as TRk-CNN, CAM can be used

to transfer important features between CNN models.

Lets assume that f m
k(i,j ) is the activation result of filter m ∈ {1, 2, ...,

n} in the last convolutional layer of k -th sub-CNN model at spatial location

(i,j ) of filter m. The size of filter m depends on the pooling policy of the sub-

CNN model. Suppose the sub-CNN model performs stride 2 pooling, which is

a general situation, for l number of times. When the size of input x is h x h,

the size of filter m becomes h/2l x h/2l . Finally, the result Fm
k obtained from

applying GAP layer to filter m can be expressed by the following equation.

Fm
k =

h/2l∑
(i,j=1)

fm
k(i, j) (3)

From the primitive classification step, predicted class p(x ) is either 0 or 1.

Thus, if the predicted class p(x ) is 1 in k -th sub-CNN model, the input S 1
k for

the softmax layer as final prediction can be expressed by the following equation.

S1
k =

n∑
m=1

wm
1Fm

k (4)

where wm
1 represents the weights between m-th node of GAP layer and class 1

node in softamx layer and n refers the total number of filters in the last convo-

lutional layer. Substituting Fm
k with equation 3 into S 1

k yields the following
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equation.

S1
k =

n∑
m=1

wm
1Fm

k

=

n∑
m=1

wm
1

h/2l∑
(i,j=1)

fm
k(i, j)

=

h/2l∑
(i,j=1)

n∑
m=1

wm
1fm

k(i, j)

=

h/2l∑
(i,j=1)

C1
k(i, j)

(5)

where C 1
k(i,j ) is the Class Activation Map for (i,j ) spatial location in k -th

sub-CNN model for predicted class 1. Since the size of input x is h x h, resizing

C 1
k(i,j ) by h/

√
n gives the same size as input x and we can define it as C 1

k(x ).

From the equation 5, it can be said that C 1
k(i,j ) indicates the importance of

the activation at spatial location (i,j ) leading to the classification to predicted

class 1 in k -th sub-CNN model. Likewise, C 1
k(x ) represents which pixels of

input x played an important role in classifying input x as a predicted class 1

in k -th sub-CNN model. Based on the equations described so far, C 0
k(x ) can

be defined as the CAM for predicted class 0 in k -th sub-CNN model for given

input x.

So far we have explained the CAM generation process for input x at each

sub-CNN model. As a result, input x generates two types of CAMs, C 0
k(x ) and

C 1
k(x ), in k -th sub-CNN model. The next thing to define is combining these

C 0
k(x ) and C 1

k(x ) into unified feature for input x for aggregated predicted

class P(x ) from primitive classification. This unified feature can be seen as

Region of Interest (ROI) and defined as R(x ). When generating R(x ), we need

to consider that the more distant P(x ) and k are, the lower the effect of C 0
k(x )

and C 1
k(x ). For example, if the predicted age at the facial age estimation

problem is 20 years old, it is obvious that the sub-CNN model classified by

age 19 has a higher influence than the sub-CNN model classified by age 50.

Therefore, we introduce distance metric DP
k(x ) to quantify this influence of
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CAM for input x in k -th sub-CNN model. We can define DP
k(x ) by directly

applying background information of inter-class relation. If the actual class x

has an ordinal relationship, such as an facial age estimation problem, DP
k(x )

can be expressed by the following equation.

DP
k(x) =


1

P(x)−k+1 , k ≤ P(x)

1
k−P(x) , k > P(x)

(6)

where P(x ) ∈ {1, 2, ..., N -2}. If P(x ) is 0 or N -1, DP
k(x ) is not needed because

R(x ) is defined differently. Combining C 0
k(x ) and C 1

k(x ) with DP
k(x ), M (x )

can be defined as follows.

R(x) =


∑

k≤P(x) DP
k(x)C0

k(x) +
∑

k>P(x) DP
k(x)C1

k(x), P(x) ∈ {1, ...,N− 2}

C0
1(x), P(x) = 0

C1
N -1(x), P(x) = N− 1

(7)

From the equation 7, when k is less than or equal to P(x ), we multiply the

distance metric DP
k(x ) by the C 0

k(x ) of the k -th sub-CNN model. Otherwise,

we multiply the DP
k(x ) with C 1

k(x ). This part can be reversed according to the

definition of the user, but from our experimental results, it was better to define

it as above. A more intuitive reason is as follows. When P(x ) is aggregated

with pk(x ), pk(x ) is likely to be 1 in the k -th sub-CNN model where k is less

than or equal to P(x ). For facial age estimation example, if the predicted age

is 20 years old, then it is likely that the sub-CNN model classified by age 15

is likely to have output 1 and the model by age 30 is likely to have output 0.

