
RLCFR: Minimize Counterfactual Regret by Deep
Reinforcement Learning

Huale Lia, Xuan Wanga, Fengwei Jiaa, Yifan Lia, Yulin Wua, Jiajia Zhanga,
Shuhan Qia,∗

aComputer Application Research Center, Harbin Institute of Technology, ShenZhen,
518055, ShenZhen, China

Abstract

Counterfactual regret minimization (CFR) is a popular method to deal with

decision-making problems of two-player zero-sum games with imperfect infor-

mation. Unlike existing studies that mostly explore for solving larger scale

problems or accelerating solution efficiency, we propose a framework, RLCFR,

which aims at improving the generalization ability of the CFR method. In the

RLCFR, the game strategy is solved by the CFR in a reinforcement learning

framework. And the dynamic procedure of iterative interactive strategy up-

dating is modeled as a Markov decision process (MDP). Our method, RLCFR,

then learns a policy to select the appropriate way of regret updating in the

process of iteration. In addition, a stepwise reward function is formulated to

learn the action policy, which is proportional to how well the iteration strategy

is at each step. Extensive experimental results on various games have shown

that the generalization ability of our method is significantly improved compared

with existing state-of-the-art methods.

Keywords: Counterfactual regret minimization, decision-making, imperfect

information, reinforcement learning

∗Corresponding author
Email address: shuhanqi@cs.hitsz.edu.cn (Shuhan Qi)

Preprint submitted to Elsevier September 15, 2020

ar
X

iv
:2

00
9.

06
37

3v
1

 [
cs

.L
G

]
 1

0
Se

p
20

20

1. Introduction

Machine game is one of the most challenging research directions in the field

of artificial intelligence, which mainly studies the decision-making problem of

players in the environment. According to whether the game state is completely

observable, the machine game can be divided into perfect information game

(PIG) and imperfect information game (IIG). The PIG means that the game

state is completely observable by the game players. On the contrary, the IIG

refers to the game in which the players contain private information to other

players, in other words, the game state may not be completely observable to the

players. For example, in the game of poker, each player’s private hand cards

are unobservable to other players. Because of such hidden information, in order

to solve the IIG, many techniques have been developed to infer or evaluate the

hidden information [1, 2].

Counterfactual regret minimization (CFR) is one of the most classical method

to solve the Nash equilibrium strategy in two-player zero-sum games [3, 4, 5].

There have been many improvements based on the vanilla CFR over the years.

For example, Monte carlo CFR (MCCFR) combines the sampling technique

monte carlo with the vanilla CFR, which greatly expands scalability of solving

problems. CFR+ is a new variant based on the vanilla CFR, which uses the

regret matching+ as its core algorithm to speed up the strategy solving [6, 7].

Discount CFR (DCFR) is the latest variant of CFR based method, which ob-

tains the best performance compared with other CFR based methods [8]. Deep

CFR combines the deep neural network with the LCFR, which approximates

the regret value through the neural network, and such combination further ex-

pands the scale of solving problems [9]. Besides, the CFR based method has also

achieved great success in recent years, especially in poker games [10, 11, 12, 13].

For example, DeepStack [14] and Libratus [15] both use the CFR as the core

algorithm, which have successfully defeated the top human players in two-player

no-limit Texas Hold’em poker. Further, the success of Pluribus that defeats the

human professional players in the six-player no-limit Texas Hold’em poker is

2

102

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ex
pl

oi
ta

bi
lit

y

(a) Kuhn poker

CFR
DCFR
LCFR
ECFR

103

0.01

0.02

0.03

0.04

(b) Kuhn poker

CFR
DCFR
LCFR
ECFR

1026 × 101

iteration

2 × 10 1

3 × 10 1

4 × 10 1

ex
pl

oi
ta

bi
lit

y

(c) Leduc poker

CFR
DCFR
LCFR
ECFR

1036 × 102 2 × 103 3 × 103 4 × 103

iteration

0.04

0.06

0.08

0.10

0.12

(d) Leduc poker

CFR
DCFR
LCFR
ECFR

CFR-based methods on two poker games

Figure 1: Evaluation of four CFR based methods on Kuhn poker and Leduc poker. (The

X-axis represents the number of the iteration, the Y-axis represents the exploitability, which

is a classic evaluation metric in the poker games. Here are four curves with different colors,

representing four different methods.)

considered a major breakthrough in the field of artificial intelligence [16].

CFR has achieved great success in the IIG, and has many improvement

methods over the years. [17, 18, 19, 20, 21, 22]. However, there is still a

problem needs to be solved: how to improve the generalization of the CFR

based methods. In other words, one method only shows the best performance

in one or several games, and no one method can show excellent performance in

all games. What is more, for a certain game, a method may only show excellent

performance at a certain stage. For example, in the Pluribus [16], two different

CFR-based methods are set to solve the strategy at different iteration times.

To be specific, as shown in Fig. 1, we test four CFR based methods in

two kinds of poker games. The detail of these two poker games and the Y-

axis exploitability will be presented in the section 3 (The exploitability of a

strategy in a two-player zero-sum game is how much worse it dose versus a best

response compared to a Nash equilibrium strategy. The lower the exploitability,

3

the better the strategy). Here, we just need to know that the smaller of the

ordinate is, the better the performance of the method can reach. We can find

that in the Kuhn poker, as shown in the Fig. 1(a) and Fig. 1(b), the ECFR is

better than other three mehtods in the first 50th iterations. The ECFR and

the LCFR [9] have significant advantages between 50th iterations and 1000th

iterations (for example, in the iteration of 108, 190, the LCFR performs better

than the ECFR. In the iteration of 60-70, 100, the ECFR performs better).

