
Time Series Classification via Topological Data
Analysis

Alperen Karana,∗, Atabey Kayguna

aDepartment of Mathematical Engineering, Istanbul Technical University, 34467, Istanbul,
Turkey

Abstract

In this paper, we develop topological data analysis methods for classification
tasks on univariate time series. As an application, we perform binary and
ternary classification tasks on two public datasets that consist of physiological
signals collected under stress and non-stress conditions. We accomplish our
goal by using persistent homology to engineer stable topological features after
we use a time delay embedding of the signals and perform a subwindowing
instead of using windows of fixed length. The combination of methods we use
can be applied to any univariate time series and allows us to reduce noise and
use long window sizes without incurring an extra computational cost. We then
use machine learning models on the features we algorithmically engineered to
obtain higher accuracies with fewer features.

Keywords: Persistent homology, Time delay embedding, Machine learning,
Stress recognition.

1. Introduction

In this study, we use persistent homology to perform classification tasks on
two publicly available multivariate time series datasets (Schmidt et al., 2018;
Healey & Picard, 2005) that include physiological data collected during stressful
and non-stressful tasks. To make our analyses more thorough, we also tested our
methods on a synthetic time series dataset. Instead of directly computing signal-
specific features from sliding windows and subwindows on modalities such as
electrocardiogram and wrist temperature (Figure 5), we extracted features using
persistence diagrams and their statistical properties. Subwindowing method
allowed us to reduce noise without incurring an extra computational cost. We
then developed machine learning models and then assessed the performance of
our models by varying window sizes and using different flavors of persistence
diagrams.

∗Corresponding author
Email addresses: karana@itu.edu.tr. (Alperen Karan), kaygun@itu.edu.tr (Atabey

Kaygun)

ar
X

iv
:2

10
2.

01
95

6v
2

 [
st

at
.M

L
]

 1
1

Ju
n

20
21

Topological Data Analysis (TDA) techniques usually work with points em-
bedded in an affine space of large enough dimension. However, TDA techniques
can still be applied to time series data sets, whether they are univariate or mul-
tivariate. One can convert a univariate time series into a finite collection of
points in a d-dimensional affine space using delay embedding methods, of which
one can compute persistent homology. Since Taken’s Theorem implies that the
delay embeddings produce topologically invariant subsets on a non-chaotical
dynamical system (Takens, 1981), one can reasonably expect that persistent
homology produces features that would distinguish different time series.

There is a handful of research for time series classification using topological
data analysis. The reader may refer to Perea (2019) for theoretical background
and real-world applications of sliding window persistence. A typical strategy
for such classification tasks is to create equally sized sliding windows from the
time series, then to find the corresponding delay embeddings and compute the
persistent homology. If the windows are long, then the resulting dataset be-
comes large, and thus, persistent homology computation becomes prohibitive.
In such cases, subsampling can be used to reduce the dataset size (e.g., Diraf-
zoon et al., 2016; Emrani et al., 2014), or the time series can be divided into
non-overlapping subseries which are then converted to delay embeddings and
to multiple persistence diagrams (Majumdar & Laha, 2020). Persistent homol-
ogy computation can also be made on the level set filtration rather than delay
embeddings (Majumder et al., 2020) or from both (Chung et al., 2021).

Once a persistence diagram for each window is obtained, distance-based ma-
chine learning models (such as kNN) can be employed (e.g., Seversky et al.,
2016; Marchese & Maroulas, 2018). However, since finding distance between
persistence diagrams is computationally expensive, such machine learning mod-
els can only be used if the number of windows remains fairly low. Otherwise,
one must resort to secondary methods to extract features from persistence dia-
grams first. In such cases, one must first engineer feature vectors and then use
machine learning models on these feature vectors.

There are studies that extract features from statistical properties of the
diagrams, such as the mean and standard deviations of lifetimes (Ignacio et al.,
2019; Chung et al., 2021), but such features are sensitive to noise and should
be used very cautiously. One can also map a persistence diagram to a function
such as a Betti curve or a Persistence Landscape. As these functions lie in a
vector space, they can directly be fed into learning algorithms (e.g., Umeda,
2017; Majumdar & Laha, 2020), or one can engineer features (such as L1 norm)
on these curves (Wang et al., 2019). More stable features such as persistent
entropy and maximum persistence are also widely used in many applications
(Majumder et al., 2020; Emrani et al., 2014). We refer the reader to Pun et al.
(2018) for a survey of different feature engineering techniques using persistent
homology.

Studies using sliding window persistence have a variety of applications such
as action classification (Dirafzoon et al., 2016), wheeze detection (Emrani et al.,
2014), chatter detection (Khasawneh & Munch, 2016), (quasi)periodicity quan-
tification of videos (Tralie & Perea, 2018), chaos detection (Tempelman & Kha-

2

sawneh, 2020) and financial time series classification (Majumdar & Laha, 2020).
There are also many studies that employ persistent homology of physiological
signals for a range of applications, including activity classification from EMG
(Umeda, 2017), detecting autism spectrum disorder from EEG (Majumder et al.,
2020), optimal delay embedding parameter selection for EEG (Altındiş et al.,
2021), classification of ECG (Ignacio et al., 2019), and respiration rate estima-
tion (Erden & Cetin, 2017).

In our study, we start with using sliding windows of a fixed size since this
is going to allow us to compare our findings with the original studies (Schmidt
et al., 2018; Healey & Picard, 2005). Moreover, within each window, we run
another sliding window (which we will call a subwindow) with a much shorter
length, yet long enough to contain at least one cycle of periodic-like signals.
Thus the subwindows capture the local information about the window they were
taken from, and one can measure statistically how these local features vary over
the window. We specifically created different delay embeddings with different
embedding sizes, and then constructed topologically stable features from the
resulting persistence diagrams. Finally, we trained and tested machine learning
models on these newly engineered features.

1.1. Plan of the article

The rest of this paper is set up as follows. In Section 2, we start by re-
viewing persistent homology, metrics and kernels on the space of persistence
diagrams. In Section 3, we show the feature engineering methods on persistence
diagrams using the metrics and kernels defined. In Section 4, we investigate
sliding windows and time delay embeddings of univariate time series, and we
demonstrate how feature engineering on sliding subwindows is independent of
any window size. In Section 5, we discuss the datasets we use in this study. We
explain our methodology in detail in Section 6. We then present our results and
their analysis in Section 7 and Section 8. Finally, in Section 9, we provide the
pseudocodes for the algorithms used in this study.

2. Topological Data Analysis and Persistent Homology

Most of the material we present in this section is used to set up the back-
ground and the notation, and can be found in most books and articles on TDA.
We refer the reader to Edelsbrunner & Harer (2010) for a detailed introduction
on the subject.

We work within the metric space Rn with a fixed distance function d and a
fixed dimension n ≥ 1. The reader might assume d is the euclidean metric even
though the arguments we provide work equally well with any other metric. We
use a finite sample of points X from an unknown region Ω in Rn. Our ultimate
aim is to gain some insight into topological/homological invariants of the region
Ω using only X.

3

2.1. Simplices

Given a finite set of points X in Rn, the simplex S(X) spanned by X is
the convex hull spanned by X. The points in X are called the vertices of the
simplex S(X). Any subset Y ⊆ X spans a subcomplex S(Y) called faces of the
complex S(X). The dimension of the face, and therefore the simplicial complex
itself, is determined by the number of points.

