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A B S T R A C T   

Background: Wearable monitoring devices based on inertial sensors have the potential to be used as a quantitative 
method in clinical practice for continuous assessment of gait disabilities in Parkinson’s disease (PD). 
Methods: This manuscript introduces a new gait monitoring system adapted to patients with PD, based on a 
wearable monitoring device. To eliminate inter- and intra-subject variability, the computational method was 
based on heuristic rules with adaptive thresholds and ranges and a motion compensation strategy. The experi
mental trials involved repeated measurements of walking trials from two cross-sectional studies: the first study 
was performed in order to validate the effectiveness of the system against a robust 3D motion analysis with 10 
healthy subjects; and the second-one aimed to validate our approach against a well-studied wearable IMU-based 
system on a hospital environment with 20 patients with PD. 
Results: The proposed system proved to be efficient (Experiment I: sensitivity = 95,09% and accuracy = 93,64%; 
Experiment II: sensitivity = 99,53% and accuracy = 97,42%), time-effective (Experiment I: earlies = 13,71 ms 
and delays = 12,91 ms; Experiment II: earlies = 12,94 ms and delays = 12,71 ms), user and user-motion 
adaptable and a low computational-load strategy for real-time gait events detection. Further, it was measured 
the percentage of absolute error classified with a good acceptability (Experiment I: 3,02 ≤ ε%≤12,94; Experi
ment II: 2,81 ≤ ε%≤13,45). Lastly, regarding the measured gait parameters, it was observed a reflection of the 
typical levels of motor impairment for the different disease stages. 
Conclusion: The achieved outcomes enabled to verify that the proposed system can be suitable for gait analysis in 
the assistance and rehabilitation fields.   

1. Introduction 

Monitoring gait disabilities frequently observed in Parkinson’s dis
ease (PD) is difficult for clinicians, as they are limited to the information 
observed or self-reported during the routine-consultations, resulting in 
subjectivity and limited assessment (Dijkstra, Zijlstra, Scherder, & 
Kamsma, 2008; Moore, Dilda, Hakim, & MacDougall, 2011). It is 
required to increase the frequency of assessment, including more often 
(out of routine consultations) and/or objectively (avoiding subjects’ 
recall of memory). Continuous spatiotemporal gait parameters analysis 
enables to monitor individualized motor performance changes during 
the course of the disease (Del Din, Godfrey, & Rochester, 2016; Dijkstra 
et al., 2008; Link et al., 2009; Moore et al., 2011; Patel et al., 2007). 
Consequently, tracking patients’ gait behavior could constitute a 
biomarker of illness stage, allowing to adopt personalized treatments 
and consequently delaying patients’ motor symptoms (Del Din, Godfrey, 
& Rochester, 2016; Dijkstra et al., 2008; Link et al., 2009; Moore et al., 

2011; Patel et al., 2007). However, there is still no ambulatory system 
that allows clinicians to access this information reliably (Pistacchi et al., 
2017). It is needed to find devices and algorithms which are able to 
provide a continuous gait assessment and allow an assessment more 
oriented to daily motor tasks, as cited by Maetzler, Domingos, Srulijes, 
Ferreira, & Bloem, 2013 and Iijima & Takahashi, 2020. 

Research has focused in new monitoring and assessment technolo
gies based on video-based motion camera systems, robotic systems, and 
virtual reality applications (Godinho et al., 2016). However, these so
lutions are often very costly, limiting their use in clinical settings, 
regardless of their effectiveness (Godinho et al., 2016; Schlachetzki, 
Barth, Marxreiter, Gossler, Kohl, Reinfelder, & Klucken, 2017; Suzuki, 
Mitoma, & Yoneyama, 2017; Zago et al., 2018). Given the mass use of 
smartphones, the number of smart applications for motor monitoring in 
PD increased over the last years (Linares-del Rey, Vela-Desojo, & Cano- 
de la Cuerda, 2019). Advances included to monitor speech and tremor 
besides to provide gait analysis (Palacios-Alonso et al., 2020). 
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Nevertheless, scientific evidence of their usefulness is limited and of 
poor quality and further studies are required to validate these tools and 
customize their use, as indicated in review (Linares-del Rey et al., 2019). 

Recent advances in body-worn sensors enabled a continuous gait 
assessment and availability in domiciliary scenarios. Inertial measure
ment units (IMUs) have been successfully used to measure mobility and 
provide a cost-effective and lightweight solution for comprehensive gait 
assessment in laboratory, clinical, and community environments. Even 
though inertial sensors are not still routinely used for diagnosis of PD or 
treatment assessment purposes (Rastegari, Azizian, & Ali, 2019), they 
have already been used to investigate motor complications in PD as in 
(Beck et al., 2018; Del Din, Godfrey, & Rochester, 2016; Del Din, God
frey, Galna, Lord, & Rochester, 2016; Hundza et al., 2014; Lipsmeier 
et al., 2018; Morris et al., 2019; Okuda et al., 2016; Rastegari et al., 
2019; Schlachetzki et al., 2017; Zago et al., 2018). Progression in 
commercial IMUs development has led to novel algorithms for gait 
events detection based on inertial data processing (Alvarez, Lo, Rodri
guez-urı, Diego, & Gonza, 2010; Beck et al., 2018; Del Din, Godfrey, & 
Rochester, 2016; Del Din, Godfrey, Galna et al., 2016; Gonçalves, 
Moreira, Rodrigues, Minas, Reis, & Santos, 2018; Hundza et al., 2014; 
Lipsmeier et al., 2018; Morris et al., 2019; Okuda et al., 2016; Schla
chetzki et al., 2017; Trojaniello, Ravaschio, Hausdorff, & Cereatti, 2015; 
Zago et al., 2018). 

Lower trunk inertial signals processing is an efficient solution when it 
is intended to segment the human gait, using just one inertial sensor 
without requiring large processing requirements, and enhance the op
portunity to apply the system during the patients’ daily walking tasks 
(Alvarez et al., 2010; Gonçalves et al., 2018; McCamley, Donati, Grim
pampi, & Mazzà, 2012; Menz, Lord, & Fitzpatrick, 2003; Okuda et al., 
2016; Trojaniello et al., 2014, 2015). A previous study accomplished by 
our team (Gonçalves et al., 2018) enabled to detect in real-time five gait 
cycles - Heel-strike (HS), Foot-flat (FF), Toe-off (TO), Mid-stance (MSt) 
and Heel-off (HO) - with an accuracy varying between 93.94 and 
99.98% and earlier/delays of 2.17–11.8 ms, in healthy subjects through 
the analysis of the vertical acceleration of the lower trunk, using a finite 
state machine (FSM) computational method. To the best knowledge of 
the authors, no study in the literature has already validated a real-time 
and versatile threshold-based FSM for gait segmentation from lower 
trunk acceleration particularly with patients with PD (Alvarez et al., 
2010; Gonçalves et al., 2018; Trojaniello et al., 2015). Furthermore, 
systems’ development needs benchmarking validation against robust 
and previously validated systems, before being implemented in clinical 
settings (Morris et al., 2019). Morris et al., 2019 and Zago et al., 2018 
compared an IMU-based wearable system against an instrumented 
walkway and an optoelectronic system, respectively, obtaining relevant 
results with PD patients. However, they performed the experimental 
tests in controlled environments and based on simple walking tests, i.e. 
without velocity variations or inclusion of other walking scenarios 
(Morris et al., 2019; Zago et al., 2018). 

Computational methods based on machine learning are another 
approach that has been heavily explored to recognize patterns in pa
tients’ gait (Beck et al., 2018; Brognara, Palumbo, Grimm, & Palmerini, 
2019; Caramia et al., 2018; Rastegari et al., 2019). However, this 
approach demands high computational power and memory re
quirements, being not feasible for real-time applications (Brognara 
et al., 2019), besides to be frequently used for pathological gait classi
fication and not for gait events segmentation (Beck et al., 2018; Brog
nara et al., 2019; Caramia et al., 2018; Rastegari et al., 2019). Real-time 
implementations are relevant for integration of the motion system with 
actuation systems to provide active motor assistance and thus producing 
high-aid technologies. Indeed, to mitigate gait-associated impairments 
in PD, patients may benefit from biofeedback devices that integrate a 
motion analysis system to collect, for instance, users’ gait information 
and, in real-time, process acquired data and provide sensory cues 
accordingly (Sweeney et al., 2019). 

A comprehensive and critical examination on previous gait 

monitoring systems in PD field allows to identify some challenges that 
remain to fulfill, including: (i) limited and inconsistent implementations 
for outside laboratory conditions; (ii) critical validation of FSM-based 
computation methods with the end-users; (iii) limited computational 
solutions for real-time applications able to overcome inter/intra-subject 
variability; (iv) absence of automatic and adaptable systems to the pa
tients’ movement, i.e. providing motion compensation; and (v) further 
analysis between gait parameters and clinical scales associated to PD, as 
Hoehn & Yahr scale (H&Y) and Unified Parkinson’s Disease Rating Scale 
(UPDRS) (Goetz et al., 2008; Hoehn & Yahr, 1967). In this sense, the 
purpose of this study was to take a systematic approach to address each 
of these challenges, holding three main goals. 

First, this research aimed to implement a new gait monitoring system 
adapted to PD able to analyze patients’ walking information continu
ously and objectively outside a laboratory context, in clinical environ
ment. The system relies on the use of recent wearable technology to 
guarantee more freedom of movement to the patients, being able to be 
used in different situations. We present a compact system, based on the 
use of an IMU located in L5 to acquire inertial information. The main 
challenge was the integration of the inertial acquisition system on a 
single wearable device and the development of a real-time, adaptable, 
and time-effective gait events detection algorithm. Based on a heuristic 
approach, an FSM with decision rules to gait characterization was 
implemented to detect five gait events (HS, FF, MSt, TO and HO). 
Considering the dynamic involved in real-life walk conditions, a motion 
compensation strategy and adaptive thresholds were adopted. Further, 
we estimated six promising spatiotemporal gait parameters: step/stride 
duration/length, velocity, and cadence. The second goal covered a 
benchmarking analysis against pre-validated commercial systems. The 
manuscript reports a continuous investigation along two main phases of 
experiments: firstly, it was verified the effectiveness of our gait analysis 
system against a robust 3D motion analysis based on Vicon® capture 
cameras with healthy subjects in a controlled environment; and then, on 
a clinical environment, at Hospital de Braga facilities, with patients with 
PD, our system was validated against a well-studied wearable IMU- 
based system, Xsens®. Gait parameters estimation allowed to compare 
the measured gait-associated metrics with the patients’ PD stage, 
addressing the third goal. Thus, it was possible to analyze if the 
measured spatiotemporal gait parameters corresponded to the motor 
impairment characterized by the PD scales and to verify the hypothesis 
that motor function assessment may indicate a future “bio-mark” of pa
tient stage. The proposed solution is expected to provide a customized 
system able to monitor patients’ gait in a continuous and objective way, 
and to produce a modular motion system that could be integrated on 
actuation systems aiming to provide active assistance. Notwithstanding, 
neurologists will also benefit from this technology by receiving more 
complete information about their patients’ locomotion state. 

