
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Novel hybrid model based on echo state neural network applied
to the prediction of stock price return volatility

Citation for published version:
Trierweiler Ribeiro, G, Santos, A, Cocco Mariani, V & dos Santos Coelho, L 2021, 'Novel hybrid model
based on echo state neural network applied to the prediction of stock price return volatility', Expert Systems
with Applications, vol. 184, 115490. https://doi.org/10.1016/j.eswa.2021.115490

Digital Object Identifier (DOI):
10.1016/j.eswa.2021.115490

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Expert Systems with Applications

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Apr. 2024

https://doi.org/10.1016/j.eswa.2021.115490
https://doi.org/10.1016/j.eswa.2021.115490
https://www.research.ed.ac.uk/en/publications/e163035e-7c5b-4772-a89e-73782080d820


1 Novel hybrid model based on echo state neural network applied to 

2 the prediction of stock price return volatility 

3 
 

4 Gabriel Trierweiler Ribeiro, e-mail: gabrielribeiro.ee@gmail.com a 

 

5 André Alves Portela Santos, e-mail: andreportela@gmail.com b, c 

 

6 Viviana Cocco Mariani, e-mail: viviana.mariani@pucpr.br d 

 

7 Leandro dos Santos Coelho, e-mail: leandro.coelho@pucpr.br e 

 

8 
 

9 a Department of Electrical Engineering, Federal University of Parana (UFPR), Curitiba, PR, Brazil 
 

10 b Department of Economics, Federal University of Santa Catarina (UFSC), Florianopolis, SC, Brazil 
 

11 c Business School, University of Edinburgh, Scotland 

12 d Mechanical Engineering Graduate Program (PPGEM), Pontifical Catholic University of Parana 
(PUCPR), Curitiba, PR, Brazil 

13 e Industrial and Systems Engineering Graduate Program (PPGEPS), Pontifical Catholic University 
of Parana (PUCPR), Curitiba, PR, Brazil 

14  

    15 

    16 

 

mailto:gabrielribeiro.ee@gmail.com
mailto:andreportela@gmail.com
mailto:viviana.mariani@pucpr.br
mailto:leandro.coelho@pucpr.br


17 Abstract 

18 The prediction of stock price return volatilities is important for financial companies and investors to 

19 help to measure and managing market risk and to support financial decision-making. The literature 

20 points out alternative prediction models - such as the widely used heterogeneous autoregressive (HAR) 

21 specification - which attempt to forecast realized volatilities accurately. However, recent variants of 

22 artificial neural networks, such as the echo state network (ESN), which is a recurrent neural network 

23 based on the reservoir computing paradigm, have the potential for improving time series prediction. 

24 This paper proposes a novel hybrid model that combines HAR specification, the ESN, and the particle 

25 swarm optimization (PSO) metaheuristic, named HAR-PSO-ESN, which combines the feature design of 

26 the HAR model with the prediction power of ESN, and the consistent PSO metaheuristic approach for 

27 hyperparameters tuning. The proposed model is benchmarked against existing specifications, such as 

28 autoregressive integrated moving average (ARIMA), HAR, multilayer perceptron (MLP), and ESN,  in 

29 forecasting daily realized volatilities of three Nasdaq (National Association of Securities Dealers 

30 Automated Quotations) stocks, considering 1-day, 5-days, and 21-days ahead forecasting horizons. 

31 The predictions are evaluated in terms of r-squared and mean squared error performance metrics, and 

32 the statistical comparison is made through a Friedman test followed by a post-hoc Nemenyi test. 

33 Results show that the proposed HAR-PSO-ESN hybrid model produces more accurate predictions on 

34 most of the cases, with an average R2 (coefficient of determination) of 0.635, 0.510, and 0.298, an 

35 average mean squared error of 5.78x10-8, 5.78x10-8, and 1.16x10-7, for 1, 5, and 21 days ahead on 

36 the test set, respectively. The improvement is statistically significant with an average rank of 1.44 

37 considering the three different datasets and forecasting horizons. 

38 Keywords: Volatility prediction, Echo state network, Heterogeneous autoregressive model, Particle 

39 swarm optimization. 
 

40 1 INTRODUCTION 
 

41 Financial institutions (e.g. banks, insurance, and asset management companies), as well as individual 

42 investors, deal with uncertainties in investment portfolios. These uncertainties that arise from the 

43 fluctuations in asset prices impact the level of the risk in their financial portfolios and affect the 

44 decision-making process. A widely used proxy measure of this uncertainty is the notion of realized 

45 volatility (Andersen, Bollerslev, and Meddahi, 2005), which measures the variability in the changes in 

46 asset prices by using the information of high-frequency (intraday) data. Thus, knowing the volatility of 

47 a given stock in advance can be valuable for conducting enhanced investment decisions and for 

48 supporting both institutional and individual investors in the assessment of the level of risk in their 

49 financial portfolios. In that sense, quantitative models designed to forecast realized volatilities have 

50 become a key element in the set of tools used to measure and manage the risk associated with the 

51 fluctuations in asset prices. 
 

52 The forecasting of realized volatility has commonly been accomplished by statistical models such as 

53 the autoregressive integrated moving average (ARIMA) model and the heterogeneous autoregressive 

54 (HAR) model proposed in Corsi (2009), but nowadays has been often accomplished with machine 

55 learning models - a branch of artificial intelligence field that develop models which learn from 

56 experience - such as multilayer perceptron (MLP), Random Forest, and Support Vector Machines 

57 (SVM). Newer models often propose hybrid versions of the existing machine learning models, 

58 aggregating them into an ensemble learning approach, tuning the hyperparameters with metaheuristic 

59 algorithms, or engineering new features. A systematic review of such techniques for the stock market 

60 forecast is found in Bustos and Pomares-Quimbaya (2020), whereas an analysis of deep learning 

61 application for stock markets prediction is provided by Chong, Han, and Park (2017). 



62 In the context of ensemble learning models, Kristjanpoller and Minutolo (2015) proposed a stacked 

63 generalized autoregressive conditional heteroskedasticity (GARCH) model combined with an artificial 

64 neural network with additional handcrafted features for the prediction of gold price return volatility. 

