arXiv:1909.12738v2 [cs.Al] 3 Sep 2020

Solving reachability problems on data-aware workflows

(Currently under submission)

Riccardo De Masellis?, Chiara Di Francescomarino®*, Chiara Ghidini?,
Sergio Tessaris®

%Fondazione Bruno Kessler
b Free University of Bozen-Bolzano

Abstract

Recent advances in the field of Business Process Management have brought
about several suites able to model complex data objects along with the tradi-
tional control flow perspective. Nonetheless, when it comes to formal verification
there is still the lack of effective verification tools on imperative data-aware pro-
cess models and executions: the data perspective is often abstracted away and
verification tools are often missing.

In this paper we provide a concrete framework for formal verification of
reachability properties on imperative data-aware business processes. We start
with an expressive, yet empirically tractable class of data-aware process models,
an extension of Workflow Nets, and we provide a rigorous mapping between the
semantics of such models and that of three important paradigms for reasoning
about dynamic systems: Action Languages, Classical Planning, and Model-
Checking. Then we perform a comprehensive assessment of the performance
of three popular tools supporting the above paradigms in solving reachability
problems for imperative data-aware business processes, which paves the way
for a theoretically well founded and practically viable exploitation of formal
verification techniques on data-aware business processes.

1. Introduction

Recent advances in the field of Business Process Management have brought
about several suites able to model complex data objects along with the tra-
ditional control flow perspective. Nonetheless, when it comes to formal verifi-
cation, there is still a lack of effective tools on imperative data-aware process
models and executions. Indeed, the data perspective is often either abstracted
away due to the intrinsic difficulty of handling unbounded data, or investigated

*Corresponding author
Email addresses: demasellis@gmail.com (Riccardo De Masellis), dfmchiara@fbk.eu
(Chiara Di Francescomarino), ghidini@fbk.eu (Chiara Ghidini), tessaris@inf.unibz.it
(Sergio Tessaris)

only on the theoretical side, providing decidability results for very expressive
scenarios without actual verification tools (see [21] for an in depth analysis). Au-
tomated Planning is one of the core areas of Al where theoretical investigations
and concrete and robust tools have made possible the reasoning about dynamic
systems and domains. In the last few years, links between Automated Planning
and Business Process Management have started to emerge, either to exploit Au-
tomated Planning techniques to address specific problems of Business Process
Management (BPM), such as the one of process alignment [19], [3T], [30], trace
completion [22] and process verification [21], or to argue for a wider relationship
between the two fields [41].

Despite this growing interest, a systematic investigation of the actual use-
fulness of Automated Planing techniques, and of its variant components, is still
lacking in the BPM context. In fact, all the work above relies on specific and
ad hoc encodings of a given task at hand, therefore leveraging specific Plan-
ning formalisms, mostly referring either to classical or to action based planning.
As a consequence, which variants among classical and non-classical planning
models [26] may be better suited for which complex real-world BPM challenge
still remains unstudied, as also noted in the final discussion of [41]. This is not
negligible, considering the articulated and vast area of different variants and
approaches that constitute Automated Planning.

In this paper we aim at filling this gap by providing a first comprehensive
evaluation of different Automated Planning formalisms on a complex and still
open challenge in Business Process Management: the provision of a theoreti-
cally sound and practically supported data-aware business process verification
technique. We fulfill this objective by focusing on reachability problems for
imperative data-aware business processes. In particular we (i) exploit an ex-
pressive, yet empirically tractable class of data-aware process models, built by
extending the well established Workflow Nets formalism [53]; (ii) we establish a
rigorous mapping between our data-aware process models and three important
paradigms for reasoning about dynamic systems, namely Action Languages,
Classical Planning, and Model Checkingﬂ based on a common interpretation
of the three dynamic systems in terms of transition systems which allows us
to (i) perform a first comprehensive assessment of the performance of three
popular tools supporting the above paradigms in computing reachability for im-
perative data-aware business processes. The reasoning formalisms considered in
this work exhibit different characteristics, whose impact in terms of reasoning
with data-aware workflow net languages is not easily predictable without a ro-
bust evaluation. Therefore our work provides not only a solid contribution to
a theoretically well founded and practically viable exploitation of Automated
Planning to support formal verification on data-aware business processes, but
it also paves the way to more general and rigorous investigations on the use of

1While one may argue that Model Checking does not typically figure among Automated
Planning techniques, its usage as an approach to planning is well known and supported by
decision procedures and tools. See e.g., [10]

start

Figure 1: A Simple Business Process Model.

different planning formalisms for BPM.

The paper is structured as follows. Section [2] highlights the general moti-
vations behind our work and introduces a running example; Section [3| provides
some background on Workflow Nets [63] and describes the language of DAW-
nets originally introduced in [22]; Section [4| describes the approach and the
main steps for exploiting the notion of transition system as a bridge between
DAW-net and the chosen Action Languages, Classical Planning, and Model-
Checking languages, while details of the specific encodings of the DAW-nets
reachability problem in the three specific formalisms are provided in Sections [5]
[l and [7] Section [§] introduces the problem of trace repair we use for the the
empirical evaluation together with its recast in terms of reachability and lastly
Section |§| presents an extensive evaluation of three well known solvers (i.e.,
CLINGO, FAST-DOWNWARD and NUXMV) available for the different formalisms
both on synthetic and real life logs. While the evaluation does not indicate a
clear “winner”, it empirically shows that adding the data dimension dramati-
cally affects the solvers’ ability to return a result as well as their performance.
Moreover, characteristics of the trace, such as its dimension, also have an im-
portant impact on which solver performs best. The code used and all datasets
are publicly available (see Section |§| for details). The paper ends with related
work and concluding remarks.

2. Verification of Data-Aware Business Processes

Commercial and non-commercial BPM suites such as Bonita, Bizagi, YAWL
and Camunda support nowadays the modelling of both control and data flow and
provide some form of verification support. Following the analysis in [2], they
nonetheless offer no or very limited formal verification support when it comes to
detect the interdependencies between data and control flow: for instance, they
fail to report the critical issue in the process in Figure[f] Although this process
never terminates, due to the writing of variable y by activity T2, when verified
by the tools above this is not revealed, and the process is labeled as potentially
able to terminate. Indeed YAWL [52] offers verification features limited to the
control flow and thus it wrongly reports that such a process can always reach the
termination state. All other tools instead only offer a simulation environment
(i-e., no formal verification) that checks whether the process passes through all
the sequence flows, without taking into account data.

If we move from actual tools to theoretical frameworks the situation im-
proves. Indeed we may encode the example above in, e.g., Colored Petri Nets
(CPN) as it offers verification support that takes into account conditions on
labels and some interaction between activities and data. Nonetheless, CPN
suffers of usability issues as by encoding data directly within the Net, it is dif-
ficult to couple it with tools that are based on common data models such as
the relational model or attribute-value pairs. In order to exploit the verification
features of CPN the user would have to manually encode the data flow within
the Net and if this may not prove convoluted for examples such as the one in
Figure |1} the complexity can escalate with more elaborated examples such as
the one illustrated in Figure [2[which we use as running example throughout
the paper.

T6
local
officer
12 T4 approval
send Do fill request < bP T10
T1 o student —QO— student 5k 7 Do send Ps
tart ask loanType = sapplication request Senior s TO approval to —O\ T12 .
star 5 1+ customer i end
O— application p1 T3 5 P1 else—i officer - O
{documents JoanType = w™ gend il approval apspgéial o
) worker |—O— worker ouest > D7 o — Do
application | Ps request request > 8
100 T11
bank
committee
approval

Figure 2: The LoanRequest Process Model.

This (data-aware) workflow, modelling a simple Loan Application process,
is composed of 12 tasks (T1-T12). The application starts with task 71 where
the customer asks for the application forms. Then, depending on whether
the customer is asking for a student loan (loanType = s) or a worker loan
(loanType = w) the process continues with a mutually exclusive choice between
the sequence of activities T2-T4 and T3-T5. Once the appropriate (student or
worker) request is filled, another mutually exclusive choice is presented for the
execution: if the amount requested in lower than 5k, then task T6 is executed
and only a local approval is needed; if the amount requested is greater than
100k, then the request needs to be approved by the bank committee (task T8§);
in all the other cases the process continues with task 77. Once the request is
approved by means of the appropriate approval task, two parallel activities are
executed: the approval is sent to the customer (task T10), and the approval
documents are stored in the branch (task 771). Finally the loan is issued (task
T12). Concerning the interaction between activities and data, task 77 assigns
variable loanType to s or w; furthermore task 74 is empowered with the ability
to write the variable request with a value smaller or equal than 30k (being this
the maximum amount of a student loan). Similarly, task T is in charge of
writing the variable request up to 500k, which is the maximum amount for a
worker.

Given the example above one may check different properties which can be

reduced to verifying a reachability problem [54]: whether the process admits at
least one execution (that is, it can always reach the end from start), or whether
termination is guaranteed from start if we also impose the execution of certain
tasks. In our example it is easy to see that the interplay of the control and data
flow would prevent any execution from start to end that includes both T2 and
T8 for instance, as T2 can write the variable request with a value smaller or
equal than 30k while T8 is executed only if request has a value greater that
100k. While these properties may be verifiable by exploiting the power of CPN
or of extensions of Workflow-Nets (WF-Nets) [49], the ad hoc encoding of the
relational data model that is nowadays widely used to express data objects (in
BPM suites and beyond) in the these formalisms is among the reasons for their
failure to have a significant impact on practical tools.

In the remaining of the paper we provide a first theoretically sound and
empirically extensive investigation on the exploitation of automated planning
techniques to compute reachability in data-aware business processes. The reason
we focus on reachability is that, as extensively illustrated in [54], a number of
crucial properties that define a sound Business Process can be formulated as
reachability properties. These include, e.g., whether, no matter how the process
evolves from its beginning, it is always possible to reach its end, or if there are no
dead tasks, namely all of them could eventually fire. Consequently, planning is a
natural paradigm for solving reachability problems. Besides, it comes with solid
tools that can be directly exploited to support practical applications and lastly
it treats data objects as first class citizens, thus enabling a natural encoding
of data-aware business processes based on common data models such as the
relational data model or attribute-value pairs.

3. The Framework: DAW-net

In this section we first provide the necessary background on Petri Nets and
WF-nets (Section [3.1)) and then suitably extend WF-nets to represent data and
their evolution as transitions are performed (Section [3.2)).

3.1. The Workflow Nets modeling language

Petri Nets [44] (PN) is a modeling language for the description of distributed
systems that has widely been applied to the description and analysis of business
processes [50]. The classical PN is a directed bipartite graph with two node
types, called places and transitions, connected via directed arcs. Connections
between two nodes of the same type are not allowed.

Definition 1 (Petri Net). A Petri Net is a triple (P, T, F) where P is a set of
places; T is a set of transitions; F C (P x T) U (T x P) is the flow relation
describing the arcs between places and transitions (and between transitions and
places).

The preset of a transition ¢ is the set of its input places: *t = {p € P | (p,t) €
F}. The postset of t is the set of its output places: t* = {p € P | (¢,p) € F'}.

Po

b1t P2

Figure 3: A Petri Net.

Definitions of pre- and postsets of places are analogous. Places in a PN may
contain a discrete number of marks called tokens. Any distribution of tokens
over the places, formally represented by a total mapping M : P — N, represents
a configuration of the net called a marking.

PNs come with a graphical notation where places are represented by means
of circles, transitions by means of rectangles and tokens by means of full dots
within places. Figure [3| depicts a PN with a marking M (py) = 2, M(p1) = 0,
M (p2) = 1. The preset and postset of t are {pg,p1} and {p2}, respectively.

Process tasks are modeled in PNs as transitions while arcs and places con-
strain their ordering. For instance, the process in Figure [2] exemplifies how PNs
can be used to model parallel and mutually exclusive choices, typical of business
processes: sequences 12;T4 and T3;T5 are placed on mutually exclusive paths;
the same holds for transitions 76, T7, and T8. Transitions T10 and T11 are
instead placed on parallel paths. Finally, 79 is needed to prevent connections
between nodes of the same type.

The expressivity of PNs exceeds, in the general case, what is needed to model
business processes, which typically have a well-defined starting point and a well-
defined ending point. This imposes syntactic restrictions on PNs, that result in
the following definition of a workflow net (WF-net) [50].

Definition 2 (WF-net). A PN (P,T,F) is a WF-net if it has a single source
place start, a single sink place end, and every place and every transition is on a
path from start to end, i.e., for alln € PUT, (start,n) € F* and (n,end) € F*,
where F* is the reflexive transitive closure of F'.

A marking in a WF-net represents the workflow state of a process exe-
cution. We distinguish two special markings: the initial marking M, which
has one token in the start place (M;(start) = 1) and all others places are
empty (Vp € P\ {start}.M;(p) = 0), and the final marking M., which has
one token in the end place (M.(end) = 1) and all others places are empty
(Vp € P\ {end}.M.(p) = 0).

The semantics of a PN/WF-net, and in particular the notion of valid firing,
defines how transitions route tokens through the net so that they correspond to
a process execution.

Definition 3 (Valid Firing). A firing of a transition t € T from M to M’ is
valid, in symbols M 5 M’, iff

1. t is enabled in M, i.e., {p € P | M(p) > 0} D *t; and

2. the marking M’ is such that for everyp € P:

M(p) =1 ifpe t\t°
M'(p)={Mp)+1 ifpet®*t
M(p) otherwise

Condition 1. states that a transition is enabled if all its input places contain
at least one token; condition 2. states that when ¢ fires it consumes one token
from each of its input places and produces one token in each of its output places.

