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In video-assisted thoracoscopic surgeries, successful procedures of nodule resection are highly de-
pendent on the precise estimation of lung deformation between the inflated lung in the computed
tomography (CT) images during preoperative planning and the deflated lung in the treatment views
during surgery. Lungs in the pneumothorax state during surgery have a large volume change from
normal lungs, making it difficult to build a mechanical model. The purpose of this study is to
develop a deformation estimation method of 3D surface of a deflated lung from a few partial obser-
vations. To estimate deformations for a largely deformed lung, a kernel regression-based solution
was introduced. The proposed method used a few landmarks to capture the partial deformation
between the 3D surface mesh obtained from preoperative CT and the intraoperative anatomical
positions. The deformation for each vertex of the entire mesh model was estimated per-vertex as
a relative position from the landmarks. The landmarks were placed in the anatomical position of
the lung’s outer contour. The method was applied on nine datasets of the left lungs of live beagle
dogs. Contrast-enhanced CT images of the lungs were acquired. The proposed method achieved
a local positional error of vertices of 2.74 mm, Hausdorff distance of 6.11 mm, and Dice similarity
coefficient of 0.94. Moreover, the proposed method achieved the estimation lung deformations from
a small number of training cases and a small observation area. This study contributes to data-driven
modeling of pneumothorax deformation of the lung.

Keywords: deformation estimation, kernel regression, lung surgery, medical imaging, pneu-
mothorax

I. INTRODUCTION

Medical imaging technology, such as computed tomog-
raphy (CT), has become common in clinical examina-
tion. The CT screening can detect lung nodules at a
small size and early stage (Swensen et al., 2005), and
such early detection has been shown to increase survival
rate (Mikita et al., 2012). Video-assisted thoracoscopic
surgery (Flores and Alam, 2008; Shaw et al., 2008) is
widely performed as a minimally invasive surgical tech-
nique. However, the minimally invasive approach can
complicate localizing small nodules during surgery. The
inflated lung (at inhale or exhale) in preoperative CT
images turns collapsed to a fully deflated state during
surgery, creating a large lateral pneumothorax. Although
lung nodules are detected by preoperative CT images
during preoperative surgical planning, the position of
nodules may change because of the gross deformation
of the lung induced by this process. Various adjunctive
techniques, such as nodule tagging by physical or chem-
ical markers (Lin and Chen, 2016; Sato et al., 2014), are
used to localize nodules during surgery. Such localiza-
tion is carried out preoperatively, requiring additional
CT imaging and invasive tagging procedure. Therefore,
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it increases the clinical burden on both surgeons and pa-
tients. Instead, a less invasive technique that can es-
timate the intraoperative position of the lung nodules
accurately is highly desirable for more precise nodule re-
section and better preservation of normal lung function
as a consequence of minimizing resection margins.

Accurate estimation of whole lung deformation in-
duced by a large pneumothorax is required to esti-
mate the intraoperative position of nodules by evaluat-
ing the correspondence of the lung surface and the in-
ternal structure with nodules. Deformation estimation
for the soft tissue of the lung has been explored as a
deformable image registration problem between CT im-
ages (Rühaak et al., 2017; Sotiras et al., 2013). In de-
formable image registration in thoracic contexts, respira-
tory motion (Rietzel and Chen, 2006; Wilms et al., 2016;
Yin et al., 2011) and patient posture (Nakamoto et al.,
2007) have been the main focus of investigation. For the
analysis of respiratory motion, image-based lung mod-
eling techniques (Fuerst et al., 2015; Nakao et al., 2007)
and statistical modeling techniques (Ehrhardt et al.,
2011; Jud et al., 2017) have been developed previously.

Unlike respiratory motion, lung deformation by pneu-
mothorax can induce considerable volume change. The
mechanism is complex and is not mathematically un-
derstood. To compute an extrapolation to the deflated
lung, the displacement field obtained from the regis-
tration of inhale-exhale states in 4D CT was used in
Sadeghi-Naini et al. (2009, 2011). In the field of intra-
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operative registration of the collapsed lung, a registra-
tion framework to analyze the displacement of internal
lung structures on cone-beam CT (CBCT) using animal
lungs (Uneri et al., 2013) and a deformable registration
method for postural differences on preoperative CT and
intraoperative CBCT (Chabanas et al., 2018) have been
proposed. The CBCT imaging provides invaluable real-
time information to the surgeons within the small acqui-
sition time. Those researches on deformation registration
using CBCT has focused mainly on the registration of in-
ternal structures.