In other words, it can be assumed that the abstract representation of C 1
k(x )

is already contained in P(x ) if k is less than or equal to P(x ). Therefore, if

we create a R(x ) by aggregating the opposite class CAMs, it is presumed that

final classification process can be trained with various information which is more

likely to correct error of P(x ) with higher probability. We experiment on both

combinations and compare the results later in the evaluation. In addition, when

P(x ) is 0 or N -1, only the CAM from the first or the N -1th sub-CNN model are
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R(x ) without considering the other sub-CNN models. This is because Ranking-

CNN performs one-to-all classification for classes at both ends. That is, when

P(x ) is 0, the first sub-CNN model can be thought of as a model that directly

classifies P(x ) equals 0 and vice versa in case of P(x ) equals N -1. Therefore,

when P(x ) is 0, it is reasonable to set R(x ) directly with C 0
1(x ) and C 1

N -1(x )

when P(x ) is N -1.

The ROI extraction step can be summarized as generating R(x ) for the

arbitrary input x from P(x ) and weights of sub-CNN models in the primitive

classification and passing it to the final classification step. Algorithm 2 provide

the entire process of ROI extraction step.

Algorithm 2 ROI Extraction

1: procedure CAM Generation Procedure

2: for k = 1 to N − 1 do

3: C0
k(x)← k-th sub-CNN

4: C1
k(x)← k-th sub-CNN

5: procedure ROI Generation Procedure

6: P (x)← Prediction Procedure in Algorithm1

7: if P (x) = 0 then

8: R(x)← C0
1(x)

9: else if P (x) = N − 1 then

10: R(x)← C1
N-1(x)

11: else

12: R(x)←
∑

k≤P(x) DP
k(x)C0

k(x) +
∑

k>P(x) DP
k(x)C1

k(x)

3.3. Final Classification

The role of the final classification step is to combine the R(x ) received from

the ROI extraction step with the arbitrary input x ∈ X to generate a new input

x’ ∈ X’ and perform strict training for final prediction. Algorithm 3 represents

the overall process of final classification step from input x’ generation to final

prediction.
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Algorithm 3 Final Classification

1: procedure Generate Input Procedure

2: R(x)← ROI Generation Procedure in Algorithm2

3: for x ∈ X do

4: x′ ← x+R(x)

5: x′ ∈ X ′

6: procedure Final Training Procedure

7: for k′ = 1 to N − 1 do

8: initialize k’-th sub-CNN

9: top:

10: for k′ = 1 to N − 1 do

11: X’0k’ = {(x’, 0)|y < k′}

12: X’1k’ = {(x’, 1)|y ≥ k′}

13: fine-tune k’-th sub-CNN

14: if not converged then

15: goto top

16: procedure Final Prediction Procedure

17: for k′ = 1 to N − 1 do

18: pk’(x’)← k’-th sub-CNN

19: P(x’)←
∑N−1

k’=1 pk’(x’)
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There are several ways to combine input x and R(x ), but we define input

x’ with additional channels for R(x ) to preserve the information of original x.

That is, when input x is the size of h x h x 3, then the new input x’ is the

size of h x h x 4 with the R(x ) of size h x h appended. The advantage of this

method is that even if the input x is augmented during the training, the spatial

information of R(x ) can be maintained by applying same augmentation policy.

In other words, if input x’ is shifted, rotated, and resized, both input x and R(x )

are applied in the same way. The process of classifying the input x’ is similar

to the primitive classification, but there is no need to output CAM, so adding

fully-connected layer after the last convolutional layer is no longer restricted.

Once the training is finished, evaluation procedure is done with the test-set that

was separated from the beginning. As we mentioned in the previous section,

R(x ) for the P(x ) from the previous two steps should be combined with the

test-set to be classified into the correct class.

4. TRk-CNN for glaucoma detection

In this section, we introduce the method of glaucoma detection based on

the TRk-CNN. The fundus images we want to classify are labeled as normal,

glaucoma suspect, and glaucoma eyes. Since glaucoma suspicious eyes can be

seen as an intermediate stage between normal eyes and glaucoma eyes, better

performance can be achieved by considering the inter-class relationship with

TRk-CNN. The overall process of glaucoma detection is as follows. First, we

perform pre-processing on fundus images. Then, the fundus images are aug-

mented to perform primitive classification. Next, the ROI is generated from

the predicted value and the weight of the sub-CNN model obtained as results

of the primitive classification. Finally, the ROI is combined with the original

fundus image to perform the final classification, and the aggregated predicted

class is compared with the actual class. Figure 3 shows the overall process for

classifying normal, glaucoma suspect, and glaucoma eyes with TRk-CNN.
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Figure 3: The overall overall process of TRk-CNN for glaucoma detection

4.1. Pre-processing

Although the resolution of the fundus image is very high, the area that plays

an important role in the diagnosis of glaucoma is the disc/cup region. This is

because cup-to-disc ratio (CDR) is one of the main criteria for discriminating

glaucoma suspicious eyes. Therefore, in the pre-processing stage, we manually

extract the disc/cup region of the fundus images. The optimized model will

apply TRk-CNN models to the original fundus image, disc region image, and

extended disc (e-disc) region image and then ensemble the results of the three

models. The extended disc region is a region where the same range of pixels

(t) is added to the top, bottom, left, and right sides of the disc region that we

manually extracted. Therefore, the extended disc region can be regarded as the

intermediate image between the disc region and the original image. There are
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several previous studies that automatically segments the disc/cup region with

machine learning approaches. However in this paper, we believe it is sufficient

to draw it manually because the area we are interested in is a square box that

contains disc/cup, not the exact pixel-by-pixel disc/cup region. And although

our the evaluation results show that applying TRk-CNN to the disc region has

the highest performance, it is not much different from the results of the other

two images. Figure 4 shows images of the three different regions from the same

fundus images obtained as a result of pre-processing.