Notationally, t1tsts...tx is a sequence of valid firings that leads from M, to
My, iff M, 12N My i M, B k51 M4 LY M. In this paper we use the term
case of a WF-Net to denote a sequence of valid firings M b, M, =Y Mo L

. k;l M4 LY My, such that My = M; is the initial marking and My = M,
is the final marking. A case is thus a sequence of valid firings that connect the
initial to the final marking through the PN.

From now on we concentrate on safe nets, which generalise the class of
structured workflows and are the basis for best practices in process modeling [33].
The notion of safeness is defined in terms of k-boundedness (see also [53]).

Definition 4 (k-boundedness and safeness). A marking of a PN is k-bound if
the number of tokens in all places is at most k. A PN is k-bound if the initial
marking is k-bound and the marking of all cases is k-bound. If k = 1, the PN
1s safe.

It is important to notice that our approach can be seamlessly generalized to
other classes of PNs, as long as they are k-bound.

Reachability on Petri Nets. Given a PN and a set of “goal” markings G for its
places, the reachability problem amounts to check whether there is a sequence
of valid firings from the initial marking M of the PN to any of the markings in
G.

8.2. The DAW-net modeling language

DAW-net [22] is a data-aware extension of WF-nets which enriches them with
the capability of reasoning on data. DAW-net extends WF-nets by providing:
(i) a model for representing data; (ii) a way to make decisions on actual data
values; and (iii) a mechanism to express modifications to data. It does it by
introducing:

e a set of variables taking values from possibly different domains (addressing
(1));
e queries on such variables used as transitions preconditions (addressing (ii))

e variables updates and deletion in the specification of net transitions (ad-
dressing (iii)).

DAW-net follows the approach of state-of-the-art WF-nets with data [49] [16],
from which it borrows the above concepts, extending them by allowing reasoning
on actual data values as better explained in Section

Throughout the section we use the WF-net in Figure [2] extended with data
as a running example.

3.2.1. Data Model

The data model of WF-nets take inspiration from the data model of the
IEEE XES standard for describing event logs, which represents data as a set of
variables. Variables take values from specific sets on which a partial order can
be defined. As customary, we distinguish between the data model, namely the
intensional level, from a specific instance of data, i.e., the extensional level.

Definition 5 (Data model). A data model is a tuple D = (V, A, dm, ord) where:

e V is a possibly infinite set of variables;

o A = {A1,Aq,...} is a possibly infinite set of domains (not necessarily
disjoint);

e dm:V — A is a total and surjective function which associates to each
variable v its domain A;;

e ord is a partial function that, given a domain A;, if ord(A;) is defined,
then it returns a partial order (reflexive, antisymmetric and transitive)

<A C A x AP

A data model for the loan example is V = {loanType, request, loan},
dm(loanType) = {w,s}, dm(request) = N, dm(loan) = N, with dm(loan) and
dm(loanType) being total ordered by the natural ordering < in N.

An actual instance of a data model is simply a partial function associating
values to variables.

Definition 6 (Assignment). Let D = (V,A,dm,ord) be a data model. An
assignment for variables in V is a partial function n:V — |J; A; such that for
each v € V, if n(v) is defined, i.e., v € img(n) where img is the image of n,
then we have n(v) € dm(v).

Instances of the data model are accessed through a boolean query language,
which notably allows for equality and comparison. As will become clearer in
Section [3:2.2] queries are used as guards, i.e., preconditions for the execution of
transitions.

Definition 7 (Query language - syntax). Given a data model, the language
L(D) is the set of formulas ® inductively defined according to the following
grammar:

P = true\def(v)\v:t2|t1§t2|—|<1>1|<1>1/\q)2

where v € V and t1,to € VU, A;.

2To simplify the model we assume that if {(0,0’), (0/,0)} C ord(A;) then o = o’.

Examples of queries of the loan scenarios are request < 5k or loanType = w.
Given a formula ® or a term ¢, and an assignment 1, we write ®[n] (respectively
t[n]) for the formula ® (or the term ¢') where each occurrence of variable v
for which 7 is defined is replaced by n(v) (i.e. unassigned variables are not
substituted).

Definition 8 (Query language - semantics). Given a data model D, an assign-
ment n and a query ® € L(D) we say that D,n satisfies ¢, written D,n = ®
inductively on the structure of ® as follows:

e D,y = true;
D,n = def(v) iff v[n] # v;
D.n = t1 =tz iff tr[n], t2[n] ¢ V and t1[n] = t2n];
D,n = t1 < to iff tiln], ta[n] € A; for some i and ord(A;) is defined and
ti[n] <a, ta[nl;
D,n = P iff it is not the case that D,n = ¥;
e D.nE P ADy iff D,n =@y and D,n = Ps.

Intuitively, def can be used to check if a variable has an associated value or
not (recall that assignment 7 is a partial function); equality has the intended
meaning and t; < to evaluates to true iff t; and to are values belonging to the
same domain A;, such a domain is ordered by a partial order <a, and t; is
actually less or equal than to according to <a,.

Lemma 1. Let ® € L(D), and adm(®) be its active domain — i.e. the set of
constants appearing in ®. Given an assignment 1 we consider the data model
D' as the restriction of D w.r.t. adm(®) Uimg(n), then

D if D'y ®

The last lemma ca be easily proved by structural induction on the formula,
and it makes the queries independent of the actual “abstract” domains enabling
the use of finite subsets. Intuitively, the property holds because the query
language doesn’t include quantification over the variables.

3.2.2. Data-aware net

Data-AWare nets (DAW-net) are obtained by combining the data model just
introduced with a WF-net, and by formally defining how transitions are guarded
by queries and how they update/delete data.

Definition 9 (DAW-net). A DAW-net is a tuple (D, N, wr, gd) where:

o N=(P/T,F) is a WF-net;

e D=V, A dm,ord) is a data model;

o wr:T = Jyicp,(V = 29" where dm(V) = Upey dm(v), is a function
that associates each transition to a (partial) function mapping variables
to a finite subset of their domain; that is satisfying the property that for
each t, wr(t)(v) C dm(v) for each v in the domain of wr(t).

e gd: T — L(D) is a function that associates a guard to each transition.

Function gd associates a guard, namely a query, to each transition. The
intuitive semantics is that a transition ¢ can fire if its guard gd(¢) evaluates to
true (given the current assignment of values to data). Examples are gd(T6) =
request < 5k and gd(T'8) = —(request < 99999).

Function wr is used to express how a transition ¢ modifies data: after the
firing of ¢, each variable v in the domain of wr(t) can take any value among a
specific finite subset of dm(v). We have three different cases:

e () C wr(t)(v) € dm(v): ¢ nondeterministically assigns a value from wr(t)(v)
to v;

o wr(t)(v) = 0: ¢t deletes the value of v (hence making v undefined);
e v & dom(wr(t)): value of v is not modified by ¢.

Notice that by allowing wr(t)(v) C dm(v) in the first bullet above we enable
the specification of restrictions for specific tasks. E.g., wr(T4) : {request} —
{0...30k} says that T4 writes the request variable and intuitively that students
can request a maximum loan of 30k, while wr(T5) : {request} — {0...500k}
says that workers can request up to 500k.

The intuitive semantics of gd and wr is formalized in the notion of DAW-
net valid firing, which is based on the definition of DAW-net state, and state
transition. A DAW-net state includes both the state of the WF-net, namely its
marking, and the state of data, namely the assignment.

Definition 10 (DAW-net state). A state of a DAW-net (D, N, wr, gd) is a pair
(M, n) where M is a marking for (P,T,F) and n is an assignment for D.

Analogously to traditional WF-nets, we distinguish two special states: the
initial state (Ms,ns), which is such that Mj is the initial marking of N and n;
is empty, i.e., dom(ny) = 0; and the final states (M,,n.), such that M, is the
final marking of N (no conditions on assignment 7).

Definition 11 (DAW-net Valid Firing). Given a DAW-net (D,N,wr, gd), a
firing of a transition t € T is a valid firing from (M,n) to (M’',n), written as

(M,) =5 (M), iff
1. M4 M’ is @ WF-Net valid firing
2. D,n |= gd(t),
3. assignment n' is such that, if Wr = {v | wr(t)(v) # 0}, DEL = {v |
wr(t)(v) = 0}:
e its domain dom(n') = dom(n) U WR \ DEL;
o for each v € dom(n'):

) —
)= n(v) otherwise.

{d e wr(t)(v) ifvewr

10

Conditions 2. and 3. extend the notion of valid firing of WF-nets imposing
additional pre- and postconditions on data, and in particular preconditions on
n and postconditions on 7. Specifically, 2. says that for a transition ¢ to be
fired its guard gd(t) must be satisfied by the current assignment n. Condition 3.
constrains the new state of data: the domain of 1’ is defined as the union of the
domain of n with variables that are written (WR), minus the set of variables that
must be deleted (DEL). Variables in dom(n’) can indeed be grouped in three
sets depending on the effects of ¢: (i) OLD = dom(n)\ WR: variables whose value
is unchanged after ¢; (ii) NEW = WR \ dom(n): variables that were undefined
but have a value after ¢; and (ili) OVERWR = WR N dom(n): variables that did
have a value and are updated with a new one after . The final part of condition
3. says that each variable in NEW U OVERWR takes a value in wr(t)(v), while
variables in OLD maintain the old value n(v).

Similarly to regular PNs, a case of a DAW-net is a sequence of DAW-net
valid firings (Mo, no) iy (My,m) L (My—1,MK-1) L (M,) such that
(Mo, no) is the initial state and (M, nx) is a final state.

Note that, since we assumed a finite set of transitions and wr(t) is finite for
any transition ¢, for any model W we can consider its active domain adm(W)
as the set of all constants in wr(¢) and gd(t) for all the transitions ¢ in W.
Moreover, given the Lemma [I} we can consider the restriction of the model to
the finite set of states defined by the active domain.

Definition 12 (Finite DAW-net models). Let W = (D, N, wr, gd) be a DAW-
net with D = (V, A, dm, ord) and N' = (P, T, F), adm(W) be its active domain.
We consider the data model Dy as the restriction of D w.r.t. adm(W).

The finite version of W, denoted as W, is defined as (Dw, N, wr, gd).

By looking at the definition of valid firing and using Lemma [1] it’s easy to
realise that the set of states of W is closed w.r.t. the relation induced by the
valid firing. As we’ll see later on, this enables us to focus on finite DAW-net
models.

Reachability on DAW-nets. Analogously to PN, given a DAW-net W and a
set of goal states GG, the reachability problem in DAW-nets amounts to check
whether there is a path from the initial state (Ms,ns) of W to any of the goal
states in G.

Although such a definition is quite general, in practical applications one may
be interested in the reachability of a specific marking M, of W in this case, the
goal is the set of states of W with M, as the first component and any assignment
in the second (by virtue of Definition [12|and Lemma goal sets defined in this
way are always finite). In fact, in this paper we focus on what we call clean
termination: the reachability, from the initial state, of any of the final states
(M., n.), namely no tokens in any place except in the sink, which should instead
contain a (single) one, and any assignment 7.. We remark, however, that our
technique is general and allows for solving reachability of any set of goal states.

11

4. Reachability: from theory to practice

In this section we illustrate our approach to verify reachability properties of
DAW-nets by exploiting state-of-the-art techniques and tools. The paradigms
we selected are: action languages, classical planning, and model checking. The
specific toolsﬂ we used are CLINGO, FAST-DOWNWARD, and NUXMV respectively,
which in turn are paired with the representation languages BC, PDDL, and SMV
briefly summarised later in the paper.

In the following sections, given a DAW-net W, we show how to encode W in
the specific language used by each paradigm/tools and formulate the reachabil-
ity problem as a termination condition. We then prove that such encodings are
sound and complete, i.e., if a property is verified within one of the encodings,
then it is indeed valid for the original DAW-net, otherwise it is not. Notably,
we do so by providing the semantics of the above tools in terms of transi-
tion systems, which provide an intermediate representation that could support
the extension of this work to new paradigms/tools whose semantics can be ex-
pressed likewise. This also allows us to use the same structure for the sound
and completeness proofs for the encodings, whose main conceptual steps are
now described.

In order to exploit the notion of transition systems as a bridge between
DAW-net and the three chosen paradigms, we first need to connect transition
systems and DAW-nets. To do so, we observe that the behaviour of a DAW-
net is possibly nondeterministic, as in each state, in general, more than one
transition can fire: thus, while cases define a possible DAW-net evolution, a
transition system, called reachability graph, captures all possible evolutions.

Definition 13 (DAW-net reachability graph). Let W = (D, N, wr, gd) be a
DAW-net with D = (V,A,dm,ord) and N' = (P, T,F), then its reachability

graph is a transition system RGw = (T, S,30,0) where:
e S is the set of states, each representing a DAW-net (M, n) state;
e 59 = (Mg, ns) is the initial state;
e Sand§ C S xT xS are defined by induction as follows:
— §p € ?;
. vl t ! ! . - N !
—if (M,n) € S and (M,n) — (M',n') is a valid firing then s’ =
(M',/) € S and (s,t,s') €3 (and we write s 5 s' €3).
Let us consider the finite version of W as defined in Definition clearly

the initial state is among its states and, since the set of its states is closed w.r.t.
the relation induced by the valid firings, we get the following:

Lemma 2. Let W = (D,N,wr,gd) be a DAW-net model and W its finite
version, then their reachability graphs are identical.