To provide subsurface nodule position from the lung
surface information during surgery, it is required to reg-
ister the preoperative CT image to intraoperative phys-
ical lung by the surface information of the lung. Intra-
operative segmentation of thoracoscopic camera images
(Wu et al., 2017) and registration methods using the 2D
appearance or silhouettes of intraoperative collapsed lung
surface as visual cues to register preoperative CT models
with intraoperative camera images (Nakao et al., 2017;
Saito et al., 2015) have been reported. Although they
achieved the registration from little information that can
be obtained intraoperatively, they had a limitation on the
registration of depth direction. Nakamoto et al. (2006)
proposed intraoperative registration methods using sev-
eral surface points measured on the deflated lungs.

The deformation estimation problem is a framework
that provides more localized deformation of each posi-
tion in the whole shape than that of the deformable image
registration problem. The finite element method (FEM)
(Belytschko et al., 2014) is commonly used as a technique
for calculating the deformation of a living body, based on
a mechanical model. Using preoperative CT, attempts
to simulate and visualize operations, such as grasping or
incising organs during surgical operations, have been re-
ported (Nakao and Minato, 2010). Deformation estima-
tion techniques for the shape matching based on a dy-
namic deformation model have been proposed for surgi-
cal assistance (Suwelack et al., 2014). However, it is diffi-
cult to apply FEM for the pneumothorax deformation of
the lung, because the deformation induces a considerable
volume change, and it is also difficult to incorporate un-
known material parameters or uncertain boundary con-
ditions that describe the pneumothorax state. Therefore,
deformation estimation technique of whole lung surface
from the partial surface information without that prior
knowledge is desirable.

In this study, we propose a data-driven scheme to esti-
mate deformations of whole lung surface from the partial
surface observation. Our method employs a few surface
points as landmarks of the intraoperative lung and pre-
operative CT images to estimate the deformation of the
intraoperative deflated lung in the pneumothorax state.
Some data-driven methods were investigated to estimate
deformations of the liver and the breast tissue. In a stud-
ies by Morooka et al. (2010, 2012), a model-based cal-
culation of deformation by FEM was combined with a
data-driven deformation estimation by a neural network

to accelerate the calculation by FEM. Although those
methods have the advantage of not requiring knowledge
of the mechanical properties of organs to estimate defor-
mations, they require to input the direction and magni-
tude of the force, which is difficult to be measured dur-
ing surgery. Some previous studies have attempted to
use neural networks to estimate the force applied to an
organ from images of the deformed shape (Aviles et al.,
2014; Greminger and Nelson, 2003) requiring observation
of the whole object. The other data-driven methods
could estimate the deformations of the whole liver sur-
face pulled by a surgical tool from partial observations of
the liver surface using a neural network (Morooka et al.,
2013; Yamamoto et al., 2017a), deformations of a liver
in respiratory motion (Lorente et al., 2017), and defor-
mations of the breast tissue by two compression plates
(Mart́ınez-Mart́ınez et al., 2017). As these methods were
data-driven, they required large volumes of data calcu-
lated by FEM simulating the deformations. That strat-
egy is difficult to apply to the deformation problem of
the deflated lung because an accurate simulation of the
pneumothorax deformation of the lung by FEM is dif-
ficult. To avoid the requirement of accurate simulation
for the specific organ, Pfeiffer et al. has shown that a
convolutional neural network can be trained on entirely
synthetic data of random organ-like meshes to estimate
a displacement field inside a liver from the liver surface
(Pfeiffer et al., 2019).