2. Materials and methods 

2.1. Gait monitoring system requirements & set-up 

Functional, operational and hardware requirements were identified 
for the proposed solution. For functional requirements, we identified 
that the system should enable time-effective and versatile gait events 
detection and provide gait parameters estimation. Regarding opera
tional requirements, we defined that the system instrumentation should 
be fully integrated on a wearable device and include a user-friendly GUI 
able to wirelessly access the device and display the processed data. 
Hardware requirements include system ability to storage the acquired 
and processed data at 100 Hz, Bluetooth wireless network range of at 
least 8 m, a system autonomy of at least 8 h assisting prolonged 
recording, and electrical circuitry integrated into a miniaturized board 
and isolated from the user. The proposed Gait Monitoring System 
comprises five main HW-SW units: (1) Sensory Acquisition Unit, (2) 
Processing Unit, (3) Data Storage Unit, (4) Mobile APP and a (5) Desktop 
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GUI, as represented in Fig. 1. 
Sensory Acquisition unit comprises a single IMU (MPU-6050) for 

acquiring inertial data, which includes an accelerometer and gyroscope 
from a unique sensor board. Data are recorded from both accelerometer 
and gyroscope sensors, with a full-scale range respectively of ± 4 g and 
250◦/s (enough to detect gait events through a lower trunk acquisition) 
at a sampling frequency of 100 Hz. Processing unit receives and pro
cesses the acceleration and gyroscope data and runs the real-time gait 
events detection algorithm. It relies on a microcontroller Atmega 2560 
suitable to establish the serial communication, I2C protocol and SPI bus 
between the other interfaces. A SD card is included to store the inertial 
data and the gait events detected in real-time (by saving the finite state 
machine states). Data processing and saving are also performed at a 
frequency of 100 Hz, which is enough to analyze a complete gait cycle. A 
Bluetooth module is used to communicate with an Android mobile APP, 
to wirelessly start/stop the trials and plot the acquired inertial data. The 
stored information in SD card is downloaded and, from the real-time 
detected gait events and inertial data, gait-associated parameters are 
estimated in a desktop GUI, created in MATLAB®. The use of front-edge, 
miniaturized, light and low power-consumption electronic technology 
allows the system to be fully integrated into a wearable device, an 
instrumented waistband. The presented HW-SW set-up enabled to fulfill 
the identified functional and operational requirements. 

2.2. Gait events detection 

The proposed gait events detection algorithm detects the HS, FF, 
MSt, TO and HO for each leg. Given that this algorithm was firstly 
developed for healthy adults, we named it as H-GED. The method con
sists of six stages: (1) calibration, (2) motion compensation, (3) filtering, 
(4) 1st derivative computation, (5) finite state machine and (6) thresh
olds and events range duration calculation. Both acceleration and 
angular velocity signals are used for the first two stages, whilst only the 
vertical acceleration is used for the next stages, as depicted in Fig. 2. 

Calibration. For on-body calibration routine, 500 samples (accn and 
gyrn) are captured, which are used to calculate an offset that is with
drawn from each of the samples subsequently acquired. This calibration 
allows to eliminate measurement error. 

Motion compensation. Each gait event can be assigned to a specific 
peak in lower trunk inertial signals, which present constant waveforms 
during a complete gait cycle. However, such inertial signal waveforms 
are affected by the users’ motion, like trunk rotations. Aiming to define 
common heuristic decision rules for gait events detection based on in
ertial signal waveforms, it is required to minimize any subjectivity 
introduced by those users’ movements. This procedure is particularly 

relevant for an application of gait monitoring in patients’ home sce
narios, which include different motor daily tasks and multitasking. We 
added a motion compensation strategy to reduce the impact of users’ 
trunk movement besides their natural trunk motion during walking, 
aiming to ensure the constant waveforms of acquired inertial signals. 
Thus, calibrated acceleration and angular velocity samples (accn_calib 
and gyrn_calib) are used to estimate the pitch and roll angles of lower 
trunk: the pitch angle corresponds to rotation of the trunk along the 
frontal plane, while the roll angle concerns to the trunk rotation along 
the sagittal plane. This estimation allows to align the acquired inertial 
signals with the conventional axis regardless the user motion and apply 
common decision rules. Pitch and roll angles estimation were based on 
Kalman Filter, as described in (Mccarron, 2013). Fig. 3 (middle panel) 
depicts an example of the motion compensation of the acceleration 
vertical signal (accn_comp) when a user executes a positive rotation of 
his/her trunk along the frontal plane. It is possible to verify that at the 
time of rotation, the acceleration signal was compensated. 

Filtering. Compensated vertical acceleration samples are filtered 
(accVn_filt) by an exponential filter, which is ideal for real-time imple
mentations, since it does not cause delays in the signal and smooths the 

Fig. 1. Proposed gait monitoring system. HW/SW units (blue): (1) sensory acquisition unit, (2) processing unit and (3) data storage unit embedded in the waistband 
(orange); (4) mobile APP and (5) desktop GUI. System functionalities (green): gait events detection and gait parameters estimation. 

Fig. 2. Computational method for real-time gait events detection in healthy 
adults (H-GED): flowchart of the proposed gait monitoring system. 
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signal. The smoothing factor of the filter was set to 0.5 by trial and error. 
1st derivative computation. After filtering, the 1st derivative is deter

mined (accVn_diff) to detect when the acceleration increases, decreases, 
or remains constant. To deal with noise, the derivatives below a 
threshold (near to zero but empirically set) were assumed as null. This 
allows to detect only major variations, that usually are associated with 
local/global peaks, which can correspond to a gait event, as described in 
Fig. 4.A. 

Finite state machine. We segment the vertical acceleration signal into 
five gait events for each leg (totalizing ten events), where each signal 
peak corresponds to a gait event in the constant waveform during a gait 
cycle (Fig. 4.A). For that, a FSM based on heuristic decision rules is 
implemented by means of a switch case statement, which changes be
tween states in accordance with the decision rules presented in Table 1. 
We specified ten decision rules based on curve tracing techniques 
including the evaluation of signal derivatives (accVn_diff) and adaptive 
thresholds (th_R/L_HS, th_R/L_FF, th_R/L_TO, th_R/L_MSt and th_R/L_HO), as 
depicted in Fig. 4.B. Evaluation of signal derivatives allows to detect 
maximum and minimum peaks (maximum: accVn_diff < 0 & accVn- 
1_diff > 0; minimum: accVn_diff > 0 & accVn-1_diff < 0) and the use of 
thresholds eliminates unclear local peaks (maximum: accVn_diff > th; 
minimum: accVn_diff < th). We defined HS, FF and MSt as maximums, 
and TO and HO as minimums. Each decision rule presented allows to 
trigger from one event to the following. FSM is constituted by eleven 
states that correspond to ten gait events (five for each leg) and one for 
reset state. 

Adaptive thresholds and events range duration calculation. Daily life 
walking situations, as climbing stairs or variations in gait speed affect 
the duration of a gait cycle and the amplitude of inertial signals. 
Traditional FSMs present a static behavior which do not address such 
gait patterns alterations during common human walking situations. To 
overcome this lack and based on our previous work (Figueiredo, Felix, 
Costa, Moreno, & Santos, 2018; Gonçalves et al., 2018), we added a 
versatile feature to the proposed FSM by using adaptive thresholds and 

events range duration instead of static thresholds as typically used. 
Furthermore, this versatility can minimize redundancy from intra/inter- 
usability. The used thresholds in the FSM decision rules (th_R/L_HS, th_R/ 

L_FF, th_R/L_TO, th_R/L_MSt and th_R/L_HO) are adapted every five gait cycles 
(count_gait_cycle = 5) and defined as 80% of the mean value of the ac
celerations of the previous events detected (acc_R/L _HS, acc_R/L _FF, acc_R/ 

L _TO, acc_R/L _MSt and acc_R/L _HO) as depicted in Fig. 4.C. Also, after five 
gait cycles, gait events are detected based on previous event moments 
(pos_R/LHSn-1, pos_R/LFFn-1, pos_R/LTOn-1, pos_R/LMStn-1 and pos_R/LHOn-1) 
and an adaptable estimated range between the previous and actual event 
moments (range_R/LHS, range_R/LFF, range_R/LTO, range_R/LMSt and 
range_R/LHO). This range is calculated every three gait cycles (count_
gait_cycle = 3) and results as 80% of the mean difference between the 
moment of the current event and the previous gait event as indicated in 
Fig. 4.C. Initial values, percentages defined to update the adaptive 
thresholds and events duration range, as also the number of gait cycles 
to calculate these values, were empirically found after an exhaustive 
inspection of the vertical acceleration signal supported by previous work 
and respective findings for different users and walking conditions (Fig
ueiredo et al., 2018; Gonçalves et al., 2018). 

Motion compensation, filtering, 1st derivative computation and the 
adaptive decision rules depend on the current sample and on the pre
vious sample acquired (accn, accn-1, gyrn and gyrn-1), so these values are 
always stored at the end of each cycle. For the first sample acquired, it is 
assumed that the previous sample is zero. Moreover, in order to assign 
an event to a leg, it was mandatory for the user to start walking with the 
right leg, as indicated in (Auvinet et al., 2002). 