3Hereafter we will often refer to these tools as solvers.

12

In virtue of the above lemma, in the rest of the paper when we mention the
states of a DAW-net W we intend the states of W, that is, we restrict to the
finite set of states defined by the active domain.

As we are going to show in the following sections, the semantics of the chosen
paradigms can be captured by means of transition systems as well. Therefore,
given a DAW-net W, let us denote with BC(W), pPDDL(W) and smv(WW) the
encodings of W in the respective languages and with T'Spew), TSppprw) and
TSsuv(w) the transition systems generated by the above encodings. A path of
a transition system RGyw is a sequence of states obtained by starting from the
initial state of RG and traversing its transitions, thus it represents a possible
evolution or behaviour (indeed, each path of RG is a trace of W by definition). If
we can show that for each path in TS, with x € {Bc(W), PDDL(W), smv (W)},
there is an equivalent (see later) path in RG, then the encoding of the reach-
ability problem for W in the * language is sound, as the tool only generates
DAW-net behaviours. Likewise, if for each path in RG there is a path in TS,
then the encoding is complete as all DAW-net behaviours are captured by TS..
This property is called trace equivalence [1], and is of utmost importance for us
as trace-equivalent transition systems are indistinguishable by linear properties,
which include reachability properties. In other words, if RG is trace equivalent
with T'S,, a reachability property in TS, is true if and only if it is true in RG,
which allows us to use the above tools for solving our trace repair problem.

In order to formalise trace equivalence we shall first define what does it mean
for two paths, generated by different transition system, to be equivalent.

Let 7180 2 51 3 ... B s, andﬂ":sggs’l 5. t#s; be paths generated
by RG and T'S, respectively. We say that m and 7 are equivalent if so = s{, and
for each i € {1,...,n} we have that s; = s, and t; = t;. Technically however,
states of TS, encode information on the state of the net (M,n) in different
ways, and possibly also use some additional information for technical reasons.
Let us then call enc, (M, n) the encoding of (M, n), and enc,(¢) the encoding of
t in the language * € {BC, PDDL, SMV}. Then = is equivalent to 7’ (w.r.t. enc,)
if enc.(sp) = s and for each i € {1,...,n} we have that enc.(s;) = s} and
enc.(t;) = t..

Definition 14 (Trace equivalence). Let RG be a DAW-net reachability graph
and TS, a transition system, then RG and TS, are trace equivalent iff there

is an injective function enc, from the states and transitions of RG to those of
TS, s.t.

1. for each path sg 2N $1 B sn of RG,

enc.(so) ence () enc,(sy

s a path of TS.; and

2. foreachpaths{)t%s’l gt%s/n of TS, there is a path so 2 s1 3 ... 13
sn of RG s.t. enci(so) = sy, and enc.(s;) = s, enc.(t;) =t} for 1 <i<mn.

) enc*_(>t2) enc. (tn) enc*(Sn)

Recall that the reachability problem expresses whether, given a set of goal
states G of W, at least one of those can be reached from the initial one (Mg, ns).

13

Given Definition it immediately follows that if RG and TS, are trace equiva-
lent, then, if a state is reachable in RG, it is also reachable in T'S, by performing
the very same transitions and vice-versa, thus they satisfy the same reachability
properties.

Note that, in order to exploit the specific algorithms to verify reachability
in the “target” system, we need also to show that the corresponding language
for specifying the termination property is expressive enough to capture all and
only the states corresponding to the final states.

In the next sections, for each language * € {BC,PDDL,SMV} we prove that
RG and TS, are trace equivalent, and therefore they can be used to solve the
above mentioned reachability problem. These sections are organised in three
parts: in the first one the specific formalism is introduced, then the following
ones provide the encoding and the proofs.

5. The encoding in Action Languages

In this section we will show how the transition system underlying DAW-net
can be represented by means of the so called action languages [38], in order to
use the ASP based solver CLINGO to verify reachability properties. In our work
we will be focusing on the BC language as introduced in [35], but the same idea
can be applied to different frameworks (e.g. DLVX [24]).

5.1. The BC action language

An action description B in the language BC includes a finite set of symbols:
fluent, and action constants. Each fluent constant is associated to a finite set, of
cardinality greater or equal than 2, called the domain. Boolean fluents have the
domain equal to {TRUE, FALSE}. An atom is an expression of the form f = v,
where f is a fluent constant, and v is an element of its domain.

A BC description B contains static and dynamic laws; the former are expres-
sions of the type

Agif Ay,... A, ifcons A, q,..., Ay (1)

while the second are of the form

Ag after A'y,... A, ifcons A, 1,... Ay, (2)
with 0 < n < m, where Ay, Ay,..., Ay, are atoms, and A}, ..., A} can be atoms
or action constants.

Intuitively, static laws assert that each state satisfying Ay, ..., A, and where
Apy1,...,A; can be assumed satisfies Ay as well. In dynamic laws, instead,
Iy..., Al must be satisfied in the preceding state. An action constant is sat-

isfied if the action is being “executed” in a specific state.
Initial states can be specified with statements of the form

initially A (3)

14

where A is an atom, that is, an expression of the form f = v.

Semantics of a BC description B is given in terms of a translation into a
sequence P;(B) of ASP programs where atoms are of the form i : A with 0 <
i < ¢, and A being a BC fluent or action constant. Each static law is
translated as the set of ASP rules with strong negation

i:Ag i Ay, it Ay Apg)y e ~(B A)
where 0 < ¢ < /. Each dynamic law is translated as
t+1:Ag+i: Ay, i Ap,~(i+1: Apg), ..o, ~(i+ 10 Ay)

where 0 < i < £. If Ay is false the corresponding rules are constraints.
Initial state constraints of the form initially f=v force the value of fluent f in
the first state and are therefore translated as

0:f=v

In addition to the rules corresponding to static / dynamic laws and initial
constraints, the ASP program contains rules to: (i) set the initial state by
nondeterministically assigning the values of fluents

0:f=vVv~a(0: f=v)

for each fluent f and elements v of its domain; (i) force total knowledge on
action execution
i:aV-(i:a)

for each action constant a and ¢ < ¢; and finally (%) impose existence and
uniqueness of values for the fluents

(i f=o), (i f =)
i f=veif=w

for any fluent f, v,vy,..., v, w elements of its domain, v # w, and i < £.
Given a stable model M, of Py(B), we indicate as v}.(M,) the variable as-
signments in the corresponding state 0 < i < £:

vi (M) ={fro|feF,if=o¢c M}

Note that the above rules on fluents guarantee that vi.(M;) is well defined:
total and functional.

Although not originally introduced in [35], we introduce the implicit transi-
tion system induced by a BC description in order to relate it with the DAW-net
reachability graph as explained in Section

Definition 15 (BC transition system). Let B be a BC description over the set F
of fluent, and A of action constants. Let Sy be the set of all total assignments
for fluents in F satisfying the domain restrictions. Then its transition system
TSpom) = (A, S, So,0) is defined as:

15

o Sy C Sy is the set of initial states

Sy = {V0.(My) | My is a stable model of Py(B)}

e SC Sy andd C Sy x 24 x Sy are the minimum sets s.t.:

- SO C S;

— if Myy1 is a stable model of Ppy1(B) for some € > 0, and
VE(Mpp1) € S; then Vi (Mey1) € S and (vio(Mes1),{a € A |
l:a € Mz+1}, Véérl(Mg+1)) €0

While states of a BC transition system can be easily compared with DAW-
net reachability graph states, BC enables concurrent and “empty” transitions
(8 C Sy x 24 x Sy); therefore the encoding should take that into account (see
Section [5.2] for details).

The solver we use in Section[J]to compute reachability on problems expressed
with the BC language is the Coala compiler and CLINGO ASP solver [25]. Within
the tool, the final states to define the reachability problem can be specified
using a set of (possibly negated) atoms using finally statements analogous to
the initially previously described in Equation .

5.2. Encoding DAW-nets in BC

Given a DAW-net W, its encoding in the BC, denoted as BC(W), intro-
duces: (i) a fluent for each variable in W, with the domain corresponding to
the variable domain plus a special constant null (representing the fact that a
variable is not assigned); () a boolean fluent for each place; and (iii) an action
constant for each transition. To simplify the notation we will use the same con-
stant names. Moreover, without loss of generality we assume that guards are in
conjunctive normal formﬁ

Let (D,N,wr,gd) be a DAW-net as defined in Definition @ where N =
(P,T,F) and D = (V,A,dm,ord). Let V' C V be the (finite) set of variables
appearing in the model, and adm(v) be the active domain of v € V', that is,
adm(v) = ;e wr(t)(v). The encoding BC(W) starts by representing in BC key
properties of transactions in a DAW-net:

e All fluents are “inertial”, that is their value propagates through states
unless their value is changed by the transitions:

v=o after v=o ifcons v=0 for v € V' and o € adm(v) U {null} (4)

p=o after p=o ifcons p=o for p € P and o € {true, false} (5)

4We do not expect huge guards, therefore we ignore the potential exponential blowup due
to the conversion to CNF of arbitrary queries.

16

e Transitions modify the value of places and variables; for each transition

teT:
p=false after t for all p € *t\ t* (6)
p=true after t for all pet®\ °t (7)
v=d after t ifcons v=d for all (v,d) € wr(t) (8)
v=null after t for all v s.t. wr(t)(v) =0 (9)
. _ for all v € V' s.t. wr(t)(v) # 0,
false after t ifcons v=d d € {null} Uadm(v) \ wr(t)(v) (10)

Note that equation ensures that after the execution of a transition
the value of a variable modified by it must be among the legal values.

e Transitions cannot be executed in parallel:

false after t, s for (t,s) e T x T and t#s (11)

e Transitions cannot be executed unless input places are active:

false after t, p=false fort€ T and p € °t (12)

e Initially, all the places but the start one are false and variables are unas-

signed
initially start=true (13)
initially p=false for p € P and p # start (14)
initially v=null forve) (15)

e In BC a state progression does not require an actual action. To disallow
this scenario we need to track states that have been reached without the
execution of an action. This is achieved by including an additional boolean
fluent trans that is true if a state has been reached after a transition:

trans=true after t forteT (16)
initially trans=true (17)

We now describe the encoding in BC of DAW-net queries. Due to the rule-
based essence of BC we consider a Disjunctive Normal Form characterisation of
the DAW-net queries defined in Definition |7)): for any DAW-net query ® there
is an equivalent normal form st. @ =\i_ tin.. A t@i where each term t;
is either of the form v = o or —def(v). To prove the existence of such formula
@ we consider the disjunctive normal form of ®, and to each term not in the
form v = o or —def(v) we apply the following equivalences that are valid when

5® is not unique.

17

considering the finite domain data model Dy, (which we can consider without
loss of generality because of Lemma [2)):

V] = Vg = \/ V1 =0AV2 =0
o€dm(vi)Ndm(vs)

—(v1 =) = \/ V] = 01 AU = 09
(01,02)€dm(v1) xdm(v2),01F02

\/ v=0

o€dm(v)\{o}

v<o= \/ V=0

(o’,0)€ord(v)

J
—~
<
Il
Q
~
Il

V=0
(0,0")€ord(v)

o<w

1 < vy = \/ v1 = 01 AUy = 09
(01,02)€ord(vy)Nord(vz)

def(v) = \/ v=0

o€dm(v)

Given a DAW-net query @, and its Disjunctive Normal Form characterisation
@ = \/_, i A... At , we define the translation ®"° of ® as \/I_, #1" AL AL "
where v = 0°° =+ v = 0 and —def(v)" = v = nuII

Having encoded the queries we can now encode the fact that transitions
cannot be executed unless the guards are satisfied. This condition is encoded
as a set of dynamic constraints preventing the execution unless at least one of
the clauses of the guard is not satisfied. For each transition ¢ s.t. gd(t) # true
we consider —gd(t)" = \/f:1 N /\tziBC and include the following dynamic
constraints:

false after t,t1"", ... ¢} ™
(18)
false after t,th"" ... ,té?ch

The set of final states for the reachability problem can be specified as the ones
in which all place fluents are FALSE but the one corresponding to the sink:
finally sink=true

19
finally p=false for p € P and p # sink (19)

5.3. Correctness and completeness of the BC encoding
Let BC(W) be the BC encoding of a DAW-net W. In this section we are going
to show that T'Sycw) and the reachability graph of W are trace equivalent as

6This rather inefficient explicit representation is convenient for the proofs, and it can be
optimised in the actual ASP implementation via grounding techniques and explicit represen-
tation of the orderings by means of ad hoc predicates.

18

per Definition This section reports all the main steps involved, while further
technical details and proofs are presented in

To simplify the proofs we first relate sequences of valid firings in W of arbi-
trary length £ to stable models of P;(BC(W)). In fact, the definition of T'Syqw)
(Definition is based on the notion of stable models.

To map sequences of valid firings into stable models we observe that stable
models P;(Bc(W)) include both the fluent assignments and the information
regarding the action constants that “cause” a specific state transition; therefore
we split the mapping in two parts to separate these two distinct aspects:

Definition 16. Let p = (Mg, no) i\ (My,m) LG (My,me) be a sequence
of walid firings in W (with £ > O)E] The mapping ®;(p) (for 0 < i <) is
defined as following:

DY (p) = {i:p=TRUE, (i : p=FALSE) | p € P, M;(p) > 0} U
{i : p=FALSE, (i : p = TRUE) | p € P, M;(p) =0} U
{i:v=0,-(i:v=null) |veV n)=o0}U
{i:v=null|veV n) is undefined} U
{=(i:v=0)|veV, oeadm(v),n(v) # o orni(v) is undefined} U
{i : trans = TRUE, —(i : trans = FALSE)}
. 0 ori >/
HOER | fort
{i:tiyU{=@:t)|teT t#t;} fori<t
Bi(p) = B/(o) U] (o)

Note that Definition together with Definition enable us to say that
the firing (M;,n;) Ly (M;y1,mi41) in p corresponds to the T'Spqy) transition
Vi (@Y (p)) {Hltegio) vid (@Y, 1 (p)). Moreover, the definition of ®¥(-) depends
only on the state (M, n;) and not on the selected path p, which provides just
the “witness” for being a state of the reachability graph.