Among the data-driven estimations, the kernel method
is more suitable for learning with a small number of sam-
ples. The kernel method contains an infinite number of
parameters to represent the data and can be fitted to an
optimal solution from a small amount of samples. It is
difficult to collect a large number of training images of
the lung volume in the pneumothorax state. In addition,
training the kernel method requires only one-time com-
putation of the inverse matrix, which is much less com-
putationally intensive than training a neural network. It
may be possible to obtain good estimation results by
constructing a large-scale neural network and training
it using a supercomputer on a large number of samples.
However, considering the future clinical applications, a
method that can be implemented in any computing en-
vironment is desired. In a study of non-rigid image reg-
istration of the lung during breathing (Jud et al., 2017),
the authors formulated the statistical motion as kernel
and integrated it into a parametric non-rigid registration.
We have considered that a kernel method is available
to estimate deformations of the liver in Yamamoto et al.
(2017b). However, that method was designed for a spe-
cific patient and evaluated on the same liver mesh that
was used during the training. A deformable registration
of CT-CBCT and CBCT-CBCT using kernel regression
framework has been reported in Nakao et al. (2020). The
CBCT has a limited field of view and the images that can
be acquired are limited to the partial shape of the lung.
In addition, the lungs are affected by motion of the tho-
racic cavity, even in the pneumothorax state, and may
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contain motion artifacts, especially in the pneumothorax
lung, which has low contrast (due to low air content),
making it difficult to acquire stable image features from
the deflated lung. Therefore, we explore landmark-based
estimation methods those are robust to image noises and
intraoperative conditions.
In this study, we utilize a kernel method as a data-

driven representation of the transformmapping of the de-
formation. We focus on landmark-based deformation es-
timation and aim to identify anatomical landmarks that
contribute to accurate and stable deformation estima-
tion. We propose a method to estimate deformations
for new cases by setting landmarks in a small observ-
able area during surgery and learning data from a small
number of cases, and evaluate its performance. The pro-
posed method was evaluated with a 3D surface mesh con-
structed from CT images of the left lungs of live beagle
dogs in inflated and deflated states. Moreover, we refer to
the estimation performance of the affine transformation
and thin-plate spline methods, which have been reported
for deformation of the lung surface in the field of intraop-
erative registration of a collapsed lung (Nakamoto et al.,
2006; Uneri et al., 2013). The computational complex-
ity of those methods is comparable to ours, and those
methods can calculate the deformation of the entire lung
surface from the information of the configured observa-
tion points.
The contributions of this study are as follows: 1) eval-

uation of the feasibility of kernel technique for estimating
deformations of the pneumothorax lung with a large vol-
ume change, and 2) analysis of observation rate on the
lung surface and the data variations due to the number
of subject cases.

II. MATERIALS AND METHODS

A. Data acquisition

The contrast-enhanced CT images of the left lungs of
11 live beagle dogs were acquired at two bronchial pres-
sures (14 and 2 cm H2O) at the Institute of Laboratory
Animals, Kyoto University. This study was performed
under the regulations of the Animal Research Ethics
Committee of Kyoto University. All CT images were
acquired on a 16-row multidetector CT scanner (Alex-
ion 16, Toshiba Medical Systems, Tochigi, Japan). Dur-
ing the procedure, the dogs were maintained under anes-
thesia with ketamine, xylazine, and rocuronium and un-
derwent tracheal intubation and mechanical ventilation
by a ventilator (Savina 300, Drager AG & Co. KGaA,
Lübeck, Germany). A single trocar hole was first made
on the chest wall, to let air flow into the pleural cav-
ity. Using the ventilator, the bronchial pressure was set
to 14 cm H2O to obtain images of the fully expanded
lungs (inflated state), and to 2 cm H2O for imaging of
the collapsed lung state (deflated state). The doctors set
the bronchial pressure to 2 cm H2O to replicate the de-

Data processing for training

Es!ma!on for a new lung

Preopera!ve CT

Intraopera!ve CT

Preopera!ve CT

Reconstruct 
3D surface mesh

Reconstruct 
3D surface mesh

Inflated lung

Deflated lung

Shape 
matching

3D poin!ng device

Reconstruct 
3D surface mesh

Inflated lung

Landmarks

Target point

Center of 
landmarks

Input

Output

?

?

Landmark posi!on 
in deflated lung

Es!ma!on

FIG. 1. Overview of data acquisition, data processing, and
input/output for learning and estimation in the deformation
estimation framework.

flated lungs in real human surgery. All dogs were placed
in a right lateral (decubitus) position on the bed of the
CT scanner, and the two CT image sets of the inflated
and deflated states were acquired in that order for each
dog. For the contrast-enhanced CT, 10 mL of iopamidol
contrast agent was injected through a lower extremity
peripheral vein. Scanning was performed 5 s after the
injection of iopamidol.
Figure 1 shows the data acquisition and data process-

ing procedure. Preoperative and intraoperative CT im-
ages were taken in a small number of cases for the use
in the regression of known data. In the CT imaging ex-
periment, the preoperative and intraoperative CT cor-
responded to bronchial pressures of 14 and 2 cm H2O,
respectively. To estimate the deformations of the lung
in new cases, preoperative CT is taken. Because it is
a common procedure to obtain CT images of the entire
lung prior to surgery, preoperative CT data would be
available when the proposed method is applied to hu-
mans. Preoperative CT provides data on the inflated
lung. Intraoperatively, only the positions of the anatom-
ical landmarks on the deflated lung surface are expected
to be measured with a 3D pointing device. In this study,
we used CT images that were also taken in a deflated lung
to obtain the positions of the landmarks. The setting of
the landmarks is described in Section II C.