Figure 4: Three regions of pre-processing results

4.2. Data augmentation

Since our data set consists of about 1,000 fundus images, without augmen-

tation the model will fall into overfitting problem shortly and it will be hard to

expect reasonable performance for validation and test set. Fortunately, fundus

images are not as varied as the general dataset such as ImageNet or Cifar10. In

other words, normal, glaucoma suspicious, and glaucoma eyes are classified from

fundus images with relatively similar class distribution, compared to a general

image dataset with a heterogeneous class distribution. Therefore, even with a

thousand number of images, the proper application of augmentation can yield

acceptable classification accuracy. Our image augmentation policy is as follows.

First, we zoom-in and zoom-out an image at a random ratio within ±20%. And
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the height and width of the image are shifted at a random ratio within ±20% of

image size h x h. Also, the image flips horizontally with a random probability,

which has the effect of augmenting the right eye into the left eye and vice versa.

Next, since the fundus image may have a different eye orientation depending on

the angle of the screening, we rotate the image within ±45◦ at random rates.

Finally, because the brightness of the fundus image is also different, the bright-

ness is also changed within ±40% at random rates. Figure 5 shows images when

each augmentation policy is applied to a single image at the maximum rate.

Figure 5: Example images from data augmentation

4.3. Primitive Classification

Starting from the primitive classification, the backbone structure of the CNN

model to be used in the following steps is the DenseNet [6] with 121 number

of layers. DenseNet extends ResNet’s [25] skip-connection concept and is char-

acterized by a densely connected block. Dense connection encourages feature

reuse and reduces the number of free parameters, thereby reducing overfitting

in a relatively small train-set. Therefore, we judged that DenseNet as backbone

CNN model is suitable for our fundus dataset which has smaller train-set than
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general image dataset such as ImageNet [31] and Cifar10 [32]. However, the

free parameters of DenseNet are still many to optimize with a thousand fundus

images. So we started training by taking the weight of pre-trained 121-layer

DenseNet in ImageNet and this method is generally called as transfer learn-

ing. Of course, because ImageNet images and fundus images are different types

of images, we trained the entire weight from the beginning, unlike the general

transfer learning method which trains only a few top layers.

Before starting training, the train-set is transformed according to the aug-

mentation policy. And an input image is resized to 512 x 512 x 3 in all regions

including original, disc, and e-disc region. The reason for adjusting the image

size to 512 x 512, which is larger than common sizes 224 x 224 or 256 x 256, is

because the size of the original fundus image is very large, which has a minimum

size of 3500 x 2500. The resized and augmented train-set with the mini-batch

size is now passed to the input of the 121-layer DenseNet to start training.

Since our fundus dataset has three classes, two sub-CNN models are required

to perform Ranking-CNN in primitive classification. We labeled the actual class

of normal eye as 0, glaucoma suspect eye as 1, and glaucoma eye as 2. Of

course, the actual class of normal and glaucoma eye may be interchanged, but

the existence of a glaucoma suspect eye between them should be maintained

to perform Ranking-CNN. Let the 1st sub-CNN model as Sub1 and the 2nd

sub-CNN model as Sub2. Then input class of Sub1 is 0 for normal eye, 1 for

glaucoma suspect and glaucoma eyes. Likewise, in Sub2, normal and glaucoma

suspect eyes become class 0, and glaucoma eye becomes class 1. After the input

is passed to each sub-CNN model with the 121-layer DenseNet, the size of a

final convolutional layer is 32 x 32 x 1024. Applying the global average pooling

results in a layer with a size of 1024, followed by a size 2 softmax layer for binary

classification. The optimization parameters of the model will be explained more

concretely in the final classification section. As a result, the weight of the model

with a minimum loss for the validation set and the aggregated predicted class P

∈ {0,1,2} for the input are passed to the ROI extraction step. The aggregated

predicted class P can be obtained as P = p1 + p2, where p1 ∈ {0,1} is the
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predicted class of Sub1 and p2 ∈ {0,1} is the predicted class of Sub2 for the

input. Figure 6 shows the overall process of primitive classification step for

glaucoma detection.

Figure 6: Primitive classification for glaucoma detection

4.4. ROI Extraction

The purpose of the ROI extraction step is to generate the region of interest

R based on the P and model weight received earlier from the primitive classifi-

cation. First, the Class Activation Maps for the binary classes of Sub1 and Sub2

for the given input are called Cam0
1, Cam1

1, Cam0
2, and Cam1

2, respectively.

That is, Cam0
1 is the CAM of Sub1 as class 0 for the given input. Since the

size of the input excluding the channel is 512 x 512 and the number of nodes

in the GAP is 1024, we obtain the size 512 x 512 CAM by resizing the output

by 512/
√

1024 times, which is 16. Based on the equation 7 the ROI R for the
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predicted class P can be expressed by the following equation.