65 Pierdzioch, Risse, and Rohloff (2016) proposed a boosting approach for the prediction of gold price 

66 return volatility. Di Sanzo (2018) proposed an MRV (Markov Regime Switching) approach for a regime- 

67 switching GARCH model for the prediction of crude oil price return volatility. Kim and Won (2018) 

68 proposed an ensemble of long short-term memory (LSTM) with variations of GARCH models for 

69 prediction of volatilities of the KOPSI 200 (Korea Composite Stock Price Index 200) stock index 

70 returns. A stacked learning model has been proposed by Ramos-Pérez et al. (2019) for predicting the 

71 volatility of the S&P 500 (Standard & Poor's 500) stocks. Alizadeh, Huang, and Marsh (2019) 

72 presented a mixture of specialists, with different HAR specifications combined with an MRS approach 

73 for the prediction of energy contracts in the Tokyo Commodity Exchange (TOCOM). 
 

74 In the context of feature engineering, a model based on empirical mode decomposition for generating 

75 features had been proposed by Gong and Lin (2019) for predicting the volatility of the S&P 500 stocks; 

76 Atkins, Niranjan, and Gerding (2018) employed Latent Dirichlet Allocation to represent information 

77 from the financial news feed and to predict the direction of US stock market volatility with naïve Bayes; 

78 Afkhami, Cormack, and Ghoddusi (2017) used Google search keywords as features for prediction of 

79 energy prices volatility; Choudhury et al. (2014) proposed the use of features derived from clustering 

80 with Self Organizing Maps (SOM) followed by an SVM prediction model for price return and volatility 

81 forecasting in the Indian market. 
 

82 The alternative prediction models can use only past values of the volatility series, yielding univariate 

83 models, or can use any other indicator as a feature, therefore yielding multivariate models. The 

84 multivariate approach may lead to better predictions if appropriate exogenous variables are found. In 

85 the context of multivariate models, Ma et al. (2018) obtained predictions of oil price return volatilities 

86 whereas Pierdzioch, Risse, and Rohloff (2016) predicted the gold price return volatility. Finally, 

87 Walther, Klein, and Bouri (2019) have tested exogenous variables that most affect the predictions of 

88 cryptocurrency volatility. 
 

89 The HAR model is used to obtain volatility predictions of oil price return (Degiannakis and Filis, 2017; 

90 Alizadeh, Huang, and Marsh, 2019; Gong and Lin, 2019) and produced accurate predictions that could 

91 not be outperformed by a hybrid model of principal component analysis, GARCH and an artificial neural 

92 network (ANN) as concluded by Vortelinos (2017). 
 

93 On the other hand, the echo state network (ESN) is a recurrent ANN that makes use of the reservoir 

94 computing paradigm and often achieves improved modeling performance with a fast training 

95 procedure. The ESN has been widely used and can be found in a variety of applications such as 

96 remaining useful life prediction (Rigamonti et al., 2018), energy forecasting (Ribeiro et al., 2016; 

97 Ribeiro, Mariani and Coelho, 2019; Hu et al., 2020; Hu, Wang, and Lv, 2020), fault prognostics (Xu et 

98 al., 2020), credit scoring (Xia et al., 2018), and tourism (Lv, Peng, and Wang, 2018). It has also 

99 emerged in deep specifications such as in Ma, Shen, and Cottrell (2020). 
 

100 Fičura (2018) compares the ESN with HAR models in predicting stock market volatility of several 



101 indexes and finds that, on average, the HAR models perform better but also suggests that the ESN has 

102 a potential for being improved. Applications of ESN for stock price return forecasting are found in 

103 Zhang, Liang, and Chai (2013) and Dan et al. (2014). Other studies that consider the application of 

104 ESNs are Yao et al. (2019) and Yao (2020). A summary of the ESN performance as reported in previous 

105 related studies is presented in Table 1. 
 

106  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
107  

Table 1 - Summary of the ESN performance as reported in previous related studies 
 

Related Study Asset Performance Metric Value 

Afkhami, Cormack, and Ghoddusi 
(2017) 

Energy price return volatility 
 

Adjusted R2 

 
0.186 

Alizadeh, Huang and Marsh (2019) Gasoline volatility R2 0.4584 

 
Dan et al. (2014) 

Shanghai composite index 
stock price 

 
Mean squared error 

 
0.016 

Degiannakis and Filis (2017) Oil price return volatility Mean squared error 69.36 

Di Sanzo (2018) Oil price return volatility Mean squared error 20.11 

 
Fičura (2018) 

S&P500, DJIA, and Nikkei 
indices volatilities 

 
R2 

 
0.168 

Gong and Lin (2019) S&P 500 index volatility R2 0.6006 

Kim and Won (2018) KOSPI 200 stock index 
volatility 

 
Mean squared error 

 
0.00149 

 
Kristjanpoller and Minutolo (2015) 

Gold Mean absolute 
percentage error 

0.6493 

Ma et al. (2018) Aggregate oil price return 
volatility 

R2 0.2087 

Ramos-Pérez et al. (2019) S&P 500 index volatility Root mean squared 
error 

0.00254 

Vortelinos (2017) US financial markets 
volatility 

R2 0.7732 

Zhang, Liang, and Chai (2013) Microsoft Company stock 
price 

Hit rate 0.788 

 

108 This paper adds to the existing literature on realized volatility forecasting with ESN by putting forward 

109 two contributions. First, we specify and implement a new hybrid model for predicting realized volatility 

110 of stock price returns, called HAR-PSO-ESN, which combines the engineered features of the HAR model 

111 and the potential of ESN for time series prediction, making use of the PSO metaheuristic, a swarm 

112 intelligence approach, for hyperparameters tuning. Second, we build on the work of Fičura (2018) and 

113 show how the ESN can be extended and used in conjunction with other models along with a 

114 metaheuristic-based tuning strategy. To the best of our knowledge, there is only the publication of 

115 Fičura (2018) that deploys the ESN model in a horse-race against the HAR specification. In that sense, 

116 our paper helps to settle a new hybrid benchmark for research on this challenging topic. 



117 The proposed HAR-PSO-ESN model has an advantage over the traditional ARIMA and HAR models due 

118 to its suitability for nonlinear time series. Moreover, it has also an advantage over the traditional MLP 

119 model because the ESN, as a type of recurrent neural network, is more appropriate for time series 

120 forecasting. Finally, it is an advantage over the conventional ESN due to the inclusion of the HAR 

121 features, which are proven very relevant for price return volatility forecasting. 
 