Before proving completeness and correctness we show that the states of the
two transition systems preserve the satisfiability of £(Dw) queries:

Lemma 3. Let W be a DAW-net model, and p = (Mo, 1) iy (My,m) iy

te—1

oo = (Myg,me) be a sequence of valid firings of W (with £ > 0). For every state
(M;,m;) (0<1i<Z{)and query ® € L(Dw)

where i : 8¢ is the formula where i : - is placed in front of each term t°°, and
D,(p) =i :t%C iff i t3° € Dy(p).

"We consider (Mo, 7o) a sequence of size 0.

19

The proof is by induction on £(Dy).
We are now ready to state the completeness of BC encoding.

Lemma 4 (Completeness of BC encoding). Let W be a DAW-net and BC(W)
its encoding, then for any £ > 0 if p is a sequence of valid firings of W of length
L, then Uf:o ®,(p) is a stable model of Py(BC(W)).

To prove correctness we first prove few properties about the reachability
graph TSBC(W)~
Lemma 5. Let TSpowy = (A, S, 50,9), then

1. SO = {80},’

2. if (s, A,s") €6 then |[A| = 1.

By using this lemma, given a DAW-net model W, we can compare the tran-
sition system corresponding to its reachability graph RGw = (T, 5,30,9) to
TSpo(w) (Deﬁnition. This because it guarantees that there is a single initial
state, and the transitions (the ¢ of Definition contain exactly one action

eachﬁ The following definition introduces the mapping from stable models to
sequences of valid firings.

Definition 17. For any stable model M, of Py(BC(W)) with £ > 0 we also
define the “inverse” relation ®; (M;) = (M;,n;) for 0 <i < £:
M; :{(]L 1) | pe P, Véc(Mf)(p) = TRUE} U
{(p.0) | p € Pve(Me)(p) =
ni ={(v,0) |v e V' vi.(M)(v) = 0,0 # null}

FALSE}

and the transition T;(My) for 0 < i < {:
T7i(My) = a s.t. (i:a)€ M,
where a is an action constant in Py(BC(W)).
Lemma 6 (Correctness of BC encoding). Let W be a DAW-net and Bo(W) its
encoding, then for any € > 0 if My is a stable model of Py(BC(W)), then
p =5 (M) ™S o () ST o ()
18 a sequence of valid firings of W of length £.

We are now ready to state the main result of this section, namely trace
equivalence between Gy (BC(W)) and RG = (T, S,30,0). We do that by instan-
tiating the abstract notion of enc, introduced in Section 4] to BC, and by using
the completeness and correctness lemmata [4] and [6]

8BC allows transitions without or with multiple parallel actions.

20

Theorem 1. Let W be a DAW-net model and RG = (T, S, 3, 6) its reachability
graph, then TSyewy and RG are trace equivalent.

Proof. To demonstrate trace equivalence we define the mapping encgq(-) as fol-
lows: for each (M,n)

encgo((M,n)) = {(p, TRUE) | (p,1) € M} U
{(p,FaLSE) | (p,0) € M} U
{(v,null) | v not in the domain of n} U

Ui

and ency(t) = {¢} for each transition in 7.
Note that, by construction, for each sequence of valid firings (M, 7o) Ly

(Mym) B "5 (Men), encoc((My,m;:)) = vie(®Y(p)), and for any stable
model My of Py(BC(W)) encpe(®; (My)) = vio(My). Therefore the proof is a
consequence of the lemmata [] and [0} O

The trace equivalence demonstrated by Theorem [I] enables the use of ASP
based planning to verify the existence of a plan satisfying the termination con-
ditions expressed in Equation . Moreover, it is immediate to verify that the
set of final states as characterised in Equation corresponds to all and only
the final states of the DAW-net model mapped via encge(+).

6. The encoding in Classical Planning

Automated planning has been widely employed as a reasoning framework to
verify reachability properties of finite transition systems. It is therefore natural
to include it among the verification tools that we considered for our evaluation.

In order to be as general as possible without committing ourselves to a spe-
cific planner we based our encoding on the de facto standard, namely PDDL [2§],
however to simplify the formal discussion we will adopt the state-variable rep-
resentation [29] instead of the more common classical. There is no loss of gen-
erality, since it is known that state-variable planning domains can be translated
to classical planning domains with at most a linear increase in size.

6.1. State-Variable Representation of Planning Problems

A detailed description of the planning formalism is outside the scope of this
paper and the reader is referred to the relevant literature — e.g. [29] — however
in this section we briefly outline the main concepts for our setting.

Given a set of objects B, a state variable is a symbol v and an associated
domain Range(v) C Bﬂ The (finite) set of all the variables is denoted by X,
a wvariable assignment over X maps each variable v to one of the objects in

91In this context we restrict to state variables as 0-ary functions.

21

Range(v). In addition, we will consider a set of rigid relations R over B that
represent non-temporal relations among elements of the domain.

An atom is a term of the form TRUE, 7(21,...,2y), or v = 21; where r € R,
v € X, and z; are either constants or parametersm A literal is a positive or
negated atom.

An action template is a tuple o = (head(a), pre(«a), eff(«)): head(«) is an
expression act(z1,...,z2;) where act is an (unique) action name and z; are pa-
rameters with an associated finite Range(z;) C B, pre(«) is a set of literals (the
preconditions), and eff («) is a set of assignments v < z where z is a constant or
parameter. All parameters in o must be included in head(«). A state-variable
action (or just action) is a ground template action where the parameters are
substituted by constants from their corresponding ranges.

Definition 18. A classical planning domain is a triple ¥ = (S, A,) where
e S the set of variable assignments over X ;
o A is the set of all actions;

e v:S5 xA — S with 8" x A" ={(s,a) € S x A | pre(a) is satisfied in S}

and
v(s,a) = {(v,w) | v+ w € eff(a)}
{(v,w) € s |Vw' € Bv«+ w' & eff(a)}.
Definition 19. A plan is a finite sequence of actions m = {(aq,...,ay,), or the
empty plan (). A plan is applicable to a state sq if there are states si,..., sy

s.t. ¥(si—1,a;) = 8; (empty plans are always applicable).
If is applicable to s, we extend the notation for ~ to include plans (s, 7):
where (s, () = 5 and (s, m.a) = 4(+(s,),a) [T

Definition 20. A state-variable planning problem is a triple P = (3, s,,9)
where ¥ is a planning domain, sg the initial state, and g a set of ground literals
called the goal.

A solution for P is a plan 7 s.t. y(so, ™) salisfies g.

To simplify the encoding introduced in Section [6.2] we will consider an ex-
tended language for the precondition of action templates. This extended lan-
guage enables the use of boolean combinations as well as atoms in which state
variables can be used in place of constants, that is, v = v', or r(vy,...,v,).
Planning domains using the extended language can be encoded into classical
planning domains by considering the disjunctive normal form of the original

10We use the term parameter to denote mathematical variables, to avoid confusion with
state variables.
ay,...,an).a is defined as (a1, ..., an,a).

22

preconditions and introducing a new template for each conjunctE The ex-
tended syntax concerning state variables can be dealt with by introducing a
(new) parameter for each variable in the precondition appearing within a rigid
relation or in the left hand side of an equality. This new parameter z, for the
variable v will be substituted to the original occurrence of v and the new term
UV = 2, is included in the precondition.

The above definitions can be re-casted for the extended language, and plans
for the extended and corresponding classical planning domains can be related
via a surjection projecting the “duplicated” template (introduced by the DNF
conversion) into the original ones.

6.2. Encoding DAW-nets in PDDL

The main idea behind the encoding of a DAW-net W in PDDL, denoted with
PDDL(W), is similar to the one presented in Section where state variables
are used to represent both places and DAW-net variables, and actions represent
transitions. The main differences lay in the fact that: (i) nondeterminism in the
assignments must be encoded by means of grounding of action schemata; and
(ii) the language for preconditions does not include disjunction, and thus more
than a schema may correspond to a single transition.

Let W = (D,N,wr,gd) be a DAW-net as defined in Definition [} where
N =(P,T,F) and D = (V,A,dm,ord). V' C V be the (finite) set of variables
appearing in the model, and adm(v) be the active domain of v € V', that is,
adm(v) = J;cpwr(t)(v). The encoding PDDL(W) is defined by introducing: a
state variable for each v € V', with domain corresponding to the domain of v
plus a special constant null; and a boolean state variable for each place p € P.
To simplify the notation we will use the same constant names. In addition to
the state variables we introduce a rigid binary relation ord to encode the partial
ordering of Definition [5}

ord = U {(0,0') € A? | 0 <4, 0'} (20)
A;EA

and unary relations wry, to encode the range wr(t)(v) of Definition @

wry, ={o]oewr(t)(v)} forallteT and v eV s.t. wr(t)(v) #0

21
wry ., = {null} forallt € T and v € V s.t. wr(t)(v) =0 1)

Note that Lemma guarantees the finiteness of ord, while wr(t)(v) are finite
by definition.

12This transformation might introduce an exponential blow-up of the domain due to the
DNF transformation. However, this can be prevented in the overall conversion from DAW-net
by imposing the DNF restriction in the original model as well.

23

Given a DAW-net query ® (Deﬁnition we denote with ®"PPY its translation
in the PDDL preconditions, defined as:

true"® = TRUE

def(v)™"" = = (v = null)
v="1"""" = =(v =null) A (v =t2)
t1 S tQPDDL = ord(tl, tg)

“¢1PDDL _ “¢1PDDL

@1 /\ @2PDDL — @1PDDL /\ @2}’1)1)14

Analogously to the previous section we introduce an action template for
each transition in W where preconditions, in addition to the guard, include
the marking of the network (token in the places). The selection of the actual
value to be assigned to the updated variables is selected by means of action
parameters (one for each variable). Formally, let ¢ be a transition in W, and
{v1,...,v;} the variables in the domain of wr(¢); then PDDL(W) includes the
action template oy = (head (), pre(a:), eff(a:)) defined as follows:

head () = t(2yyy - -5 20y,)

pre(a;) = gd(t)™"" A /\ Wy (2y) A /\ (p = TRUE)
veE{v1,..., 0k } peE*t (23)

eff()= N\ (w==z)A A (p=rase)A)\ (p=TRUE)

ve{vi,...,vk } peE®t\t® pEt®

Analogously to the BC case, the goal of the planning problem is described
by the set of ground literals corresponding to the state in which all place fluents
are FALSE but the one corresponding to the sink:

sink = TRUE

24
p = FALSE for p € P\ {sink} (24)

6.3. Correctness and completeness of the PDDL encoding

To show that the transition systems underlying a DAW-net W and its encod-
ing PDDL(W) are equivalent we define a bijective mapping between the states of
the two systems and we show that for each valid firing in W there is a ground
action “connecting” the image of the states in v and vice-versa.

Let (M,n) be an arbitrary state of W, we define the mapping ¥ to states of
PDDL(WW) as:

(M, n) ={v= vl |ve Vv #viU
{v=null|veV,vn =v}U
{p+ TRUE |p € P,M(p) >0} U
{p— FALSE | p € P, M (p) = 0}

(25)

Since we restrict to 1-safe nets, it is easy to show that W is a bijection; moreover:

24

Lemma 7. Let W be a DAW-net model, for every state (M,n) of W and query
® e L(Dw)
D,n = iff U(M,n) | o™

Proof. The statement can be easily proved by induction on £(Dy) formulae
and by using Equation for base cases. O

Now we can show that valid firings of DAW-net corresponds to transitions
in the planning domain

Lemma 8. Let W a DAW-net model and PDDL(W) its encoding into a planning
domain:

1. if (M,n) 4 (M',n) is a valid firing of W, then there is a ground action
Q¢ Ofat s.t. (\I](Ma 77)>at7\I’(M/777/)) € v

2. if there is a ground action a; of oy s.t. (s,ay,s') € 7y, then U= (s) 5 U~ (s')
s a valid firing of W.

The proof is in

To compare the PDDL encoding of W with the DAW-net reachability graph
RGw = (T,S,30,0) (introduced in Definition we consider the transition
system T'Sppp(wy derived from the planning domain PDDL(W).

Definition 21. Let W a DAW-net model. The transition system TSpppw) =
(T, Sepor, S0, Oepor) 48 defined as follows:
® Sy — \I/(go)
o Sippy is the minimum set that includes sy and if s € Spppy, and (s,as,8') €
~ then s’ € Spppr
® Geppr, = {(Syt,sl) S Sepor. X T X Spppr, | (S,Clt,sl) S
v, a¢ is a ground action of oy}

Theorem 2. Let W be a DAW-net model, then RGw and TSy, wy are trace
equivalent.

Proof. We define encppp(+) as the restriction of ¥ (as defined in Definition [25])
to the set of states of RGy , and the identity w.r.t. the transitions. We show
that encpppy,(+) satisfies the properties of Deﬁnitionby induction on the length
of the paths.