B. Data preprocessing

The following procedure of data preprocessing was
used. First, the 3D surface mesh of lungs was recon-
structed from acquired CT volume images. We employed
the Synapse VINCENT image analysis system (Fujifilm
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FIG. 2. The left lungs of live beagle dogs reconstructed as
meshes from the acquired CT data. Pale green shows the
inflated lung, and red shows the deflated lung. Ventral view.

Co., Ltd.) to perform anatomical segmentation of the
upper and lower lobes from acquired CT volume im-
ages. Subsequently, each lobe was described by a mesh
of points distributed throughout the surface of the lung.
The surfaces of the lobes were generated as triangulated
mesh representations using Poisson surface reconstruc-
tion (Kazhdan et al., 2006). The meshes of the two lobes
were created independently, and each triangulated mesh
was stored in the PLY file format.

Second, shape matching between inflated and deflated
lungs was performed on the triangulated meshes. The
shape matching is required only for known lungs that
contains the deflated shapes to make the training dataset.
In applying the framework of this study to actual surgery,
this procedure is not required in the estimation process
of an unknown new lung. The correspondence of the
position of the landmarks measured in deflated and in-
flated lungs were reconstructed from preoperative CT de-
pending on the anatomical positions of landmarks. On
the process of shape matching, the number of vertices
and the mesh topology corresponded between surfaces in
the inflated and deflated states. The number of vertices
in each lobe was set to 400. For the shape matching
with high accuracy, we performed Laplacian-based sur-
face registration using a differential displacement field.
We employed the shape matching method in the previ-
ous study (Nakao et al., 2019), in which they analyzed
surface deformation using deformable mesh registration
and reported the shape matching method for inflated and
deflated lung data. Our method estimates deformations
for new cases by learning deformation from the regis-
tered model obtained by shape matching in Nakao et al.
(2019). Surface reconstruction and shape matching
methods are not considered in this study, mainly to focus
on the deformations due to deflation.

The CT data of 11 lungs were taken at the same
bronchial pressures, but each of them has different vol-
ume and volume ratio between inflated and deflated
states. The volumes and the volume ratios for each case
are listed in Table 1 in Nakao et al. (2019). Using nine
cases in which the volume was less than 60% in both the
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FIG. 3. Position of the landmarks. The pink and yellow
markers indicate landmarks set in the upper and lower lobes,
respectively. Landmarks were set separately on the upper and
lower lobes. Landmarks 1–5 were placed on the side of the
major fissure. The 3-landmark model and the 6-landmark
model were set up as particularly few landmarks.

upper and lower lobes, the volume ratio of the deflated
lungs was unified to 60%. Some examples of the shape
of the inflated and deflated lungs are shown in Figure 2.
As a data augmentation, the interpolated cases be-

tween the two original cases were created as augmented
data. The augmented data consisted of the midpoint of
the vertices of the two meshes. Interpolated cases made
from the original cases used for testing were not used for
training. Only the original cases were used for testing,
and no interpolated cases were used. When the number
of original cases used for training was c, the number of
interpolated cases was cC2.

C. Setting of few anatomical landmarks

The main goal of this study was to predict the defor-
mation of the lung in the pneumothorax state from the
lung in the inflated state using the positional information
of a small number of landmarks. The positions of land-
marks were determined based on the anatomical shape of
the whole lung, separately in the upper and lower lobes.
Landmarks were placed at locations where it would be
easy to measure the surface position during surgery. It is
difficult to set landmarks on the flat ventral surface be-
cause the surface of the lung has no anatomical pattern.
Therefore, we set landmarks along the outer surface of
the lung, assuming that the 3D pointing device is used
to trace the outer contour of the lung.
We first set up three landmarks at the corners of each