2.3. Gait events detection adapted to patients with PD 

The proposed gait events detection algorithm after being validated 
with healthy subjects (H-GED) needed to be adapted to patients with PD 
(PD-GED) through the inclusion of some adaptations in the FSM. 
Further, we added the capability of distinguishing which leg was 

Fig. 3. Vertical acceleration along the phases of the proposed algorithm for a stand up position with positive pitch rotation: 5 s of calibration; 10 s in stand up 
position; approximately 3 s of positive trunk positive rotation; and return to the standup position. Above: raw and calibrated vertical acceleration (accV and 
accV_calib); Middle: calibrated and compensated vertical acceleration (accV_calib and accV_comp); Below: compensated vertical acceleration and filtered compen
sated vertical acceleration (accV_comp and accV_filt). 
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performing an event without initial assumptions, as depicted in Fig. 5. 
Finite state machine adapted to PD. PD patients have a different 

walking pattern, and thus it was necessary to adapt the FSM decision 
rules for gait events detection in PD. We verified from the first six pa
tients, an absence or low prominence of the first local maximum which 
was used to determine the HS (Fig. 6). To overcome this alteration, the 
foot initial contact (HS) is instead defined as in (Auvinet et al., 2002), in 
which the HS corresponds to a global maximum in the acceleration 
signal in the anteroposterior plane. Therefore, we changed the adaptive 
decision rules to detect this peak in the anteroposterior plane, starting to 
consider the anteroposterior acceleration for the Motion Compensation 
(accAPn_comp), Filtering (accAPn_filt), and 1st Derivative Computation 
(accAPn_diff) phases. Force sensor resistors in soles of the patients 
allowed to confirm these alterations, as depicted in Fig. 6.A. As in H-GED 
computational method, FF, TO, MST and HO correspond to maximum 
and minimum peaks on the vertical acceleration signal. Five decision 
rules were implemented to detect these gait events, that allow to trigger 
from one state to another, based on evaluation of signal derivatives 

(accAPn_diff and accVn_diff) and adaptive thresholds (th_HS, th_FF, th_TO, 
th_MSt and th_HO) as indicated in Table 2. 

Event-to-leg assigning. A new phase was added to the gait analysis 
algorithm to assign the detected event to the corresponding leg. The 
identification is based on the analysis of the angular velocity signal, as 
depicted in Fig. 6.B. When a HS event is detected, the signal of the gy
roscope in antero-posterior plane (gyrAPn) is analyzed: if this signal is 
positive, the corresponding leg which performed the HS gait event is the 
left one; but, if the signal is negative, the HS event is assigned to the right 
leg. When the right leg is assigned to a HS, except for the TO event, the 
following events (FF, MSt and HO) are assigned to the same leg (Alvarez 
et al., 2010; Auvinet et al., 2002). TO event corresponds to the leg 
opposite to the one identified in HS event as depicted in Fig. 6.A in 
accordance with what is described in (Alvarez et al., 2010; Auvinet et al., 
2002). This alteration enabled to reduce the number of decision rules 
used in the H-GED and ensure that the detected event would be correctly 
assigned to the leg that is performing the movement. 

Adaptive thresholds and FF range duration calculation. The adaptive 

Fig. 4. A: Lower trunk vertical acceleration over one stride for a healthy subject. B: Adaptive thresholds, Events Range Duration and highlight for the derivative 
(accV_diff) behavior for a maximum detection (HS, FF and MSt) and for a minimum detection (TO and HO); C: Zoom-in flowchart stage Threshold &Events Range 
Duration Calculation of the proposed method. 
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thresholds (th_HS, th_FF, th_TO, th_MSt and th_HO) are calculated as previously 
in H-GED, but the events range duration needed to be adjusted (Fig. 6. 
C). Instead of calculating an interval for each event, only an interval for 
the FF event was calculated, because it corresponds to the most promi
nent acceleration peak in the patients’ acceleration signals. Therefore, 
after the occurrence of five gait cycles, each of the FF peaks were 
detected based on their respective peak in the previous gait cycle 
(pos_RFFn-1). The FF peaks were considered valid only if they belong to an 
average of event ranges calculated every five gait cycles (range_RFF). 

2.4. Gait parameters estimation 

Spatiotemporal gait parameters estimation is based on the detected 
HS gait event (initial contact) from H/PD-GED (Del Din, Hickey et al., 
2016). Step durationand stride duration are estimated as follows: 

step durationi [s] = ti+1HS − tiHS (1)  

stride durationi [s] = ti+2HS − tiHS (2)  

where, tiHS correspond to the instants at which occurs the HS, and 
ti+1HSand ti+2HS are the instants that occurs the follow TOs. 

To estimate steplength[m] it is used the inverted pendulum method, 
which is based on the assumption of a compass gait cycle and that the 
vertical movement of the center of mass during a step (between the left 
and right HS) can be approximated to the one described by a point mass 
suspended at the end of an inverted pendulum, as described in (Del Din, 
Hickey et al., 2016). The method needs the height (L: pendulum length), 
experimentally measured from the floor to the place where the sensor is 
located, and the height of the center of mass during the step (h), which 
can be obtained by the double integration of the vertical acceleration 
(av). To overcome some drift in cumulative integration, we filter the 
vertical acceleration with zero-lag band-pass Butterworth Filter of 4th 
order (cut-off frequencies of 0,1 and 5 Hz) as described in (Zijlstra & Hof, 
2003; Del Din, Hickey et al., 2016): 

step lengthi [m] = 2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2Lh − h2forh=
∫∫ti+1HS

tiHS
avdt.

√
√
√
√

(3) 

The stride length was estimated as the sum of two consecutive steps 
(e.g., right leg step plus left leg step), as described by the following 
equation: 

stride lengthi [m] = step lengthi + step lengthi+1 (4) 

Gait velocity is obtained by dividing the steplengthi by the 
stepdurationi: 

gait velocityi[m/s] = step lengthi/step durationi (5) 

Cadence gait temporal parameter was assessed as follows: 

cadence[steps/min] = gait velocityiÂ⋅60/step lengthi (6)  

3. Experimental validation 

Experimental validation considered two different experiments. In 
Experiment I, our solution was benchmarked against a robust 3D motion 
analysis based on capture cameras Vicon®, with healthy subjects, 
running the H-GED software routines for gait events detection. In 
Experiment II, PD-GED software routines adapted for PD patients were 
used and validated against a well-studied wearable IMU-based system, 
Xsens®, in a hospital environment, with PD patients. The experimental 
protocols aimed to evaluate the efficiency of the system (i) to segment 
gait for different walking conditions and (ii) to estimate spatiotemporal 
parameters, through repeated measures of gait patterns recorded in 
different gait situations. 

Table 1 
Gait events and corresponding decision rules of FSM in H-GED algorithm.  

Condition Gait Events Decision Rules 

1 RHS (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_R_HS) & (acc_index ≥ pos_RHSn-1 + range_RHS) 
2 RFF (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_R_FF) &(acc_index ≥ pos_RFFn-1 + range_RFF) 
3 LTO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_L_TO) & (acc_index ≥ pos_LTOn-1 + range_LTO) 
4 RMSt (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_R_MSt) & (acc_index ≥ pos_RMStn-1 + range_RMSt) 
5 RHO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_R_HO) & (acc_index ≥ pos_RHOn-1 + range_RHO) 
6 LHS (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_L_HS) & (acc_index ≥ pos_LHSn-1 + range_LHS) 
7 LFF (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_L_FF) & (acc_index ≥ pos_LFFn-1 + range_LFF) 
8 RTO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_R_TO) & (acc_index ≥ pos_RTOn-1 + range_RTO) 
9 LMSt (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_L_MSt) & (acc_index ≥ pos_LMStn-1 + range_LMSt) 
10 LHO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_L_HO) & (acc_index ≥ pos_LHOn-1 + range_LHO)  

Fig. 5. Computational method for the real-time gait events detection adapted 
to patients with PD (PD-GED): flowchart of the proposed gait monitoring sys
tem adapted to patients with PD. 
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3.1. Experiment I 

3.1.1. Participants 
Ten healthy participants (8 males and 2 females) were involved in 

five walking condition trials. These participants present a 25.50 ± 2.01 
years old mean ± standard deviation age, a 71.95 ± 10.09Kg mean ±
standard deviation weight and a mean ± standard deviation height of 
175.70 ± 8.41 cm. They signed a written informed consent to participate 
in this study. The study was conducted according to the rules of ethical 
conduct of the Life and Health Sciences defined by the University of 
Minho Ethics Committee CEICVS 006/2020, addressing the principles of 
the Declaration of Helsinki and the Oviedo Convention. 

3.1.2. Experimental protocol 
Fig. 7 depicts the experimental setup on the laboratory environment 

assessment (Fig. 7.A and .B) and the protocol timeline followed in 
Experiment I (Fig. 7.C). After following the VICON® protocol calibra
tion, a START trigger was supplied from a tablet to the VICON® base 
station and to the instrumented waistband (T0) to start data acquisition, 
in order to synchronize data acquisition between both systems. Then, 
participants accomplished one of the five pre-defined walking trials 
(T1): (1) walk 10 m, turn for a preferred side, and return to the started 
point (vVI1); (2) walk 10 m, turn to the side opposite to condition (1), 
and return to the starting point (vVI2); (3) walk 10 m while accom
plishing a trunk pitch movement, and return to the starting point (vVP); 
(4) walk 10 m while accomplishing a trunk roll movement, and return to 

Fig. 6. A. Top: Lower trunk vertical acceleration for a patient with PD; A. Middle: Anteroposterior acceleration and angular velocity; A. Bottom: Force sensor 
resistive output for a patient with PD. Highlights for gait events over a stride, adaptive thresholds, and FF range. B: Zoom-in flowchart stage Event-to-leg assigning of 
the proposed method; C: Zoom-in flowchart stage Thresholds & FF Range Duration Calculation of the proposed method. 
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the starting point (vVR); and (5) walk 10 m and overcome a step fitness 
(vVS). Participants performed these five walking trials sequentially for a 
comfortable (“normal”) (NVw), a slow (SVw), and a fast velocity (FVw). 
When participants returned to the start position, a new trigger was 
supplied to both systems in order to stop data acquistion (T2). Vicon® 
motion capture system was used to establish the ground-truth. Vicon 
Nexus User-Interface provided the software-tools for kinematic data 
analysis (Vicon, 2010). VICON® system was set to acquire the 3D mo
tion capture at 100fps to match our acquiring sample rate. It was used 
the Full-body Model Plug-in to place the markers on participants’ body, 
as depicted in Fig. 7.B. In order to eliminate any acquisition bias and 
consequent statistical analysis, sensors were positioned in the partici
pants’ bodies using the same anatomical reference and by the same team 
member. 