After the 1000th iterations, the LCFR performs the best. In the Leduc poker,

as shown in the Fig. 1(c) and Fig. 1(d), the ECFR performs better than other

three methods in the early 1500 iterations. And the DCFR [8] and CFR perform

better after 1800th iterations. Thus, it’s clear that no one of the CFR variant

has obtained completely dominate strategy in the two poker games, and such

results further suggest that the existing CFR method has the problem of poor

generalization limitation.

To tackle the above problem, different from the traditional CFR method,

which fixs the way of regret updating, we adopt a dynamic adaptive method to

select different regret updating methods. An agent is designed to dynamically

select the most appropriate regret updating method for different stages of strat-

egy iteration. In this way, the selection of regret updating method is always

optimal in the whole process of iteratively solving strategy, which improves the

generalization ability. Specifically, in the proposed RLCFR, the reinforcement

learning method (RL) is adopted to combined with the CFR. In addition, the

dynamic process of iterative interactive strategy updating can be modeled as a

Markov decision process (MDP), and several regret updating methods can be

regared as the actions of the RLCFR. And, at each step, the RLCFR needs

to decide the action, which refers to the most appropriate of regret updating

method. The above process will be repeated until the maximum number of

interactions is reached.

Experimental results indicate that the proposed RLCFR is robust to three

different poker games. Given the various poker games, our proposed method

shows better generalization ability compared with the state-of-the-art methods.

4

We summarize our contributions as follows:

• We put forward a framework, RLCFR, which combines the RL and the

CFR. In the framework, the dynamic process of iterative interactive strat-

egy updating is modeled as a MDP. Unlike most of the existing CFR based

methods that are proposed for solving larger scale problems or accelerating

solution efficiency, we study on how to improve the generalization ability

of CFR based methods.

• We present a new attempt to deal with solving game strategy based on

the CFR in a reinforcement learning framework. Based on our method,

RLCFR, a policy is learned by the agent to select the appropriate re-

gret updating method, which progressively improves the iteration strat-

egy. Moreover, in order to achieve better performance, a stepwise reward

function is formulated to learn the action policy, which is proportional to

how well the iteration strategy is at each step.

• Extensive experimental results show that the generalization ability of our

method RLCFR is significantly improved on various poker games, com-

pared with state-of-the-art methods.

The paper is organized as follows: the overall framework RLCFR and its

details are discussed in Section 2. Then, Section 3 shows experimental results

including performance comparsion with the state-of-the-art methods and abla-

tion studies. Finally, the conclusion of this paper is given in Section 4.

2. Methodology

In this section, the dynamic process of iterative interactive strategy updating

is formulated as a MDP firstly. Then, the overall framework of the proposed

RLCFR is illuminated. In addition, the proof of convergence for RLCFR is

given. Finally, the network and training will be presented in details.

5

2.1. Problem Definition and Overview of RLCFR

2.1.1. Problem Definition

Given an imperfect information game with two-player, the goal of this paper

is to solve a robust strategy by CFR based methods. Meanwhile, we hope that

this method has a good generalization ability. In addition, for CFR, the core

of it is to solve the problem iteratively through the regret matching algorithm,

which means that the strategy of the next iteration is updated by the regret

value of the current strategy. The iterative updating process of the game G can

be formulated as:

σt = U(G, σ1); Ut = U1 ◦ U2 ◦ · · · ◦ Ut (1)

where G is the game, σt is the strategy for the iteration of t, t is the number of

the iteration. ◦ represents the function composition and U1, U2, . . . , Ut stands

for the specific type of the strategy updating respectively. The ultimate goal is to

get the optimal strategy σt under the same conditions, so that the exploitability

of the strategy σt is minimized.

The procedure of solving the game strategy is a iterative process with two

steps. The first step is to obtain the regret of the current strategy, which is

calculated by conducting the current strategy. The second step is to obtain the

next iteration strategy by the regret matching. This process is repeated until the

termination condition is reached, such as the number of iteration is reaching the

setting value. In the existing methods, the strategy updating method is fixed in

the whole iterative process. From the Fig. 1, it is already shows that the existing

CFR methods [13, 9, 8, 3] has the problem of poor generalization limitation.

In this case, we assume that the way of strategy updating is critical to the

obtained strategy. To address this challenge, we treat the sequential selection

of the way of regret calculation and strategy updating problem as a Markov

Decision Process (MDP), as shown in the Fig 2. Meanwhile, we solve it in a

deep reinforcement learing manner. The overview of the proposed framework

RLCFR (Fig 3) is provided in the following.

6

𝑺𝟏

𝒂𝟏

𝑺𝟐 𝑺𝟑

𝒂𝑻−𝟏

𝑺𝑻−𝟏

𝒂𝟐

𝑺𝑻…

…

Figure 2: A Markov decision process for the iterative updating process. (In the game G,

St(σt, R̃t), σt is the strategy and R̃t is the regret of the σt. The action at is a specific way to

update the strategy.)

2.1.2. Overview of RLCFR

The proposed framework aims to improve the generalization ability of the

CFR by selecting different types of regret calculation and strategy updating.

As shown in Fig 3, the proposed RLCFR mainly consists of two componenets,

environment and agent:

(1) Environment (Env). We regard the specific game as the environment,

whcih receives the action selected by the agent. At each step, the Env obtains

the action provided by the agent and makes the last updating strategy as the

current strategy. Then calculates the regret and updates the stratefy of next

iteration. Finally, the Env outputs the exploitability of the current strategy, the

next iteration strategy and the current strategy’s regret.