2.2. Simplicial complexes

An m-dimensional simplicial complex C∗ = (C0, . . . , Cm) in Rn is a finite
graded collection of simplices where simplices with a fixed dimension-i is denoted
by Ci. We also ask that given any two simplices S and S′ in C∗, the intersection
S ∩S′ is a subsimplex of both S and S′. The dimension of a simplicial complex
C∗ is the maximal dimension among all of the simplicial contained in C∗.

2.3. Homology of a complex

Given a simplicial complex C∗ = C1, . . . , Cm in Rn, we form a R-vector
space Span(Ci) spanned by i-dimensional simplices of C∗ together with opera-
tors di : Span(Ci)→ Span(Ci−1) defined as

di[x1, . . . ,xi] =

i∑
j=1

(−1)j [x1, . . . , x̂j , . . . ,xi] (1)

where x̂j indicates that specific vertex is missing. Now, di−1di = 0 for every
i > 1, and therefore, ker(di) ⊇ im(di+1). Then we define the i-the homology
Hi(C∗) as the quotient subspace ker(di)/im(di+1) for every i ≥ 0. For each
i ≥ 0, the number dimRHi(C∗) is called the i-th Betti number of the complex
C∗.

2.4. Rips complexes

One of the most commonly used simplicial complexes obtained from a finite
sample of points is the Rips complex. Given X and ε > 0, a finite set of points
U ⊂ X forms a simplex if every pair of points in x,y ∈ U are at-most ε-apart.
The resulting simplicial complex is denoted as Rips(X, ε). For ε = 0, the Rips
complex consists only of the sampled vertices X, which is our the data set, and
for a large ε, the Rips complex becomes a single high dimensional simplex.

2.5. Filtrations

A filtered complex is a collection of complexes Fε such that Fε1 ⊆ Fε2
whenever ε1 ≤ ε2. The Rips complex we defined in Subsection 2.4 is an example.
One can compute the homology of a Rips complex at a particular ε0. However,
a choice of ε0 at which the Rips complex has the homology type of Ω may not
necessarily exist unless X ⊆ Ω is ε-dense for some ε1. So, we need to look at the

1A subset X ⊆ Ω is called ε-dense if for every x ∈ Ω there is a point y ∈ X such that
d(x,y) < ε. See (Björner, 1995) and (Otter et al., 2017, page 10).

4

“persistent” features of the homology of the data at different scales of ε in order
to see which homology classes live for a small range of ε, and which homology
classes persist longer.

(a) ε = .0 (b) ε = .15 (c) ε = .18 (d) ε = .34

Figure 1: The Rips complex Rips(X, 2ε) (black and red) of a sample dataset X (grey) drawn
at different scales. At ε = .18, there are 10 components and one hole. At ε = .34, there is one
component and one hole.

2.6. Persistent homology

Consider a finite filtration (Kε)ε∈I of simplicial complexes. By definition,
εi ≤ εj implies Kεi ⊆ Kεj . This relation yields a linear map between the
homology groups Hn(Kεi) → Hn(Kεj) for arbitrary n (Chazal et al., 2012).
Moreover, there is an interval [b, d] where b is the minimum index where a
Hn(Kεb) is non-zero, and d is the minimum index after which Hn(Kε`) are all
0. The numbers b and d are called the birth time and the death time of the
corresponding homological features.

The multiset of pairs (bi, di) of birth and death times is called the persis-
tence diagram (Edelsbrunner et al., 2000). A persistence diagram is assumed
to contain infinitely many copies of the diagonal which includes the points with
simultaneous birth and death. This allows us to create bijections between two
persistence diagrams.

2.7. Wasserstein and Bottleneck distances

Let D1, D2 be persistence diagrams along with their diagonals, and let γ :
D1 → D2 be a bijection. The bottleneck distance W∞ (Cohen-Steiner et al.,
2007) between D1 and D2 is defined as follows (see Figure 2):

W∞(D1, D2) ..= inf
γ

sup
x∈D1

‖x− γ(x)‖∞ .

The p−Wasserstein distance (Cohen-Steiner et al., 2010) is defined similarly:

Wp(D1, D2) ..= inf
γ

(∑
x∈D1

‖x− γ(x)‖p∞

) 1
p

.

The Bottleneck distance is stable under small perturbations of the data, and
the p−Wasserstein distance is stable under certain assumptions.

5

W∞(D1,D2)

birth

d
ea

th

Figure 2: The bottleneck distance between two persistence diagrams.

2.8. Persistence landscapes and Betti curves

Let D be a persistence diagram and α = (bα, dα) be a point in the diagram.
Consider the following function:

fα(x) ..=

{
1, bα ≤ x ≤ dα
0, otherwise

.

The Betti Curve (Figure 3b) obtained from D and fα as the sum

BettiD(x) ..=
∑
α∈D

fα(x).

Persistence landscape, introduced by Bubenik (Bubenik, 2015), is another
statistical summary function that can be obtained from a persistence diagram
D (Figure 3c). Given α ∈ D, let

gα(x) ..=


x− bα, if bα ≤ x ≤ (bα + dα)/2

dα − x, if (bα + dα)/2 < x ≤ dα
0, otherwise.

Then, the kth layer persistence landscape of D is defined as

LandscapekD(x) ..= kmax
α∈D

gα(x)

where kmax is the kth maximum value among a finite set. In this study, we use
the first layer persistence landscapes, and we will drop the superscript k = 1.

3. Feature engineering on persistence diagrams

There are several ways to construct features from a persistence diagram, such
as calculating the mean birth times of points in the diagram. However, these
features are not stable in the sense that a slight perturbation in the dataset can
create or remove several points with short lifetimes.

In this study, we engineered featured based on topological data analysis
methods using distances on persistence diagrams, persistent entropy, and Betti
curves. We outline our method in this section. We also provide the pseudocodes
for our feature engineering methods in Algorithm 4.

6

1 2 3 4 5 6

1

2

3

4

5

6

birth

d
ea

th

(a) Persistence Diagram

1 2 3 4 5 6
0

1

2

birth

#
cy

cl
es

(b) Betti Curve

1 2 3 4 5 6
0

1

2

birth

#
cy

cl
es

(c) Persistence Landscape

Figure 3: A persistence diagram (a), its Betti Curve (b) and Persistence Landscape (c).

3.1. Via Bottleneck and Wasserstein distances

Let D∅ be the diagram containing only the diagonal. For any diagram D, we
can compute the Wasserstein distance for p = 1: W1(D,D∅) and the bottleneck
distance W∞(D,D∅) as two features of a diagram. Let lx be the lifetime of a
point x ∈ D. We can write them down explicitly since the perfect matching
between any diagram D with D∅ is obvious:

W1(D,D∅) =
1√
2

∑
x∈D

(lx) W∞(D,D∅) =
1√
2

sup
x∈D

(lx)

3.2. Via persistent entropy

Persistent Entropy is another summary statistic that can be derived from a
persistence diagram (Atienza et al., 2019). A key feature of persistent entropy
is that it is scale-invariant. The persistent entropy PE(D) of a persistence
diagram D is given by

PE(D) ..=
∑
x∈D
− lx
LD

ln

(
lx
LD

)
where LD ..=

∑
x∈D lx is the sum of lifetimes. Whenever the diagram contained

only the diagonal, the persistent entropy was assumed to be zero.