The base case of a path of length 0 is satisfied because sy = encpppr.(50) =
U (5p) is a state in T'Spppyw) by Definition

For the inductive step we just need to consider the last element of the paths:

1. If sg b $1 13, e Sn1 N Sp is a path in RGyw, then s,_1 L Sy 18
a valid firing, therefore by Lemma [§] there is a ground action a; of ay
s.t. (¥(sp—1),as,¥(sy)) € . By Definition (U(sp-1),t,U(sy)) is a
transition of T'Sppp(wy, and so is (encpppr(Sn—1), €NCeppi(t), €NCpppr(Sn))-

25

2. If {(s0,t1,81)y--+,(Sn—1,t,8)} C dppp, then there is a ground action a;
of ay s.t. (Sp—1, at, Sn) € y; therefore ¥~ (s,,_1) N U~ (s,) is a valid firing
of W by Lemma So U~ (sp—1) and ¥~ (s,) are states of RGy and
encpppL (P (8;)) = s; by construction.

O

The trace equivalence demonstrated by Theorem [6.3] enables the use of clas-
sical planning tools to verify the existence of a plan satisfying the termination
conditions expressed in Equation Moreover, it is immediate to verify that
the set of states as characterised by the goal in Equation [24] corresponds to all
and only the final states of the DAW-net model mapped via encpppy,(+).

7. The encoding in nuXmv

Model checking [7] tools take as input a specification of system executions
and a temporal property to be checked on such executions. The output is “true”
when the system satisfies the property, otherwise “false” is returned as well as a
counterexample showing one (among the possibly many) evolution that falsifies
the formula. In particular, reachability properties can be easily expressed as
liveness formulas of the kind: “Eventually one of the states satisfying some
property is visited.” In NUXMV, the system is specified in an input language
inspired by smv [43] and the properties in a temporal language, such as linear-
time temporal logic (LTL, see [7] Chapter 5, for an introduction).

Let W be a DAW-net and RGyy its reachability graph. We show how to
encode RGyy in the NUXMV input language and the reachability of a set of goal
states as a LTL formula such that, when processed by NUXMV, an execution
reaching one of the final states is generated in the form of a counterexample, if
any.

7.1. The NUXMV input language

Many of the available tools for traditional model checking, including NUXMV,
deal with infinite-executions systems, and hence they require systems transition
relation to be left-total. On the contrary, our models are based on workflow-
nets which by definition represent process which usually terminates. Also, in
NUXMV transitions have no label. For this reason, we adapt the reachability
graph so as to have infinite paths and no transition labels, and we call such a
modified reachability graph RG7;,. This kind of transformations are customary
using tools requiring infinite-executions to describe finite-execution ones. De-
spite RGy;, being semantically different from RGyy, it is also possible to tweak
the formal properties to be verified in such a way that the adaptation is sound
and complete. From here on we abstract from such technical subtleties and refer
to [I3] for the details.

Intuitively, RGyy, is obtained from RGw by: (i) moving transition labels in
the source state; (ii) adding a fresh self-looping (with transition ended) state s,
and (i11) adding a (last) transition from every sink state of RGw to s, as the
following definition formalizes.

26

Definition 22. Let RGw = (T, S,30,0) be a reachability graph of a DAW-net.
We build a transition system RGy, = (T U {last, ended}, S, Sy,) as follows:

the set of states are triples (M,n,t) with t € T U {last, ended} where we
distinguish the special state s¢ = (M, ., ended) where M, and n. are
arbitrary;

set Sy is built as follows: if there exists (Mo, no) BN (M',n') € & then
SO = {(M077707t) | Elt7M/7nl'(M07n0) —t> (M,ﬂ?/) € S}7 otherwise SO =
{(MOa Mo, IaSt)}'

S and 6 C S x S are the least sets s.t.:
SoU{sc} CS;
Se = Se €6;
if (M,n) % (M',5/) €3 then:
— if(M’,n’),t—;,(M”,n”) €6 then s = (M,n,t) = s' = (M',n/,t') €4

and s,s' € S;

— otherwise s = (M,n,t) — s = (M',n/,last) € 6, (s',sc) € 0 and
s,s' €S;

if 6 = 0 then (My,no,last) — sc € § (notice that if 6 = () then Sy =
{(M()a 7o, /ast)})

We now describe from a very high-level perspective the syntax and semantics
of NUXMV, i.e., how a transition system TSgyy(,,) is built given syntactic de-
scription of a so-called module m. In general, NUXMV allows for several modules
descriptions, but in our case one it is enough to represent RGy;,.

A module is specified by means of several sections and, in particular:

A VAR section where a set of variables and their domains are defined.
Each complete assignment of values to variables is a state of the module.
A INIT section where a formula representing the initial state(s) of the
system is defined.

A TRANS section where the transition relation between states is specified
in a declarative way by means of a list of ordered rules (r1,...,7,) in a
switch-case blockE Each rule r; has the form (pre;, post;), where pre; is
(a formula representing) a precondition on the current state and post; is
(a formula representing) a postcondition on the next state (and possibly
the current state). In NUXMV, postconditions are expressed by means of
primed variables, namely ¢’ = value means that in the next state variable
¥ is assigned to walue. Intuitively, state ¢’ is a successor of ¢ iff 7 is the

13There are several equivalent ways to describe a transition relation in NUXMV, we just
choose one.

27

smallest index such that ¢ models pre; and (¢,q’) models post;. With
slight notational abuse we write ¢ = ¢ when the current state (recall
that a state is an assignment of values to variables) satisfies a formula
containing only unprimed variables and we write (¢,¢’) = ¢’ when the
pair current state, next state satisfies a formula containing both primed
and unprimed variables.

Definition 23. Let m be a NUXMV module and stVar be the set of vari-
ables in its VAR section. Module m defines a transition system TSgw(m) =

(stVar,Q, Qo, p) where:

e () is the set of states, each representing a total assignment of domain
values to variables;

o the initial states Qg are those satisfying the formula in the INIT section;

o states @ and transition function p C QX Q are defined by mutual induction
as follows:

- QO g Q;
— if ¢ € Q and i is the smallest index such that q = pre; (such an i
is required to erist by NUXMV), then (q,q") € p and ¢’ is such that

(¢,4') = post;.

7.2. Encoding of DAW-net in NUXMV

We present our encoding of W in NUXMV for each section of the module
smv(W).

VAR section. We have:
e one boolean variable p € P for each place p € P;
e one {7 variable which ranges over T'U {last, ended};
e one variable 9 € V for each v € V ranging over dm(v) U {undef} where
undef it is a special value not contained in any of the dm(v).
Let encgyv (M, n) be the encoding for DAW-net markings and assignments
to formulas in NUXMV of the kind:

/\ p = {TRUE, FALSE} /\ U =d

pEP veY

where p = TRUE iff M(p) = 1 and p = FALSE otherwise; 4; = d iff n(v) is
defined; and n(v) = d or d = undef if n(v) is undefined. Besides, let encgyy (t)
be the encoding of DAW-net transition ¢ to the NUXMV formula tr = ¢, for
t € T'U{last, ended}.

Remark 1. The pair of functions enceyy(M,n) and encaw (t) are a bijection
between states S of RGy, and states Q of TSsw(w)-

28

INIT section. We have:

enceyy (Mo, 7o) A

tr # ended A

/\teT r=t— pre(t) A

tr = last = (A\,cr —pre(t))

where pre(t) is a formula representing the preconditions for executing ¢ according
to the semantics of the DAW-net: it thus consists of guard gd(t) as well as
preconditions on the input set °t.

TRANS section. We have:
e one rule for each t € T which has:

pre := enceyy(t)

post := Vp € *t\ t*.next(p) = FALSE A
Vp € t* \ *t.next(p) = TRUE A
next(p) = p otherwise A
Vo € dm(wr(t)) A wr(t)(v) # D.next(d) € wr(t)(v) A
Yo € dm(wr(t)) A wr(t)(v) = Q.next(d) = undef A
next(?) = ¢ otherwise A
Nser next(tr) =t — next(pre(t)) A
next(tr) = last — (/\,c ~next(pre(t))) A
next(tr) = ended — tr = last

where next(pre(t)) is likewise formula pre(t) but with all its variables
primed (thus referring to the next state). Intuitively, the postcondition
contains: (i) a condition on the (next) values of pre- and post-sets of ¢;
(ii) a condition on the (next) values of the variables according to function
wr of the DAW-net and (%) conditions on the (next) value of variable
tr: next value of ¢r is ¢, only if the (next) state is consistent with the
preconditions for executing t.
e a rule for fr = last:
pre := encgyy(last)

post := mext(fr) = ended A
next(enceu (Me, 1))
e a rule for looping in the ended state with #r = ended:
pre := encgyy(ended)

post := mext(tr) = ended A
next(enceyy (Me, 1¢))

We notice that since | Jpre; form a partition for all possible values of tr we
have that for each assignment to stVar, i.e., state ¢, there exists a unique i such
that g = pre;. In other words, the ordering of rules does not matter.

29

7.8. Correctness and completeness of the NUXMV encoding

As introduced in Section [4] we prove soundness and completeness of the
encoding by proving trace equivalence between RGY;, and the transition system
TS suv(w) generated by module smv(W). A standard technique to prove trace
equivalence amounts, in fact, to provide a bisimulation relation between states of
RGY, and TSq(w) as the latter implies the former [7]. A bisimulation relation
has a co-inductive definition which says that states of the two transition systems
are bisimilar if: (i) they satisfy the same local properties; (i) every transition
from one state can be mimicked by the other state and their arrival states are
again in bisimulation (and vice-versa). If every initial states of RGy, is in
bisimulation with an initial state of T'Sgyy(w), then they are trace equivalent,
as any trace start from an initial state.

Definition 24. RGy;, = (T, S, S0, d) be the reachability graph of a DAW-net and
TSsmvwy = (stVar,Q,qo, p) be the NUXMV transition system of its encoding.
We define bisimulation relation B C S x @ as follows: (s = (M,n,t),q) € B
implies:

1. q = encey (M, n) A encayy (t);

2. for all s — s € § there exists ¢ € Q such that ¢ — ¢’ € p and (s',q') € B;
and

3. for all ¢ — q € p there exists s’ € S such that s — s’ € 6 and (s',¢') € B.

We prove that there exists a bisimulation between RGy, and TSgyyw) by
showing one.

Theorem 3. Let R C S x Q be such that ((s = (M,n,t),q) € R) iff ¢ =
encsyy (M, n) A encayy (). Then:

1. R is a bisimulation relation;
2. for each sg € Sy there exists qo € Qo such that (so,q0) € R and vice versa.

Proof. We first prove 1. Let s’ = (M’,n/,t') be such that s — s’ € §, then we
have to prove that there exists a ¢’ such that ¢ — ¢’ € p and (s',¢') € R. We
have three cases:

e t € T: then, by inspecting the corresponding rule in the TRANS sec-
tion, it is immediate to see that ¢ and s are such that M’(p) <> p (such
values are deterministic). Let us now consider the value of a generic vari-
able v € V assigned nondeterministically by n’. We have again three
cases:(i) v € dm(wr(¢)) and wr(t)(v) # 0, hence its new value will be in
wr(t)(v); (ii) dm(wr(t)) and wr(t)(v) = (), hence its new value will be undef;
or (iii) v & dm(wr(t)) and its new value will be the same as the old one.
Such cases are coded in conjunction in the rule: let us assume the first one
applies with value v/ = ¢, by Definition [23| then there exists ¢’ such that
(¢,q") = post; and ¢'(v) = ¢; for the other two cases the choice is deter-
ministic, either ¢’(v) = undef or ¢'(v) = ¢q(v). It follows that there exists

30

a ¢’ that agrees on encgyy(M’,7n'). It remains to show that there exists a
q' such that also ¢/(tr) = t: if ¢/ € T, then it means that M’ and 7’ sat-
isfy the preconditions of the firing of #', meaning that ¢ — next(pre(t)) is
satisfied, hence there exists such a ¢’ (there exists at least one, the choice
of ¢’ is nondeterministic); if ¢ = last then, from Definition [22| we have that
no t"", M" 7" such that (M’,n) N (M",n") exist, i.e., \,cp "next(pre(t))
holds, hence ¢/(fr) = last. Notice that we assumed ¢ € T, hence it is never
the case that ¥ = ended. Since ¢’ agrees with s’ on the markings, the
values of variables and the transition, it follows that (s’,¢') € R.

e ¢ = last, then from Definition we have that s’ = s, and ¢ = ended.
Since q(tAr) = last, then rule ¢ = last applies in the encoding and from its
definition, (s',¢’) € R immediately follows.

e t = ended, then from Definition [22| we have that s’ = s, and t’ = last.
Since ¢(tr) = ended, then rule ¢ = ended applies in the encoding and from
its definition, (s',¢’) € R immediately follows.

Now, let ¢’ such that ¢ — ¢’ € p. We have to prove that there exists a

s = (M’',n,t') such that s = s’ € § and ¢’ = enceuy(M’,t') A encompts(t). We
have three cases: t € T, t = last and ¢t = ended. Analogous considerations to of
the previous case hold, as the rules in the encoding are not only sound, but also
complete.