(2) Agent. RL agent, which is trained by the reinforcement learning method

to select the appropriate types of regret calculation and strategy updating in

every step. The agent can be learned from the input and the reward (the input

is from the Env and the reward is from the reward function). Then the agent

outputs the action to the Env.

The whole interaction process is that the RL agent get rewards through

continuous interaction with the Env, and strategies in the Env are updated

iteratively until the termination condition is reached.

2.2. The component of RLCFR

The process of RLCFR has been introduced before in the Section 2.1. In

this section, we will mainly describe the agent, such as action, state and reward,

7

Current Strategy

Env

RL Agent

𝒂𝒕

Reward

function

𝑰𝒕+𝟏
𝒓𝒕

𝑬𝒕

Current Iteration State: 𝑺𝒕

Exploitability

Regret Update

Strategy Update

Strategy Iteration of

CFR-based method

Regret

matching

Srtategy

for next

iteration

Current
Strategy

𝐈𝐧put

𝑺𝒕+𝟏

Figure 3: Illustration of our RLCFR framework. (At each step t, the RL agent gets the

current input It from Env, including the regret for each player under the current strategy,

which is the output of the agent at each previous step. In order to maximize the reward rt, an

action at is selected by the agent. After the whole procedure of the regret matching, RLCFR

conducts another step until the max step is reached.)

and then go into the details of the agent structure and the strategy iteration

procedure.

Action. Action is one of the main components of the agent. Assume that

action is represented by a, the action space A, which is composed of all possible

legal actions that the agent can adopt that A = (a1, a2, . . . , an). When the RL

agent performs a step, the agent selects an action at and applies it to the Env.

At this time, according to the current iteration strategy σt, the regret match-

ing algorithm calculates the regret value and the next iteration strategy σt+1

according to the selected action at. Specifically, different actions can be defined

as different ways of regret calculation and strategy updating. In this paper, we

use seven types of regret calculation and strategy updating. In other words,

the action space consists of seven actions, that is A = (a1, a2, a3, a4, a5, a6, a7).

These actions come from the CFR based methods in recent years. Details are

described in Tab. 1.

State. State is the observation information of the agent obtained from

environment under the current condition. In the RLCFR, we take the regret

8

Table 1: The detail of seven actions

Action Strategy updating and regret calculation

a1 σT+1
i (I, a) =

RT,+i (I,a)∑
a∈A(I) R

T,+
i (I,a)

, RT,+i (I, a) =
∑
a∈A(I) r(I, a)

a2 σT+1
i (I, a) =

tRT,+i (I,a)∑
a∈A(I) tR

T,+
i (I,a)

, RT,+i (I, a) =
∑
a∈A(I) tr(I, a)

a3 σT+1
i (I, a) =

(t
t+1)

γ
RTi (I,a)∑

a∈A(I)(t
t+1)

γ
RTi (I,a)

, RTi (I, a) =
∑
a∈A(I)

tα

tα+1r(I, a)

a4 σT+1
i (I, a) =

eαRTi (I,a)∑
a∈A(I) R

T
i (I,a)

, RTi (I, a) =
∑
a∈A(I) e

αr(I, a)

a5 σT+1
i (I, a) =

RTi (I,a)∑
a∈A(I) R

T
i (I,a)

, RTi (I, a) =
∑
a∈A(I) r(I, a)

a6 σT+1
i (I, a) =

RTi (I,a)∑
a∈A(I) R

T
i (I,a)

, RTi (I, a) =
∑
a∈A(I) r

+(I, a)

a7 σT+1
i (I, a) = 1

|A| , RTi (I, a) =
∑
a∈A(I) r(I, a)

value of the current strategy as the output St, and the input of the agent It

is the vector of the regret value of the last three iterations, which is a three-

dimensional vector that It = (St−2, St−1, St). At the step 1, I1 can be initialized

randomly.

Reward. Reward is a basic element of reinforcement learning method. Ap-

propriate reward setting can not only accelerate the convergence of the training

model, but also make the trained agent more robust. In addition, duo to the ex-

ploitability is a very objective evaluation metric of the current iteration strategy,

the lower of the exploitability is, the better of the current strategy is. Therefore,

we hope that the reward can be associated with at each step. Thus, a stepwise

reward is designed as follows:

R2 =

 E
′

t − Et, if E
′

t − Et ≥ 0

E
′

t − Et, otherwise
(2)

where E
′

t is the lowest exploitability of the comparison methods under the same

number of iterations.

In general, the accumulated reward of one interactive sequence is as follows:

Ri = ΣTt=1γ
t−1rti (3)

where T is the number of the total step, γ is the discount factor and its value

is between 0 and 1.

9

Env. In the reinforcement learning, the agent is improveed by constantly

interacting with the environment. It is worth noting that in RLCFR, although

the Env here is built by ourselves, it is not different from the general environ-

ment, and also includes the same elements of the environment. The Env receives

the action output by the agent for execution, and generates the next state and

corresponding rewards. Specially, the Env receives the action output from the

agent and executes the current strategy σt in the IIG. Then the way of regret

updating and regret calculation is selected through the received action for the

regret matching algorithm. Finally, the Env outputs the exploitability Et and

the regret R̃t of the current strategy, and the updated strategy σt+1 for the next

iteration.

2.3. Proof of The Convergence

In this section we prove a bound for the proposed approach RLCFR when

calculating the average strategy. Theorem 1 shows the RLCFR has a conver-

gence bound.

Theorem 1 Assume that the number of the iteration T of the RLCFR,

which is played in a two-player zero-sum game. Then the weighted average

strategy profile is a 2
∆|I|
√
|A|√

T
-Nash equilibrium.