lobe. Next, we placed landmarks at the midpoint be-
tween the landmarks in those corners. Subsequently,
landmarks were placed at the midpoint of each of those
landmarks. As a result, 12 landmarks were set up. The
positions of the landmarks are visualized in Figure 3. The
numbers in the figure represent the order of the land-
marks in Experiment 1 in Section III B. Starting from
the edge of the major fissure, landmarks were placed
around the left in the upper lobe and around the right
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in the lower lobe. Landmarks 1–5 were located on the
major fissure side. For clinical applications, it is desir-
able to estimate the deformation from a small number of
landmarks in a small area. To validate the performance
when the number of landmarks is limited, we used the
3-landmark model for landmarks 1, 3, and 5 out of 12
landmarks and the 6-landmark model for landmarks 1,
3, 5, 7, 9, and 11, as shown in Figure 3. To keep the
area to be observed small, the landmarks were selected
only from the side of the major fissure in the 3-landmark
model. In Experiment 2 of Section III B, we increased
the landmarks in the order of numbers 1, 5, 3, 9, 7, 11, 2,
4, 6, 8, 10, and 12. The third and sixth in Experiment 2
are the 3-landmark and 6-landmark models, respectively.

D. Labeled dataset

The problem of estimating deformations was solved
using kernel regression. The regression was one of the
supervised learning and required the use of a set of D
labeled samples, {x(d),y(d)}d=1,2,...,D, where x(d) was
the N -dimensional input vector for the dth sample with
an associated M -dimensional target output vector y(d),
which we intended to predict. We treated the features
per vertex of the 3D mesh model as a single sample. In
other words, D is the total number of vertices in all mesh
models used for training. A data-driven method for es-
timating respiratory deformations of the liver using one
vertex as a sample has been proposed by Lorente et al.
(2017). After preprocessing the acquired lung data, each
mesh vertex in the deflated lung corresponded to a mesh
vertex in the inflated lung with the same vertex number.
Refer to the overview of the process in Figure 1. The
black points, a blue point, blue arrows, and a yellow ar-
row represent landmarks, a target point, input vectors,
and an output vector, respectively.
All vertices other than landmarks were used as target

points T to estimate deformations. The following vari-
ables were available for each target point T except for
the landmarks:

v(Tinf ),v(Tdef ): Coordinates of the vertex in the 3D
space in the inflated and deflated lungs.

v(L
(k)
inf ),v(L

(k)
def ): Coordinates of the kth landmark (k =

1, 2, ..., l) in the inflated and deflated lungs to which
the vertex belonged.

Vinf : Whole volume of the inflated lung to which the
vertex belonged.

V R: The volume ratio of the deflated lung to the inflated
lung to which the vertex belonged.

Data for the upper and lower lobes, each consisting
of 400 vertices, were created as separate datasets. The
number of samples D used for training varied accord-
ing to the number of cases c and landmarks l; D =

(400 − l) × (c + cC2). With all cases and six land-
marks, the total number of samples was 14,184, except
for one original case for the test. For each sample,
N = 3l × 2 + 2 variables were used as inputs x, includ-

ing relative positional vectors r
(k)
inf = v(Tinf ) − v(L

(k)
inf )

and r
(k)
def = v(L

(k)
def ) − v(Ldef ), where Ldef was the cen-

ter point of all landmarks in deflated lung, Vinf and V R.
The target output vector y was the relative positional
vector, y = v(Tdef )− v(Ldef ), then M = 3.

E. Kernel-based estimation of lung deformation

In the kernel method, an output corresponding to a
new input is estimated by solving the minimization prob-
lem, which is formulated as a ridge regression using the
kernel matrix calculated from inputs of the labeled train-
ing dataset. Let x be the inputs of known dataset, we
made the kernel matrix K of Gaussian kernel.

Kd,d′ = K(x(d),x(d′)) (1)

= ka exp

{

−kb

N
∑

n=1

(x(d)
n − x(d′)

n )2

}

. (2)

Indices d and d′ denote two different numbers of sam-
ple in the known training dataset and n is a component
number of the input vector. Parameters ka and ka were
determined by cross-validation.
The problem to minimize the squared error with the

output y of training data was formulated using the cal-
culated kernel matrix K with L2 norm regularization as

min
W
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d
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D
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2
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∑
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WdKd,d′Wd′







.