3.1.3. Data analysis 
The acquired inertial data and reference gait events were stored as 

text files on a SD card, using the data storage system integrated on the 
waistband, for a subsequent validation through Matlab® (2018a, The 
Mathworks, Natick, MA, USA). We focused our data analysis in three 
main goals. 

First, to evaluate the performance of H-GED algorithm, the detected 

gait events were compared with the identified events from VICON®, 
considering the position of the markers on the feet, for each gait cycle, 
being analyzed a total of 2022 steps from both feet. From position 
analysis of the markers on feet, gait events were identified and compared 
with our identifications from H-GED. From the SD card module, we 
download the inertial signals and the gait events detected in real-time 
(expressed by saving the FSM states) during the experimental tests. 
These values were used to compare against the synchronized ground- 
truth systems. Detected gait events were evaluated considering their 
sensitivity (Eq. (7)) and accuracy (Eq. (8)). True positives (TP) corre
sponded to the gait events correctly identified, true negatives (TN)

concerned to gait events that the algorithm correctly detected as a non- 
event, false positives (FP) regarded to gait events not correctly identified 
and false positives (FN) framed to events that should had been detected. 
Earlier and delayed detections were also evaluated based on their per
centage of occurrence, duration, and impact on a gait cycle duration 
(range of motion error (ROME) calculation). Earlier and delayed de
tections were considered from the TP detections. 

Sensitivity = TP/(TP+FN) (7)  

Accuracy = (TP+TN)/(TP+ TN +FP+FN) (8) 

Table 2 
Gait events and corresponding decision rules of FSM in PD-GED algorithm.  

Condition Gait Events Decision Rules 

1 HS (accAPn_diff < 0) & (accAPn-1_diff > 0) & (accAPn_diff > th_HS) 
2 FF (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_R_FF) & (acc_index >= pos_RFFn-1 + range_RFF) 
3 TO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_TO) 
4 MSt (accVn_diff < 0) & (accVn-1_diff > 0) & (accVn_diff > th_MSt) 
5 HO (accVn_diff > 0) & (accVn-1_diff < 0) & (accVn_diff < th_HO)  

Fig. 7. A: Experimental setup of the laboratory environment assessment in Experiment I; B: Participant instrumented with the VICON® markers and the proposed 
instrumented waistband; C: Experimental protocol steps of Experiment I. 
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Second, FSM adaptability and events range duration were graphi
cally demonstrated. Furthermore, sensitivity and accuracy metrics were 
also estimated to analyze the impact of applying adaptive thresholds and 
a motion compensation strategy in H-GED algorithm performance 
considering three conditions: (1) with adaptive thresholds & events 
range duration and with motion compensation (final solution); (2) with 
static thresholds and events range duration; and (3) without motion 
compensation. To evaluate the ability of the motion compensation 
routine implemented in the gait events detection, we compared the pitch 
and roll angles estimated by our proposed solution and the angles 
measured with the ground-truth system in the respective marker placed 
on the same body location (L5). Therefore, we analyzed the ROM per 
stride for each angle and after checking normality, we tested the hy
pothesis that there are no statistically significant differences in the an
gles measured with both systems (ρ > 0.05). Also, the root-mean-square 
deviation (RMSD) and the normalized root-mean-square deviation 
(NRMSD) were calculated as magnitude-based deviation measurements. 
Lastly, we assessed the waveform similarity from the average ROM of 
vertical acceleration acquired with our sensor and the respective marker 
placed on the same body location (L5). Also, the deviation error mea
surements were analyzed, namely RMSD and NRMSD. 

Third, we used statistical analysis based on the percentage of abso
lute error (ε%) to address a benchmarking analysis of gait parameters 
estimation and often used to measure the error of new proposed solu
tions (Jakobsen, Gluud, Winkel, Lange, & Wetterslev, 2014). For that, 
we estimated the absolute difference between the corresponding gait 
spatiotemporal parameters with both systems, assuming the Vicon® 
measurements as the true reference. Further, it was used a classification 
criterion of acceptability to provide a reliability assessment of the per
centage of absolute error that enabled to characterize the obtained re
sults (Fusca et al., 2018). The adopted criterion is based on four 
categories defined by standard statistical thresholds for significance 
analysis (Jakobsen et al., 2014) and able to classify as: (1) Excellence: if 
ε% < 5%; (2) Good: if 5% ≤ ε% < 10%; (3) Sufficient: if 10% ≤ ε% <
20%; and (4) Not acceptable: if ε% ≥ 20%. 

3.2. Experiment II 

3.2.1. Participants 
Twenty patients with idiopathic PD participated in Experiment II (12 

males and 8 females). These participants present a 67.70 ± 9.68 years 
old mean ± standard deviation age, a 69.30 ± 11.60Kg mean ± standard 
deviation weight, and a 162 ± 4.75 cm mean ± standard deviation 
height. Further, they were assessed based on PD scales, namely the H&Y 
scale, with a 2.1 ± 0.54 mean ± standard deviation; and the UPDRS-III 
with a 25.80 ± 8.13 mean ± standard deviation score. All patients gave 
informed consent and the study granted ethical approval by the Hospital 
of Braga Ethical Commission 36/2018, following the principles of the 
Declaration of Helsinki and the Oviedo Convention. Patients were 
recruited if they present H&Y ≤ 3, age between 50 and 85 years old, do 
not have cognitive impairment, present autonomous gait and are eval
uated by neurologists. All patients when performed the clinical trials 
were in the ON phase. 

3.2.2. Experimental protocol 
Fig. 8 depicts the experimental setup on the clinical environment 

assessment (Fig. 8.A and .B) and the protocol timeline followed in 
Experiment I (Fig. 8.C). Experimental protocol steps included a first 
phase of Xsens® calibration. To start data acquisition, a trigger was sent 
from instrumented waistband to Xsens® base station (T0). Subse
quently, participants performed one of the required walking trials (T1) 
for a distance of 10 m on unobstructed hallway, at three different gait 
velocities (NV - normal velocity, SV - slow velocity and FV - fast veloc
ity). Each participant performed 3 trials for each gait velocity, per
forming a total of 9 walking trials. At the end of the walking trial, a stop 
trigger was supplied from the instrumented waistband to the Xsens® 
base station (T2). Data acquisition was started/stopped via Bluetooth by 
a mobile APP. Between velocity change trials, the waistband was 
removed and then replaced to assess test–retest repeatability. The MVN 
BIOMECH system from Xsens®, an ambulatory 3D human kinematic 
measurement system, was employed as ground-truth. We centered the 
analysis in the kinematic data for gait analysis and it was used the Lower 
Body Plug-in to place the inertial sensors, being used seven sensors, as 
depicted in Fig. 8.C (the same team member always placed the sensors 
on the participant). The ground-truth system recorded the inertial in
formation at 100 Hz to guarantee the synchronism between both sys
tems. This is a well-established IMU-based system for benchmarking 
analysis, able to track the human gait indoors and outdoors (Technol
ogies, 2018). 

Fig. 8. A: Experimental setup of the clinical environment assessment in Experiment II; B: Participant instrumented with the XSens® inertial units and the proposed 
instrumented waistband; C: Experimental protocol timeline of Experiment II. 
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3.2.3. Data analysis 
A total of 4236 steps from both feet were analyzed through Matlab®. 

For each gait cycle, the real-time detected gait events (stored on the SD 
card module) were compared with the output events from Xsens® 
regarding its sensitivity (Equation (7)), accuracy (Equation (8)) and 
earlier and delayed detections by its percentage of occurrence, duration, 
and ROME (as described in Experiment I). The adaptability and FF range 
duration of the FSM were graphically presented. To address a bench
marking analysis of gait parameters estimation, we computed the per
centage of absolute error (ε%), assuming the Xsens® outcomes as the 
reference data. A reliability assessment on the obtained percentages of 
absolute error was conducted by means of the standard statistical 
thresholds 5%, 10%, and 20%, which enabled to classify the error 
acceptability as excellence (for ε% < 5%), good (if 5% ≤ ε% < 10%), 
sufficient (if 10% ≤ ε% < 20%), and not acceptable (in case of ε% ≥
20%). 

Lastly, it was accomplished a study between the measured gait pa
rameters for the trials with normal velocity (NV) and the patients’ stage 
in UPDRS-III and H&Y scales. UPDRS-III scale patients in terms of their 
motor function, while the H&Y assesses how symptoms evolve with 
disease progression. We investigated whether the measured gait 
spatiotemporal parameters corresponded to motor impairments and 
illness stage defined by the UPDRS-III and H&Y scales. The UPDRS-III 
scale is associated with lower extremity function, so based on (Schla
chetzki et al., 2017), we grouped the patients according to the level of 
their motor impairment scores in three groups: UPDRS-III low (L):1–12 
(N = 2); UPDRS-III middle (M):13–23 (N = 4); and UPDRS-III high (H) 
≥ 23 (N = 14). Regarding H&Y scale, based on (Perlmutter, 2009), 
patients were grouped by their stage: 1 – unilateral disease (N = 2); 2 – 
bilateral disease (N = 14); and 3 – mild to moderate bilateral disease (N 
= 4). Table 3 summarizes this information. Then, the measured group 
stride duration, stride length, step duration, step length, velocity and 
cadence were analyzed (cross-sectional study) according to the UPDRS- 
III and H&Y stage. Data were observed through the mean of the esti
mated gait parameters and standard error measurement (SEM). SEM is 
the quotient between the standard deviation for the square root of the 
sample size, which allows comparing the dispersion of values between 
groups. 

4. Results 

4.1. Results of experiment I 

1) Performance metrics for H-GED algorithm. Table 4 presents the 
performance of the real-time algorithm for gait events detection (H- 
GED) against the ground-truth outcomes (Vicon® system), for the 
different walking conditions (vVw). It shows the H-GED sensitivity, 
accuracy and, earlier and delayed detections (by means of their per
centage of occurrence, duration, and ROME). 