The proof is provided in the appendix, which combines the the proof for the

vanilla CFR [3], CFR+ [6, 7] and the discount CFR [8].

2.4. Training of RLCFR

In this section, the agent is trained based on the RL. In RLCFR, the simpli-

fied version of the deep Q-larning (DQN) is used to train the agent. Compared

with the vanilla DQN [23], there is no complex input similar to the image in

RLCFR, thus we remove the convolutional neural network and only use full con-

nection to construct the network of the RLCFR. In addition, like the original

DQN, we also use the target network. The loss function in RLCFR is a mean

square error (MSE),

L =
1

2
||y − y

′
||22 (4)

10

As for the agent, part of the supervision information we used when setting

up the reward function to train the agent (the minimum exploitability of each

CFR method at the same number of iterations). And in the training procedure

of the agent, the goal is to minimize the loss function. In addition, the loss

function of the agent is the same as the vanilla DQN. The loss function L can

be rewrited with:

L = (yt −Q(st, a))2 (5)

the yt is as follows:

yt =

 rt + γmaxa′Qt+1,a′ , T > t ≥ 1

rT , t = T
(6)

where Qa is the action value of the action a, γ is a discount factor and the value

is set to 0.99.

3. Experiments

In this section, we conduct experiments to evaluate the performance of our

proposed RLCFR in terms of the exploitability, as compared with the state-of-

the-art methods. In addition, we investigate different settings of the proposed

RLCFR.

3.1. Experimental Platform

We perform experiments on the poker games, which are the most classic and

universal testing platform in the field of the IIG in recent years. Since the poker

game contains private hand and includes all the elements of the IIG, it can well

evaluate the method of the IIG. In addition, in recent years, the successful IIG

methods (for example, DeepStack [14], Libratus [15], Pluribus [16]) adopt the

poker game as the test platform for experimental testing. Therefore, in this

paper, we also take poker games as our experimental platform. Specifically,

three kinds of poker games are used as test platforms in the paper. They are

all simple versions of Texas Hold’em poker, which are enough to verify the

effectiveness of our method.

11

Table 2: The detail of three kinds of poker

Poker Total cards Public/private cards Round Ante Betsize

Kuhn 3 0/1 1 1 1

Leduc 6 1/1 2 1 2; 4

Royal 8 2/1 3 1 2; 4; 4

The three kinds of poker games are Kuhn poker, Leduc poker, Royal poker

respectively. The Kuhn poker has two game players and only one round, preflop.

Each game player has one private hand and the game has three cards totally.

The Leduc poker has two game players and two rounds, preflop and flop. Each

game player has one hand and the game has six cards totally. Each game player

is issued a private hand firstly in the round of preflop, and then a public card

will be issued in the round of flop. The Royal poker also has two game players

and three rounds, preflop, flop, and turn. Each game player has one private

hand and the game has eight cards totally. Each game player is issued a private

hand firstly in the round of preflop, and then a public card will be issued in the

round of flop and turn respectively. Besides, the actions fold, call, and raise are

legal actions in the poker games. The detail of these three kinds of poker games

are introduced in the Tab. 2.

3.2. Experimental Settings

Evaluation metrics. Exploitability is a natural and standard evaluation

metric in the field of the IIG. In this paper, the exploitability is used to evaluate

the strategy solved by the method. The exploitability of a strategy in a two-

player zero-sum game is how much worse it dose versus a best response compared

to a Nash equilibrium strategy. The lower the exploitability, the better the

strategy.

Note that the best response to the strategy σp is a strategy Br(σp), in

which up(σp, Br(σp)) = maxσ′−p
ui(σp, σ

′

−p). A Nash equilibrium strategy σ∗ is

a strategy profile, in which every player plays a best response: ∀p, up
(
σ∗p , σ

∗
−p
)

=

12

maxσ′p up
(
σ′p, σ

∗
−p
)
. Thus, the exploitability of a strategy can be descripted as:

e (σp) = up
(
σ∗p, Br

(
σ∗p
))
− up (σp, Br (σp)) (7)

Implementation details. Our method RLCFR is combining the DRL

and CFR based methods to improve generalization ability. Specifically, we use

DQN for action selection, which we call it as dqn1 [23]. Among them, the

dqn1 is slightly different from the vanilla DQN presented by DeepMind. The

biggest difference is that the dqn1 only use a four-layer fully connected network

to achieve our goal, which does not apply the convolutional neural network.

Due to a fully connected network is enough to encode the state in the RLCFR.

Besides, other parameters in the dqn1 are: batch size is 32, discount factor is

0.99, replay memory size is 2000, exploration is 0.1. In addition, the target

network updates for every 200 steps. The model training and testing on a PC

with i7-7700 CPU, 16G RAM. The program language used is python 3.6 and

pytorch.

3.3. Experimental Results

In order to verify the effectiveness of our method RLCFR, we carried out

two groups of experiments totally. Firstly, we compared with the state-of-the-

art methods in the field of the IIG, which is in the first group of experiment.

Secondly, we conducted ablation studies, including the reward function setting

and the action setting. The rest experiments are all about ablation experiments

except the first group experiment. In addition, in order to ensure the fairness of

the experimental results and reduce the errors caused by the randomness. Thus

we have carried out each group of experiments three times respectively and the

final experimental results take the mean value.

3.3.1. Comparisons with state-of-the-art methods

We compare RLCFR with four state-of-the-art methods: CFR [3], LCFR [9],

DCFR [8], ECFR. Among them, the DCFR is the CFR based method with the

best performance that has been published. In addition, the performance of the

13

Table 3: The brief description of the four comparison methods

Method Brief description

CFR It is proposed by Zinkevich et al. in 2007 [3], which is the first

method to use regret matching to solve the poker games.