122 The problem at hand consists of building models to predict future values of stock price return 

123 volatilities based only on past values of the series. The proposed HAR-PSO-ESN hybrid model is 

124 empirically benchmarked against the other four specifications: ARIMA, HAR, ESN, and MLP. The 

125 alternative models are used to obtain forecasts of the daily realized volatilities based on 5-min. 

126 intraday squared returns of three Nasdaq stocks for 1-day ahead, 5-days ahead (1 week), and 21-days 

127 ahead (1 month) forecasting horizons. The predictions are evaluated in terms of the mean squared 

128 error (MSE) and coefficient of determination or R-squared (R2) metrics, as well as with a statistical 

129 significance test. The results show that the proposed model produces more accurate predictions in 

130 the majority of the cases. Moreover, the differences in forecasting performance are statistically 

131 significant. 
 

132 The remainder of this paper is organized as follows. In Section 2, we motivate the need for research 

133 in stock price return forecasting. In Section 3, we define the concept of realized volatility and details 

134 the alternative individual models used to obtain predictions. Section 4 presents the dataset employed 

135 in the experiments, the problem formulation, the methodology used for applying machine learning 

136 models for time series prediction, the set-up used to compare among alternative models, the accuracy 

137 metrics and statistical significance test, as well as the proposed HAR-PSO-ESN hybrid model. Results 

138 of prediction accuracy and statistical significance are presented in Section 5. Finally, the conclusions 

139 of the paper are presented in Section 6. 

 

140 2 NEED FOR RESEARCH 
 

141 Given that forecasts of realized volatilities are key to manage the risks in the asset price fluctuations, 

142 more accurate predictions imply a lower level of uncertainties in investment decisions and improved 

143 investment performance. However, there is no deterministic forecasting model that can deliver the 

144 most accurate forecasts for all volatility time series, as supported by the “No Free Lunch theorem” in 

145 Wolpert and Macready (1997). Wolpert (2002) recommends that it is important to develop many 

146 different types of models to cover the wide variety of data that occurs in the real world. 
 

147 Hence, the search for more accurate forecasting models in specific problems is unavoidable since a 

148 general solution may never emerge. Considering the potential of improvement in ESN-based 

149 forecasting models for stock volatilities reported by Fičura (2018), and the limitations of the successful 

150 HAR models to nonlinear time series forecasting, would a hybrid model that combines the ESN and 

151 HAR characteristics deliver more accurate stock price return volatility forecasts? 

 

152 3 REALIZED VOLATILITY AND PREDICTION MODELS 
 

153 This section provides background regarding realized volatility, the individual benchmark models, and 

154 the models that serve as the base for building the proposed HAR-PSO-ESN hybrid model. 



155 3.1 Realized Volatility 

156 We consider the estimator of the realized volatility defined in Andersen et al., (2000, 2001) which is 

157 based on sampling the stock price at time t, denoted by 𝑝𝑡 , on regular time intervals (e.g., 1, 5, 10 

158 minutes) within a given market session. Assume that the prices on a trading day t were sampled with 

159 a regular interval with 𝑚 + 1 points 0,1, … , 𝑚 such that 𝑝𝑖,𝑡 is the i-th observation of the log price on 

160 day t. The realized volatility (RV) can the therefore estimated as 
 

𝑅𝑉𝑚 = ∑𝑚 (𝑝 2 − 𝑝 , (1) 
𝑡 𝑖=1 𝑖,𝑡 𝑖−1,𝑡) 

 

𝑅𝑉𝑚 = ∑𝑚 𝑟2 . (2) 
𝑡 𝑖=1  𝑖,𝑡 

 

161 The estimator of the realized variance in Eqs. (1)-(2) is shown to be consistent for the true unobserved 

162 latent variance. Moreover, existing evidence suggests that the use of intraday information results in 

163 more accurate volatility measures and predictions. 
 

164 3.2 Prediction models 

165 Five prediction models have been employed for the stock price return volatility prediction problem. 

166 Four existing models, namely ARIMA, ESN, HAR, and MLP, and a new proposed model which is a 

167 hybridization of HAR with ESN. Next, we describe each of these approaches. 
 

168 3.2.1 ARIMA model 

169 The ARIMA model is a traditional model for time series forecasting. The model is based on three kinds 

170 of features, which are autoregressive (i.e. past values of the time series), integrated (i.e. differentiated 

171 values of the time series), and moving average (i.e. an average of past values of the residual series). 
 

172 The equation that describes the ARIMA model, as presented in Zhang et al. (2018), is 

𝑝 𝑞 

∆𝑑𝑦𝑡 = 𝛼0 + ∑ 𝛽𝑖∆𝑑𝑦𝑡−1 + 𝜀𝑡 + ∑ 𝛼𝑗𝜀𝑡−𝑗, (3) 

𝑖=1 𝑗=1 

 

173 where ∆𝑑𝑦𝑡 is the sample 𝑡 of the time series 𝑦 differentiated 𝑑 times; 𝛼0, 𝛽𝑖 , and 𝛼𝑗 are the model 

174 parameters; 𝑝, 𝑑, and 𝑞 are integers that represent the model orders (i.e. hyperparameters) of the 

175 autoregressive, integration, and moving average terms respectively; and 𝜀𝑡 is a random white noise 

176 signal. 
 

177 3.2.2 HAR model 

178 The HAR model proposed in Corsi (2009) is a major workhorse for realized volatility modeling and a 

179 traditional model often employed in econometrics with good results. The main characteristic of the 

180 HAR model is the handcrafted designed features. The equations that describe the HAR model are 

181 given by 
 

𝑉𝑑+1 = 𝛽0 + 𝛽𝑑𝑅𝑉𝑑 + 𝛽𝑤𝑅𝑉𝑤 + 𝛽𝑚𝑅𝑉𝑚 , (4) 
 

𝑅𝑉𝑑 = 𝑉𝑑, (5) 



5 
1 

𝑅𝑉𝑤 = 
5 
∑ 𝑉𝑑−𝑖, (6) 

𝑖=1 
 

22 
1 

𝑅𝑉𝑚  = 
22 

∑ 𝑉𝑑−𝑗, (7) 
𝑗=1 

 

182 where 𝑉 is a proxy for the true value of the volatility, 𝑑 is the index of the current day in the time series; 

183 𝛽0, 𝛽𝑑 , 𝛽𝑤, and 𝛽𝑚 are the model parameters; 𝑅𝑉𝑑 , 𝑅𝑉𝑤, and 𝑅𝑉𝑚  are the average volatility values of 

184 the last day, week, and month respectively, in business days. 