We now show 2. Given Remark [l} it is enough to show that (s,q) € R
implies s € Sy <> ¢ € Qo. We first prove the left to right direction, i.e., that (s =
(Mo, mo,t),q) € Rimplies ¢ € Qo, namely that formula encgyy (Mo, 70) Aencsyy ()
satisfies the first conjunct of the INIT section. By definition of INIT, the first
conjunct is satisfied, thus it remains to prove encgy(¢). By Definition |13 and
Definition [22] either (1) ¢ € T or (2) ¢t = last. If (1) then there is no valid firing
in (M, n), which entails that A,., —pre(t) and if (2), then ¢ can fire in (Mo, 7o)
hence its preconditions are satisfied, which means encgy (Mo, 10) satisfies pre(t).
In both cases the formula in the INIT section is satisfied and ¢ € Q.

The right to left direction in analogous by noticing that pre() trivially encodes
the preconditions for firing . O

We conclude the section by observing that, by virtue of Remark the
formula ® := end = TRUE /\pep\{end}ﬁ = FALSE captures all and only states
in T'Ssuy(w) that correspond to final states in the DAW-net. Therefore, when
NUXMV checks the LTL formula: “a ®-state is never visited”, it returns “true”
if no final state can be reached and “false” and a path to a final state otherwise.

8. Trace completion

In order to evaluate the proposed encodings and the scalability of the three
chosen solvers, in this paper we focus on the problem of repairing execution
traces that contain missing entries (hereafter shortened in trace comple-
tion). The need for trace completion is motivated in depth in [47], where missing
entities are described as a frequent cause of low data quality in event logs.

31

The starting point of approaches to trace completion are (partial) execution
traces and the knowledge captured in process models. To illustrate the idea
of trace completion, and why this problem becomes interesting in data-aware
business processes, let us consider the simple process model of the Loan Request
(LR) depicted in Figure [2| page

A sample trace@ that logs the execution of a LR instance is:

{T1,T3,T5,T7,T9,T10,T11,T12}. (26)

In this trace all the executed activities have been explicitly logged. Consider
now the (partial) execution trace

{T3,T7}. (27)

which only records the execution of tasks 78 and T7. By aligning the trace to
the model using the techniques presented in [47), 23], we can exploit the events
stored in the trace and the ordering of activities (i.e., control flow) specified
in the model to reconstruct two possible completions: one is the trace in ([26));
the other is: {T'1,73,75,77,79,711,710,7T12} which only differs from
for the ordering of the parallel activities.

Consider now a different scenario in which the partial trace reduces to {T'7}.
In this case, by using the control flow in Figure 2] we are not able to reconstruct
whether the loan is a student loan or a worker loan. This increases the number of
possible completions and therefore lowers the usefulness of trace repair. Assume
nonetheless that the event log conforms to the XES standard and stores some
observed data attached to T'7 (enclosed in square brackets):

{T7[request = 60k, loan = 50k]} (28)

Since the process model is able to specify how transitions can read and write
variables, and furthermore some constraints on how they do it, the scenario
changes completely. In our case, we know that transition 74 is empowered with
the ability to write the variable request with a value smaller or equal than 30k
(being this the maximum amount of a student loan). Using this fact, and the
fact that the request examined by T7 is greater than 30k, we can understand
that the execution trace has chosen the path of the worker loan. Moreover,
since the model specifies that variable loanType is written during the execution
of T1, when the applicant chooses the type of loan she is interested to, we are
able to infer that T1 sets variable loanType to w.

This example, besides illustrating the idea of trace completion, demonstrates
why taking into account data (both in the process model and in the execution
trace) is essential to accomplish this task. Also, as already observed in [9], by
considering corner cases of partial traces, such as empty traces and complete

141n this work we are interested in (reconstructing) the ordered sequence of events that
constitutes a trace, and thus we ignore timestamps as attributes. In the illustrative examples
we present the events in a trace ordered according to their execution time.

32

Model Trace

@ R @ | Model Consistency
Start End
©, = Q,
T2 . >.
+ | s e | Trace conformance

Figure 4: Corner-case incomplete execution traces.

traces, the ability to produce a complete trace compliant with the process model
can be also exploited to compute model consistency and trace conformance,
respectively (see Figure [4).

8.1. Trace completion as reachability

Having introduced the problem of trace completion we now show that we
can reduce it to a reachability problem in a modified DAW-net that takes into
account both the original model and the given (partial) trace. Here we formalise
the completion problem and its encoding into reachability. Full details and
proofs are contained in

A trace is a sequence of observed events, each one associated to the transition
it refers to. Events can also be associated to data payloads in the form of
attribute/variable-value pairs. Among these variables we can distinguish those
updated by its execution (see Definition @ and those observed. Executions

, , and at page provide examples of traces without and with
data payloads for our running example

Definition 25 (Trace). Let W = (D,N,wr,gd) be a DAW-net. An event of
W is a tuple (t,w,w?) where t € T is a transition, w € Uy cp,(V' = dm(V))
is a partial function that represents the wvariables written or observed by the
execution of t, and w® C V the set of variables deleted (undefined) or observed
to be undefined by the execution of t. Obviously, w® and the domain of w do
not share any variable.

A trace of W is a finite sequence of events T = (e, ..., ey). In the following
we indicate the i-th event of T as 7. Given a set of transitions T, the set of
traces is inductively defined as follows:

e the empty trace is a trace;

e if T is a trace and e an event, then T - e is a trace.

Notice that the definition above constrains the transitions neither to be
complete nor correctly ordered w.r.t. W. What we would like to check is indeed
if 7 can be completed so as to represent a valid case of W. Intuitively, a trace 7
is compliant with a case C' of a DAW-net W if C' contains all the occurrences of
the transitions observed in 7 (with the corresponding variable updates) in the
right order, as the following definition formalises.

15We remark the conceptual and practical difference between a case and a trace: a case is a
semantic object intuitively representing an execution/behaviour of the business process model
while a trace is asyntactic object that comes from the real world of which we would test the
soundness by providing a possible repair.

33

Figure 5: Outline of the trace “injection”.

Definition 26 (Trace Compliance). An event (t',w,w?) is compliant with a
(valid) firing (M, n) L (M',7) iff t =t', dom(w) C dom(n') CV\ w?, and for
all v € dom(w) w(v) =n'(v).

A trace T = (e1,...,ep), £ > 0, is compliant with a sequence of valid firings

(Mo, o) 2 (M) . (My—1, 1) = (M,)
iff there is an injective mapping v between [1...£] and [1...k] such thatm

Vij st 1<i<j<€ ~(i) <)
(29)

Ty)

Vist. 1 <i<{ e;is compliant with (M. _1),Myi-1)) (M), My(3))
(30)

When £ = 0 we impose that T is compliant with any sequence of valid firings.
We say that a trace T is compliant with a DAW-net W if there exists a case
C of W such that T is compliant with C.

Although the previous definition is general we notice that, since the last
state of a case C' must be a final state, 7 being compliant with W means that
it can be completed so as to represent a successful execution of the process W.

To simplify the presentation we assume (without loss of generality) that
DAW-net models start with the special transition start; and terminate with the

161f the trace is empty then £ = 0 and ~ is empty.

34

special transition end;. Both have a single input and output places: start; input
is the start place, and end; output place is the sink. Both the transitions have
empty guards (always satisfiable) and don’t modify variables; moreover, start
and sink places shouldn’t have any incoming and outgoing edge respectively.
Every process can be reduced to such a structure as informally illustrated in
the top part of of Figure [5| by the arrows labeled with (1). Note that this change
would not modify the behaviour of the net: any sequence of firing valid for the
original net can be extended by the firing of the additional transitions and vice
versa.

We now illustrate the main idea behind our approach by means of the bottom
part of Figure |5} we consider the observed events as additional transitions (in
red) and we suitably “inject” them in the original DAW-net. By doing so,
we obtain a new model where we aim at forcing tokens to activate the red
transitions when events are observed in the trace. When, instead, there is no
red counterpart, i.e., there is missing information in the trace, the tokens are
free to move in the black part of the model.

More precisely, for each event e corresponding to the execution of a transition
t with some data payload, we introduce a new transition ¢, in the model such
that:

e t. is placed in exclusive or with the original transition ¢;

e t. includes an additional input place connected to the preceding event and
an additional output place which connects it to the next event;

e gd(t.) is a conjunction of the original gd(¢) with the conditions that state
that the variables in the event data payload that are not modified by the
transition are equal to the observed ones;

e wr(t.) updates the values corresponding the variables updated by the event
payload, i.e. if the event sets the value of v to d, then wr(t.)(v) = {d}; if
the event deletes the variable v, then wr(t.)(v) = 0.

Note that an event (t,w,wd> cannot be compliant with any firing unless
w(v) € wr(t)(v) for each variable in dom(w)Ndom(wr(t)), and weNdom(wr(t)) C
{v] (v,0) € wr(t)}. Since these properties can be verified just by comparing
the events to the model, then in the following we assume that they are both
satisfied for all the events in a trace.

Given a DAW-net W, and a trace 7, the formal definition of the “injection”
of 7 into W, denoted with W7, is given below.

Definition 27 (Trace workflow). Let W = (D,N = (P, T,F),wr,gd) be a
DAW-net and 7 = (e1,...,e,) — where e; = (t;, w;,wd) — a trace of W. The
trace workflow W™ = (DN = (P™,T7,F7), wr", gd") is defined as follows:

o PT = PU{petU{pe | e €T}, with pe,, pe new places;

o T =T U/{t. | e € T}, with t. new transitions;

35

e 'T=FU
{(te;;p) |1 =1...n,(t;,p) € F}U{(p,te;,) |i=1...n,(p,t;) € F}U
{(te;s0e;) | © = 1...n} U {(Pe;_yste;) | & = 1...n} U
{(Starttvpeo)v (pen, ’ endt)}
{v = {w;(v)} | v € dom(w;) N dom(wr(t;))} U
o wr(t)= ¢ {ve> wr(t;)(v) | v € dom(wr(t;)) \ dom(w;)} fort=t.,
wr(t) forteT

gd(tl) A /\vedom(wi)\dom(wr(ti)) U=y (U) A
b ng (t) = /\vaf\dmn(Wr(ti)) _'dEf(’U) fO’f‘ = tei
gd(t) otherwise

It is immediate to see that W7 is a strict extension of W (only new nodes are
introduced) and, since all newly introduced nodes are in a path connecting the
start and sink places, it is a DAW-net, whenever the original one is a DAW-net

net.
(o)1)

e

Figure 6: A sample of trace workflow obtained by adding trace (B, D).

id
E @]

By looking at this definition, at its graphical illustration at the bottom of
Figure[5] and also at the simple example in Figure[f]it is easy to see why the red
transitions must be preferred over the black ones in all the sequences of valid
firings that go from start to end (i.e., in all cases). Intuitively, transition end,
needs a token in the red place p., to fire, in addition to the token in the original
end of the initial net. By construction all the red places are only connected to
red transitions. Thus, to properly terminate, when choosing between t. and ¢,
te must be preferred so that it produces in output all the tokens for the original
black output places plus the one for the new red place. Note that whenever ¢
was able to fire in the original net, t. can fire as well. Indeed it is easy to see
that, by construction, the token generated by start; in p., is only consumed
and produced by red transitions, and propagated into red places.

We now prove the correctness and completeness of the approach by showing
that W7 characterises all and only the cases C' of W to which 7 is compliant with.
We focus here only on the main intuitive steps of the proof, whose technical

details are reported in full in
Roughly speaking what we need to show is that:

e (correctness) if C is an arbitrary case of W7, then there is a “correspond-
ing” case C’ of W such that 7 is compliant with C’; and

36

e (completeness) if 7 is compliant with a case C of W, then there is a case
C’" in W™ “corresponding” to C.

A fundamental step for our proof is therefore a way to relate cases from
WT to the original DAW-net W. To do this we introduce a projection function
I, that maps elements from sequences of valid firings (cases) of the enriched
DAW-net W7 to sequences of valid firings (cases) composed of elements from
the original DAW-net W. The formal definition of II; is given in Definition
of In essence II; maps newly introduced transitions t. to the
original transition ¢ corresponding to the event e, and projects away the newly
introduced places in the markings.

Once defined the projection function Il the correctness and completeness
statement can be formally formulated as follows:

Theorem 4. Let W be a DAW-net and 7 = (e1,...,e,) a trace; then W7
characterises all and only the cases of W compatible with 7. That is
= if C is a case of W7 then 7 is compliant with the case of W I1.(C); and
< if T is compliant with the case of W C then there is a case C' of W7 s.t.
I, (¢ =C.

The proof of correctness follows from two foundamental properties of W™
and the projection function II. respectively. The first property, ensured by
construction of W7, states that 7 is compliant with all cases of W7”. The second
property, instead, states that any case for W™ can be replayed on W trough
the projection I, by mapping the new transitions f. into the original ones
t, as shown by Lemma [J in Given these two properties, it is
possible to prove that, if C' is a case of W7, then 7 is compatible with it and
with its projection II.(C) on W (See Lemma [12] in [Appendix C)). The proof
of completeness instead is based in the fact that we can build a case for W7
starting from the case of W with which 7 is compliant, by substituting the
occurrences of firings corresponding to events in 7 with the newly introduced
transitions (See Lemma [13]in [Appendix CJ).

Theorem [4| provides the main result of this section and is the basis for the
reduction of the trace completion for W and 7 to the reachability problem for
WT: indeed, to check if 7 is compliant with W all we have to do is finding a
case of WT.

Corollary 1 (Trace completion as reachability). Let W be a DAW-net and T
a trace; then T is compliant with W iff there is a final state (Me,n') of W7 that
can be reached from the initial state (Ms,ns).

Proof. This is immediate from Theorem [4] because a final state of W™ can be

reached from its initial state iff there exists at least a case of W7. O

We conclude the section by stating that the transformation generating W7
is preserving the safeness properties of the original workflow (proof in[Appendix]
0).