LCFR It is proposed by Noam Brown et al. in 2019 [9], which is identical

to the CFR, except the regret is weighed by the iteration.

DCFR It is proposed by Noam Brown et al. in 2019 [8], which is a variant

of the CFR that discount prior iterations, leading to stronger

performance than the prior state-of-the-art methods.

ECFR It is also based on the vanilla CFR method and is proposed by us.

The ECFR also shows excellent performance through exponential

decay of the CFR.

ECFR is also very excellent. However, this is our recent work and it has not yet

officially published. Thus here we still describe the DCFR as the method with

best performance at present. The brief description of the these four comparison

methods are in Tab. 3.

In order to make the experimental results more fair, we carried out three

verification experiments on three kinds of poker games. The final results come

from the mean of three validation experiments. In addition, the number of

iterations of the strategy is 10000 in the validation experiment. The model

selected in the validation experiment is an optimal model after the ablation

study, which will be described later. The results are shown in Fig. 4, Fig. 5

and Fig. 6, which are tested on the Kuhn poker, Leduc poker and Royal poker

respectively. The lower the exploitability, the better the strategy.

In the Fig. 4(c), we can find that the RLCFR converges with the iteration

increases, which shows that our method has good convergence on the Kuhn

poker. Fig. 4(a) and Fig. 4(b) shows the detail of the experimental results. In

the first 100th iterations, the performance of the RLCFR is very close to that

of the ECFR, except for a limited number of iterations (at n = 8, 9, 50, 85).

14

101 102

0.05

0.10

0.15

0.20

0.25

0.30
ex

pl
oi

ta
bi

lit
y

(a)

CFR
DCFR
LCFR
ECFR
RLCFR

102 103

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
(b)

CFR
DCFR
LCFR
ECFR
RLCFR

101 102 103

iteration

0.0

0.1

0.2

0.3

0.4

0.5

ex
pl

oi
ta

bi
lit

y

(c)

CFR
DCFR
LCFR
ECFR
RLCFR

Tested on the Kuhn poker

Figure 4: Comparisons with state-of-the-art methods on the Kuhn. (The X-axis represents

the number of the iteration, the Y-axis represents the exploitability that is a classic evaluation

metric in the poker games. The smaller of the exploitability, the better. Here are five curves

of different colors, representing five different methods. Our mehtod RL-CFR is represented

with a solid red line. The other four comparison mehtods are represented with dashed lines

with different colors.)

After 100th iterations, the performance of the RLCFR is gradually better than

that of the ECFR, and it is obviously better than other methods.

In the Fig. 5(c), we can also find that the RLCFR converges gradually with

the increase of iterations. Besides, in addition to a limited number of iterations,

the performance is equal to that of ECFR, and we can clearly see that the

performance of the RLCFR is ahead of other methods in the iteration process.

The same convergence can still be obtained from the Fig. 6(c). We find that in

the first 200th iterations, as shown in Fig. 6(a), the performance of the RLCFR

is close to that of the ECFR and there is no dominant trend. However, in the

later iterations, especially after 900th iterations, we can obviously find that our

method RLCFR is better than the ECFR, which is shown in Fig. 6(b).

To sum up, firstly, our method RLCFR has a good convergence with the in-

crease of the iterations, which has been verified in the three experiments on three

15

101 102

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ex
pl

oi
ta

bi
lit

y

(a)

CFR
DCFR
LCFR
ECFR
RLCFR

102 103
0.05

0.10

0.15

0.20

0.25

0.30

(b)

CFR
DCFR
LCFR
ECFR
RLCFR

101 102 103

iteration

0.0

0.5

1.0

1.5

2.0

2.5

ex
pl

oi
ta

bi
lit

y

(c)

CFR
DCFR
LCFR
ECFR
RLCFR

Tested on the Leduc poker

Figure 5: Comparisons with state-of-the-art methods on the Leduc. (The X-axis represents

the number of the iteration, the Y-axis represents the exploitability. The smaller of the

exploitability, the better.)

different poker games respectively. Secondly, the generalization of our method

has been well verified, and our method has shown nearly leading performance

in these three different poker games. In addition, our model is trained on Kuhn

poker and Leduc poker, while the test is conducted on three kinds of poker

games and the additional Royal poker has the largest scale among the three

kinds of Poker games. However, our method still shows excellent performance

in the Royal poker, which further proves that our method has good generaliza-

tion ability. Finally, from the Fig. 4, Fig. 5 and Fig. 6, we can find that when

the performance of several methods is alternately dominant, our method does

not oscillate like a single method. On the contrary, our method can keep the

optimal or nearly optimal in this kind of situation. This shows that our method

is effective in the selection of strategy updating in the iterative process.

16

8.9 × 101 9 × 101 9.1 × 101 9.2 × 101 9.3 × 101 9.4 × 101 9.5 × 101

0.073

0.074

0.075

0.076

0.077

0.078

0.079
ex

pl
oi

ta
bi

lit
y

(a)

CFR
DCFR
LCFR
ECFR
RLCFR

1039.92 × 102 9.93 × 102 9.94 × 102 9.95 × 102 9.96 × 102 9.97 × 102 9.98 × 102 9.99 × 102
0.00684

0.00685

0.00686

0.00687

0.00688

0.00689

0.00690

0.00691

(b)

CFR
DCFR
LCFR
ECFR
RLCFR

101 102 103

iteration

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ex
pl

oi
ta

bi
lit

y

(c)

CFR
DCFR
LCFR
ECFR
RLCFR

Tested on the Royal poker

Figure 6: Comparisons with state-of-the-art methods on the Royal. (The X-axis represents

the number of the iteration, the Y-axis represents the exploitability. The smaller of the

exploitability, the better.)