 

185 The parameters of the HAR model (i.e., 𝛽0, 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚) are estimated with the ordinary least 

186 squares (OLS) algorithm. 
 

187 3.2.3 MLP neural network model 

188 The MLP is a feedforward artificial neural network composed of a set of interconnected processing 

189 units called neurons as displayed in Fig. 1. The network is fed with inputs 𝑋, and propagates them to 

190 the first layer of neurons 𝐹(1). The output of each neuron 𝑗 ∈ {1, 2, … , 𝑁1} is then calculated as in Eq. 

191 (8). The output of each neuron 𝑗 in a given layer 𝐿, with 𝑁𝐿 neurons are calculated as in Eq. (9), 

192 including the output layer, 
 

𝐾 

𝑦
(1) 

= 𝑓 (∑ 𝑤
(1)

𝑥 ), (8) 
𝑗 𝑗 𝑗𝑖 𝑖 

𝑖=1 
 

𝑁𝐿−1 

𝑦
(𝐿) 

= 𝑓 ( ∑ 𝑤
(𝐿)

𝑦
(𝐿−1)

), (9) 
𝑗 𝑗 𝑗𝑖 𝑖 

𝑖=1 
 

193 where 𝑖 and 𝑗 are the indexes of the neurons in layer 𝐿, 𝑁 is the number of neurons in a given layer, 𝑤 

194 is the weight of the synapsis connecting two given neurons, 𝑦 is the output of a given neuron, and 𝑓 is 

195 the activation function. 
 

196 Two activation functions that are commonly found in MLP architectures are the sigmoid function and 

197 the hyperbolic tangent (tanh) defined respectively as 
 

 
 
 
 
 
198  

199  

200  

201  

202  
 

203  

1 
𝑓(𝑥) = 

1 − 𝑒−𝑥 (10) 

𝑓(𝑥) = tanh(𝑥). (11) 
 

The training of the MLP consists of adjusting the connections among neurons (also referred to as 

synapsis) iteratively by minimizing the error between the desired outputs and the network outputs, 

given the same inputs. However, the MLP also requires the setting of hyperparameters, which are the 

number of layers, the number of neurons in each layer, and additional parameters depending on the 

learning algorithm (e.g. regularization parameters). 



 
 
 
 
 
 
 
 
 
 
 
 
 

204  

205  
 

206  

 
 
 
 

3.2.4 ESN model 

 

 
Figure 1 - Architecture of an MLP neural network. 

207 ESN is a class of recurrent neural networks (RNNs) that makes use of the reservoir computing 

208 paradigm for efficient training. The learning of an RNN is usually performed through an algorithm 

209 based on the gradient of a cost function, which may take too many iterations to converge or get stuck 

210 into sub-optimal values. On the other hand, ESN uses the echo state property (ESP) such that all the 

211 weights are initialized randomly except the output weights, which are obtained with the OLS algorithm, 

212 therefore resulting in efficient and fast learning. 
 

213 The architecture of an ESN is presented in Fig. 2. The architecture presents two kinds of weights, those 

214 of the forward connections and those of the recurrent connections. The forward connections link the 

215 inputs 𝑋 with the hidden layer 𝐹(ℎ), and the hidden layer with the output layer 𝐹(𝑂). The recurrent 

216 weights link the neurons in the reservoir with each other, as well as output neurons with hidden layer 

217 neurons. 
 

218 The weights of the connections between the inputs and the hidden layer are called 𝑊 (𝑖𝑛); the weights 

219 between the hidden layer and the output layer are called 𝑊(𝑂); the weights between the neurons in 

220 the hidden layer are called 𝑊(𝑅); and the weights between the outputs and the hidden layer are called 

221 𝑊(𝑓𝑏). The reservoir is composed of the weights  𝑊(𝑖𝑛), 𝑊(𝑅), and 𝑊(𝑓𝑏), which are all 
initialized 

222 randomly using a uniform probability distribution function. 
 

223 After the training inputs and outputs are propagated through the reservoir, the outputs of the neurons 

224 in the hidden layer are collected and compose the states 𝑆 of the ESN. Then, the weights 𝑊(𝑂) are 

225 calculated using the OLS algorithm, considering the states 𝑆 as the inputs and 𝑓−1(𝑌) as outputs. The 

226 ESN computations are given by 
 

𝐾 

𝑠(ℎ)(𝑡 + 1) = 𝑓 (∑ 𝑤(𝑖𝑛)(𝑎  
𝑁 

+ 𝑏 ) + ∑ 𝑤(𝑅∗) (𝜂𝑠(ℎ)(𝑡)) 
𝑗 𝑗  

𝑖=1 

𝑃 

𝑗𝑖 𝑖 𝑖 𝑖 

𝑖=1 

𝑗𝑖 𝑖  
(12) 

+ ∑ 𝑧 𝑤(𝑓𝑏)𝑓(𝑂)
−1

(𝑐 𝑦 + 𝑑 )) − 𝛼𝑠(ℎ)(𝑡), 
 

𝑖=1 

𝑖   𝑗𝑖 𝑖 𝑖   𝑖 𝑖 𝑗 

 

𝑊(𝑅∗) = 𝜌𝑊(𝑅) , (13) 



227 where 𝑠 is the state, 𝑗 is the index of the neuron in the hidden layer, 𝑡 is the current sample in the time 

228 series, 𝑓 is the neuron activation function; 𝐾, 𝑁, and 𝑃 are the number of inputs, reservoir neurons, 

229 and output neurons respectively, 𝑤 is the synaptic weight; 𝑎, 𝑏, 𝑐, 𝑑, and 𝑧 are input scaling, input 

230 shift, target scaling, target shift, and feedback scaling respectively; 𝛼 is the leaking rate, 𝜌 is the 

231 spectral radius, and 𝜂 is the noise. 
 