Theorem 5. Let W be a DAW-net and 7 a trace of W. If W is k-safe then
WT is k-safe as well.

37

9. Evaluation

In this section we aim at evaluating the three investigated solvers CLINGO,
FAST-DOWNWARD and NUXMV, and the respective paradigms answer set pro-
gramming, automated planning and model checking, on the task of trace com-
pletion for data-aware workflows. In detail, we are interested to answer the
following two research questions:

RQ1. What are the performance of the three solvers when accomplishing the
task of trace completion by leveraging also data payloads?

RQ2. What are the main factors impacting the solvers’ capability to deal with
the task of trace completion?

The first research question aims at evaluating and comparing the perfor-
mance of the three solvers, both in terms of capability of returning a result
within a reasonable amount of time and, when a result is returned, in terms of
the time required for solving the task. The second research question, instead,
aims at investigating which factors could influence the solvers’ capability to deal
with such a task (e.g., the level of incompleteness of the execution traces, the
characteristics of the traces, the size of the process model, the domain of the
data payload associated to the events, or the data payload itself).

In order to answer the above research questions by evaluating the three in-
vestigated solvers in different scenarios, we carried out two different evaluations:
one based on synthetic logs and a second one based on real-life logs. Indeed, on
the one hand, the synthetic log evaluation (Subsection allows us to investi-
gate the solvers’ capabilities on logs with specific characteristics. On the other
hand, the real-life log evaluation (Subsection allows us to investigate the
capability of the solvers to deal with real-life problems. In the next subsections,
we detail the two evaluations (Subsections and and we investigate some
threats to the validity of the obtained results (Subsection .

All the experiments have been carried out on a Kubernetes cluster running
over a pool of virtual machines hosted on hardware based on Intel Xeon X5650
2.67GHz processors. For the container running the experiments a single CPU
has been allocated since the reasoning systems we used do not exploit mul-
tiprocessing. For each run we set up a (real) time limit of one hour, and a
memory limit of 8GiB["] The code used for the experiments is available for
download from https://doi.org/10.5281/zenodo.3459656. The directory
experiments includes the models and experiments descriptions, as well as a
README.nd file with the details on how to run them.

9.1. Synthetic Log Evaluation

In order to investigate the performance of the three solvers in different set-
tings, we built synthetic models with different characteristics. For each of them,

17Given the single task nature of the container, the CPU time is only marginally lower than
the real time.

38

https://doi.org/10.5281/zenodo.3459656

we identified different traces with different features and, in turn, for each trace,
we considered different levels of trace completeness ranging from the complete
trace (100% complete) to the empty trace (0% complete). In the next subsec-
tions we describe the datasets, the procedure and the metrics used, as well as
the obtained results.

9.1.1. Dataset, procedure and metrics

We built five different synthetic models M1 — M5 with different characteris-
tics and of different size. In detail, M1 is the model reported in Figure[7] The
model deals with 5 different variables: number, first, second, third, fourth
and fifth. Activity A is able to write four variables (first, second, third
and fourth), activity I writes variable number and, finally, activity G writes
variable fifth.

num#£5
4

Ps Pbs

=0 . N O

: f=1 :
start: Do P P13 s i
O—=[A—0 O Q=100 Uk
i Pipnum=5 =3 9

. el

K

Figure 7: Model M1 and its core K

Figure [7] also shows the guards related to model M1. In detail, the exit
condition from the loop (L — I) is variable number equals to 5 at I, while
whenever the value of number written by I is different from 5, the loop is exited
and M is executed. Moreover, variables first, second and third determine the
branch to be taken at the end of the model. In detail, if at M first is equal to
1, the branch with N is taken, if second is equal to 2, the branch O is taken,
while if third is equal to 3, the branch starting with P is taker@ Whenever
more than one of the three conditions are verified, one of the three branches can
be non-deterministically taken.

We built the synthetic models M2 ... M5 starting from model M1 and
creating replicas of M 1. For notation simplicity, we denote with K the core part
of M1, i.e., the model obtained by excluding the start and the end event (see
Figure and we enumerate the replicas of K in M2 ... M5 with a progressive
number. In detail, M2 concatenates two replicas of K, labelled as K0 and
K1 (see Figure , M3 uses the parallel construct to compose together two
replicas of K, namely K0 and K1 (see Figure [8(c)). M4 concatenates three
replicas of K, namely K0, K1 and K2 (see Figure|8(d)|). Finally, in M5, three

18For the sake of readability first, second and third are shortened in f,s and ¢ in Figure

[

39

|
ST e Ty
(e) M5

(d) M4

Figure 8: Models M1,..., M5 used in the evaluation

replicas of K are composed in an exclusive choice. In detail, one of the two
alternative branches concatenates two replicas of K, i.e., KO and K1, while the
other exclusive branch is composed of a single replica of K, named K2 (see
Figure . Different replicas of K do not share variables, which are renamed
in order to avoid interactions that could limit the compatible traces.

For each of the five models M1... M5, we generated 8 different execution
traces of different length and with different characteristics. In detail, we gen-
erated 4 compliant traces and 4 non-compliant traces. Out of the 4 compliant
traces, in two traces (trace types T'3 and T'4) the loop(s) of K replica(s) is(are)
never executed, while in the remaining two, the loop is executed twice. More-
over, in two (trace types T'1 and T3) out of the four cases of the compliant
traces, the path followed by the trace is deterministically driven by the values
associated by the activity A to the variables first, second and third, while in
the remaining two traces more than one branch could be activated based on
the values of the variables at activity M. Also in the case of non-compliant
traces, two traces (trace types T5 and T'7) do not execute any loop iteration,
while the other 2 traces iterate over the loop two times. Finally, out of the
four non-compliant traces, two (trace type 75 and T6) are not compliant only
because of control flow violations (mutually exclusive paths are executed in the
same trace), while the remaining two traces are non-compliant due to data con-
straint violations (a path that is not activated by the corresponding guard is
executed). Table reports, for each trace t;; of model M; and trace type
T}, some information about its characteristics.

Finally, for each of the 40 traces, we considered five different levels of com-

40

Model | Trace type Trace | Cycle It. Det. Conf. Cause Compl. Length | Trace type Trace | Cycle It. Det. Conf. Cause Compl. Length
00% i 100% 13
. , . 75% 8 . : . - 25% 10
7 t N Y C e 5 ts Y N NC CF S0 .
25% 3 75% 4
1007% 11 100% 17
7 ¢ N N c 75% 8 T ¢ 2 Y NC CF % 13
2 2 ; 50% 5 ° 10 50% 10
; 25% 3 25% 6
M1 T00% 5 T00% I
750 759
Ty s 2 Y c ’;](j lsl T tir N Y NC CF+DF én‘/(‘E
50% 50% :
25% 4 25% 3
00% 5 T00% 15
=0 !
7 t 2 N ¢ Z(’lé '; Ty tis 2 Y NC CF+DF Z;(/‘ 181
25% 1 25% 1
T00% 22 100% 26
. .) 75% 16 , . . 75% 20
T tn N Y ¢ o b 7 tas N Y NC CF 0% "
25% 6 25% 8
00% 2 T00% 31
. . 75% 16 ~ g 5% 26
y A : ta 2
B f22 N N ¢ 50% 10 % f20 Y N¢ cr 50% 20
B 25% 6 25% 12
b 100% 30 100% 2
. ; . . 75% 22 . . 75% 16
7 t2 2 Y c o0t 1 T tor N Y NC CF+DF oo 0
25% 8 25% 6
T00% 30 100% 30
; . . 75% 22 , . Lo 75% 22
T t2a 2 N ¢ 0% " Ty tas 2 Y NC CF+DF [0 1
25% 8 25% 8
T00% 2 100% %6
. , . . 75% 16 ; ; - 75% 20
T ty Y Y ¢ 0% 10 tas N Y NC CF S0 "
25% 6 25% 8
100% 22 100% 31
. 75% 16 , . 75% 26
T: e N Y ¢ 50% 10 T s 2 Y ooNe CF 50% 20
25% 6 25% 12
18 T00% 30 T00% p2)
759 pe: 759 ;
B s 2 yvoc ',fpj It T tar N Y Ne o orpp 10 "
25% 8 25% 6
007 30 1007, 30
. ; . 75% 22 . y . 1% 22
7 ty 2 N C e T i tas 2 Y NC CF+DF oo/ 1
25% 8 25% 8
T00% 33 1007 3
759 : 759 .
50% : 50% 2
25% 9 25% 12
007 33 007 51
. ; . 75% 2 . . ; - 75% 39
7 tey N Y C e 5 T tg 2 Y NC CF S0 s
25% 9 25% 18
M4 :
1007% I 100% 33
7 ¢ 2 % c % 33 T tar N Y NC CPR4DR % 2
’ " - 50% 24 7 1 50% 15
25V 12 25% 9
0% 5 0% 15
. . . 25% 33 , , S 25% 33
7 ty 2 N ¢ S0 o T tag 2 Y NC CP+DF o o
75% 12 75% 12
0% 2 0% 13
. . 25% 8 . 25% 10
T t51 Y Y ¢ 50% o T tss N Y NC CF S0 :
75% 3 75% 4
0% i) 0% 3
. . . 25% 16 , . . . 25% 26
7 ts N Y c 5o 1 Ty ts6 2 Y NC CF 0% "
. 75% 6 75% 12
o % 30 % 11
. 25% 11 . oy 2% 8
T ts 2 Y ¢ S0 16 T tsr N Y NC CF+DF o 0
75% 8 75% 6
0% 30 0% 5
. . . 25% 22 .) . 25% 22
T tsa 2 N c 50% " Ty tss 2 Y NC CF4DF o N
75% 8 75% 4

Table 1: Synthetic trace characteristics

41

pletenesﬂ ranging from 100% (i.e., the complete trace) to 0% (i.e., the empty
trace). Table column Completeness shows four level of completeness
(100%, 75%, 50% and 25%) for each of the considered traces and the corre-
sponding characteristics. In the table we did not report the information related
to the empty traces (0% of completeness), which is the same for all the 8 differ-
ent types of traces. For each of the three solvers, hence, we carried on, in total,
165 runs (5 models, 8 traces for each model and 4 levels of incompleteness for
each trace and model, as well as 5 empty traces per model).

We evaluated the first research question (RQ1) by computing, for each solver
(i) the number/percentage of runs the solver is able to return; (ii) when a
solution is returned, the time required by the solver for returning the solution.
For RQ2, instead, we evaluated the metrics reported above, when changing
factors, such as the level of incompleteness of the traces, the characteristics of
the traces, as well as the model used for generating the traces.

9.1.2. Results

Only 2 runs out of the 495 runs carried out for the synthetic datasets did not
return a result because they exceeded the maximum time threshold. Differently
from NUXMV, which exceeded the maximum time limit in 2 cases (~1% of the
runs), both CLINGO and FAST-DOWNWARD were always able to return results.

Figure [9] besides the small percentage of timed-out runs of NUXMv, shows
the average CPU time (and the corresponding variance) required by each of
the three solvers to return results. We can clearly observe that CLINGO and
FAST-DOWNWARD are the solvers with the best performance. Differently from
NUXMV, which fails in returning results within the time-out threshold for two
runs, the two solvers are able to return results for each of the runs. Moreover,
CLINGO and FAST-DOWNWARD have comparable performance in terms of time
required for trace completion (see the overlapping lines of CLINGO and FAST-
DOWNWARD in Figure E[) The time required by the two solvers (few seconds
on average) is always lower than the time required by NUXMV, which takes, on
average, about 8 minutes.

This analysis allows us to assess that, overall, in case of synthetic datasets
(of medium size), CLINGO and FAST-DOWNWARD are the most reliable in finding
solutions in a reasonable amount of time, and the fastest ones among the three
considered solvers. NUXMV has instead lower performance both in terms of
capability to return results in a reasonable amount of time, as well as in terms
of the average amount of time required to return computations (RQ1).

In detail, Figure shows the performance of the three solvers for different
levels of incompleteness. By looking at the figure, we can observe that the level
of incompleteness has an impact on NUXMV: the more the trace is empty, the
more the solver is able to return results (i.e., the less timed-out runs occur), the

19The execution traces have been made incomplete by removing events so as to preserve
the non-compliance of traces (compliance is always preserved), as well as the capability for a
solver to reconstruct the missing events.

42

solver
® clingo 1200
80{ ® fast-dw
® nuXmv 1000

solver
@ clingo L1000
® fastdw
® nuxmv

timeouts/out of memory %
p
timeouts/out of memory %

@ d 0 C—o0—0C 0

0 25 50 75 100 notrace TL T2 T3 T4 T5 T6 T7 T8
completeness trace type

(a) Trace completeness (b) Trace type

100

1750
solver

@ clingo
80 ©® fast-dw
® nuXmv |50,

1500

60

40

timeouts/out of memory %

M1 M2 M3 M4 M5
model

(c) Model type

Figure 9: Solver performance for different levels of completeness, different traces and different
models. In the plots, lines correspond to CPU time (right scale) and bars to interrupted
computations.

faster it is, and the lower the variance of the runs is.

The plot in Figure which reports solvers’ performance for traces with
different characteristics (the empty trace and the 8 types of traces considered),
shows that the only runs for which NUXMV is unable to return results relate
to traces of type T5 and T6, i.e., traces non-compliant due to issues related
to the control flow. However, the characteristics of these two types of traces,
do not seem to impact the average time required by NUXMV to return results.
Differently from what happens for timed-out runs, the types of traces that
require more time to NUXMV seem to be T'3 and T'8.