3.3.2. Ablation studies

In this section, we investigate different settings of the proposed RLCFR,

and give some insights on the choice of each factor. There are two groups

experiments to analyze. Firstly, we analyze the effect of different reward settings

to the algorithm performance. Secondly, we analyze the effect of different action

settings on the performance of the algorithm. It should be noted that the test

model we used in the first group of experiments (comparisons with state-of-

the-art methods) came from the best combination selected here. In each of

the four groups of experiments, we also conducted five repeated experiments

to ensure the effectiveness of the experimental results. The final experimental

results come from the mean of five repeated experiments.

Reward setting. The reward function is a very important part of the

reinforcement learning. An appropriate reward function can accelerate the con-

vergence of the reinforcement learning. Since we also use the deep reinforcement

learning method in this paper, it is necessary to set the reward reasonably. In

17

addition, the purpose of using reinforcement learning method is to select an

appropriate action through reinforcement learning method, and to select the

strategy updating method in CFR based methods. The evaluation standard of

the CFR methods is exploitability. Thus, we can find the reward function is

very related to the exploitability.

Due to the CFR is an iterative algorithm, with the increase of iterations, the

solution strategy should be stronger and stronger. In terms of the exploitability,

with the increase of iterations, the exploitability should be lower and lower.

Based on the above analysis, we set up three different rewards, which are called

R1, R2, R3.

R1: we compare the exploitability of the two steps before and after, since

the lower the exploitability is, the better. Thus when the exploitability develops

according to this trend, we will give a positive reward, otherwise it will be a

negative reward. As showed in the Eq. 8.

R1 =

 1, if Et−1 − Et > 0

−1, otherwise
(8)

where t is the number of the iteration, Et−1 and Et is the exploitability of the

RLCFR under the previous iteration and the current iteration.

R2: In the previous completed experiments, we found that in most cases, the

exploitability decreased gradually. That is to say, according to the R1 setting,

the reward is positive in most cases. Due to the punishment is too little, it

has influence on the training of the RL model. Moreover, it will cause the

model to actually choose risky actions when facing some states, but the model

is not considered as risky actions. Therefore, we have improved R1 and added

a benchmark to R1, through the exploitability we have obtained from various

comparison methods in each iteration. As depicted in the Eq. 9.

R2 =

 E
′

t − Et, if E
′

t − Et ≥ 0

E
′

t − Et, otherwise
(9)

where E
′

t is the lowest exploitability of the comparison methods under the same

number of iterations.

18

R3: At the same time, the attenuation rate of the exploitability is also

worth considering. For the iterative method, the number of iterations setting

in practical application is limited. The fewer iteration is used to achieve the

same exploitability, the more beneficial to the practical application. Therefore,

we add an additional bonus item in R3 to encourage corresponding actions that

lead to faster attenuation speed. As showed in the Eq. 10.

R3 =


E
′
t−Et
E
′
t

, if E
′

t − Et ≥ 0

1
kt−kt−1

, if kt − kt−1 > 0

E
′
t−Et
E
′
t

, otherwise

(10)

where kt is the slope, which is described as
E
t
′−Et
t−t′ , here t

′
< t. E

′

t is the lowest

exploitability of the comparison methods under the same number of iterations.

t is the number of the iteration, Et−1 and Et is the exploitability of the RLCFR

under the previous iteration and the current iteration.

In this study, we tested the three kinds of the reward to find an appropriate

reward in the RLCFR. The training steps here is 20000. The related experiental

results are showed in Fig. 7. The model loss and the exploitability are used to

evaluate our results respectively. As can be seen in Fig. 7(a), the model used R1

converges fast compared with the other two. Although the models used R2 and

R3 converge finally after the 10000 steps. From the Fig. 7(b), we find that the

model used R2 performs the best. In addition, the model of R3 does not show

the expected effect. This is mainly due to the rapid decline in exploitability in

the early stage, and the use of slope can be beneficial to provide more incentive

information. However, in the later iteration, the exploitability decreases slowly,

and the attenuation slope decreases all the time. This is equivalent to punishing

the agent without rewards, which makes the model training of the agent more

difficult. Finally, since our ultimate goal is to reduce the exploitability of the

method, we choose the R2 as the reward function.

Actions. The action is one of the basic concepts of the RL. Reasonable

action settings have a great influence on the RL methods. In our proposed

method RLCFR, based on the analysis of CFR methods, we set up four neces-

19

103 104

0.0

0.2

0.4

0.6

0.8

1.0

1.2

lo
ss

(a) Loss vs Step

R1
R2
R3

102 103

steps

0.2

0.4

0.6

0.8

1.0

ex
pl

oi
ta

bi
lit

y

(b) Exploitability vs Step

R1
R2
R3

Figure 7: Ablation study on reward functions. (The X-axis represents the number of the step,

the Y-axis represents the exploitability. The smaller of the exploitability, the better.)

sary actions. In addition, we added three actions to explore their impact on the

RL. The first action is based on the idea of vanilla regret matching algorithm,

which is to follow the process of updating regret completely without additional

preprocessing. The second action is also from a very direct motivation, which

is just to accumulate the positive regret and use the positive regret to update

the strategy. It should be noted that this action is different from the action

update of the CFR. The CFR only preprocesses the regret when the strategy

is updating. The third action is random strategy updating. The consideration

of adding this action is to increase the randomness of the action and ultimately

increase the flexibility of the training model.