232 The parameters of the ESN are the weights 𝑊, but its application requires the setting of additional 

233 hyperparameters that influence its performance, stability, and compliance to the echo state property 

234 (Yildiz, Jaeger, and Kiebel, 2012). The 𝑎, 𝑏, 𝑐, 𝑑, and 𝑧 parameters determine the operation region of 

235 the internal signals into the activation function 𝑓, such that smaller values explore the linear region 

236 around zero and higher values explore the nonlinear region near saturation. The 𝛼 is the leaking rate 

237 parameter and set how much the next stage of the network depends on the previous one. The 𝜂 is the 

238 noise parameter and represents a small random value added to the previous states and acts as a 

239 regularization parameter, with the intent to improve the generalization ability. The 𝜌 is the spectral 

240 radius parameter and is often considered the most important one because it depends if the echo state 

241 property is valid, and hence if the ESN states will converge and be able to represent the system 

242 dynamics. The reservoir size 𝑁 must also be set and has a great influence on the ESN performance. 

243 Beyond the hyperparameters shown in Eqs. (10) and (11), there is also the sparsity degree parameter 

244 𝜑, which makes the reservoir weights matrix sparse, randomly setting several weights to zero, having 

245 little impact on the performance but a great impact on the network computation speed. 
 

246 The reservoir size impacts directly on the memory capacity and function approximation ability of the 

247 ESN, which could be as large as possible since it tends to result in better performance. However, due 

248 to computational power limitations and overfitting issues, it is imperative to set an upper limit and look 

249 for an optimal value. 
 

250 Another key parameter of the ESN is the spectral radius, which is related to the compliance with the 

251 ESP and impacts directly on the model’s performance. It shall assume higher values for very nonlinear 

252 systems and smaller values for less nonlinear systems. Values below unity guarantee the ESP for the 

253 majority of empirical applications. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

254  

255 Figure 2 - Architecture of an ESN. 



256 4 Materials and Methods 
 

257 This section presents the data and the empirical problem at hand, the techniques for handling the 

258 data to be processed by machine learning models, the proposed HAR-PSO-ESN model, the compared 

259 models that serve as benchmarks, and the statistical significance test. 
 

260 A flowchart with all steps adopted when performing the empirical analysis is presented in Figure 3. 

261 The study is performed in three sequential steps, which are the data pre-processing, modeling, and 

262 model evaluation. In the data pre-processing step, we present the data, the formulation of the 

263 forecasting problem, the conversion of the data from the time series to the supervised learning format, 

264 and the procedure for scaling the data before the modeling step. Next, the modeling step consists of 

265 the implementation of the benchmarking models as well as of the proposed HAR-PSO-ESN model. 

266 Finally, the forecasts of the previous step are evaluated and compared in terms of accuracy and 

267 statistical hypothesis tests. Each step is detailed in the following sections. 
 
268  

 

269  

270 Figure 3 - Flowchart of steps 

271 

272 4.1 Data and Problem 

273 We assemble a dataset of daily realized volatilities from three Nasdaq companies: Caterpillar (CAT), 

274 eBay (EBAY), and Microsoft (MSFT). To construct the daily realized volatilities for each stock according 

275 to Eqs. (1)-(2), we sum for each day the squared intraday return sampled at the 5-min frequency. A 

276 time-series visualization of the three series is presented in Fig. 4. Each time series has 2745 

277 observations, which is equivalent to 549 weeks of records. The time series are noisy and present 

278 noticeable bursts at some points, as can be seen between the 1000th and 1500th days. Two additional 

279 bursts can be seen between the 1500th and 2000th days. In Fig. 4, it can be noticed that EBAY 

280 volatilities (Fig. 4b) present higher daily changes, followed by CAT (Fig. 4a), and MSFT presents smaller 

281 daily variations (Fig. 4c), which is observed mainly in the intervals between the 1st and 1000th days 



282 and 2000th and 2500th days. 
 

283 The distribution of the time series values is presented in Fig. 5. The price return volatilities are much 

284 more concentrated at lower values, between 0 and 0.001, but eventually assume values from five to 

285 six-time higher, demonstrating that the data is highly skewed. Each considered time series  also 

286 present a different median. EBAY presents the highest median values, followed by CAT, and MSFT 

287 presents the lowest one. 
 

288 The problem at hand consists of building models to predict future values of stock price return 

289 volatilities based only on past values of the series. More specifically, three forecasting horizons are 

290 considered, which are 1-day ahead, 5-days ahead (1 week), and 21-days ahead (1 month), as stated 

291 in Eq. (14) given by 
 

̂𝑉𝑑+ℎ  = 𝐹(𝑉𝑑 , 𝑉𝑑−1 , … , 𝑉𝑑−𝑙) (14) 

292 where ̂𝑉 is the forecasted volatility, ℎ is the forecasting horizon, 𝑑 is the day number index in the time 

293 series, 𝑉 is the observed values of the volatilities in the time series, and 𝑙 is the maximum lag of the 

294 time series relevant for the prediction model 𝐹. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

295  

296 Figure 4 - Line charts of time series to be predicted. 

297 The model selection procedure was performed as described in Table 1. For each forecasting horizon 

298 ℎ, three experiments were carried out. In each experiment, a different time series is used as training, 

299 validation, and test set. The training set is used for the model learning, while the validation set is used 

300 for hyperparameters tuning, if necessary. The test set is used for the evaluation of the predictions. 

301 When the model uses the validation set for hyperparameters tuning, the training and validation sets 

302 are then used for fitting the best-tuned model to predict the test set. 
 

303 The predictions were evaluated according to two metrics, which are the MSE, and the coefficient of 

304 determination R2, which are calculated as in Eqs. (15) and (16) respectively. These equations are given 

305 by 
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306 where 𝑁 is the number of prediction samples, �̂�𝑖  is the prediction for the test sample 𝑖, 𝑦𝑖  is the true 

307 value of test sample 𝑖, and �̅� is the average value of true test samples. 
 

308 Table 2 - Data split for model selection. 
 

Experiment CAT EBAY MSFT 

1 Training set Validation set Test set 

2 Test set Training set Validation set 

3 Validation set Test set Training set 

309  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310  

311 Figure 5 - Distribution of values of price volatilities for each dataset. 

312 4.2 Supervised learning datasets 

313 A common approach for building machine learning models for time series prediction is the 

314 transformation of the time series from a sequence of observed values 𝑆 = {𝑠1 , 𝑠2 , … , 𝑠𝑁 } to a pair of 

315 input and output matrices, 𝑋 and 𝑌, respectively, such that each row is a sample and each column is 

316 a variable. 
 