R =


Cam0

1, P = 0

Cam0
1 + Cam1

2, P = 1

Cam1
2, P = 2

(8)

Finally we perform z-score normalization before passing the generated R to

the final classification step. As we mentioned in section 2.3.2, we have also

evaluated R = Cam1
1 + Cam0

2 when the P is 1 in Result section to compare

the performance difference. Figure 7 shows the overall process of ROI extraction

step for glaucoma detection.

Figure 7: ROI extraction for glaucoma detection

4.5. Final Classification

The final classification begins by concatenating the input with R from the

ROI extraction step. Since the train-set has a size of 512 x 512 x 3 and R has

a size of 512 x 512, if we concatenate the two, the size of the new train-set is

512 x 512 x 4. The image augmentation policy is the same as the primitive

classification, but for brightness policy, it should only be applied to the original

train-set of the new train-set. The reason is that the last channel, which is
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R, should be transformed with the rotation, translation, and zooming policies

because R represents the spatial characteristics of the given input, but it is not

affected by brightness. The newly generated input is classified through Ranking-

CNN based on 121-layer DenseNet as well as the primitive classification step.

One difference now is that strict training is available by adding fully-connected

layers after the GAP layer. From here, we will explain a specific description of

the parameters applied to the final classification.

4.5.1. Loss Function

In general, categorical cross-entropy loss (CELoss) is used for the loss func-

tion in classification problems, but in our experience, using categorical cross-

entropy (CE ) alone increases the gap between minimum validation loss and max-

imum validation accuracy (Acc). As will be described later in the evaluation,

intuitively, the gap between the softmax output vector and the predicted class

vector occurs when argmax function is applied. Therefore, we use a loss function

that combines both categorical cross-entropy loss and average accuracy. When

we use categorical cross-entropy loss alone in the glaucoma detection problem,

we confirmed that it converges at a validation loss of about 0.1 and that the

validation accuracy converges to around 0.9. However, since the fluctuation of

cross entropy per epoch is greater than the fluctuation of accuracy, we needed

to adjust the scale of categorical cross-entropy loss from the final loss. As a

result, the categorical cross-entropy loss with accuracy (CEALoss) for input x

= {x 1, x 2, ... , xb} with mini-batch size b is as follows.

CE(x) = −
c∑

i=1

ln si(x)

CELoss =
1

b

b∑
j=1

CE(xj)

Acc =
1

b

b∑
j=1

y(xj) · p(xj)

CEALoss = 1 + αCELoss−Acc

(9)
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where c is the number of classes, s i(x ) is the softmax output value for class

i ∈ {1, 2, ..., c}, y(x ) is the one hot encoded vector represents true class for

input x, p(x ) is the one hot encoded vector represents predicted class for input

x, and α is coefficient for adjusting the scale of CELoss which set to 0.1 in this

paper. However, α can be intuitively changed depending on the classification

problem. We compared the performance of the CEALoss and the CELoss in

the evaluation, and as a result, the performance of the CEALoss was better.

4.5.2. Activation and Optimizer Functions

The role of the activation function is to define the output value of kernel

weights in the model. In modern CNN models, nonlinear activation is widely

used, including rectified linear units (ReLU) [33], leakage rectified linear units

(LReLU) [34], and exponential linear units (ELU) [35]. As we experimentally

confirmed, we have applied the most commonly used ReLU because the three

activation functions were not significantly different in performance.

The role of the optimizer function is to minimize the loss function through the

stochastic gradient descent approach with learning rate. There are several well-

known optimizer functions such as Adam [36], Adagrad [37], and Adadelta [38].

In general, Adam function converges faster than other functions. Therefore, we

also used Adam for optimizer function and the initial learning rate was set to

0.0001. In addition, we reduced the learning rate by half if the validation loss

does not improve for the last 10 epochs.

4.5.3. Regularization

Regularization is a method to reduce overfitting during the training phase.

Overfitting is a problem especially when the size of the train-set is small and

the free parameter of the model is large like our glaucoma detection problem.

Image augmentation is also a regularization technique, which is not directly

applied to the model, so it is described after the pre-processing section. Typical

regularization methods are using L1 and L2 norm, however, it is common to

apply Dropout [39] and Batch Normalization [40] in recent CNN models. In deep
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learning, when a layer is deepened, a small parameter change in the previous

layer can have a large influence on the input distribution of the later layer. This

phenomenon is referred to as internal co-variate shift. Batch normalization has

been proposed to reduce this internal co-variate shift, and the mean and variance

of input batches are calculated, normalized, and then scaled and shifted. The

location of Batch Normalization is usually applied just before the activation

function and after the convolution layer. The 121-layer DenseNet [6] we used

uses Batch Normalization by default, and it is also applied to the last two fully-

connected layers.

Another popular regularization technique is Dropout, which stochastically

participates in nodes in the same layer, reducing dependency between layers to

prevent overfitting. In the training phase, Dropout intentionally excludes some

networks, so the model can achieve the voting effect through a combination

of partial models. In recent, however, only Batch Normalization is applied to

the convolution layers, and Dropout has been selectively added to the fully-

connected layer. We also apply Dropout of 0.5 probability to only the last two

fully-connected layers.