We call the three additional actions as a5, a6, a7 respectively. In addition,

in order to distinguish the four basic actions, we express the four basic actions

as a1, a2, a3, a4. To demonstrate the effectiveness of the actions a5, a6, a7, we

compare the results with/without the actions a5, a6, a7. As can be seen in

20

102 2 × 102 3 × 102 4 × 102 6 × 102
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

(a) Loss vs Step

action_num = 4
action_num = 5
action_num = 6
action_num = 7

102 103

steps

0.0

0.2

0.4

0.6

0.8

ex
pl

oi
ta

bi
lit

y

(b) Exploitability vs Step

action_num = 4
action_num = 5
action_num = 6
action_num = 7

Figure 8: Ablation study on actions. (The X-axis represents the number of the step, the

Y-axis represents the exploitability. The smaller of the exploitability, the better.)

Fig. 8, we can find that no matter from the perspective of loss or exploitability,

the added actions are helpful to the training model. Although six actions and

seven actions are similar in exploitability, the loss of the model using seven

actions decreases faster. In addition, seven actions can increase the agent’s

exploratory ability by randomly adopting updating strategies. Therefore, we

finally chose seven actions in the test model.

4. Conclusions

In this paper, in order to improve the generalization ability of CFR based

methods, we put forward a framework, RLCFR, which combines the RL and the

CFR. In the framework, the dynamic process of iterative interactive strategy

updating is modeled as a Markov decision process. We present a new attempt to

deal with solving game strategy based on the CFR in a reinforcement learning

framework. Based on our method, RLCFR, a policy is learned by the agent to

21

select the appropriate regret updating method, which progressively improves the

iteration strategy. Moreover, in order to achieve better performance, a stepwise

reward function is formulated to learn the action policy, which is proportional

to how well the iteration strategy at each step. Extensive experimental results

on three kinds of games verified the effectiveness of the proposed approach.

Acknowledgment

This research is supported by Key Technology Program of Shenzhen, China,

(No.JSGG20170823152809704), Key Technology Program of Shenzhen, China,

(No.JSGG20170824163239586), and Basic Research Project of Shenzhen, China,

(No.JCYJ20180507183624136).

References

References

[1] M. J. Osborne, A. Rubinstein, A course in game theory, MIT press, 1994.

[2] N. Cesa-Bianchi, G. Lugosi, Prediction, Learning, and Games, 2006.

[3] M. Zinkevich, M. Johanson, M. Bowling, C. Piccione, Regret minimization in games with

incomplete information, in: Advances in neural information processing systems, 2008, pp.

1729–1736.

[4] J. Nash, Non-cooperative games, Annals of mathematics (1951) 286–295.

[5] D. P. Foster, R. Vohra, Regret in the on-line decision problem, Games and Economic

Behavior 29 (1-2) (1999) 7–35.

[6] O. Tammelin, N. Burch, M. Johanson, M. Bowling, Solving heads-up limit texas hold’em,

in: Twenty-Fourth International Joint Conference on Artificial Intelligence, 2015.

[7] M. Bowling, N. Burch, M. Johanson, O. Tammelin, Heads-up limit hold’em poker is

solved, Science 347 (6218) (2015) 145–149.

[8] N. Brown, T. Sandholm, Solving imperfect-information games via discounted regret mini-

mization, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, 2019,

pp. 1829–1836.

22

[9] N. Brown, A. Lerer, S. Gross, T. Sandholm, Deep counterfactual regret minimization,

in: International Conference on Machine Learning, 2019, pp. 793–802.

[10] M. Johanson, N. Bard, M. Lanctot, R. Gibson, M. Bowling, Efficient nash equilibrium

approximation through monte carlo counterfactual regret minimization, in: Proceedings

of the 11th International Conference on Autonomous Agents and Multiagent Systems-

Volume 2, International Foundation for Autonomous Agents and Multiagent Systems,

2012, pp. 837–846.

[11] N. Burch, M. Bowling, Cfr-d: Solving imperfect information games using decomposition,

arXiv preprint arXiv:1303.4441 (2013) 1–15.

[12] V. Lisỳ, M. Lanctot, M. Bowling, Online monte carlo counterfactual regret minimization

for search in imperfect information games, in: Proceedings of the 2015 international

conference on autonomous agents and multiagent systems, 2015, pp. 27–36.

[13] N. Brown, T. Sandholm, Regret-based pruning in extensive-form games, in: Advances in

Neural Information Processing Systems, 2015, pp. 1972–1980.

[14] M. Moravč́ık, M. Schmid, N. Burch, V. Lisỳ, D. Morrill, N. Bard, T. Davis, K. Waugh,

M. Johanson, M. Bowling, Deepstack: Expert-level artificial intelligence in heads-up

no-limit poker, Science 356 (6337) (2017) 508–513.

[15] N. Brown, T. Sandholm, Superhuman ai for heads-up no-limit poker: Libratus beats top

professionals., Science 359 (6374) (2017) 1733.

[16] N. Brown, T. Sandholm, Superhuman ai for multiplayer poker, Science 365 (6456) (2019)

885–890.

[17] E. G. Jackson, Compact cfr, in: Workshops at the Thirtieth AAAI Conference on Arti-

ficial Intelligence, 2016.

[18] E. G. Jackson, Targeted cfr, in: Workshops at the Thirty-First AAAI Conference on

Artificial Intelligence, 2017.

[19] H. Li, K. Hu, Z. Ge, T. Jiang, Y. Qi, L. Song, Double neural counterfactual regret

minimization, arXiv preprint arXiv:1812.10607.

[20] E. Steinberger, Single deep counterfactual regret minimization, arXiv preprint

arXiv:1901.07621.