(3)

The regularization parameter λ was determined by trial
and error. The solution of W ∗ was

W ∗ = (K + λE)−1y, (4)

where E is an identity matrix of the same size as the
kernel matrix K.
Subsequently, an unknown output y(i) corresponding

to a new input x(i) for a test data i was estimated as

y(i) =
D
∑

d

Ki,dWd, (5)

where Ki,d = K(x(i),x(d)).

F. Experimental settings

We tested the estimation performance when using 6
and 3-landmark models, when using different numbers of
landmarks, and when using different numbers of cases
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6-landmark model

3-landmark model

Kernel

AF

TPS

Kernel

FIG. 4. Estimated shape of the deflated lungs using the pro-
posed method (Kernel), affine transformation (AF), and thin-
plate spline method (TPS). The magnitude of the local posi-
tional error is shown in blue with a maximum of 8.5 mm. Each
image shows a view from the same direction of the results of
testing the same cases.

for training. In all experiments, we performed cross-
validation using all cases as test data once. The ex-
perimental results with the smallest estimation error
are described. We compared the results of our method
with those of affine transformation (AF) and thin-plate
spline method (TPS) to evaluate the performance of our
developed method. In the previous studies that esti-
mated the lung shape in the pneumothorax state, AF
was the method used for lung surface registration dur-
ing the registration of the internal structure of the lung
(Uneri et al., 2013), and TPS was the method for non-
rigid registration (Nakamoto et al., 2006).

III. RESULTS

A. Estimation results

First, we present the estimation results using the 6-
landmark model and 3-landmark model. Figure 4 vi-
sualizes some estimated results using 6 and 3-landmark
model. The shape shown in the figure is the estimated
lung in the pneumothorax state. The magnitude of the
local positional error is shown in blue with a maximum of
8.5 mm. In the 3-landmark model, the results estimated
using AF and TPS did not result in a lung shape.
To quantitatively evaluate the results of deformation

estimation, we calculated the root mean square error
(RMSE), the Dice similarity coefficient (DSC), and the
Hausdorff distance (HD). The RMSE was the root mean

TABLE I. Average (standard deviation) values of the defor-
mation estimation results for RMSE, Dice similarity coeffi-
cient (DSC), and Hausdorff distance (HD).

6-landmark model
Metric Kernel AF TPS
Upper lobe
RMSE [mm] 2.74 (0.52) 3.58 (0.81) 3.44 (0.83)
DSC (0–1) 0.90 (0.02) 0.80 (0.06) 0.81 (0.06)
HD [mm] 6.11 (1.28) 7.65 (1.79) 7.63 (1.88)
Lower lobe
RMSE [mm] 3.04 (0.63) 3.56 (0.55) 3.40 (0.51)
DSC (0–1) 0.94 (0.01) 0.90 (0.03) 0.90 (0.03)
HD [mm] 6.29 (1.11) 8.38 (1.43) 8.45 (1.54)

3-landmark model
Metric Kernel AF TPS
Upper lobe
RMSE [mm] 3.86 (0.90) 40.79 (5.26) 40.79 (5.26)
DSC (0–1) 0.87 (0.04) 0.00 (0.00) 0.00 (0.00)
HD [mm] 7.87 (0.74) 85.38 (10.77) 85.38 (10.77)
Lower lobe
RMSE [mm] 3.55 (0.85) 44.52 (5.99) 44.52 (5.99)
DSC (0–1) 0.91 (0.02) 0.00 (0.00) 0.00 (0.00)
HD [mm] 7.41 (2.15) 94.81 (11.98) 94.81 (11.98)

squared error of all vertices of the local positional error
per vertex. The DSC was calculated as the percentage
of overlap between the 3D meshes of the estimated and
correct deflated lungs. Hausdorff distances were calcu-
lated by considering the vertex group of the mesh as a
point group. The RMSE and Hausdorff distances are the
distance-based estimators in millimeters, and the smaller
the value, the better the estimate. The DSC as the
volume-based estimator is 0 for the minimum and 1 for
the maximum, and the larger the value, the better the
estimation result. The average and standard deviation of
the RMSE, DSC, and HD for the upper and lower lobes
for the proposed method using the kernel, AF, and TPS
are summarized in Table I.