317 The sliding window method is usually employed and works as illustrated in Fig. 6. The raw time series 

318 is converted into a windowed time series, which is a matrix whose size depends on the number of 

319 features 𝑀, the forecasting horizon 𝐻, and the length of the time series 𝑁. The first 𝑀 columns are 

320 composed of past values while the latest 𝐻 columns are composed of future values. The matrix of 



321 inputs 𝑋 is built from the past values of the windowed time series and may vary depending on the 

322 employed feature engineering algorithm. The matrix of outputs 𝑌 is built from the future values of the 

323 windowed time series and the output is selected as the columns relative to the desired forecasting 

324 horizons. 
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326  
 

327  

 
 
 
 
4.3 Data Scaling 

 
 

Figure 6 - Sliding window technique. 

328 Some prediction models are sensitive to the scales of the features. To avoid such an issue, data has 

329 been normalized into the interval [0, 1]. All datasets (i.e. train, validation, and test) are normalized 

330 concerning the minimum and maximum values of the training dataset since the model cannot know 

331 the minimum and maximum values of the validation or the test set in advance. Before calculating the 

332 performance metrics, the predictions are unscaled and given by the following equations: 
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333 where 𝑋 is the input matrix, 𝑗 is the column of the input matrix, 𝑌 is the output matrix, ℎ is the column 

334 of the output matrix, and min and max are the minimum and maximum values, respectively. 
 

335 4.4 Proposed HAR-PSO-ESN model 

336 The proposed HAR-PSO-ESN model has three main building blocks. The first is the HAR model, which 

337 is commonly employed in econometrics with good performance due to its carefully handcrafted 

338 features. The second is the ESN model, which is an efficient ANN model adequate for time series 

339 forecasting that can transform lagged values of the series in a higher dimension state space such as 

340 a kernel function. We aim to enhance the forecasting performance of the ESN model using the 

341 handcrafted features of the HAR model. Finally, the ESN hyperparameters are tuned with the PSO 

342 algorithm, therefore yielding the hybrid model named HAR-PSO-ESN. 
 

343 Specifically, the proposed HAR-PSO-ESN hybrid model makes use of the HAR features and the ESN 

344 architecture as exhibited in Fig. 7. The first step in the application of the model requires the 

345 transformation from the price return volatility time series to a supervised learning dataset with inputs 

346 and outputs. As for the inputs, it is often recommended to have a matrix with samples represented as 

347 rows and features as columns. As for the output, it is recommended to have samples as rows and 

348 output targets as columns. The inputs are composed of past values of the series and the outputs are 

349 composed of future values. The input is then processed for the extraction of the HAR features, which 

350 are the inputs of the ESN. The outputs do not require any further processing. Finally, the ESN 

351 hyperparameters are tuned with the PSO algorithm as explained in section 4.5.3. 
 

352 As shown in 7, the volatility time series in the training set is used for training the ESN architecture with 

353 an initial set of hyperparameters, resulting in an initially trained ESN. Then, the forecasts obtained 

354 with the trained ESN based on the volatility time series in the validation set are evaluated by the PSO 

355 algorithm to iteratively tune the hyperparameters. After a given number of iterations, the trained and 

356 PSO-tuned ESN is used to obtain forecasts based on the inputs belonging to the test set. Finally, the 

357 forecasts obtained with the HAR-PSO-ESN model in the test set are evaluated and compared to those 

358 obtained with the alternative models. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
359  

360 Figure 7 - Proposed HAR-PSO-ESN hybrid model. 

361 4.5 Benchmark models 

362 The proposed model was benchmarked with the ARIMA, HAR, MLP, and ESN models. The standard 

363 HAR model does not have hyperparameters to be tuned. However, the ARIMA, MLP, and ESN do require 

364 the setting of specific hyperparameters, which are tuned with the algorithms described next. 
 
365  

 

366 4.5.1 Grid search combined with ARIMA model 

367 The application of the ARIMA model requires the setting of three parameters, which are the order of 

368 the autoregressive term 𝑝, the order of the integration term 𝑑, and the order of the moving average 

369 term 𝑞. We have considered a grid search (GS) algorithm for tuning such parameters. 
 

370 The ARIMA model was implemented using the Stasmodel Python library (Seabold and Perktold, 2010). 

371 The hyperparameters 𝑝 and 𝑞 have been searched in the set {0, 1, 2}, while the hyperparameter 𝑑 has 

372 been searched in the set {0, 1}. Higher orders have been tested but led the model to a non- 

373 convergence state. 
 

374 4.5.2 GS-MLP 

375 The application of the MLP requires the setting of the number of layers, the size of the layers, i.e., the 

376 number of neurons in each layer, and the regularization parameter. The hyperparameters are tuned 

377 with the GS algorithm with 5 points in each grid. The number of layers is searched in the range [1, 5], 

378 the size of the layers was considered the same for all layers and searched in the range [10, 300], and 

379 the regularization parameter was searched in the range [10−4, … , 100]. 
 

380 The fitting of the MLP requires a supervised learning dataset. The dataset was obtained using the 

381 sliding window technique, and the features have been selected through the partial autocorrelation 

382 function of the training time series. The past values that present a coefficient of correlation outside a 

383 confidence interval of 95% were selected as significative features. 
 

384 The learning algorithm employed was Limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) 



𝑗 

385 algorithm (LBFGS). The maximum number of iterations was set as 103, the activation function was the 

386 tanh(. ), the tolerance set to 10−4, and the maximum number of function evaluations as 103. The MLP 

387 has been implemented using the sci-kit-learn library for Python (Pedregosa, Weiss, and Brucher, 

388 2011). 

389 4.5.3 PSO-ESN 

390 The application of the ESN model requires the setting of the reservoir size, input scaling, input shift, 

391 target scaling, target shift, feedback scaling, the leaking rate, spectral radius, sparsity degree, and the 

392 noise hyperparameters. These hyperparameters have been tuned with PSO algorithm. 
 