Finally, an ensemble of several models can be regarded as regularization from

the viewpoint of machine learning. In this paper, we use the ensemble method

of voting the three prediction results of the trained models from different image

regions including original, disc, and e-disc regions. Figure 8 shows the concrete

process of the final classification together with optimization parameters.

5. Results

5.1. Data acquisition

This study included 1022 fundus images from 301 consecutive patients (582

eyes) who underwent fundus imaging with a non-mydriatic fundus camera (TRC-

NW8; Topcon, Oakland, NJ, USA), at Korea University Ansan Hospital be-

tween January 2016 and August 2017. During the study period, patient elec-

tronic medical records and fundus imaging were reviewed to determine the pres-
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Figure 8: Final classification for glaucoma detection

ence of glaucoma by the glaucoma specialist. Based on fundus imaging and elec-

tronic medical records, 1022 fundus images were divided into three categories;

normal, glaucoma suspect (suspicious), and glaucoma. Fundus images were clas-

sified as a glaucoma suspect when a vertical cup-to-disc ratio (CDR) is greater

than 0.7 or the peripapillary retinal nerve fiber layer (RNFL) has a characteris-

tic thinning (the presence of RNFL defect) but there is no glaucomatous visual

field loss. Fundus images were classified as glaucoma when there is a RNFL

defect or visual field loss with a corresponding glaucomatous optic disc change.

When fundus images do not correspond to the two mentioned categories above,

they were classified as normal. This study adhered to the Declaration of Helsinki
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and approval for retrospective review of clinical records was obtained from Ko-

rea University Ansan Hospital Institutional Review Board (2017AS0036). The

patient information was completely anonymized and de-identified prior to anal-

ysis. Of the 301 patients, 138 (45.8%) were men and 163 were women. The

mean age (± SD) was 59.7 (± 15.4) years (range, 19-92 years). There were 291

right eyes (50.0%) and 291 left eyes. However, 992 images were used as the

fundus image dataset of this study because 30 images of the wrong file format

were excluded. Of the 922 fundus images, 403 (40.6%) were normal, 208 (21.0%)

were glaucoma suspect, and 381 (38.4%) were glaucoma eyes. From the total

number of 992 fundus images, 793 images (80%) were randomly split into train-

set and 199 images into (20%) test-set with the similar class distribution. 199

test-set images consisted of 75 normal images, 41 glaucoma suspect images, and

83 glaucoma images. Validation-set consists of 119 images which correspond to

15% of the train-set, and also the class distribution is similar. As a result, 674

train-set images consisted of 272 normal images, 142 glaucoma suspect images,

and 260 glaucoma images. Likewise, of the 119 validation-set images, 56 images

are normal, 25 images are glaucoma suspect, and 38 images are glaucoma eyes.

5.2. Evaluation setup

The software and hardware environment for the evaluation are as follows.

We tested on a 64GB server with two NVIDIA Titan X GPUs and an Intel Core

i7-6700K CPU. The operating system is Ubuntu 16.04, and the development of

the CNN model uses Python-based machine learning libraries including Keras

[41], Scikit-learn [42], and TensorFlow [43].

We conducted the evaluation from two perspectives. The first is to compare

TRk-CNN with Ranking-CNN (Rk-CNN) and multi-class CNN (MC-CNN) un-

der the same conditions. Here, the same condition means that the region of

fundus images and the structure of the model are the same. First, the fundus

image with a disc region is only used because a disc region shows the best per-

formance among the three regions. Experimental results in three regions are

shown by applying TRk-CNN. The same augmentation policy was then applied
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to train-set images, which is described in detail in the previous section. Rk-

CNN and MC-CNN have a 121-layer DenseNet as a basic structure, and two

fully-connected layers are added after the last convolutional Layer. In other

words, the structure of Rk-CNN and MC-CNN is the same as that of TRK-

CNN’s final classification step which is shown in Figure 9. The only difference

is that MC-CNN classifies normal, glaucoma suspect, and glaucoma at once, so

the last prediction layer consists of three nodes. Figure 9 outlines the structural

differences between TRk-CNN, Rk-CNN, and MC-CNN. Finally, these three

models are trained for 100 epochs with the Adam optimizer function with an

initial learning rate set to 0.0001, and the learning rate is halved if there is

no improvement in validation loss over 10 epochs. The loss function used for

comparison is the CELoss, not the CEALoss. CEALoss is used in the optimal

TRk-CNN model for glaucoma detection.

Figure 9: Structural differences between TRk-CNN, Rk-CNN, and MC-CNN
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The second is to evaluate the different TRk-CNN models, which is optimized

for glaucoma detection. We applied the CEALoss described in the previous

section, and the final prediction was obtained by an ensemble of the three models

trained in the original, disc, and e-disc regions of fundus image. The results

of the binary classification of each sub-CNN model from the optimized TRk-

CNN model are also compared with the performance of the existing literature.

Other training parameters and model structure are the same as the three models

described above.