B. Observation rate

The relationship between the number of landmarks
to be observed and the estimation accuracy was inves-
tigated. To examine the area of the lungs covered by the
landmarks, we conducted two experiments, in which we
changed the order of the landmarks. The landmarks were
increased in the order of the number shown on the lung
in Figure 5. In Experiment 1, landmarks were increased
around the left in the upper lobe and around the right
in the lower lobe, tracing the outer contour of the lung.
In Experiment 2, landmarks 1–6 were selected sparsely
throughout the outer contour of the lung, and landmarks
7–12 were selected to fill the space between them.

Figure 5 shows the RMSE, Hausdorff distance, and
Dice similarity coefficient of the estimation results using
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FIG. 5. Estimated results for a different number of landmarks. The numbers on the lung model indicate the order of the
landmarks in each experiment. The top row shows the results of Experiment 1 when landmarks were increased in sequence
around each lobe, and the bottom row shows the results of Experiment 2 when landmarks were increased to include 3 and
6-landmark models (orange marker). The blue line with diamond-shaped markers represents the upper lobe (U), and the green
line with triangular markers represents the lower lobe (L) results. The solid, dashed, and dotted lines show the results of the
proposed method (Kernel), AF, and TPS, respectively. The small figures in the bottom figures are enlarged versions of the
small error area.

our method (Kernel), AF, and TPS. The solid, dashed,
and dotted lines show the results of the Kernel, AF, and
TPS, respectively. In the graphs of Experiment 2, the
points marked in orange line are the results when 3- and
6-landmark models are used. The smaller figures in the
figures are enlarged graphs of the area with small values
on the vertical axis.

C. Case variation

The estimated performance was confirmed with 3 and
6-landmark models by varying the number of cases used
for training. We experimented with all combinations of
cases to exclude and a case to test. Augmented data
interpolated between the two cases were included only
for the cases used for training.
Figure 6 shows the results when the number of cases

included in the training was from one to eight. The aver-
age value of the results for all combinations that changed
the excluded cases is shown as a line graph, with the stan-
dard deviation as an error bar.

IV. DISCUSSION AND CONCLUSIONS

We proposed a method for estimating the overall in-
traoperative lung surface profile from the partial intra-

operative surface information and the preoperative lung
surface profile using kernel regression. To the best of our
knowledge, this is the first study to show that lung defor-
mation in the pneumothorax state is predicted from very
few landmark positions in a data-driven approach. Pre-
vious studies have focused on the registration of the in-
ternal structures of the lung, using intraoperative CBCT
or estimating lung deformations with mechanical models.
On the other hand, this study employed the surface defor-
mations of the lung and proposed a method that required
fewer measurements intraoperatively. Indeed as shown
in Section IIIA, we listed the results of estimating the
pneumothorax deformation from three or six landmarks
placed on the surface of the lung using our method, AF,
and TPS. In the 6-landmark model, the estimation er-
rors evaluated by the RMSE, DSC, and HD when using
our method were all smaller than the estimation errors
when using the two existing methods for both of upper
and lower lobes. The location of the landmarks in the
6-landmark model covers three sides of outer contour of
the lung surface. In the 3-landmark model, our method
estimated the deformation with the RMSE that was only
about 1 mm larger than the RMSE in 6-landmark model.
The AF and TPS did not provide sufficient estimation re-
sults when using the 3-landmark model. The landmarks
in the 3-landmark model are located only in the major
fissure side.

As shown in Section III B, our method fairly well esti-
mated the deflated lung surface with very few measure-
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FIG. 6. Results depending on the number of cases included in the training (one to eight). A horizontal axis of 8 is when all
the cases were used for training except for the test. Blue and green represent the results of 6-landmark model (6), while yellow
and orange represent the results of 3-landmark model (3). The diamond-shaped markers indicate the upper lobe (U), and the
triangular markers indicate the lower lobe (L). The standard deviation of the results for different cases included in the training
is added as an error bar.

ment points within a limited area in the major fissure
side. On the other hand, although the two conventional
methods could estimate the deformation with a relatively
small error when landmarks were placed on two or more
sides of each lobe, they did not provide sufficient results
when the landmarks were selected only from the major
fissure side. Estimation accuracy was much better when
landmarks in the region outside the major fissure side
were included. The results of Experiment 2 showed that
the error did not change much between the 6-landmark
model, in which half of the 12 landmarks were selected for
one skip, and when all 12 landmarks were selected. The
results of five landmarks in Experiment 1 and three land-
marks in Experiment 2, where landmarks were placed
only on the major fissure side, did not change much in
the estimation accuracy of our method. The observed
coverage area of the lung affected the estimation perfor-
mance, but the number of landmarks had little effect.
Nonetheless, intraoperative measurement with a 3D po-
sition sensor would increase the physician’s burden. To
solve this problem, a technique to measure the lung sur-
face with a laser pointer for the registration has been
developed by Nakamoto et al. (2007).