2) FSM adaptability & motion compensation analysis. We highlight in 
Fig. 9.A how the proposed adaptative thresholds and events range 
duration progress over walking time for a participant in first trial 
(NVI1). It is depicted the adaptive thresholds associated to the ampli
tude of the acceleration signal (th_R/L_HS, th_R/L_FF, th_R/L_TO, th_R/L_MSt and 
th_R/L_HO) and the events range duration (range_R/LHS, range_R/LFF, 
range_R/LTO, range_R/LMSt and range_R/LHO). Note that the proposed 
thresholds, used in the decision rules, were adaptively calculated every 

five gait cycles and the first thresholds were set empirically. Also, it is 
possible to observe that the events range duration, after five strides, 
were adaptively calculated every three gait cycles. In addition, we 
verified that the algorithm’s adaptability provides a proper detection of 
the ten proposed gait events: 1 – Right HS, 2 – Right FF, 3 – Left TO, 4 – 
Right MSt, 5 – Right HO, 6 – Left HS, 7 – Left FF, 8 – Right TO, 9 – Left 
MSt, and 10 – Left HO. 

An increase in gait speed results in higher values of lower trunk ac
celeration with shorter gait cycles, supporting the need to update the 
thresholds and events range duration (Auvinet et al., 2002). Therefore, 
as a title of example, it is depicted in Fig. 9.B the thresholds associated to 
a maximum and minimum peak in acceleration signal (th_R_HS and 
th_R_TO, respectively) and an event range (range_RHS) behavior, for the 
same participant’s walking task (vI1) for normal, slow and fast velocity. 
We observed that for slow velocities, the thresholds’ values decrease for 
lower magnitude of the maximums and minimums. Likewise, for lower 
velocities, there is an increase in gait cycles duration, so the event ranges 
are higher. Conversely, when the velocity is faster, the values of the 
thresholds increase and the events range duration decrease. 

Table 5. presents the outcomes from the analysis on H-GED sensi
tivity and accuracy when applying (i) adaptive thresholds & events 
range duration and motion compensation (Condition (1)), (ii) static 
threshold (Condition (2)) and (iii) without motion compensation (Con
dition (3)). It was observed that H-GED algorithm performance de
creases when it is used static thresholds and events range duration 
(Condition (2)) and without motion compensation (Condition (3)). We 
concluded that the inclusion of a versatile algorithm and application of a 
motion compensation strategy results in a higher performance. 

We compared the estimated pitch and roll angles estimated by our 
proposed solution and the ground-truth system. Table 6 presents the 
ROM per stride, RMSD and NRMSD computed from the values of angles 
estimation for the different trials (vVw). There were not statistically 
differences between the estimated angles with both systems (ρ ≥ 0,10). 
Also, the error deviation measurements, RMSD and NRMSD, exhibit low 
mean values (Pitch estimation: RMSD = 6,42◦ and NRMSD = 6,90%; 
Roll estimation: RMSD = 6,68◦ and NRMSD = 6,44%). The worst error 
deviation measurements were obtained for the trials with higher ve
locities (FVw) and for the trials which included the walking task for 
perform the pitch/roll trunk movement (vVP and vVR). Table 6 also 
shows the ROM per stride, RMSD and NRMSD computed from the 
average values of vertical acceleration for the different trials (vVw). 
There is a similarity between the signals (ρ ≥ 0,19) for the different 
walking trials, highlighting the low deviations between the signals ac
quired (total mean of 3.11 m/2s for RMSD and 4,91% for NRMSD). The 
trials which involved a fast velocity (FVw), obtained the highest values 
of deviation (RMSD ≥ 2,77 m/s2; NRMSD ≥ 4,50%, ρ ≥ 0,19), as well as 
the walking conditions which included the use of a step (vVS) (RMSD ≥
2,73 m/s2; NRMSD ≥ 4,57%, ρ ≥ 0,19). Probably because the sensor is 
more susceptible to movement artifacts for faster walking and when it 
was required to overcome a step. 

3) Benchmarking analysis of gait parameters estimation. To accomplish 
a benchmarking analysis of gait parameters estimation it is highlighted 
in Table 7 the percentage of absolute error (ε%) measured between the 
estimated values (stride duration, stride length, step duration, step 
length, velocity and cadence) with our system and the ground-truth 
system (reference system), for the different trials (vVw). Also, it shows 
the mean percentage of absolute error assuming the variable velocity for 
trials (last column). We used a reliability standard statistical threshold 
for significance analysis to classify the error estimation as excellent, 
good, sufficient, and not acceptable, represented by colors in Table 7. 

The highest percentage of absolute error was obtained when calcu
lating the step length for a slow velocity (ε%=12,94%). The worst per
centages of absolute error were obtained for trials which involved a 
slower speed (SVw: x±SD = 0,80 ± 0,03 m/s). The gait parameters 
estimation depends on the detection of gait events, namely HS, a fact 
that could explain the higher error values obtained in these trials, since 

Table 3 
Patients grouped regarding UPRDS-III an H&Y scales.  

UPDRS - III Low (Score: 1–12) N = 2 
Medium (Score: 13–23) N = 4 
High (Score ≥ 23) N = 14 

H&Y Unilateral disease (Score: 1) N = 2 
Bilateral disease (Score: 2) N = 14 
Mild to moderate bilateral disease (Score:3) N = 4  
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for slower velocities the gait event detection algorithm (H-GED) per
formance decreased. Slower velocities produce waveforms with slightly 
different shapes that no longer respect the designed rules. We can infer 
that the efficiency of detecting gait events influences the estimation of 
gait parameters. Even so, the errors obtained were mostly categorized as 
good (5,15%≤ε%≤15,98%, highlighted as blue) and, for the trials with 
velocity closest to the participants’ comfortable speed (NV), we obtained 
excellent error classification (3,02%≤ε%≤4,59%, highlighted as green). 

4.2. Results of Experiment II 

1) Performance Metrics for PD-GED algorithm. Table 8 shows the 
performance of the algorithm for gait events detection adapted for pa
tients with PD (PD-GED) against the ground-truth data (Xsens® system). 
For the different trials (vV), we investigated the sensitivity, accuracy 
and earlier and delayed detections (regarding their percentage of 
occurrence and ROME). 

The proposed method showed to be significantly sensitive (total 
mean of 99,53%) and accurate (total mean of 97,42%) for detection of 
all events at distinct velocities. When participants accomplished the 
walking trials with a slower velocity (SV: 0,71 ± 0,06 m/s), the results 
showed the worst performance for gait events detection (sensitivity =
99,42% and accuracy = 96,49%). As previously obtained, this may be 
due to the lower prominence of the acceleration peaks observed in 
slower velocities, making difficult the detection of maximums/mini
mums. From the earlier and delayed detection analysis, it is highlighted 
the time-effectiveness of the proposed computational method, given 
their low mean percentages (E: 16,73% and D: 16,25%). There are not 
high differences between the earlier and delayed detections (E: 2,94 ±
4,32 ms and ROME = 0,82%; D: 12,71 ± 1,31 ms and ROME = 0,91%). 
The worst values were obtained for trials with lower velocities but did 
not contribute with significant earlies/delays in gait detection, since 
their impact on a gait cycle was very low (ROME ≤ 0,91%). As antici
pated, the total number of steps increases for slower velocities. 

2) FSM adaptability. Fig. 10.A shows the adaptive thresholds associ
ated to the amplitude of the acceleration signal HS/TO/MSt threshold 
(th_HS, th_ FF, th_ TO, th_ _MSt and th_ HO) and FF range (range_FF) for a subject 
with normal walking velocity. Firstly, we observed that the adaptative 
thresholds and FF range duration were adaptively computed every five 
gait cycles and the first thresholds were set empirically. This confirms 
the detection of all proposed gait events: 1 – HS, 2 – FF, 3 – TO, 4 - MSt, 
and 5 - HO. Note that due to the adaptation performed in the FSM ori
ented to patients with PD, a complete gait cycle involves two cycles of 
FSM states, being each event assigned to the leg which performed the 

gait event. Fig. 10.B also depicts the progress of the adaptive thresholds 
(th_HS and th_TO, as example) and FF range for a participant walking at 
normal, slow and fast velocity. As expected, we verified that the values 
of the thresholds increase or decrease when the gait velocities are slower 
or faster, respectively. Also, the FF range duration is equally affected by 
the duration of the gait cycles. Gait speed affects the magnitude of 
maximums and minimums of acceleration signal and gait cycles dura
tion, being needed the adaptation of thresholds and FF range. Lastly, we 
observed that in the trial with fast gait velocity, as it was expected, the 
participant travelled the trial distance in less time, with shorter gait 
cycle times and with a greater number of steps (highest occurrence of 
gait cycles – 2 loops in FSM). 

3) H-GED & PD-GED performance vs H&Y scale. We asked what would 
be the performance of the gait events detection algorithm according to 
the degree of the disease (H&Y scale), comparing the measured per
formance metrics of PD-GED and H-GED. We grouped the measured 
performance metrics according H&Y stages, as depicted in Fig. 11. For 
healthy subjects, H&Y is scored as null, and as the disease progress H&Y 
is scored by 1,2 and 3. We observed that as the disease evolves, the 
performance of the algorithm decreases and the trials with patients 
showed a better performance, since included simple walking trials. We 
also observed that all groups showed a decrease in performance for 
lower trial velocities. 

4) Benchmarking analysis of gait parameters estimation. The percentage 
of absolute error (ε%) measured for the different trials (vVx) between the 
estimated values of gait parameters (step/stride duration/length, ve
locity and cadence) with our system and the ground-truth system 
(reference system), is presented in Table 9. 

The worst result was measured for the estimation of the step length 
for a slow velocity (SVx: ε%≤13,45%). We believe that the step length 
estimation presents the worst results, as opposed to the temporal pa
rameters, since it depends on more variables than HS detection (Equa
tion (3)). This parameter depends on the height from the floor to the 
place where the sensor is located, and the height of the center of mass 
during step, so this calculation may introduce some error that can justify 
the measured errors. However, from the analysis of the statistical 
thresholds of the standard of reliability (Table 9), we found that the 
mean percentages of absolute error are often classified as good (high
lighted at blue: 5,48%≤ε%≤9,14%) and excellent (highlighted at green: 
2,81%≤ε%≤4,88%). 