5.3. Evaluation metrics

The evaluation of the glaucoma classification was based on the following four

metrics: average accuracy (Acc), specificity (Sp), sensitivity (SeS for glaucoma

suspect, SeG for glaucoma), precision (PrS, PrG), and F1 score (F1 S, F1G).

Average accuracy means a correctly predicted percentage of the total data.

Specificity, also known as the true negative rate, measures the percentage of

negatives that are correctly identified as normal. Sensitivity, also known as

the true positive rate or recall, measures the percentage of positives that are

correctly identified as glaucoma suspect or glaucoma. Precision measures the

percentage of positives that are predicted as glaucoma suspect or glaucoma. F1

score is a harmonic mean of sensitivity and precision. These metrics are defined

with the following four terminologies.

• True Positive(TP): The number of fundus images correctly identified as

glaucoma suspect or glaucoma.

• False Positive(FP): The number of fundus images incorrectly identified as

glaucoma suspect or glaucoma.

• True Negative(TN ): The number of fundus images correctly identified as

normal

• False Negative(FN ): The number of fundus images incorrectly identified

as normal
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Accuracy(Acc) =
TP + TN

TP + TN + FP + FN
× 100(%)

Specificity(Sp) =
TN

FP + TN
× 100(%)

Sensitivity(Se) =
TP

TP + FN
× 100(%)

Precision(Pr) =
TP

TP + FP
× 100(%)

F1− score(F1) =
2× Pr × Se
Pr + Se

(10)

5.4. Evaluation results of TRk-CNN, Rk-CNN, and MC-CNN

Table 1 shows the evaluation results of TRk-CNN, Rk-CNN, and MC-CNN

models experimented under the same condition explained in the previous sec-

tion.

Method Acc(%) Sp(%) SeS(%) SeG(%) PrS(%) PrG(%) F1 S(%) F1G(%)

TRk-CNN 88.94 89.33 85.37 90.36 74.47 94.94 79.55 92.59

Rk-CNN 84.92 85.33 85.37 84.34 60.34 100.0 70.71 91.50

MC-CNN 83.42 85.33 68.29 89.16 75.68 85.06 71.79 87.06

MC-CNN1 91.46 89.33 92.74 93.50 93.12

MC-CNN2 92.96 97.41 86.75 96.00 91.14

Table 1: Comparison results between TRk-CNN, Rk-CNN, and MC-CNN

Overall, TRk-CNN showed higher performance in all metrics except preci-

sion. In terms of accuracy, TRk-CNN achieved 88.94%, which is 4.02% higher

than Rk-CNN and 5.52% higher than MC-CNN. From the specificity perspec-

tive, TRk-CNN was the highest at 89.33%, which is 4% higher than Rk-CNN

and MC-CNN. The sensitivities of glaucoma suspect for TRk-CNN and Rk-

CNN were 85.37%, which is 17.08% higher than MC-CNN. The precision of

glaucoma suspect for TRk-CNN achieved 74.47%, which is 14.13% higher than

Rk-CNN and 1.21% lower than MC-CNN. Since sensitivity and precision have

a trade-off relation, it is better to consider F1 score together. In terms of F1-

score for glaucoma suspect, TRk-CNN was the highest at 79.55% which is 7.84%

higher than Rk-CNN and 6.76% higher than MC-CNN. The sensitivity of glau-
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coma for TRk-CNN was 90.36% while Rk-CNN was 84.34% and MC-CNN was

89.16%. The precision of glaucoma for TRk-CNN achieved 94.94% while Rk-

CNN was 100.00% and MC-CNN was 85.06%. Finally, F1-score of glaucoma for

TRk-CNN was the highest at 92.59% which is 1.09% higher than Rk-CNN and

5.53% higher than MC-CNN.

The reason why MC-CNN has the lowest overall performance is that MC-

CNN assumes three classes as independent classes without considering the inter-

class relationship. For a more precise description, we evaluated MC-CNN to

perform binary classification. MC-CNN1 classifies normal eye as 0, glaucoma

suspicion and glaucoma eyes as 1. Likewise, MC-CNN2 classifies normal and

glaucoma suspect eyes as 0, glaucoma eye as 1. From Table 1, we can observe

that the overall performance is improved despite the same structure as MC-

CNN. This shows that our classification problem is a difficult problem compared

to the binary classification problem that classifies the normal eyes and glaucoma

eyes in the previous studies. We will show the results in comparison with the

previous studies in the following section.

Figures 10 show the training loss and validation accuracy of the sub-CNN

models of Rk-CNN and TRk-CNN during the 100 epochs, along with those of

MC-CNN. Since the number of classes to classify is different, there is a limit

to directly comparing MC-CNN with sub-CNN models of Rk-CNN and TRk-

CNN, in terms of validation accuracy. However, looking at the tendency of the

graphs, TRk-CNN’s training loss and validation accuracy converge from earlier

epochs than the Rk-CNN and MC-CNN. In other words, by exchanging the ROI

extracted from different models, additional information on the input is obtained,

so that training with lower loss becomes possible. This explains why TRk-CNN

performs better than Rk-CNN considering that the total error of Rk-CNN is

bound to the max error of sub-model. As a result, the validation accuracy of

the sub-CNN model in TRk-CNN is higher than that of Rk-CNN.
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Figure 10: Training loss and validation accuracy of TRk-CNN, RK-CNN, and MC-CNN