3.3. Via norms

Finally, we consider the Betti curve and first layer persistence landscape
of a diagram D as real-valued functions, and then compute their L1 and L2

norms. These are going to constitute our four new features constructed from
these kernels.

4. Sliding Windows and Delay Embeddings

4.1. Converting univariate series into multivariate series

Let x = (xi : i = 0, . . . , N) be a univariate time series in R. The sequence
of sliding windows on x with a window shift of k is a sequence of equally sized
multivariate time series (Algorithm 1):

((xkn, xkn+1, xkn+2, . . . , xkn+d−1) : n = 0, 1, . . . , b(N − d+ 1)/kc) .

7

Creating equally sized shorter windows from a large time series can be very
useful for machine learning tasks. Note, however, that when the window shift
is smaller than the window size, the sliding windows overlap. In such cases,
to prevent data leakage between train and test sets, train-test splits should be
carefully made.

4.2. Delay embeddings

The method of delay embeddings allows us to embed a collection of time
series of varying lengths into a euclidean space of a fixed dimension. Under some
assumptions, the topology of the delay embedding contains essential information
about the nature of the time series. We refer the reader to Perea (2019) for
theoretical justifications and several examples on the subject. The d-dimensional
delay embedding (also known as a state space reconstruction) of x with a shift
of k is the subset of Rd is given by (Algorithm 2)

{(xkn, xkn+1, xkn+2, . . . , xkn+d−1) : n = 0, 1, . . . , b(N − d+ 1)/kc} .

The number d is referred as the dimension or the size of the delay embedding.
One should note that if y is a periodic signal, the time delay embedding on

y will follow a closed path on Rd. For example, the time delay embeddings of
y = {cosx : x ∈ T}, where T is a set of equally spaced points on R, lies on a
circle if the embedding dimension resonates with the frequency of cosx (Perea
& Harer, 2015).

4.2.1. An example

The two time series of length 250 in Figure 4 are sampled from five periods
of y = sinx and y = sin5 x with additional noise, respectively. The time delay
embeddings with d = 50 for both time series are both circles with different radii.
However, when the embedding dimension is small (d = 15), the former is an
ellipse whereas the latter is the boundary of an eyeglasses-shaped object. This
idea shows us that we can distinguish the two time series for different embedding
dimensions using persistent homology.

4.3. The subwindowing method

The subwindowing approach we developed in this article is essential to our
analyses since it reduces noise and the required computational power. Assume
that we would like to compute features on a set of sliding windows with a fixed
window size and fixed window shift. Instead of directly computing features on
each window, we can create sliding subwindows on each window (Figure 5),
then compute the features at the subwindows. Looking at the average and
the standard deviation of the subwindow features, one can understand how the
window behaves locally, and how this local behavior varies over time.

This approach is especially useful if we want to compute topological features
on windows using persistent homology on delay embeddings. If a window con-
tains a noisy part (as most physiological signals do), the corresponding delay
embedding and the resulting persistence diagrams will be noisy as well. With

8

(a) Noisy time series from y = sin x. (b) Noisy time series from y = sin5 x.

(c) d = 15 (d) d = 50 (e) d = 15 (f) d = 50

Figure 4: Two noisy time series data along with their time delay embeddings for d = 15 and
d = 50 under PCA visualization.

Full Signal

Window 1

Window 2

Window 3

subwindow 1

subwindow 2

subwindow 3

subwindow 4

subwindow 5

subwindow 6

subwindow 7

features 1

features 2

features 3

features 4

features 5

features 6

features 7

Window 1 features

Window 2 features

Window 3 features

Figure 5: The subwindowing method for feature construction

subwindowing, the noise is trapped into a few subwindows, and its effects on
the feature vector of a window diminish largely by computing the mean and
standard deviation of feature vectors of subwindows.

Moreover, the subwindowing method has advantages for computation. As-
sume that the window features are obtained by finding the mean and standard
deviation of the features from subwindows. Assume also that the subwindow
shift is the same as the window shift as in Figure 5. Now, let Window N and
Window N +1 be two consecutive windows with subwindows sw1, . . . , swM and
sw2, . . . , swM+1, respectively. Let fi be the feature coming from swi. Then,
the mean feature for Window N is

µN ..=
1

M

M∑
i=1

fi

9

and the standard deviation of features for Window N is

σN ..=

√√√√ 1

M

M∑
i=1

(fi − µN)2=

√∑M
i=1 f

2
i

M
− µ2

N .

Observe that

µN+1 =
1

M

M+1∑
i=2

fi =

(
1

M

M∑
i=1

fi

)
+
fM+1 − f1

M
= µN +

fM+1 − f1
M

.

Also,

σ2
N+1 =

∑M+1
i=2 f2i
M

− µ2
N+1 = σ2

N +
f2M+1 − f21

M
+ µ2

N − µ2
N+1.

So, µN+1 can be written in terms of µN , f1, fM+1 and M . Similarly, σN+1 can
be written as a function of σN , µN , µN+1, f1, fM+1 and M (Algorithm 5).

This means once the mean and standard deviation for a window is computed,
these features for the next sliding windows can be computed continuously re-
gardless of the window size. If the sampling frequency of the signal is high, and
if the window size is large, then computing features directly from the windows
can be difficult. Subwindowing allows us to compute the features at the same
time regardless of the window size.

5. Dataset Description

In this study, we demonstrate the use of persistent homology for affect and
stress recognition. For this purpose, we used one synthetic and two publicly
available real datasets. In the synthetic dataset, we aimed to simulate physio-
logical signals from stress and non-stress conditions. The real datasets, WESAD
(Schmidt et al., 2018) and DriveDB2 (Healey & Picard, 2005) contain physiolog-
ical signals from participants who were subjected to some stress and non-stress
conditions in different environments. The datasets are shortly described below.

5.1. Synthetic dataset

The methodology that we used to generate our synthetic datasets is adapted
from the methodologies used by Umeda (2017). In this dataset, we simulated
physiological signals using Python’s NeuroKit2 library (Makowski et al., 2021)
consisting of respiration (RESP) and electrocardiogram (ECG) signals. We
generated samples with 120s of non-stress and 120s of stress condition for 20
simulated participants. The signals were generated at 50 Hz. We use the hy-
pothesis that a sustained elevated respiration rate, a sustained elevated heart
rate, or an increased heart rate variability are indicators for stress condition.

2Available at https://physionet.org/content/drivedb/1.0.0/ (Goldberger et al., 2000)

10

In the first experiment, we simulated RESP signals with different respira-
tory rates for the baseline (non-stress) and stress conditions. The respiratory
rate for the baseline was set to 15 respirations per minute (rpm), and we used
different integer values from 16 rpm to 20 rpm for the stress condition. In the
second experiment, the baseline condition contained ECG signals with different
heart rates. The baseline heart rate was set to be 70 bpm, and the stress heart
rate (HR) was tested for different integer values from 71 bpm to 75 bpm. The
standard deviation of the HR parameter was fixed to be 1 for both conditions.
The last experiment was similar to the second one except that this time we ma-
nipulated the standard deviation of the HR while keeping the HR constant. The
baseline again had an HR of 70 bpm with a standard deviation set to 1, but this
time while the stress condition also had an HR of 70 bpm, we used an increasing
sequence of standard deviations of 2, 3, 4, and 5 in our experiments. In order to
explore how the results are affected by noise, we repeated our experiments with
two different noise parameters 0.1 and 0.3 defined by the NeuroKit2 library.