[21] Y. Zhou, T. Ren, J. Li, D. Yan, J. Zhu, Lazy-cfr: fast and near optimal regret minimiza-

tion for extensive games with imperfect information, arXiv preprint arXiv:1810.04433.

23

[22] M. Schmid, N. Burch, M. Lanctot, M. Moravcik, R. Kadlec, M. Bowling, Variance re-

duction in monte carlo counterfactual regret minimization (vr-mccfr) for extensive form

games using baselines, in: Proceedings of the AAAI Conference on Artificial Intelligence,

Vol. 33, 2019, pp. 2157–2164.

[23] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,

M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., Human-level control through deep

reinforcement learning, Nature 518 (7540) (2015) 529.

24

Appendix

Proof of Theorem 1

Consider the weighted sequence of iterations Consider the weighted sequence

of iterations σ′1, . . . , σ′T , where σ′t is identical to σt, but weighted by wt. The

regret of action a in information set I on iteration t of this new sequence is

R
′t(I, a).

Theorem 1 Assume that the number of the iteration T of the RLCFR,

which is played in a two-player zero-sum game. Then the weighted average

strategy profile is a 2
∆|I|
√
|A|√

T
-Nash equilibrium.

The proof is provided in the following, which combines the the proof for the

vanilla CFR [3], CFR+ [6, 7] and the discount CFR [8].

Proof. The lowest amount of the instant regret on any iteration is −∆. Con-

sider the weighted sequence of iterations σ′1, . . . , σ′T , where σ′t is identical to σt,

but the weight wa,t =
∏T−1
i=t i = (T−1)!

t! rather than wa,t = (1, eα, t, (t
t+1)γ , 1, 1, 1).

R′t(I, a) is the regret of the action a on the information set I at the iteration t,

for this new sequence.

Here, we have made a contraction of wa,t. wa,t = (1, eα, t, (t
t+1)γ , 1, 1, 1) ≤

(t, t, t, t, t, t, t). In the RLCFR, it needs to be noted that we select the way of

strategy updating with the iteration increases. Specifically, the weight varies

as the number of iteration increases. About wa,t = (1, eα, t, (t
t+1)γ , 1, 1, 1), it

stands for seven kinds of weights, which comes from seven different ways of

strategy updating. Moreover, one is selected to be adopted from seven kinds of

weights on each iteration in the paper.

In addition, for the regret matching [2], which proves that if
∑∞
t=1 wt =∞,

then the weighted average regret that defined as Rw,Ti = maxa∈A

∑T
t=1(wtr

t(a))∑T
t=1 w

t

can be bounded by the Rw,Ti ≤ ∆
√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
.

We can find that Rt(I, a) ≤ ∆
√
|A|
√
T for the player i’ action a on the

information set I, from the lemma 3. We can use the Lemma 1, which uses the

weight wα,t for the iteration t with B = ∆
√
|A|
√
T and C = 0. It means that

R′t(I, a) ≤ wT (B − C) ≤ ∆
√
|A|
√
T from the Lemma 1. Furthermore, we get

25

the weighted average regret is at most ∆
√
|A|
√
T from the Lemma 3. Since for

the information set, |I1|+ |I2| = |I|, and as T →∞,
RTi
T → 0. Therefore, in the

two-player zero-sum game, this weighted average strageties form a 2
∆|I|
√
|A|√

T
-

Nash equilibrium.

Lemma 1. Call a sequence x1, . . . , xT of bounded real values BC-plausible

if B > 0, C ≤ 0,
∑i
t=1 xt ≥ C for all i, and

∑T
t=1 xt ≤ B. For any BC -plausible

sequence and any sequence of non-decreasing weights wt ≥ 0,
∑T
t=1 (wtxt) ≤

wT (B − C).

Lemma 2. Given a group of actions A and any sequence of rewards vt,

such that |vt(a)− vt(b)| ≤ ∆ for all t and all a, b ∈ A, after conducting a set

of strategies decided by the regret matching, however applying the regret-like

value Qt(a) instead of Rt(a), QT (a) ≤ ∆
√
|A|T for all a ∈ A.

Proof. This Lemma is closely resembling Lemma 1, which are both from [6],

thus here we donot give the detailed proof of these two lemmas.

Lemma 3. Suppose the player i conducts T iterations of the ECFR, then

the weighted regret for the player i is at most ∆ |Ii|
√
|A|
√
T , and the weighted

average regret for the player i is at most
∆|Ii|
√
|A|√

T
.

Proof. The weight of the iteration t < T is wt =
∏T−1
i=t i. Therefore, for all

iteration t,
∑T
t=1 w

2
t ≤

∑T
t=1[(T−1)!

t!]2 ≤ T [(T − 1)!]2. In addition,
∑T
t=1 wt ≥

(T − 1)!.

Through Rw,Ti ≤ ∆
√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
and the Lemma 2, we can find that Qw,Ti ≤

∆
√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
≤ ∆

√
|A|
√
T . Due to RTi ≤

∑
I∈Ii R

T (I) [2], we can find that

Qw,Ti ≤ ∆ |Ii|
√
|A|
√
T . Since Rw,Ti ≤ Qw,Ti , thus Rw,Ti ≤ ∆ |Ii|

√
|A|
√
T .

26

	1 Introduction
	2 Methodology
	2.1 Problem Definition and Overview of RLCFR
	2.1.1 Problem Definition
	2.1.2 Overview of RLCFR

	2.2 The component of RLCFR
	2.3 Proof of The Convergence
	2.4 Training of RLCFR

	3 Experiments
	3.1 Experimental Platform
	3.2 Experimental Settings
	3.3 Experimental Results
	3.3.1 Comparisons with state-of-the-art methods
	3.3.2 Ablation studies

	4 Conclusions