5.5. Evaluation results of optimized TRk-CNN for glaucoma detection

Table 2 shows the results of optimized TRk-CNN models trained in several

different conditions. DISC, EDISC, and ORIGINAL represent three different

regions of the fundus image, all of which were trained using CEALoss. ENSEM-

BLE is the result of majority voting on the predicted classes of three models,

and if there is no dominant class it follows the result of DISC model. DISC1 and

DISC2 are models for comparison, and DISC1 shows the result of training using
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CELoss instead of CEALoss in disc region. DISC2 is the result of training glau-

coma suspect’s ROI with Cam1
1 + Cam0

2 instead of Cam0
1 + Cam1

2. Since

the loss of DISC2 uses CEALoss, only the difference of performance according

to ROI is compared.

Method Acc(%) Sp(%) SeS(%) SeG(%) PrS(%) PrG(%) F1 S(%) F1G(%)

ENSEMBLE 92.96 93.33 95.12 91.57 81.25 98.70 87.64 95.00

DISC 91.46 89.33 90.24 93.98 78.72 96.30 84.09 95.12

EDISC 88.94 90.67 90.24 86.75 68.52 98.63 77.89 92.31

ORIGINAL 90.45 92.00 92.68 87,95 77.55 97.33 84.44 92.41

DISC1 88.94 89.33 85.37 90.36 74.47 94.94 79.55 92.59

DISC2 86.43 86.67 78.05 90.36 86.49 86.21 82.05 88.24

Table 2: Evaluation results of TRk-CNN models for glaucoma detection

Since DISC have the highest performance among the models studied in the

three regions, we used the disc region in the comparison of TRk-CNN, Rk-

CNN, and MC-CNN. The best overall performance was the ENSEMBLE model

which achieved the highest results for all metrics except sensitivity and F1-

score for glaucoma. In terms of accuracy, ENSEMBLE achieved 92.96%, which

is 1.50% higher than DISC, 4.02% higher than EDISC, and 2.51% higher than

ORIGINAL. From the specificity perspective, ENSEMBLE was the highest at

93.33%, which is 4% higher than DISC, 2.66% higher than EDISC, and 1.33%

higher than MC-CNN. The sensitivities of glaucoma suspect for ENSEMBLE

was 95.12%, which is 4.88% higher than both DISC and EDISC, and 2.44%

higher than ORIGINAL. The precision of glaucoma suspect for ENSEMBLE

achieved 81.25%, which is 2.53% higher than DISC, 12.73% higher than EDISC,

and 3.70% higher than ORIGINAL. Considering the trade-off between sensitiv-

ity and precision, F1-score for glaucoma suspect in ENSEMBLE was the highest

at 87.64% which is 3.55% higher than DISC, 9.75% higher than EDISC, and

3.20% higher than ORIGINAL. The sensitivity of glaucoma for ENSEMBLE

was 91.57% while DISC was 93.98%, EDISC was 86.75%, and ORIGINAL was

87.95%. The precision of glaucoma for TRk-CNN achieved 98.70% while 96.30%
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for DISC, 98.63% for EDISC, and 97.33% for ORIGINAL. Finally, F1-score of

glaucoma for DISC was the highest at 95.12% which is 0.12% higher than EN-

SEMBLE, 2.81% higher than EDISC, and 2.71% higher than ORIGINAL. The

results show that referring to the disc region is the best performance for specify-

ing glaucoma. However, in the case of detecting normal and glaucoma suspect

eyes, it is better to refer to a wider area, and as a result, the ENSEMBLE model

that combines all of these is the best.

From the results of DISC and DISC1, using CEALoss instead of CELoss

showed higher performance in all metrics. This means that lower CELoss does

not necessarily result in higher accuracy as we explained earlier. Also, if we use

a metric other than accuracy as an evaluation, many variations are possible. For

example, since the Dice Similarity Coefficient score (DCS ) is the main metric

for the segmentation problem, the combined loss of CELoss and DCS may show

better performance.

The results of DISC and DISC2 showed that the performance of DISC was

higher in all the indicators except precision for glaucoma suspect. However, the

F1-score for glaucoma suspect was higher on the DISC, so overall it was better

to use ROI as Cam0
1 + Cam1

2. As described in earlier section, defining ROI

as Cam0
1 + Cam1

2 is considered to contain information that is likely to be

the opposite of the prediction in each sub-model. In other words, to output

the glaucoma suspect class in the primitive classification step of TRk-CNN, the

probability of predicting 1 in Sub1 and 0 in Sub2 is higher than in the opposite

case. Therefore, it is expected that Cam0
1 and Cam1

2 are highly contrary to

predicted class information, and combining these two can transfer more features

to the final classification step.

Table 3 compares the results of previous studies with the results of our

proposed TRk-CNN model for glaucoma detection. However, since previous

studies were binary classifications that classify normal and glaucoma instead

of three classes, we included the binary classification results of the proposed

model. Proposed1 classifies normal eye as 0, glaucoma suspicious and glaucoma

eyes as 1. In other words, Proposed1 is the ensemble of Sub1 models from DISC,
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EDISC, and ORIGINAL.