5.2. The WESAD dataset

Physiological recordings from a wrist (Empatica E4) and a chest (RespiBAN)
worn device were collected from 15 participants during three different conditions:
baseline, stress and amusement (Figure 6a). All participants started the exper-
iment with the baseline condition in which they did normal activities such as
reading a magazine or sitting at a table approximately for 20 minutes. In the
stress condition, participants went under the Trier Social Stress Test (TSST),
which included doing a 5-minute presentation to an audience and counting back-
wards from 2023 with steps of 17. The stress condition lasted about 10 minutes.
The amusement condition consisted of watching a sequence of funny video clips,
which lasted about 7 minutes. Each of the three conditions was followed by
a meditation phase aiming to bring subjects to a neutral state. The order of
stress and amusement conditions was counterbalanced across participants.

Acceleration (ACC), RESP, ECG, electrodermal activity (EDA), electromyo-
graphy (EMG), and temperature (TEMP) signals were collected from the chest-
worn device at 700 Hz. The signals from the wrist-worn device were ACC, blood
volume pulse (BVP), EDA, and TEMP, with sampling frequencies 32 Hz, 64 Hz,
4 Hz, and 4 Hz, respectively.

5.3. The DriveDB dataset

In this study, a total of 17 participants were recorded under three stress
levels. The low and high stress conditions correspond to driving on the highway
and in the city (Figure 6b). The experiment started with resting in the car,
then driving on the highway and in the city several times, and finally ending
the experiment with the rest condition again. The experiment lasted about
60-90 minutes, depending on participants’ driving speeds. The physiological
signals that were recorded during the experiments ECG, EMG, galvanic skin
response (GSR) from foot and hand, HR, and RESP. The sampling frequency
for all signals was 15.5 Hz. Recordings of only 9 participants were analyzed

11

since the markers that show the transition between different stress conditions
were not available or legible for others.

Baseline Stress Rest Meditation I Amusement Meditation II

Baseline Amusement Meditation I Stress Rest Meditation II

(a)

Rest City 1 Highway 1 City 2 Highway 2 City 3 Rest

(b)

Figure 6: The study protocols for WESAD (a) and DriveDB (b) datasets.

6. Methodology

All signals from all datasets were split by stress condition and by participant.
To reduce computational time, all signals with a sampling rate higher than 100
Hz (i.e. chest signals from WESAD) were downsampled to 100 Hz. Moreover,
signals from DriveDB dataset were upsampled from 15.5 Hz to 16 Hz to ensure
consistency in our method. Resampling from 700 Hz to 100 Hz was done by
selecting every 7th element in the discrete time series. Resampling from 15.5
Hz to 16 Hz was done by upsampling to 496 Hz using linear interpolation,
then downsampling by selecting every 31st element. The ACC data in WESAD
contained three time series for the accelerations in x, y, and z axes; we averaged
them to get a single time series.

6.1. Sliding windows and subwindows

Our goal is to create topological features from the windows and use them
for affect and stress recognition. Sliding windows with duration of 60 seconds
and a shift of 2 seconds were created for all datasets. For our initial analyses,
we specifically selected a window size of 60 seconds to make our findings com-
parable with the original WESAD study. We also varied the window size to test
how accuracy is affected. Longer windows produce higher accuracies (Table 1).
However, in real applications, one might want to keep the time durations short
for stress detection.

Window size
10 20 30 60 120

Subwindow
size

3 74.38 77.92 79.08 80.67 85.18
4 75.17 76.63 78.36 81.35 85.01
5 75.39 77.95 80.07 81.25 84.29

Table 1: Classification accuracies across different subwindow and window sizes for WESAD.

12

In each window, subwindows with 4s duration and 2s shift were created. This
choice of subwindow size was the same regardless of the physiological signal in
order to keep the algorithm as simple as possible. To obtain consistent and
reliable persistence diagrams, the subwindow size should be large enough to
exhibit the periodicity in the delay embedding (Figure 8). Our empirical tests
showed that the subwindow size of 4 seconds is long enough to capture the local
information about the physiological signal including periodicity, yet it is also
short enough to make the computation of persistent homology coming from the
delay embeddings feasible. In Table 1, we show the changes in accuracies across
different window and subwindow sizes using an SVM classifier. We give the
feature engineering and cross-validation methods that we used to obtain the
accuracies in Table 1 later in this section. The choice of subwindow shift is
more of a computational issue: if the shift drops from 2s to 1s, the number of
subwindows, hence the time required for persistent homology computations are
doubled.

The subwindowing method was useful in our study for several reasons. First,
stressful events usually induce irregular physiological responses. For example,
a typical response to stress is high heart rate variability. So, looking at how
the subwindows behave across a window is informative for the current task.
That is, subwindowing helps us understand the local topology of the window.
Secondly, even in non-stress conditions, brief yet powerful noises are common
due to participants’ coughing, sudden movements, etc. (e.g. Figure 7). Third,
the delay embedding of a window is a very large dataset (especially if the sam-
pling frequency is high such as 100 Hz), making the computation of persistent
homology impractical.

Figure 7: A sample 60-second BVP signal from the baseline condition of WESAD dataset.

6.2. Delay embeddings and persistent homology of subwindows

As we noted earlier in Section 4, different embedding dimensions detect
different topological information about the time series (Figure 4). We used 4
levels of delay embedding dimensions (see Figure 8): .5fs, fs, 1.5fs, 2fs where
fs is the sampling frequency of the particular signal. For example, for a signal
with fs = 100Hz, the set of embedding dimensions were {50, 100, 150, 200}.

After converting each subwindow to 4 different point clouds, the persistence
diagrams of the induced Rips filtrations were computed for a maximum homol-
ogy dimension of 1 (Algorithm 3). Higher dimensional persistence diagrams
were not computed since they require much more computational power, and
we wanted to restrict our attention to connected components and one dimen-
sional holes of the delay embeddings, but not to higher dimensional topological
features.

13

In addition to the diagrams formed by the delay embeddings, two more
persistence diagrams were computed: the 0 dimensional persistence diagrams
created by the upper and lower level sets of the subwindows. Note that higher
dimensional persistent homology cannot be computed from the subwindows be-
cause the subwindows are univariate. Persistent homology of delay embeddings
and level sets were computed using the Ripser (Tralie et al., 2018) and Dionysus-
2 libraries (Morozov, 2018) of the Python programming language (Van Rossum
& Drake Jr, 1995), respectively.

Figure 8: The pipeline for the computation of persistence diagrams from a subwindow.

6.3. Feature engineering

Our methods have so far provided 6 persistence diagrams, 4 from delay em-
beddings and 2 for upper and lower level sets, for each subwindow. Then using
the methods we outlined in Section 3, a total of 7 features were created from one
homology class in a single persistence diagram. Since each subwindow yielded a
total of 6 persistence diagrams and 4 diagrams coming from delay embeddings
contained two homology classes, the total number of features created using per-
sistent homology was 70.

14

In order to compute features for the 60s windows, the mean and standard
deviation of the features obtained from (4s) subwindows were calculated. This
allowed us to know how the signal behaves locally, and how this local behavior
varies over a longer period. We also did the same for different window sizes (10,
20, 30, 60, 120, 180, 240, and 300 seconds), and specifically looked at how the
recognition accuracies change accordingly.