Section III C reported the estimation performance of
our method when the number of cases to be trained was
reduced. Although a large amount of data would be
needed for a data-driven estimation, it is difficult to ob-
tain a large number of case data for clinical applications.
The maximum number of cases for training in this study
was eight. The average of the RMSE and DSC had the
smallest test error when the number of cases was six in
both the upper and lower lobes. The error dropped sig-
nificantly from one to three cases, but not much after four
cases. Three cases were enough for the training in our
method to produce results with a sufficiently small error.
The kernel method enables to estimate deformation with
small errors even with a small number of samples. There-
fore, it is suitable for clinical applications where burden
of data acquisition is high.

A technical limitation of our method is that it relies

on the method of shape matching of inflated and deflated
shapes of known lungs to build the training dataset. The
shape matching method is considered to be outside the
scope of this study. Registration errors that occur during
shape matching would be included in the learning by our
method. As a recent study of shape matching, regular-
ized keypoint matching improves deformable registration
in lung CT (Rühaak et al., 2017). Training with more ac-
curate shape-matched data may reduce the error in the
deformation estimation by our method.

In addition, measurement errors when measuring the
position of landmarks during surgery should be consid-
ered. Then we investigated the effect of measurement
error of landmark positions on the estimation, both an-
alytically and numerically. We perform the first-order
Taylor expansion of the kernel matrix Ki,d on the right-
hand side in Eq.(5) and attain a relation ∆y = A∆x,
where ∆x represents the measurement error and its effect
is denoted by ∆y. This equality demonstrates magnitude
of ∆y due to the measurement error ∆x. For simplicity,
we compute the eigenvalues of the matrix ATA (singulars
value of A) and assess the empirical mean and variance
of the maximum of the eigenvalues for the whole experi-
mental dataset for each lobe as Λ = 0.232± 0.063 for the
upper lobe and Λ = 0.245± 0.037 for the lower lobe. In
other words, the effects from measurement error becomes
about ∆y ≈

√
0.232×∆x or ∆y ≈

√
0.245×∆x.

In the training procedure, a single vertex deformation
was trained as a single sample in a 3D mesh constructed
on inflated and deflated lungs. The reason for using one
vertex as one sample rather than the entire lung mesh
as one sample is that we considered including lungs with
different numbers of mesh vertices in the training in the
same framework. All the acquired cases were processed at
one time, and the number of mesh vertices and topology
for all cases was the same. However, in future clinical ap-
plications, the structure of the meshes constructed from
newly acquired CT data would be different. Then our
method does not need to change the training framework
and the landmark setting procedure even if the structure
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of the meshes in each case is different.
In future work, we consider a clinical application of our

deformation estimation method. In our experiment, we
employed the CT images of the left lungs of live beagle
dogs. One direction of the future studies is investigating
the estimation performance of our method when applied
to the right lung and the lung of human. Since the lungs
of dog and human are different in size, the kernel matrix
learned for lungs of dog cannot be directly used to esti-
mate the deformation of the lung of human. Therefore,
when our method is applied to human, it is necessary to
re-train the kernel matrix with the lung data of human.
Nevertheless the training requires a short time because
the training method in this study is very computation-
ally inexpensive. In the human case, CT images of the
lung in the inflated state can be obtained preoperatively.
The CT image of the lung in the pneumothorax state is
supposed to be reconstructed from the CBCT image dur-
ing the surgery. In addition the framework of the kernel
regression can be used for intraoperative CBCT imaging
(Nakao et al., 2020). The findings of this study would be
useful for the deformable registration of CBCT images,
which have issues such as low contrast points and motion

artifacts. By identifying a few landmarks shown in this
study, it is expected to achieve highly accurate registra-
tion of CBCT images. With the addition of deformation
information to the real-time CBCT images used in daily
surgery, it would be possible to realize more efficient sur-
gical navigation. Furthermore, data-driven estimation of
pneumothorax deformations, which are difficult to rep-
resent with mechanical models, also contribute to the
statistical modeling of pneumothorax deformations.
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