Method Acc(%) Sp(%) SeS(%) SeG(%) PrS(%) PrG(%) F1 S(%) F1G(%)

Proposed 92.96 93.33 95.12 91.57 81.25 98.70 87.64 95.00

Rk-CNN 84.92 85.33 85.37 84.34 60.34 100.0 70.71 91.50

MC-CNN 83.42 85.33 68.29 89.16 75.68 85.06 71.79 87.06

Year Data AUC Acc(%) Sp(%) Se(%) Pr(%) F1 (%)

Proposed1 2019 992 0.974 95.48 93.33 96.77 96.00 96.39

Li [26] 2018 48116 0.986 - 92 95.6 - -

Fu [23] 2018 SCES

SINDI

0.918

0.817

- - - - -

Li [20] 2016 ORIGA 0.838 - - - - -

Chen [16] 2015 ORIGA

SCES

0.831

0.887

- - - - -

Dua [15] 2012 60 - 93.33 - - - -

Acharya [14] 2011 60 - 91.7 - - - -

Bock [13] 2010 575 0.88 - 85 73 - -

Nayak [12] 2009 61 - - 80 100 - -

Table 3: Result table including comparison with results of previous studies

Since TRk-CNN is a model for considering the inter-class relationship, it

can be seen that there is no significant difference from using MC-CNN in case

of binary classification. This can be seen from the fact that the work of Li

[26] and the performance of Proposed1 do not differ greatly. However, when

performing three-class classification, the performance difference between MC-

CNN and Proposed is large, because the classes of normal, glaucoma suspect,

and glaucoma have a high relation with each other. Therefore, when multi-

class classification is performed considering the inter-class relationship, using

TRk-CNN can be expected to perform better than the multi-class classification

approach.

Figures 11 show the training loss and validation accuracy of 1st and 2nd

sub-CNN models of DISC, EDISC, and ORIGINAL, respectively. One notable

difference is that the overall validation accuracy of the 1st sub-CNN model was

the highest in EDISC, but the results in test-set were the highest in DISC. This
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implies that the best performance in one sub-model may not necessarily be the

best for the aggregated result.

Figure 11: Training loss and validation accuracy of DISC, EDISC, and ORIGINAL

Figures 12 show how the activation of each convolutional layer is visualized

where the input image is the three regions of the same fundus image. The top

left image in each figure represents disc, e-disc, and original region for the same

fundus image.

The six images on the bottom left of each figure are visualizations of the

activation in the pooling layer of each model. The six images show the deepening

of the model from top to bottom, highlighting the retinal blood vessel and
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Figure 12: Visualization of the convolution layer in the DISC

disc/cup regions. This can be seen more clearly in DISC and EDISC. Although

we manually draw the region box contains only the disc region, we can observe

that the model automatically emphasizes the cup region. Other small patch

images are from the left to the right in the direction of deepening the model, all
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visualizing the activation of the convolutional layer. The patches in the same

column represent the first 10 filters of the convolutional layer. As shown in the

figures, the early part of the convolutional layer extracts low-level feature such

as image outline and contrast. As the model deepens, we can see that high-level

features are extracted. One peculiar point is that in the case of EDISC and

ORIGINAL, the disc region is still emphasized even though the depth of the

model is deep enough.

6. Conclusion

Our proposed TRk-CNN is a method that can be effectively applied when

the classes of images to be classified show a high correlation with each other.

The multi-class classification method based on the softmax function, which is

generally used, is not effective in this case because the inter-class relationship

is ignored. Although there is a Ranking-CNN that takes into account the ordi-

nal classes, it cannot reflect the inter-class relationship to the final prediction.

TRk-CNN, on the other hand, combines the weights of the primitive classifica-

tion model to reflect the inter-class information to the final classification phase.

Through extensive experiments, we show that TRk-CNN is superior to both the

multi-class classification method and Ranking-CNN method.

We evaluated TRk-CNN in glaucoma image dataset that was collected and

labeled from Korea University Medical Center. Glaucoma dataset was labeled

into three classes: normal, glaucoma suspect, and glaucoma eyes. Based on the

literature we surveyed, this study is the first to classify three status of glaucoma

fundus image dataset into three different classes. We compared the evaluation

results of TRk-CNN with multi-class CNN (MC-CNN) and Ranking-CNN (Rk-

CNN) using the DenseNet as the backbone CNN model. As a result, TRk-CNN

achieved an average accuracy of 92.96%, specificity of 93.33%, sensitivity for

glaucoma suspect of 95.12% and sensitivity for glaucoma of 93.98%. Based on

average accuracy, TRk-CNN is 8.04% and 9.54% higher than Rk-CNN and MC-

CNN and surprisingly 26.83% higher for sensitivity for suspicious than multi-
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class CNN.

Our TRk-CNN is expected to be effectively applied to the medical image

classification problem where the disease state is continuous and increases in the

positive class direction. Therefore, we will apply TRk-CNN to medical images

with the above characteristics in future work.
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