The learning algorithms were tested on several subsets of features. For each
of the four delay embedding sizes (.5fs, 1fs, 1.5fs, 2fs), features from homology
dimension zero (H0) and one (H1) were trained individually and together. Sim-
ilarly, features coming from upper and lower level sets were trained one by one
and together. Then features from all delay embeddings and level sets were com-
bined and used as a full feature set. Before training the algorithms, constant
features (e.g. full zeros) and features with a correlation higher than .9 were
removed. This step was specifically essential since some machine learning algo-
rithms such as Linear Discriminant Analysis are very sensitive to multicollinear-
ity. The correlation heatmaps show that features were moderately correlated
within sensors, and weakly correlated or not correlated between sensors (Figure
9). Then, features were normalized to the range [0, 1] on both the training and
the test set.

Figure 9: Correlation heatmaps for WESAD and DriveDB.

6.4. Learning algorithms

The original WESAD study used five classifiers: Decision tree, Random
forest (RF), AdaBoost Decision Tree (AB), Linear discriminant analysis (LDA),
and k-nearest neighbor. Three of them (RF, AB, LDA) attained the highest
accuracies for some signals. In addition to these three, we used a support vector
classifier (SVC).

The tree-based models (RF and AB) were trained on 100 trees with a max-
imum depth of 5, and the SVC model was trained with a linear kernel and
regularization parameter set to 0.1. We used the scikit-learn library (Pedregosa
et al., 2011) implementations of the learning algorithms. For the reproducibil-
ity of our findings, we set the parameter random state to 0 in our stochastic
models.

15

6.5. Cross-validation

For all datasets, we used binary (stress vs. non-stress) classification mod-
els, but for WESAD and DriveDB datasets, we also used ternary classification
models. Leave One Subject Out Cross-Validation (LOSOCV) method was used
for all datasets. This method is similar to the k-fold cross validation if we let k
be the number of participants, and each fold to be a participant’s data. That is,
the learning algorithm is trained on all subjects but one, tested on the remaining
subject, and then the results are averaged (Figure 10). The biggest conceptual
advantage of this method is that it helps us know how the model performs on a
previously unseen participant. Furthermore, no data leakage between the train
and test sets happens even when the sliding windows overlap highly.

Subject 1 Subject 2 Subject 3 · · · Subject N

Subject 1 Subject 2 Subject 3 · · · Subject N

Subject 1 Subject 2 Subject 3 · · · Subject N

· · ·

Subject 1 Subject 2 Subject 3 · · · Subject N

Train Test

Averaged

Figure 10: Leave One Subject Out Cross Validation (LOSOCV).

Subject 1 Subject 2 Subject 3 · · · Subject N

Subject 1 Subject 2 Subject 3 · · · Subject N

Averaged

Subject 2Subject 1 Subject 3 · · · Subject N

Subject 2Subject 1 Subject 3 · · · Subject N

Averaged

· · ·

Subject NSubject 2 Subject 3 · · ·Subject 1

Subject NSubject 2 Subject 3 · · ·Subject 1

Averaged

Averaged

Train Test Not used

Figure 11: Intra-subject cross-validation.

In order to assess how much of the performance is due to individual differ-
ences, we also used an intra-subject cross-validation. For this, we consider only
data from a single participant, split each condition in half, then use the first
halves to predict the second, and vice versa (Figure 11). The mean accuracy
gives the accuracy for that subject, and averaging over all subjects gives the
overall accuracy.

16

7. Results

7.1. Synthetic dataset

For the synthetic dataset, we used an SVM classifier on all topological fea-
tures for every signal. We used 60s windows and LOSOCV method to make our
results comparable across datasets.

For the RESP signal, our baseline respiratory rate was 15 respirations per
minute (rpm). To simulate stress conditions, we increased the respiratory rates
from 16 rpm to 20 rpm with increments of 1 rpm. The success rate of our models
in distinguishing baseline from the stress increased as we increased the stress
levels measured by an increase in the respiratory rate. Our models were highly
successful for 16 rpm. Furthermore, our models worked almost perfectly for 17
rpm and higher even in the presence of high noise (Figure 12).

Figure 12: Recognition accuracies as a function of respiratory rate with baseline 15 rpm.

For the ECG signals, the baseline heart rate was 70 bpm. To simulate the
stress conditions, we gradually increased the heart rate from 71 bpm to 75 bpm
with increments of 1 bpm. Our models distinguished the baseline from all stress
levels nearly perfectly, even in the presence of high noise (Figure 13).

Figure 13: Recognition accuracies as a function of heart rate with baseline 70 bpm.

In our last analyses, we changed the underlying stress indicator. For this part
of the study, the variability in the heart rate is assumed to be the main indicator
of a stress condition. For this synthetic dataset, the mean heart rate for the
baseline was 70 bpm with a standard deviation of 1. To simulate the stress

17

condition, we increased the standard deviation from 2 to 5 with increments of 1
as we kept the mean heart rate at 70 bpm. While our model was very successful
in distinguishing the low stress condition (standard deviation 2), they performed
nearly perfectly in high stress conditions (standard deviations 3 to 5) even in
the presence of high noise (Figure 14).

Figure 14: Recognition accuracies as a function of standard deviation of the heart rate with
baseline 1.

7.2. WESAD dataset

Our findings from LOSOCV showed that our automatically created topo-
logical features were as effective as the signal-specific features in distinguishing
different affect state conditions. We show our results in Table 2 and Table 3.

For the ternary classification problem (Table 2), a support vector classifier
on all topological features yielded 81.35% accuracy and with an F1-score of
73.44%. For almost all signals in WESAD, our automatically created features
identified the affective states better than the original study. The most dramatic
difference was in the ACC signals. For the chest ACC, our model performed
17% better, while for the wrist ACC, our model performed 11% better. This
was followed by ECG, EMG, and wrist EDA where our model performed 10%,
6%, and 10% better than the original study. In almost all cases, our model
performed the best when all topological features were combined as a full feature
vector using an SVM classifier.

18

Delay
Embeddings

Level
Sets

Clf Acc Dgm Acc Dgm
All

Dgms
Original
Findings

Chest
ACC SVC 72.34 2fs 69.77 Upper 74.47 56.56
ECG SVC 76.27 1fs 66.11 Upper 72.72 66.29
EMG SVC 59.00 1fs 54.64 Both 59.67 53.99
EDA LDA 66.31 .5fs, H0 66.56 Upper 70.03 67.07
TEMP LDA 54.75 1fs, H1 53.02 Upper 48.92 55.68
RESP SVC 68.46 2fs 70.73 Both 75.57 72.37

Wrist
ACC RF 68.02 .5fs 67.28 Upper 68.65 57.20
BVP SVC 71.64 1fs 60.67 Lower 73.41 70.17
EDA RF 69.23 2fs 70.50 Both 72.07 62.32
TEMP LDA 55.87 .5fs 54.79 Upper 54.93 58.96

All chest SVC 78.85 1fs, H0 75.34 Upper 77.96 76.50
All wrist RF 73.93 2fs 71.94 Upper 74.72 75.21
All SVC 80.63 1fs 80.56 Lower 81.35 79.57

Table 2: Ternary classification problem accuracies for WESAD.

We have got a clear separation in the confusion matrix (Figure 15). The
model performed better in distinguishing stress from non-stress. Most classifi-
cation errors were between the baseline and amusement conditions.

Figure 15: Three-class problem confusion matrix for WESAD.