393 The reservoir size has been searched in the interval [1, 1500], the spectral radius in the interval 

394 [0.1, 1.5], the sparsity degree in the interval [0, 0.95], the noise in the interval [0, 1], the input shaft in 

395 the interval [0, 10], the input scaling in the interval [0.001, 10], the feedback scaling in the interval 

396 [0, 1], the teacher scaling in the interval [0.001, 10], the teacher shift in the interval [0, 10], the leaking 

397 rate in the interval [0, 1]. An extra hyperparameter has been tuned, which is the regularization 

398 parameters in the least-squares algorithm used to train the weights of the output, which has been 

399 searched in the interval [0, 10000]. The activation function of the hidden layer was set as the tanh(. ) 

400 And the activation function of the output layer was ser as the identity 𝑓(𝑥) = 𝑥. 
 

401 The PSO algorithm (Kennedy and Eberhart, 1995) was set with 20 particles (swarm size), a maximum 

402 of 50 generations as stopping criterion, acceleration coefficients 𝑐1=1.5 and 𝑐2=2, inertia factor equal 

403 to 𝑤=1, and inertia damping factor 𝑤𝑑𝑎𝑚𝑝 =0.99. The input sequence of the ESN is the output 

404 sequence lagged by 1, 5, or 21 samples, according to the desired forecasting horizon. For example, if 

405 the goal is to forecast a length 𝑁 time series 1-step ahead, then the first 𝑁 − 1 samples, i.e. samples 

406 1 to 𝑁 − 1, is the input sequence while the last 𝑁 − 1 samples, i.e., samples 2 to 𝑁, is the output 

407 sequence. The implementation of the ESN was developed based on the pyESN library (Korndörfer, 

408 2018). 

409 4.6 Statistical significance test 

410 On top of evaluating the accuracy of the prediction models, it is recommended to check if they are 

411 significantly different. A statistical significance test suggested by Demsar (2006) is the Friedman test 

412 followed by the post-hoc Nemenyi test (Nemenyi, 1963). The Friedman test is a nonparametric test 

413 that tests the null hypothesis that all compared models have no significant difference. In the case, the 

414 null hypothesis is rejected in the Friedman test it is interesting to know between which models the 

415 difference is significant. The Nemenyi test is then used for this task. Equations for the implementation 

416 of those methods are provided in Demsar (2006). 
 

417 In Friedman’s test, the models are ranked according to their prediction performance, such that the 

418 best performing model gets the rank 1. In the case of ties, the average rank is assigned. Then, the 

419 Friedman statistic is calculated as 
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420 where 𝑝 is Friedman’s statistic, 𝑇 is the number of experiments, 𝑘 is the number of models compared, 

421 and 𝑟 is the rank. 
 

422 If the 𝑝-value is less than 0.05, Friedman’s test rejects the hypothesis that all models are equivalent 

423 with 95% of confidence, the post-hoc Nemenyi test is employed to perform pairwise comparisons 

424 among the available methods. If their average ranks are separated for at least a critical distance (CD), 

425 the models may be considered statistically different. The CD is calculated as 
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426 where 𝐶𝐷 is the critical distance, 𝑞𝛼 is a critical value of the studentized range distribution (Demsar, 

427 2006), 𝑘 is the number of models compared, and 𝑇 is the number of experiments. 

 

428 5 RESULTS AND DISCUSSION 
 

429 Three time-series of stock price return volatility are considered, and they alternate as training, 

430 validation as displayed in Figure 8. The time series are converted to a supervised learning format with 

431 the sliding window technique for machine learning models, and the data is scaled before being used 

432 by the models. The proposed HAR-PSO-ESN model is compared with the other four models, named GS- 

433 ARIMA, GS-MLP, HAR, and PSO-ESN. The predictions are evaluated in terms of accuracy with the R2 

434 and MSE metrics and of statistical significance with Friedman’s test followed by the Nemenyi post- 

435 hoc. 
 

436  

 

437  

438 Figure 8 - Configuration of the experiments. 

√ 



439 5.1 Prediction accuracy results 

440 The five models have been tested in each of the three datasets for three different forecasting horizons, 

441 resulting in 45 experiments that are evaluated and compared in terms of R2 and MSE metrics. The 

442 average accuracies for 1-day ahead, 5-days ahead, and 21-days ahead are presented in Tables 3, 4, 

443 and 5, respectively. The predictions for ℎ days ahead are obtained by selecting the last column of the 

444 future values matrix as the output, using a sliding window technique with 𝐻 = ℎ in Figure 6. 
 

445 We observe in Tables 3 to 5 that the proposed HAR-PSO-ESN model achieves better prediction 

446 accuracies over the test set in terms of highest R2 and lowest MSE, despite not achieving the best 

447 accuracies on the training set. The R2 and MSE values on the test set for each model and forecasting 

448 horizon are also displayed in Figs. 9 and 10, respectively. As expected, the accuracies are better for 

449 1-step ahead forecasts and worsen as the forecasting horizon increases. This behavior is largely 

450 expected since longer forecasting horizons involve more uncertainties and affect the predictive 

451 capacity of the models. Figs. 9 and 10 also reveal that the proposed HAR-PSO-ESN appears always as 

452 the best or second-best model, and its superiority is more salient in the case of the MSFT stock (Figs. 

453 9c and 10c). Finally, we plot in Fig. 11 the time series of the predicted vs. the actual volatilities in the 

454 case of the MSFT stock for each of the three forecasting horizons considered. 
 

455  

 
 
 
 
 
 
 
 
 
 
 
 

456  

Table 3 - Average values of volatility prediction metrics for 1-day ahead. 
 

Model R2 training set ↑ R2 test set ↑ MSE training set ↓ MSE test set ↓ 

GS-ARIMA 0.441 0.553 5.52 x10-8 7.08 x10-8 

PSO-ESN 0.634 0.632 5.74 x10-8 5.81 x10-8 

HAR-PSO-ESN 0.637 0.635 5.75 x10-8 5.78 x10-8 

HAR 0.650 0.633 5.78 x10-8 5.81 x10-8 

GS-MLP 0.647 0.625 6.07 x10-8 6.31 x10-8 
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459  

Table 4 - Average values of volatility prediction metrics for 5-days ahead. 
 