5) Gait parameters estimation vs clinician scales. Fig. 12 depicts the 
estimated gait parameters (step/stride duration/length, velocity, and 
cadence) in accordance with UPDRS-III and H&Y stage groups, dis
played as mean ± SEM. It is highlighted that the patients assessed as 

Table 4 
H-GED algorithm performance for gait events detection for the different trials (vVw), regarding sensitivity (Sens.), accuracy (Acc.), earlier and delayed detections 
(percentage of occurrence (%), duration (x ± SD ms), ROME(%), mean ± standard deviation (x ± SD) for the velocity measured with the ground-truth system and total 
participants’ number of steps for each trial.  

Trial Sens.[%] Acc. [%] Earlier (E) Delayed (D) Trial Velocity (x ± SD) [m/s]  Number of steps 

% (x ± SD) [ms]  ROME [%] % (x ± SD) [ms]  ROME [%] 

NVI1 97,92 94,79 17,56 12,36 ± 4,26 0,81 12,13 11,89 ± 2,03 0,78 0,97 ± 0,09 139 
NVI2 96,56 97,48 16,13 11,73 ± 3,29 0,82 13,86 9,99 ± 1,26 0,70 142 
NVP 98,11 93,34 10,38 12,74 ± 3,56 0,87 14,07 10,02 ± 3,01 0,68 136 
NVR 98,90 94,93 10,26 11,41 ± 2,98 0,80 13,84 11,34 ± 1,21 0,79 141 
NVS 97,55 91,22 13,64 12,36 ± 4,36 0,90 14,42 12,56 ± 0,95 0,92 128 
SVI1 91,91 93,24 22,96 18,44 ± 2,56 1,04 19,33 18,74 ± 1,01 1,05 0,80 ± 0,03 148 
SVI2 91,58 96,70 14,96 18,31 ± 3,08 1,02 18,91 17,05 ± 2,88 0,95 151 
SVP 91,02 91,78 21,28 17,66 ± 1,36 1,01 18,25 16,05 ± 3,01 0,92 154 
SVR 91,90 92,27 21,86 17,89 ± 2,03 1,02 18,83 17,55 ± 2,14 1,00 155 
SVS 89,20 91,71 23,08 19,99 ± 3,36 1,40 20,05 18,69 ± 2,23 1,31 149 
FVI1 97,18 91,35 18,88 9,99 ± 3,03 0,90 14,13 11,89 ± 2,03 1,07 1,14 ± 0,07 116 
FVI2 97,22 95,13 20,60 9,89 ± 3,26 0,95 13,86 9,99 ± 1,26 0,96 116 
FVP 95,44 95,41 19,33 11,35 ± 4,01 1,12 13,07 10,02 ± 3,01 0,99 120 
FVR 96,52 94,81 18,05 10,26 ± 2,46 1,01 14,42 9,34 ± 1,21 0,92 116 
FVS 95,34 90,51 20,88 11,33 ± 2,46 1,10 14,84 8,56 ± 0,95 0,83 111 
Total mean 95,09 93,64 17,99 13,71 ± 3,06 0,81 15,60 12,91 ± 1,88 0,92 – –  
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having a higher motor level impairment (UPDRS-III high ≥ 23, N = 14) 
presented the prototypical parkinsonian gait parameters: decreased 
spatial parameters, while increased temporal parameters (Schlachetzki 
et al., 2017). Indeed, according to sub-item 25 of the UPDRS-III, which 
evaluates parkinsonian gait, clinicians evaluate gait observing mainly 
changes in gait velocity and step length (Perlmutter, 2009). Thus, we 
verified if the same tendency was verified with the gait parameters 
measured by the proposed system. We observed that averaged gait 

velocity and step length decreased with disease severity, corresponding 
to the clinician’s rating of the sub-item 25 of UPDRS-III. Further, it was 
observed an increase in temporal parameters for patients with high 
UPDRS-III. When grouping the patients according to the disease stage of 
H&Y scale, the same pattern was observed. Patients in a more advanced 
disease stage (H&Y rated of 3) presented a lower averaged velocity, 
shorter steps/strides length, and higher temporal parameters (step/ 
stride duration and cadence). These outcomes agree with what is 

Fig. 9. A: Representation of the adaptive thresholds (th_R/L_HS, th_R/L_FF, th_R/L_TO, th_R/L_MSt and th_R/L_HO) and events range duration (range_R/LHS, range_R/LFF, 
range_R/LTO, range_R/LMSt and range_R/LHO) over the time, for a subject in first trial (VNI1) considering the different detected states of the FSM (H-GED). B: 
Representation of the adaptative thresholds (th_R_HS and th_R/L_TO) and events range duration (range_RHS) for the same subject’s walking task (vI1) for normal (NV), 
slow (SV) and fast (FV) velocity, highlighting the FSM states. 
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expected and assessed by clinicians. Analyzing SEM behavior, it was 
observed low dispersed values between each group, which could 
determine a typical pattern of disease level. 

5. Discussion 

5.1. Experiment I 

A real-time gait monitoring system was validated using repeated 
measures of healthy gait patterns. We analyzed its performance for gait 
events detection (H-GED algorithm) and benchmarked for gait param
eters estimation. Also, we analyzed the contribution of the application of 
an adaptive and dynamic FSM behavior instead of the traditional static 
pattern. Motion compensation strategy contribute was also assessed by 
measuring the algorithm performance with and without motion 
compensation and by an analysis on lower trunk pitch and roll angles 
estimations. Our solution was validated against a camera-based motion 
capture system and participants performed functional tasks resembling 

near-daily walking tasks (different walking velocities, reversing gait, 
trunk movements and passing through obstacles), opposed to what is 
generally addressed in (Morris et al., 2019), (Zago et al., 2018) and 
(Fusca et al., 2018), as they only considered free walking. 

The proposed algorithm showed to be significantly sensitive (total 
mean of 95,09%) and accurate (total mean of 93,64%) for most of the 
tested gait tasks. As measured in (González, López, Rodriguez-Uría, 
Álvarez, & Alvarez, 2010; McCamley et al., 2012; Zijlstra & Hof, 2003), 
we also observed that lower gait speed decreases the accuracy of gait 
event estimation, perhaps because it is a less natural and fluid gait for 
the participants, and the resulting acceleration waveforms no long 
respect the normal shapes, affecting the moments of detection of the 
expected gait events given the low magnitude of the acceleration signal. 
Nonetheless, we believe that these outcomes did not have a high impact 
in real-time application, given the obtained accuracy and sensitivity 
values are still significant good. 

An efficient temporal performance was also another feature observed 
in our computational method. The algorithm proved to be time-effective 
for the different trials, showing earlier/delays significantly close to zero 
(E: 13,71 ± 3,06 ms; D:12,91 ± 1,88 ms) and with low impact on the gait 
cycle (E: 0,81%; D: 0,92%). In (González et al., 2010; McCamley et al., 
2012; Zijlstra & Hof, 2003) it was also presented computational methods 
to identify IC and FC events with good temporal performance, where 
González et al., 2010 had the lowest mean absolute error at 9–15 ms for 
initial FC detection. However, these studies did not perform a real-time 
detection and their validations lack validation against well-known, 
commercially and accepted ground-truth systems. Indeed, we obtained 
the lowest delayed detection of 8.56 ms measured with a pre-validated 
ground-truth system. Also, our system was able to advantageously 
conduct a more holistic gait segmentation by detecting five gait events 
for each leg, more than what is discussed in (Alvarez et al., 2010; 
González et al., 2010; Iijima & Takahashi, 2020; McCamley et al., 2012; 
Trojaniello et al., 2014). 

Real-time effectiveness was one of the most crucial requirements for 
our technology, since we consider integrating this computational 
method into a high-aid device for active assistance in PD. When 
comparing our outcomes with the literature regarding real-time imple
mentation based on a FSM for lower trunk signals analysis, we report 
higher temporal efficiency (D = 12,91 ± 1,88 ms), given that in (Alvarez 
et al., 2010) it was reported higher values of mean delayed detections D 
= 76,06 ± 56 ms, for real-time initial-contact and final-contact detec
tion. However, it is important to mention that higher earlier/delayed 
detections were obtained in this study (E/D = 13,71 ± 3,06 ms/12,91 ±

Table 5 
H-GED algorithm performance for gait events detection for the different trials 
(vVw), regarding sensitivity (Sens.), accuracy (Acc.), for the different walking 
trials (vVw), considering three conditions: (1) with adaptive thresholds & events 
range duration and with motion compensation (final solution); (2) with static 
thresholds and events range duration; and (3) without motion compensation.   

Condition (1) Condition (2) Condition (3) 

Trial Sens. 
[%] 

Acc. 
[%] 

Sens. 
[%] 

Acc. 
[%] 

Sens. 
[%] 

Acc. 
[%] 

NVI1 97,92 94,79 92,90 91,29 94,30 93,34 
NVI2 96,56 97,48 88,39 89,78 93,08 91,45 
NVP 98,11 93,34 89,09 86,04 92,73 91,00 
NVR 98,90 94,93 89,37 86,32 92,38 91,97 
NVS 97,55 91,22 92,00 82,50 94,89 86,16 
SVI1 91,91 93,24 82,70 82,82 86,70 89,07 
SVI2 91,58 96,70 79,90 82,14 82,87 86,81 
SVP 91,02 91,78 81,14 78,90 85,68 85,15 
SVR 91,90 92,27 80,31 79,34 84,86 85,22 
SVS 89,20 91,71 78,85 78,98 83,01 85,09 
FVI1 97,18 91,35 90,11 86,11 93,11 90,28 
FVI2 97,22 95,13 93,31 91,11 95,13 92,78 
FVP 95,44 95,41 92,47 91,00 94,29 92,73 
FVR 96,52 94,81 92,67 90,10 94,67 91,99 
FVS 95,34 90,51 92,50 86,70 95,00 88,70 
Total 

mean 
95,09 93,64 87,71 85,54 90,85 89,45  

Table 6 
Evaluation of the Motion Compensation per stride and Signal Similarity Analysis, from proposed system (PS) and Vicon®, for the different walking trials (vVw).  