For the binary classification task (Table 3), the highest accuracy and the
corresponding F1-score were 94.46% and 93.26%. For nearly all physiological
signals, we obtained higher accuracies with topological features. Again, the
ACC signals captured the stress state very well: the accuracy for the chest
ACC increased by 14% and for the wrist ACC by 12% compared to the original
study. The improvements for the ECG, EMG, and wrist EDA signals were 3%,
6%, and 5% for the binary task.

19

Delay
Embeddings

Level
Sets

Clf Acc Dgm Acc Dgm
All

Dgms
Original
Findings

Chest
ACC RF 87.69 .5fs, H0 84.82 Both 84.18 73.87
ECG LDA 88.70 1fs, H0 81.62 Both 85.23 85.44
EMG LDA 73.07 1fs 68.03 Lower 69.75 67.10
EDA LDA 76.57 1fs, H1 81.55 Lower 81.49 81.70
TEMP SVC 70.19 .5fs 70.19 Both 68.07 69.49
RESP LDA 81.72 .5fs 87.75 Both 90.10 88.09

Wrist
ACC RF 82.95 .5fs 82.81 Both 83.52 71.69
BVP LDA 85.21 1fs 72.51 Lower 84.03 85.83
EDA RF 81.19 2fs 84.01 Upper 85.11 79.71
TEMP RF 71.44 .5fs 70.00 Both 70.02 69.24

All chest SVC 89.32 1fs, H0 91.97 Lower 91.79 92.83
All wrist SVC 88.77 2fs 87.04 Lower 88.55 87.12
All SVC 92.91 2fs, H1 92.95 Both 94.46 92.28

Table 3: Binary classification problem accuracies for WESAD.

We obtained the highest accuracies when features from all persistence dia-
grams used together in both ternary and binary classification tasks. However,
not every persistence diagram contributed equally to the accuracy. For instance,
if we used only the upper level set persistence of all physiological signals, we
would end up with 61 features (a much smaller set of features than the one
used in the original study) yet having reasonably high accuracies (79.61% and
92.47%) for the ternary and binary tasks.

We expected higher accuracies when the window size gets larger. The sub-
windowing method allowed us to run the same learning algorithms for different
sliding window sizes without extra computational cost. For this purpose, we
rerun the learning algorithms using several window lengths ranging from 10 to
300 seconds. Our intuition turned out to be true: longer window sizes implied
higher accuracy for most signals (Figure 16). In particular, the accuracies for
300 second windows were as high as 89.86% and 96.42%, respectively for the
ternary and binary tasks.

20

Figure 16: WESAD accuracies for different window sizes.

All of the analyses above were done using LOSOCV. A curious question at
this point is to ask how much of these errors stem from individual differences.
To answer this question, we used an intra-subject cross-validation. We split the
data for each subject in each condition into two subsets. Then we used one
half to train and the other half to test the model, and vice versa. The sliding
window size was again chosen to be 60 seconds. In Figure 17, we compare these
methods.

Figure 17: LOSO and intra-subject cross-validation accuracies for WESAD.

The difference was most pronounced in the ternary task. For instance, our
intra-subject model performed 45% better than our LOSO model. To test this
effect, we ran two repeated measures t-tests. For the ternary classification prob-
lem, our intra-subject model performed significantly better than our LOSO
model. Our intra-subject model had an average accuracy of 96%, while our
LOSO model had 81% with significance p < .05. Unfortunately, the accura-
cies for the binary classification task did not reach a statistical significance of
p < .05 even though the mean accuracy was higher for the intra-subject rather
than the LOSO model. This null finding is probably due to the ceiling effect.
These findings indicate that when training and test sets contain data from the
same subject, the learning algorithms perform significantly better.

7.3. DriveDB dataset

The cross-validation scheme of the original DriveDB study is different than
ours. They used 300-second non-overlapping windows with a leave-one-out
cross-validation scheme where the model is trained on all windows but one,
and tested on the remaining. So, they mix windows from all subjects. Since
we wanted to keep our method consistent across datasets, we again followed the
same LOSO and intra-subject cross-validation methods we used for WESAD.

21

The accuracy for our ternary LOSO model was 85.81% with an F1-score
of 79.68% when we used 60s windows (Table 4). Our binary LOSO model
performed significantly better: 98.07% accuracy with an F1-score of 97.97%
(Table 5). A noteworthy observation is that the highest accuracies were obtained
from the RESP signal. This indicates that the stress levels of drivers can be
accurately measured using only one signal. This greatly reduces the number of
features for the learning algorithms.

Delay
Embeddings

Level
Sets

Clf Acc Dgm Acc Dgm
All

Dgms

ECG RF 53.32 2fs, H1 58.49 Upper 56.68
EMG RF 66.87 .5fs 69.14 Upper 66.49
Foot GSR RF 79.30 .5fs 79.60 Both 80.08
Hand GSR RF 67.26 2fs, H0 65.42 Upper 65.80
HR SVC 59.30 1fs, H1 59.80 Both 60.61
RESP SVC 81.28 .5fs 85.71 Both 85.81

All SVC 82.50 .5fs, H1 85.15 Both 80.59

Table 4: Ternary classification problem accuracies for DriveDB.

Delay
Embeddings

Level
Sets

Clf Acc Dgm Acc Dgm
All

Dgms

ECG RF 65.74 2fs 71.11 Upper 67.61
EMG RF 79.54 1fs, H0 82.04 Both 79.91
Foot GSR RF 90.83 .5fs 92.26 Upper 91.88
Hand GSR RF 82.47 1fs, H0 78.75 Upper 81.44
HR SVC 73.83 1fs 71.06 Both 74.67
RESP RF 93.27 1fs, H0 98.07 Both 95.54

All RF 94.96 .5fs, H1 96.24 Upper 95.39

Table 5: Binary classification problem accuracies for DriveDB.

Similar to the WESAD findings, we again found a separation between stress
and non-stress conditions (Figure 18). The learning algorithms could easily
distinguish relax from city and highway conditions.

22

Figure 18: Three-class problem confusion matrix for DriveDB.

Also in this dataset, a greater window size had a positive effect on classifica-
tion accuracies (Figure 19). When the window size is 300 seconds, our models
had 91.19% and 96.96% accuracies for the 3- and 2-class tasks, respectively.

Figure 19: DriveDB accuracies for different window sizes.

Lastly, we tested if there are any differences in the accuracies of our intra-
subject and LOSO models for 60s windows (Figure 20). To accomplish this task,
we ran two repeated measures t−tests for the ternary and binary classification
tasks separately. Although the mean accuracies were higher for intra-subject
rather than LOSO cross-validation, the t−tests did not reach statistical signif-
icance of p < .05. We believe that the null findings are a consequence of small
sample size and ceiling effect.

Figure 20: LOSO and intra-subject cross-validation accuracies for DriveDB dataset.

23

8. Conclusion

The main aim of this study was to demonstrate the power of Topological
Data Analysis (TDA) techniques in classification of time series. Specifically, we
used persistence diagrams and their statistical properties to distinguish physi-
ological signals collected under stress and non-stress conditions. As common in
previous studies, this was done by creating sliding windows of a fixed duration,
computing features, and training and testing machine learning models on these
engineered features. The subwindowing approach we developed allowed us to
inspect how the signal behaves locally, and how this local behavior varies over
longer periods. Then, using TDA methods, we were able to create persistence
diagrams from subwindows, create features on persistence diagrams and apply
machine learning algorithms.