Model R2 training set ↑ R2 test set ↑ MSE training set ↓ MSE test set ↓ 

GS-ARIMA 0.412 0.444 6.35 x10-8 7.08 x10-8 

PSO-ESN 0.485 0.480 8.27 x10-8 5.81 x10-8 

HAR-PSO-ESN 0.535 0.510 7.53 x10-8 5.78 x10-8 

HAR 0.499 0.481 8.33 x10-8 5.81 x10-8 

GS-MLP 0.552 0.496 7.76 x10-8 6.31 x10-8 



460 Table 5 - Average values of volatility prediction metrics for 21-days ahead. 
 

Model R2 training set ↑ R2 test set ↑ MSE training set ↓ MSE test set ↓ 

GS-ARIMA 0.765 0.222 39.2 x10-7 1.26 x10-7 

PSO-ESN 0.268 0.264 1.18 x10-7 1.19 x10-7 

HAR-PSO-ESN 0.297 0.298 1.11 x10-7 1.16 x10-7 

HAR 0.256 0.224 1.25 x10-7 1.27 x10-7 

GS-MLP 0.308 0.272 1.21 x10-7 1.26 x10-7 
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464 Figure 9 - Swarm plots of R2 of predictions for (a) CAT, (b) EBAY, and (c) MSFT datasets. 

465 
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Figure 10 - Swarm plots of MSE of predictions for (a) CAT, (b) EBAY, and (c) MSFT datasets. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

468 

469 Figure 11 - Comparison of predicted and observed values for (a) EBAY 1-step ahead, (b) MSFT 5- 
470 steps ahead, and (c) MSFT 21-steps ahead. 

471 

472 5.2 Statistical significance test 

473 The statistical significance of results is performed through Nemenyi post-hoc test after Friedman’s 

474 rank test (Table 6) considering the results of 45 different experiments (i.e., 5 models, 3 test sets, and 

475 3 forecasting horizons) as illustrated in Figure 8. Significance has been evaluated considering the R² 

476 (Fig. 10) and the MSE (Fig. 11) performance metrics. The small 𝑝-values in Table 5 indicate that there 

477 are significant differences in forecasting performance among the models considered. 
 

478 A prediction model is considered statistically different from another if their ranks differ at least the 

479 Nemenyi critical distance. Graphically, there is no statistical evidence to support that the models 

480 connected by a thick line in the critical distance (CD) diagram are statistically different. The proposed 

481 HAR-PSO-ESN performs significantly better (higher R2 and lower MSE), with lower ranks in Friedman’s 

482 test in comparison to all other models (Figs. 12 and 13). However, the ranking for the alternative 

483 approaches based on the CD differs depending on whether the forecasting accuracy metric is the R² 

484 or the MSE. 



485 In the case of the R2 metric, GS-MLP is the second-best prediction model, and significantly different 

486 from the other ones. The PSO-ESN and HAR models presented no significant difference, whereas the 

487 GS-ARIMA performs worst. As for the MSE metric, PSO-ESN is the second-better followed by the HAR 

488 model, and GS-ARIMA and GS-MLP performed worst, without significant differences from each other. 
 
489  

 

490 Table 6 - Friedman's average ranks. 
 

Model R2 average rank MSE average rank 

GS-ARIMA 4.78 4.44 

PSO-ESN 3.00 2.00 

HAR-PSO-ESN 1.44 1.44 

HAR 3.44 3.11 

GS-MLP 2.33 4.00 

𝑝-value 1.67 x10-4 1.02 x10-4 

491  
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493 Figure 12 – CD of Nemenyi post-hoc test considering R2 metric. 

494 

 

495 

496 Figure 13 – CD of Nemenyi post-hoc test considering MSE metric. 
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499 6 CONCLUSIONS 
 

500 Predictions of realized volatilities for three companies listed on the Nasdaq stock exchange have been 

501 performed by four existing models as benchmarks, which are ARIMA, HAR, MLP, and ESN, and a novel 

502 proposed model named HAR-PSO-ESN. The predictions were obtained for three alternative forecasting 

503 horizons: 1-day ahead, 1-week ahead, and 1-mont ahead. The prediction accuracies have been 

504 evaluated in terms of the R2 and MSE performance metrics, and the statistical comparison has been 

505 made through a Friedman’s test followed by a post-hoc Nemenyi test. 
 

506 The proposed HAR-PSO-ESN model combines the well-established HAR model widely used in 

507 econometrics (Vortelinos, 2017; Gong and Lin, 2019) with the emerging ESN recurrent neural network 

508 based on reservoir computing paradigm. In the proposed hybrid model, the HAR carefully handcrafted 

509 features have been fed into an ESN architecture, which has its hyperparameters tuned by the PSO 

510 metaheuristic. 
 

511 The proposed model delivers more accurate forecasts in comparison to the benchmark models in the 

512 vast majority of the cases, and the difference in forecasting accuracy is found to be significant 

513 according to the statistical tests performed. The average R2 (MSE) of the forecasts produced by the 

514 proposed HAR-PSO-ESN model on the test is higher (lower) in comparison to the benchmark models 

515 in the three forecasting horizons considered. 
 

516 Future research can consider including additional exogenous features to the proposed model as well 

517 as implementing alternative specifications such as the singular spectrum analysis as in Moreno and 

518 Coelho (2018), ensemble learning algorithms such as stacked learning, boosting, and bagging 

519 (Caldeira et al., 2017; Ribeiro and Coelho, 2020), non-linear system identification techniques (Ayala 

520 et al., 2015), expand the set of compared models and datasets, as well as applying different 

521 metaheuristics for the ESN hyperparameters tuning, such as the cheetah based optimization algorithm 

522 (Klein et al., 2018), the cuckoo optimization algorithm (Rajabioun, 2011; Coelho et al., 2014), the 

523 falcon optimization algorithm (Vasconcelos Segundo, Mariani, and Coelho, 2019a), and the owls' 

524 optimization  algorithm  (Vasconcelos  Segundo,  Mariani,  and  Coelho,  2019b).  The Bayesian 

525 optimization of ESN is also a promising approach (Ribeiro et al., 2020). Besides, it is interesting to 

526 investigate the performance of deep ESN architectures for stock price volatility prediction. 
 

527 Finally, it is interesting to consider as future research adopting alternative methods to select the PSO 

528 parameters in a prediction context. In this regard, future works may explore this issue building on 

529 the works of Armaghani et al. (2017), Dehghanbanadaki et al. (2020), Huang et al. (2020), 

530 Harandizadeh et al. (2020), and Armaghani et al. (2020a). Moreover, a new performance metric 

531 named a20-index can be considered in future works to better evaluate and compare the forecasts 

532 of different models as in Armaghani et al. (2020b). 
 
533  

534  

535  

536  

537  
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