Trial Evaluation of the Motion compensation Routine Signal Similarity Analysis 

Pitch Estimation Roll Estimation 

ROM [◦] ρ* RMSD [◦] NRMSD 
[%] 

ROM [◦] ρ* RMSD [◦] NRMSD [%] ROM [m/s2] ρ* RMSD [m/s2] NRMSD [%] 

PS V PS V PS V 

NVI1 5,39 5,49 0,18 8,58 9,75 6,22 7,24 0,45 6,75 8,17 9,29 9,01 0,75 2,27 3,90 
NVI2 3,92 2,96 0,17 9,24 8,10 4,85 5,79 0,55 8,58 10,91 9,12 9,76 0,44 2,47 4,08 
NVP 4,08 4,34 0,16 8,48 6,25 9,64 9,59 0,30 4,70 2,07 8,14 9,46 0,45 2,76 4,26 
NVR 4,53 4,09 0,20 2,71 4,18 6,49 7,45 0,44 10,72 10,09 8,95 9,67 0,42 2,59 4,06 
NVS 8,87 7,50 0,34 8,66 12,53 6,48 6,82 0,01 9,64 8,38 14,47 13,03 0,39 4,05 6,62 
SVI1 4,37 4,37 0,25 1,37 3,07 6,17 6,09 0,03 3,10 4,31 5,63 4,98 0,19 2,57 3,95 
SVI2 3,33 3,71 0,21 2,62 1,39 6,25 6,73 0,23 4,35 3,19 6,77 5,07 0,42 2,77 4,35 
SVP 3,87 3,67 0,17 6,26 4,54 7,96 7,75 0,56 2,12 2,27 5,31 5,35 0,42 2,89 4,31 
SVR 4,12 4,96 0,19 4,08 6,75 8,71 8,59 0,44 8,64 9,54 6,21 5,41 0,43 2,05 3,22 
SVS 9,53 9,37 0,32 7,66 10,06 6,88 5,13 0,12 10,97 6,60 11,51 10,59 0,42 2,73 4,57 
FVI1 4,98 4,98 0,20 8,84 4,94 6,98 6,65 0,07 5,53 6,97 11,29 10,48 0,20 3,76 5,91 
FVI2 4,98 3,81 0,19 9,87 8,30 8,12 7,99 0,92 8,54 7,56 12,38 10,72 0,40 3,65 5,75 
FVP 4,98 3,56 0,10 5,84 6,64 8,14 10,88 0,89 6,87 4,42 10,03 10,16 0,40 2,77 4,50 
FVR 5,27 5,37 0,13 6,23 9,95 12,44 12,74 0,55 2,95 3,99 11,39 10,41 0,40 3,92 5,98 
FVS 8,20 8,07 0,19 5,89 6,99 6,22 18,24 0,05 6,75 8,17 20,20 20,23 0,19 5,52 8,19 

*Level of significance of 5%. PS – Proposed system; V – Vicon® system. 
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1,88 ms) when compared to the values of our previous study (Gonçalves 
et al., 2018): E/D = 12.2 ± 3.29 ms/9.69 ± 7.88 ms. In our previous 
study (Gonçalves et al., 2018), the validation was performed under more 
controlled walking conditions, which did not include different tasks. 
Moreover, the system was validated against a less robust ground-truth 
system (a system based on Force Sensitive Resistors). In addition, we 
want the proposed solution to be able to perform real-time gait analysis, 
so we adopted strategies to reduce latency: (i) the use of a wired 
connection in the wearable sensory system; (ii) decision rules based on 
the processing of only one axis of kinematic data; and (iii) application of 
a 1st order low-pass filter that is computationally light. 

To overcome the typical static behavior of FSM and offer intra-/inter- 
user adaptability in gait events detection, the proposed method inno
vatively applies adaptive thresholds and events range duration, which 
were adaptively calculated based on user walking. When using adapta
tive thresholds and events range duration instead of static thresholds, 
the total mean sensitivity and accuracy of the FSM improved from 
87,71% and 85,54 to 95,09% and 93,64%, respectively. We observed 
that this feature was decisive for the gait events detection to be efficient 
regardless of the user and the gait tasks performed. Additionally, to the 
best knowledge of the authors, the state-of-the-art of gait events detec
tion algorithms did not address this adaptability issue using static sliding 
windows or non-dynamic thresholds for peak detection methods 
(Alvarez et al., 2010; González et al., 2010; Iijima & Takahashi, 2020; 

McCamley et al., 2012). 
Another major advantage of the algorithm is the application of a 

motion compensation strategy. Sensor to world-frame transformation is 
often used in aviation, industry, or different inertial-based applications 
(Ferdinando, Khoswanto, & Purwanto, 2012; Windau and Itti, 2013, 
2016). Our gait events detection endows a motion compensation strat
egy imported from this traditional sensor world-frame methods (Windau 
& Itti, 2016). Regardless of the users’ trunk movement, their motion is 
compensated, and decision rules can be commonly applied. The appli
cation of a motion compensation strategy was essential to guarantee the 
detection of all gait events during different walking tasks. FSM perfor
mance increased 4.24% in sensitivity and 4.19% in accuracy when it is 
used the compensatory method. It was observed low error deviations in 
pitch (RMSD = 6,42◦ and NRMSD = 6,90%) and roll (RMSD = 6,68◦ and 
NRMSD = 6,44%) estimations for different walking velocities and 
walking tasks. In addition, no significant differences (ρ ≥ 0,19) were 
found between the trunk acceleration signals between the systems. We 
believe that this system capability can offer motion compensation to the 
acquired inertial signals, allowing the adoption of common decision 
rules independently of the users’ movement. Further, this aspect was 
innovatively introduced in the current state of the field on waist- 
mounted sensor algorithms for gait event detection. Although the 
experimental protocol included different walking tasks (trunk move
ments, gait inversion, overcome a step, different velocities), more 

Table 7 
Benchmarking analysis of gait parameters estimation. Percentage of absolute error (ε%) measured from the obtained gait parameters for the different walking trials 
(vVw) and as a mean (x ε%) for each trial (NVw, SWw and FVw), and trial velocity mean ± standard. Reliability assessment by colors: green – excellent (ε%<5%); blue 
– good (5%≤ε%<10%); yellow – sufficient (10%≤ε%<20%); red – not acceptable (ε%≥20%).  

Table 8 
PD-GED algorithm performance for gait events detection for the different trials (vV), regarding sensitivity (Sens.), accuracy (Acc.), earlier and delayed detections 
(percentage of occurrence (%), duration (x±SD ms) and ROME (%, mean±standard deviation (x±SD) for trial velocity measured with the ground-truth system and 
total participants’ Number of steps for each trial.  

Trial Sens. Acc. Earlier (E) Delayed (D) Trial Velocity [m/s] (x±SD)  Number of Steps 

% (x±SD) ms  ROME (%) % (x±SD) ms  ROME (%) 

NV 99,53 97,16 17,07 12,36±2,26 0,82 15,45 12,33±3,43 0,91 0,89±0,02 708 
SV 99,42 96,49 14,95 15,73±3,29 0,75 18,17 14,26±2,36 1,00 0,71±0,06 858 
FV 99,64 98,60 18,17 10,74±3,56 0,90 15,13 11,54±2,76 0,83 0,93±0,01 648 
Total mean 99,53 97,42 16,73 12,94±4,32 0,82 16,25 12,71±1,31 0,91 - -  
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experimental tests should be carried out to reinforce these findings, by 
the inclusion of walking paths with turnings, climbing stairs and use of 
different slopes. 

Our gait analysis system besides to contribute with a gait events 
detector, implements a spatiotemporal gait parameters estimation. Gait 
events detection, particularly HS detections (foot contact), allowed the 
estimation of spatiotemporal parameters and a benchmarking analysis 
between the parameters measured with our system and ground-truth 
system. Our technology showed a good acceptable percentage of abso
lute error (5,15%≤ε%≤15,98) and, for the trials in which the partici
pants performed at a normal (comfortable) velocity, the error 
classification was considered excellent (3,02%≤ε%≤4,59%).It should 
be noted that the temporal parameters (step/stride duration) have less 
percentage of absolute error, while the spatial parameters (step/stride 
length, velocity) have a higher error, in particular the step length (ε ≤
12,94%), as is also observed in the literature (Alvarez et al., 2010; Iijima 

& Takahashi, 2020; Zijlstra & Hof, 2003). Spatial parameters are derived 
from the step length calculation which entails some drift error on its 
calculation, while the temporal parameters are directly estimated by the 
difference in detected foot contacts events. Nevertheless, the obtained 
errors (3,99%≤ε%≤8,09%) have good acceptability, and, therefore, 
deviations in our system measurements may not be significant. In 
comparison with the literature, besides, we measured more gait- 
associated metrics, the percentage of absolute error measured for 
stride time (ε%=3,44%), step length (ε%=3,02%) and velocity (ε%=

6,41%), considering the reference of the trials at a normal velocity, was 
lower in the present study than in (Fusca et al., 2018) (stride time ε%=

5,7%; step length ε%=5,6%;and velocity ε%=13,5%). In fact, the 
acceptability of the obtained errors leads us to believe that H-GED al
gorithm can be used to analyze and estimate gait parameters in healthy 
subjects. This fact boosted us to the system validation in Experiment II, 
with end users, patients with PD. 

Fig. 10. A: Representation of the adaptive thresholds (th_HS, th_FF, th_TO, th_MSt, th_HO) and FF range over time, for a subject’s walking normal velocity trial, 
considering the different detected states of the FSM (PD-GED). Highlight for a gait cycle, considering two loops of FSM states, one for right and other for left leg. B: 
Representation of the adaptative thresholds (th_HS and th_TO) and FF range duration of a participant for normal (NV), slow (SV) and fast (FV) velocity trials, 
highlighting the FSM states. 
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5.2. Experiment II 

The main goal of the present study was the development of a new gait 
analysis system for PD, able to segment a gait cycle and estimate gait 
spatiotemporal parameters. Thus, Experiment II aimed to extend the 
results obtained in Experiment I but validating with the end-users ad
aptations introduced in the computational method, with PD patients and 
at the Hospital of Braga facilities. It aimed to assess the proposed solu
tion through repeated gait measurements of patients with PD (consid
ering three velocities: normal, slow, and fast). Its validation included an 
analysis on the performance of the gait segmentation algorithm and a 
benchmarking analysis on the estimation of gait parameters. Further, we 
performed an analysis from the clinical point of view with the measured 
gait parameters. 