A proper feature engineering of a signal usually requires field knowledge. For
instance, heart rate variability can be derived as a feature from an ECG sig-
nal. Our findings showed that most of the automatically generated topological
features are at least as effective as signal-specific features in affect recognition.
Under our models, the topological features we generated from the acceleration
signals produced significantly better results than the baseline WESAD findings.
Combined with the respiration signals, the accuracies of our models improved
even further. Given that nearly all smartwatches and smartbands already have
built-in accelerometer sensors, one can easily see that our method can readily,
widely and cheaply can be used in other studies and applications.

To test the effectiveness of our methods thoroughly, we also used a synthetic
dataset in which elevated heart rate, elevated respiration rate, and variability
in the heart rate were taken to be indicators of stress. On the synthetic dataset,
our methods worked nearly perfectly in distinguishing stress from the baseline
even in the presence of high noise. This tells us that the lower accuracies we
obtained from the real datasets might be due to the limitations of our hypothesis
on stress indicators we used for our synthetic dataset. It is possible that instead
of a sustained elevation, random sporadic changes in the heart and respiratory
rate might be an accurate indicator of stress. Also, it is possible that the stress
conditions in the experiments (e.g. driving in the city) may not cause observable
stress in the subjects. Therefore, it is unrealistic to expect to see high accuracies
from machine learning models on the real datasets we used in this study.

The features in this study came from four different delay embeddings and
level sets, which allowed us to make comparisons. The highest accuracies were
obtained when we used features from all of the diagrams. Although this forces
us to use a large number of features, it was possible to use features from only
one delay embedding or level sets to get much fewer features, and obtain slightly
less accuracy.

We have seen that longer windows usually implied higher recognition ac-
curacies. However, this especially becomes computationally problematic when
features are directly computed from the whole window. So, we implemented
the subwindowing strategy, which was previously used (Hönig et al., 2007) on a
different dataset with different feature engineering methods. Using this method,

24

one computes features on the subwindows, then finds the window features by
taking averages and standard deviations. We observed that once the mean and
standard deviation of a window is known, and when an observation is replaced
with a new one within the window, there is a relatively cheaper computing
strategy for the new mean and standard deviation regardless of the window
size. Using this observation, we could use longer windows to compute new fea-
tures from sliding windows and their subwindows to improve accuracy without
incurring heavy computational costs.

Our findings also indicate that when the learning algorithm is trained and
tested on disjoint data subsets coming from the same subject, the accuracies
are higher than the LOSOCV approach. Hence, a device monitoring stress
from a person may start with a relatively lower recognition accuracy, but it
is going to improve its discriminative power when worn by the same person
for long enough to update the parameters of the learning algorithm. In the
original DriveDB study, the authors used 300 second non-overlapping windows
with leave one out cross-validation (using both intra- and inter-subjects data)
and reached approximately 97% accuracy. When we trained our model on 300
second windows with LOSOCV, we reached higher than 91% accuracy with
fewer features. Given that we only included 9 subjects (compared to 24 in the
original study) due to missing data and we used LOSOCV, our findings are
promising.

8.1. Future work

This work used a single subwindow size for every stress condition in the
signal. For future works, one can manipulate the subwindow size of a periodic
signal and make sure that the delay embedding contains one and only one closed
loop. Also, in addition to the ε parameter in the Rips filtration, one can compute
the multiparameter persistent homology where the dataset grows with time in
the other dimension. The feature engineering methods can include other vector
representations of persistence diagrams, and they can be combined with classical
signal-specific features. Lastly, since no classification method appears to be a
clear winner, one might consider using ensemble learners to increase the accuracy
levels on these datasets.

9. Appendix

This section contains the pseudocodes for the functions used in this study.
Most functions can be parallelized. For instance, once the subwindows are
created, one can compute the corresponding persistent homology in parallel for

25

all subwindows.

Algorithm 1: The subwindowing algorithm.

Input: x: univariate time series.
fs: sampling frequency.
`: subwindow length (in seconds).
κ: subwindow shift (in seconds).

Output: y: the sequence of sliding subwindows
Function getSubwindows

Let L be the length of x.
s← κ · fs
a← 0
b← ` · fs− 1
i← 0
while b < L do

yi ← (xa, . . . , xb)
a← a+ s
b← b+ s
i← i+ 1

end
return y

end

Algorithm 2: Delay embedding of a subwindow.

Input: x: subwindow.
d: embedding dimension.

Output: The delay embedding of x into Rd.
Function delayEmbedding

Let L be the length of x.
for i = 0 to L− d do

yi ← (xi, . . . , xi+d−1)
end
return y

end

26

Algorithm 3: Computation of persistent homology from subwindows.

Input: A subwindow sw with sampling frequency fs.
Output: The sequence of persistence diagrams as in Figure 8.
Function getDiagrams

D1 ← upper level set persistence of sw.
D2 ← lower level set persistence of sw.
for i = 1 to 4 do

dataset ← delayEmbedding(sw, i · fs/2)
D2i+1 ← H0-barcode of dataset.
D2i+2 ← H1-barcode of dataset.

end
return (D1, . . . , D10)

end

Algorithm 4: Feature engineering.

Input: A persistence diagram D
Output: A 7-dimensional vector f
Function getFeatures

for h ∈ D do
`h ← death(h)− birth(h)

end

f1 ← 1√
2
‖`‖1

f2 ← 1√
2
‖`‖∞

S ←
∑
h∈D `h

p← 1
S `

f3 ← −
∑
h∈D ph ln(ph)

Let β be the Betti curve of D
f4 ← ‖β‖1
f5 ← ‖β‖2
Let λ be the landscape vector of D
f6 ← ‖λ‖1
f7 ← ‖λ‖2
return (f1, . . . , f7)

end

27

Algorithm 5: Rolling mean and standard deviation of features

Input: x: for a particular feature where xi is the feature value for i-th
subwindow.
M : the number of subwindows in a window

Output: Rolling mean and standard deviation of subwindow features.
Function windowFeatures

Let N be the length of x

µ0 ← 1
M

∑M
i=1 xi

σ2
0 ← −µ2

0 + 1
M

∑M
i=1 x

2
i

for i=1 to N-M do
µi ← µi−1 + 1

M (xi+M−1 − xi−1)

σ2
i ← σ2

i−1 + µ2
i−1 − µ2

i + 1
M (x2i+M−1 − x2i−1)

end
return (µ, σ)

end

Conflict of interest

The authors declare no conflict of interest.

Funding

This research did not receive any specific grant from funding agencies in the
public, commercial, or not-for-profit sectors.

References

Altındiş, F., Yılmaz, B., Borisenok, S., & İçöz, K. (2021). Parameter investiga-
tion of topological data analysis for eeg signals. Biomedical Signal Processing
and Control , 63 , 102196.

Atienza, N., Escudero, L. M., Jimenez, M. J., & Soriano-Trigueros, M. (2019).
Persistent entropy: a scale-invariant topological statistic for analyzing cell
arrangements. arXiv preprint arXiv:1902.06467 , .

Björner, A. (1995). Topological methods. In Handbook of combinatorics, Vol.
1, 2 (pp. 1819–1872). Elsevier Sci. B. V., Amsterdam.

Bubenik, P. (2015). Statistical topological data analysis using persistence land-
scapes. J. Mach. Learn. Res., 16 , 77–102.

Chazal, F., De Silva, V., Glisse, M., & Oudot, S. (2012). The structure and
stability of persistence modules. arXiv preprint arXiv:1207.3674 , 21 .

28

Chung, Y.-M., Hu, C.-S., Lo, Y.-L., & Wu, H.-T. (2021). A persistent homology
approach to heart rate variability analysis with an application to sleep-wake
classification. Frontiers in physiology , 12 , 202.

Cohen-Steiner, D., Edelsbrunner, H., & Harer, J. (2007). Stability of persistence
diagrams. Discrete & computational geometry , 37 , 103–120.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., & Mileyko, Y. (2010). Lip-
schitz functions have l p-stable persistence. Foundations of computational
mathematics, 10 , 127–139.

Dirafzoon, A., Lokare, N., & Lobaton, E. (2016). Action classification from
motion capture data using topological data analysis. In 2016 IEEE global
conference on signal and information processing (globalSIP) (pp. 1260–1264).
IEEE.

Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction.
American Mathematical Soc.

Edelsbrunner, H., Letscher, D., & Zomorodian, A. (2000). Topological persis-
tence and simplification. In Proceedings 41st annual symposium on founda-
tions of computer science (pp. 454–463). IEEE.

Emrani, S., Gentimis, T., & Krim, H. (2014). Persistent homology of delay
embeddings and its application to wheeze detection. IEEE Signal Processing
Letters, 21 , 459–463.

Erden, F., & Cetin, A. E. (2017). Period estimation of an almost periodic signal
using persistent homology with application to respiratory rate measurement.
IEEE Signal Processing Letters, 24 , 958–962.

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C.,
Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K., & Stanley, H. E.
(2000). Physiobank, physiotoolkit, and physionet: components of a new re-
search resource for complex physiologic signals. circulation, 101 , e215–e220.

Healey, J. A., & Picard, R. W. (2005). Detecting stress during real-world driv-
ing tasks using physiological sensors. IEEE Transactions on intelligent trans-
portation systems, 6 , 156–166.

Hönig, F., Batliner, A., & Nöth, E. (2007). Fast recursive data-driven multi-
resolution feature extraction for physiological signal classification. In 3rd
Russian-Bavarian Conference on Bio-medical Engineering (pp. 47–52).

Ignacio, P. S., Dunstan, C., Escobar, E., Trujillo, L., & Uminsky, D. (2019).
Classification of single-lead electrocardiograms: Tda informed machine learn-
ing. In 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA) (pp. 1241–1246). IEEE.

29

Khasawneh, F. A., & Munch, E. (2016). Chatter detection in turning using
persistent homology. Mechanical Systems and Signal Processing , 70 , 527–
541.

Majumdar, S., & Laha, A. K. (2020). Clustering and classification of time series
using topological data analysis with applications to finance. Expert Systems
with Applications, 162 , 113868.

Majumder, S., Apicella, F., Muratori, F., & Das, K. (2020). Detecting autism
spectrum disorder using topological data analysis. In ICASSP 2020-2020
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (pp. 1210–1214). IEEE.

Makowski, D., Pham, T., Lau, Z. J., Brammer, J. C., Lespinasse, F.,
Pham, H., Schölzel, C., & Chen, S. H. A. (2021). Neurokit2: A
python toolbox for neurophysiological signal processing. Behavior Research
Methods, . URL: https://doi.org/10.3758/s13428-020-01516-y. doi:10.
3758/s13428-020-01516-y.

Marchese, A., & Maroulas, V. (2018). Signal classification with a point process
distance on the space of persistence diagrams. Advances in Data Analysis and
Classification, 12 , 657–682.

Morozov, D. (2018). Dionysus 2 – library for computing persistent homology.

Otter, N., Porter, M. A., Tillmann, U., Grindrod, P., & Harrington, H. A.
(2017). A roadmap for the computation of persistent homology. EPJ Data
Science, 6 .

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12 , 2825–2830.

Perea, J. A. (2019). Topological time series analysis. Notices of the American
Mathematical Society , 66 , 686–694.

Perea, J. A., & Harer, J. (2015). Sliding windows and persistence: An applica-
tion of topological methods to signal analysis. Foundations of Computational
Mathematics, 15 , 799–838.

Pun, C. S., Xia, K., & Lee, S. X. (2018). Persistent-homology-based machine
learning and its applications–a survey. arXiv preprint arXiv:1811.00252 , .

Schmidt, P., Reiss, A., Duerichen, R., Marberger, C., & Van Laerhoven, K.
(2018). Introducing wesad, a multimodal dataset for wearable stress and
affect detection. In Proceedings of the 20th ACM international conference on
multimodal interaction (pp. 400–408).

30

https://doi.org/10.3758/s13428-020-01516-y
http://dx.doi.org/10.3758/s13428-020-01516-y
http://dx.doi.org/10.3758/s13428-020-01516-y

Seversky, L. M., Davis, S., & Berger, M. (2016). On time-series topological data
analysis: New data and opportunities. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops (pp. 59–67).

Takens, F. (1981). Detecting strange attractors in turbulence. In Dynamical
systems and turbulence, Warwick 1980 (pp. 366–381). Springer.

Tempelman, J. R., & Khasawneh, F. A. (2020). A look into chaos detection
through topological data analysis. Physica D: Nonlinear Phenomena, 406 ,
132446.

Tralie, C., Saul, N., & Bar-On, R. (2018). Ripser. py: A lean persistent homol-
ogy library for python. Journal of Open Source Software, 3 , 925.

Tralie, C. J., & Perea, J. A. (2018). (quasi) periodicity quantification in video
data, using topology. SIAM Journal on Imaging Sciences, 11 , 1049–1077.

Umeda, Y. (2017). Time series classification via topological data analysis. In-
formation and Media Technologies, 12 , 228–239.

Van Rossum, G., & Drake Jr, F. L. (1995). Python reference manual . Centrum
voor Wiskunde en Informatica Amsterdam.

Wang, Y., Ombao, H., & Chung, M. K. (2019). Statistical persistent homology
of brain signals. In ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (pp. 1125–1129). IEEE.

31

	1 Introduction
	1.1 Plan of the article

	2 Topological Data Analysis and Persistent Homology
	2.1 Simplices
	2.2 Simplicial complexes
	2.3 Homology of a complex
	2.4 Rips complexes
	2.5 Filtrations
	2.6 Persistent homology
	2.7 Wasserstein and Bottleneck distances
	2.8 Persistence landscapes and Betti curves

	3 Feature engineering on persistence diagrams
	3.1 Via Bottleneck and Wasserstein distances
	3.2 Via persistent entropy
	3.3 Via norms

	4 Sliding Windows and Delay Embeddings
	4.1 Converting univariate series into multivariate series
	4.2 Delay embeddings
	4.2.1 An example

	4.3 The subwindowing method

	5 Dataset Description
	5.1 Synthetic dataset
	5.2 The WESAD dataset
	5.3 The DriveDB dataset

	6 Methodology
	6.1 Sliding windows and subwindows
	6.2 Delay embeddings and persistent homology of subwindows
	6.3 Feature engineering
	6.4 Learning algorithms
	6.5 Cross-validation

	7 Results
	7.1 Synthetic dataset
	7.2 WESAD dataset
	7.3 DriveDB dataset

	8 Conclusion
	8.1 Future work

	9 Appendix