Natural gait patterns observed in healthy adults are altered by PD, 
which is manifested by altered trunk inertial patterns and consequent 
compensatory movements. These patients usually walk more slowly 
than healthy adults, which increases the error in estimated gait events. 
We realized that the proposed computational method for gait events 
detection had to be adapted to PD patients (PD-GED), while still main
taining the ability to detect the five walking events and the adaptability 
and motion compensation features. It was accomplished some adapta
tions in the FSM decision rules regarding the maximum/minimum peaks 
detection. The PD-GED is also coupled to a threshold-based structure 

where the FSM detects the events and, in parallel, updates the thresholds 
used in the heuristic decision rules. Besides the adaptive thresholds, the 
motion compensation strategy was maintained. In addition, it was added 
a new capability of distinguishing which leg was performing an event 
without initial assumptions. 

PD-GED algorithm showed to be highly sensitive (total mean of 
99,53%) and accurate (total mean of 97,42%) for the detection of the 
proposed events for different walking velocity trials. Additionally, the 
introduced adaptations did not affect the high temporal algorithm per
formance, since we observed that the proposed solution proved to be 
time-effective for real-time gait events detection due to the insignificant 
values of delay and advances (E: ROME = 0,82%; D: ROME = 0,91%). 
Advantageously, these metrics were measured for different gait veloc
ities and against a pre-validated IMU-based ground-truth system, 
contrarily to (Trojaniello et al., 2015). Trojaniello et al., 2015 obtained a 
good algorithm performance for a protocol which included free walk 
along a 12 m walkway without addressing different gait speeds. Further, 
it only focused HS and TO events detection, while our solution can 
segment a complete gait cycle into all five gait events. The quality of PD- 
GED performance is also due to the adopted features of adaptability and 
motion compensation. In fact, we found that these features were vital for 
the detection of gait events accurately and efficiently, regardless of the 
test velocities and the character of intra-variability of the participants. 
However, it is noteworthy that despite the promising results, future 
work should address the validation of the system with other motors tasks 
and in home scenarios. 

Similarly to the outcomes from Experiment I and aligned with the 
observations in (González et al., 2010; McCamley et al., 2012; Zijlstra & 
Hof, 2003), the performance of the computational method is most 
affected for slower gait velocities trials (SV: x±SD = 0,71 ± 0,06 m/s), 
since it is observed a less fluid gait. This common observation leads us to 
believe that, in the future, a calibration phase should be added to the 
proposed procedure. Previously to using the system, the user would 
travel a fixed distance at a slow, normal, and fast speed, while the 
maximum and minimum acceleration peaks are collected and used to 
adapt the adaptive thresholds and events range duration to the users’ 
gait. This is expected to greatly improve the performance of the pro
posed algorithms for gait event detection and consequent gait parame
ters estimation. Furthermore, we believe that this new routine will help 
to improve the PD-GED algorithm performance for patients in an 
evolved disease state. 

The proposed gait analysis systems besides to provide gait events 

Fig. 11. H-GED and PD-GED algorithm performance, regarding sensitivity 
(Sens.) and accuracy (Acc.) for the normal (NV), slow (SV) and fast (FV) ve
locity trials, according to H&Y stage. 

Table 9 
Benchmarking analysis of gait parameters estimation. Percentage of absolute error (ε%) measured from the obtained gait parameters for the different walking trials 
(vVx) and as a mean (x ε%) for each trial (NVx, SWx and FVx), and trial velocity mean ± standard deviation. Reliability assessment by colors: green – excellent (ε%<

5%); blue – good (5%≤ε%<10%); yellow – sufficient (10%≤ε%<20%); red – not acceptable (ε%≥20%).  
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detection, it is capable to measure six gait spatiotemporal parameters 
(step/stride duration/length, velocity, and cadence) with a good error 
(2,81%≤ε%≤4,88%) for different gait velocities. We identified two 
possible causes for some error deviations. First, wearable systems must 
be properly and firmly attached to the human body to avoid vibration 
artifacts in IMU measurements, which cannot be removed by filtering 
since they are in the signals’ frequency band. A second aspect that can 
contribute to the measurement errors, is that a bad alignment of the 
measuring devices can also introduce deviations in the systems’ mea
surements. To circumvent these sources of error, it was always the same 
person who placed the sensors in the participants’ body, and it was used 
anatomical references for their arrangement in the body segments to 
guarantee a uniform placement. In the mean term, dynamic calibration 
procedures to compensate these misalignments are being addressed. 
Nevertheless, the measured percentages of absolute error were classified 
as acceptable for gait parameters estimation. Indeed, the adaptive and 
accurate gait events detection and the ability of estimating six gait pa
rameters with low error, means that the developed system has the po
tential to be used as a gait monitoring system in PD. Thus, it is expected 
that the system can be used during gait monitoring sessions (domicil
iary/rehabilitation/assistance context) or during routine consultations, 
to provide continuous, quantitative, and objective information of 

patients’ gait to clinicians. 
A continuous gait parameters assessment correlated with disease- 

associated clinical scales, may determine that, in the future, the 
assessment of gait spatiotemporal metrics will constitute a biomarker of 
the disease stage, allowing to obtain a more personalized treatment 
(Pistacchi et al., 2017). As expected for a characteristic parkinsonian gait, 
patients with increased motor severity (UPDRS-III) and advance disease 
stage (H&Y) presented longer step/stride duration, smaller step/stride 
length, slower velocity and cadence (Perlmutter, 2009; Pistacchi et al., 
2017). These results are still preliminary to conclude the hypothesis that 
based on the assessment of patients’ motor function, it will be possible to 
“bio-mark” the patient’s stage given that it is required a larger sample 
population to better characterize each group-stage of the disease and a 
more critical statistical analysis. However, we observed that the pro
posed solution is able to evaluate the PD prototypical gait-associated 
metrics, besides to contribute with a system able to estimate more gait 
spatiotemporal metrics (Schlachetzki et al., 2017). Through the study 
dissemination to a more representative group, we might obtain a new 
system that can be used by clinicians, not only to monitor their patients 
but to contribute as a tool to support clinical decision and in the future 
serve as a biomarker of the disease stage. 

Fig. 12. Measured group gait spatiotemporal parameters of PD patients (cross-sectional study). Step/stride duration/length, velocity and cadence were calculated for 
PD patients grouped according to UPDRS-III total score (left) and H&Y disease stage (right). Group data are displayed as mean ± SEM. 
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6. Strengths and limitations  

(i) modularity. The proposed solution is easily integrated with other 
systems, which enable to synchronously accomplish a bench
marking assessment against pre-validated ground-truth systems, 
allowing to accomplish more reliable experimental protocols for 
validation. Combining this aspect with the real-time computa
tional method performance, it is possible to integrate our solution 
with an actuation unit and provide a biofeedback system. This 
enables to provide on-going assistive techniques while moni
toring the user gait.  

(ii) wearability and robustness. The fully integration of the electronic 
components in a robust waistband enabled to achieve non- 
intrusive and easily hidden system under users’ clothes. The 
instrumented device is adjustable for different physiognomies 
and enables a continuous assessment, which is required for 
application in home scenarios with longer times of acquisition.  

(iii) intra-/inter-user versatility. The heuristic decision rules included 
in the proposed FSM involve the inertial lower trunk information 
that varies with gait speed and motor tasks. Consequently, the 
algorithm’s adaptability proved to be a key feature for the suc
cessful application of the proposed gait event detection system in 
real-life situations, and it enabled the algorithm to handle intra-/ 
inter-step variability. This feature makes this computational 
method a potential benchmark approach for real-time human gait 
segmentation. Moreover, the proposed experimental protocols 
included different walking tasks and gait speeds for the validation 
of the proposed technology. 

However, there are still some limitations. First, although sensors 
were carefully positioned on the participants’ bodies, their precise 
positioning is affected by the participants’ anatomy as well as by gender 
and age. This may have led to possible differences in terms of algorithm 
performance. Second, it is imperative to validate our wearable tech
nology in home scenarios and include other walking tasks in experi
mental protocols to assess our solution capabilities to promote users’ 
freedom of movement. Third, it is required more clinical evidence, 
evaluate the device usability level, and validate the system with match- 
aged adults’ participants. Further, it was measured six gait spatiotem
poral parameters, but additional gait parameters can be assessed, as 
stance/swing time. Lastly, it is necessary to extend the gait parameters vs 
clinical scales analysis to a more representative sample and framed on 
longitudinal clinical study. 

7. Conclusions 

Making use of recent wearable technology, it was developed a new 
gait monitoring system adapted to PD, able to provide objective and 
feasible patients’ walking information. The effectiveness of the proposed 
system gait events detection and gait spatiotemporal estimation was 
assessed. The proposed real-time gait event detection system has shown 
to be accurate, time-effective, user-adaptable, user-motion compen
sated, low-cost, with a low computational cost for gait analysis. It has 
proven its power of portability and wearability, since it has been used in 
different environments and by different participants. Also, it was veri
fied that the adaptability introduced in the gait events detection enables 
accurate gait analysis for different walking conditions and may guar
antee more robustness for sporadic perturbations. These features make 
the system suitable to be used as a gait assessment tool or be integrated 
on rehabilitation/assistance devices. Furthermore, combining these as
pects with the ability of the system to estimate gait spatiotemporal pa
rameters, makes this system suitable as a quantitative benchmark of 
human locomotion. 

Future challenges include to (i) implement a longitudinal study, (ii) 
increase the clinical evidence, (iii) involve more walking tasks on the 
protocol and (iv) establish clinical correlations with gait spatiotemporal 

parameters from patients in different disease stages and over the time. 
Moreover, as a challenge, we will integrate the proposed system with an 
actuation tool for assistance/rehabilitation purpose in PD, given the 
real-time and durability qualities. Lastly, machine learning techniques 
can also be explored to investigate the ability of IMU-based gait analysis 
to discriminate patients with PD at different severity stages from age- 
matched healthy individuals. 
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