Finally, Figureinvestigates the impact of different models on the solvers.
The plot suggests that all the solvers are able to manage well small and medium
models (e.g., M1, M2 and M3). NUXMV has instead difficulties with larger
models. In particular, both the two timed-out runs relate to model M4, which
is the largest model, i.e., the model whose traces are always the longest traces
(see Table . Moreover, the runs related to this model that are able to
complete, require more time than other runs for returning results.

Differently from NUXMV, none of the three investigated factors affects the
performance of CLINGO and FAST-DOWNWARD, which are always able to return
a solution in few seconds.

Overall, we can assess that, in case of synthetic datasets (of medium size),
trace completeness has a strong impact on NUXMV, which performs better on

43

empty traces. NUXMV performance are also influenced by the model size and,
in particular, by the length of the traces that it generates: the larger the model
and the longer the traces, the worse the performance of the solver. On the
contrary, none of the investigated factors has an impact on the CLINGO and
FAST-DOWNWARD performance (RQ2).

9.2. Real-life Log Evaluation

In order to evaluate the capability of the three solvers to deal with real-life
settings, we exercised them on a real world event log. In the next subsections
we first describe the considered dataset, the procedure and the metrics used for
its evaluation; we then show the obtained results.

9.2.1. Dataset, procedure and metrics

In order to exercise the three solvers in a real-life setting, we resorted to the
BPI Challenge 2011 [I] (BPIC2011) event log. The log pertains to a healthcare
process and, in particular, contains the executions of a process related to the
treatment of patients diagnosed with cancer in a large Dutch academic hospital.
The whole event log contains 1143 execution cases and 150291 events distributed
across 623 event classes (activities). Each case refers to the treatment of a
different patient. The event log contains domain specific attributes that are
both case attributes and event attributes. For example, Age, Diagnosis, and
Treatment_code are case attributes and Activity_code, Number_of _executions,
Producer_code, Section and Group are event attributes.

The inputs required for accomplishing the task of trace completion are a
process model and incomplete traces. We hence extracted a data-aware Petri
Net model and we generated a set of incomplete traces by applying the following
procedure:

1. We discovered the data-aware Petri net from the BPIC2011 event log by
applying the ProM DATA-FLOW DISCOVERY plugin [I7]. %] The discov-
ered data-aware Petri Net has 355 transitions, 61 places and 710 edges and
4 variables (Activity_code, Producer_code, Section and Group), which are
read and written by the Petri net transitions and constrained in 25 guards
throughout the data-aware Petri net. An example of a discovered guard

is reported in .

(Producer_code="CHE?2")&&(Activity_code=="370422") (31)

2. For the testing set generation, we randomly selected 9 complete traces -
details on the traces and their length are reported in columns Trace ID
and Trace length in Table 2] - from the dataset.

20 As input for the DATA-FLOW DISCOVERY plugin we used the Petri Net discovered with the
INDUCTIVE MINER algorithm by setting the Noise threshold parameter of the plugin to 0.20.

44

Table 3: Timed-out and out-of-memory runs for the three

Table 2: BPIC2011 testing solvers on the BPIC2011
set trace length

3. For each of the 9 randomly selected traces, 3 incomplete traces - obtained
by randomly removing 25%, 50% and 75% of the events are added to the
testing set.

4. The empty trace is added to the testing set.

We evaluated the 3 solvers on each trace of the testing set for a total of 37 runs
per solver (9 different traces for 4 different levels of completeness and the empty
trace).

Also in this case, we evaluated RQ1 by computing, for each solver (i) the
number /percentage of runs the solver is able to return; (ii) the time required
for returning the solution. For the second research question (RQ2), instead,
we focused on the factors that could impact the results. Besides looking at the
degree of trace completeness and at different traces, we also investigated the
impact of data and of its domain on the performance of the solvers on large
real-life datasets. To this aim, we evaluated the three solvers by computing the
metrics reported above in three different settings:

e full data: in this setting we considered the data payloads associated to
events and we did not apply any restriction to their domain;

e restricted domain: in this setting we reduced the domain of the data
to the only constant values occurring in the model; E

e no data: in this setting we do not use data at all.

For each setting, we performed the 37 runs described above, we collected the
metrics and we compared the results.

9.2.2. Results

Table [3|reports, for each of the three scenarios, the number of timed-out and
out-of-memory runs for the three solvers on the BPIC2011. When applying the
three solvers to the task of completing incomplete traces of a large real-life event
log in the full data scenario, the only solver able to return results (in 15 runs

21Please notice that we were able to reduce the domain of the variables to the sole constant
values, as we only have guards with equality constraints.

45

Trace ID | Trace length
£207 14 Scenario total CLINGO FAST-DOWNWARD NUXMV
1296 515 37 37 2
t365 30 full data 37 . .
1533 =65 (out—of—;gemory) (out—of—;;emory) (tunel(;—out)
1610 127 i i <
£670 = restricted domain 37 (out-of-memory) (out-of-memory) (timed-out
s 3 no data 3 (out of'Qrg(‘mor) 0 (timol; out)
1847 56 ormemoy S
t1132 34

S
8
S
38

solver 3500 3500

® nuxmv
3000 80 3000

®
3

2500 2500

o
3

2000 2000
Fl F}
2

5 &
1500 1500

IS
8

1000 1000

timeouts/out of memory %
timeouts/out of memory %

N
S

solver
® nuxmv 0

0
0 25 50 75 100 notracet207 t296 365 t533 t610 t679 729 t847 t1132
completeness trace

Figure 10: Solver performance for different levels of completeness and different traces of the
BPIC2011 event log in the full data scenario

solver
@ clingo
80 @® nuXmv

3500

80 3000
2500
60
2000 5
3
S

20 1500

timeouts/out of memory %
timeouts/out of memory %

1000

solver
® clingo
® nuxmv

20

0
0 25 50 75 100 notracet207 t296 t365 t533 t610 t679 t729 t847 t1132
completeness trace

Figure 11: Solver performance for different levels of completeness and different traces of the
BPIC2011 event log in the restricted domain scenario

out of the 37 ones carried out) is NUXMV; CLINGO and FAST-DOWNWARD fail in
each of the executed runs due to out-of-memory issues. Indeed, when applied
to large datasets, the CLINGO and FAST-DOWNWARD grounding phase, which
likely allows the solver to complete the runs in short time for small datasets, is
unable to complete due to a memory space explosion.

Figure plots the performance (percentage of timed-out/out-of-memory
runs and average time) of the three solvers for different levels of trace com-
pleteness and for the different considered traces (the empty trace and the 9
traces of the BPIC2011). Overall, no general trend or pattern related to the
trace completeness and to the trace type can be identified for the 15 runs for
which NUXMV was able to return a result and the required time ranges from
~20 seconds to one hour. Differently from the synthetic datasets, an opposite
trend can be observed with large real-life logs: performance improves with more
complete traces. For instance, the timed-out runs and the average time required
for 75%-complete traces are less than the timed-out runs and the average time
required for the 50%-complete traces. Moreover, we can notice that for a couple
of traces - t610 and ¢1132 -NUXMV is also not able to provide any result, as the
other two solvers.

Figure [11] shows the obtained results for the restricted domain scenario.
Despite the domain restriction, CLINGO and FAST-DOWNWARD are still unable
to return results, while an improvement can be observed in the capability of
NUXMV to return results: the number of timed-out runs decreases of about

46

solver
@ cdlingo
80 fast-dw
@® nuXmv

2000 solver
@ cdlingo 3000
80 fast-dw

® nuxmv

1500
60

3
1000 &
40

timeouts/out of memory %
timeouts/out of memory %

20

0
0 25 50 75 100 notracet207 296 t365 533 t610 t679 t729 t847 t1132
completeness trace

Figure 12: Solver performance for different levels of completeness and different traces of the
BPIC2011 event log in the no data scenario

50% (from 22 to 12 runs), as reported in Table The trend observed for the
timed-out runs is similar to the one of the full data scenario (the percentage
of timed-out runs is null for the empty traces and reaches its peak for 50%-
complete traces), while some differences are registered in terms of required time
(e.g., the average time required for 75%-complete traces increases almost of a
factor of 3 with respect to the full data scenario). If we look at different
traces, trends are instead quite different from the full data scenario. For
instance, in the restricted domain scenario, NUXMV was unable to deal only
with 20% of the runs for the trace t610, which was a problematic trace in the
full data scenario. On the contrary, the percentage of timed-out runs for trace
296 (50%) remains unchanged moving from the full data to the restricted
domain scenario.

Finally, the three solvers have been evaluated in the no data scenario. In
this setting, each of the three solvers is able to return some results (see the last
row in Table . When data are not taken into account, the performance of
the solvers are close to the results obtained with the syntetic datasets: FAST-
DOWNWARD is the only one able to deal with all the 37 runs, followed by NUXMV
registering 12 timed-out runs and, finally, by CLINGO with 20 out-of-memory
runs. Moving from a restricted domain to a no data scenario has hence
a strong impact on the capability of FAST-DOWNWARD and CLINGO to return
results, while this is not the case for NUXMV, whose number of timed-out runs
remains the same of the restricted domain scenario.

The plots in Figure [12| report, besides the percentage of timed-out and out-
of-memory runs, also the time required by the solvers for the returned runs.
As for the synthetic datasets, FAST-DOWNWARD is the solver with the best
performance (it takes from few seconds to few minutes) followed by CLINGO
(~300 seconds, for the runs it is able to complete) and NUXMV (~20 minutes
with a high variance). The time required by FAST-DOWNWARD seems to slightly
depend on the level of trace incompleteness: the more the trace is complete, the
larger the encoded net, the more time FAST-DOWNWARD requires to complete
the task.

Overall, when dealing with real-life datasets enriched with data (both with
and without domain restrictions), NUXMV is the best solver, while CLINGO and

47

FAST-DOWNWARD are unable to deal with this scenario. When, instead, data
are not taken into account, FAST-DOWNWARD outperforms the other two solvers
both in terms of returned results and of required time. Although NUXMV fails in
returning results in less runs (about half) than CLINGO, CLINGO has better per-
formance than NUXMV in terms of required time (RQ1). Moreover, although no
general pattern and trend can be identified with respect to trace incompleteness
and trace type, data has a strong impact on CLINGO and FAST-DOWNWARD and
the data domain affects the capability of NUXMV of returning results (RQ2).

Summarizing the above results, we can conclude that NUXMV is the most
robust approach as it is able to deal reasonably well with very complex settings
as real-life event logs with data. On the other hand, FAST-DOWNWARD, which on
large search spaces ends up in out-of-memory errors, on synthetic and on real-life
medium-size search spaces outperforms its competitors, carrying on the trace
completion task in few seconds (RQ1). Concerning RQ2, for each of the three
solvers, no global trends or patterns related to the level of trace completeness
and to the characteristics of the trace have been identified. The only exception
is NUXMV and its capability to better deal with incomplete rather than with
complete traces for synthetic event logs and in part viceversa for large real-life
event logs. The size of the resulting search space and, in particular, leveraging
data, has a huge impact on the difficulties of CLINGO and FAST-DOWNWARD to
solve the trace completion task.

We remark that, although the focus of the evaluation is on the specific task
of trace completion for data-aware workflows, since the task is recasted to a
reachability problem (see Section , the problem we are tackling is actually
a wider one. The evaluation carried out shows the performance of the three
solvers on the reachability problem for large automata, as for instance, the one
obtained from the analysis of the DAW-net discovered from the BP12011 event
log.

9.3. Threats to Validity

The main threats affecting the validity of the reported results are external
validity issues, which hamper the generalization of the findings. Indeed, we
evaluated the solvers on a single real-life log and tested them only on a small
number of log traces. Nevertheless, we tried to mitigate the above threat, by
carrying on a systematic evaluation on the synthetic datasets and randomly
selecting the subset of traces in the real-life event log used in the evaluation.
A second threat to the external validity of the results relates to the choice of
the data and of the guards. However, also in this case, we tried to reduce
the threat by considering different data attributes and values in the synthetic
evaluation, and by relying on data and guards discovered by the ProM DATA-
FLOW DISCOVERY plugin. Finally, we used the solvers as informed users, i.e., we
did not apply to them special optimizations. Dedicated encodings and tuning
strategies could improve the performance of the solvers. However, the threat is
mitigated by the fact that none of the three solvers has been optimized.

48

10. Related Work

In the field of verification techniques for data-aware processes, a number of
theoretical works exist both in the area of data-aware processes and of (vari-
ants of) PNs. Unfortunately, when combining processes and data, verification
problems suddenly become undecidable [§]. We can divide this literature in two
streams. In the first stream, PNs are enriched, by making tokens able to carry
various forms of data and by making transitions aware of such data, such in
CPNs [51] or in data variants such as (Structured) Data Nets [5l [34], v-PNs [4§]
and Conceptual WF-nets with data [49]. For full CPNs, reachability is unde-
cidable and usually obtained by imposing finiteness of color domains. Data
variants instead weaken data-related aspects. Specifically Data Nets and v-PNs
consider data as unary relations, while semistructured data tokens are limited
to tree-shaped data structures. Also, for these models coverability is decidable,
but reachability is not. The work in [49] considers data elements (e.g., Price)
that can be used on transitions’ preconditions. However, these nets do not con-
sider data values (e.g., in the example of Sectionwe would not be aware of the
values of the variable request that T4 is enabled to write) but only whether the
value is “defined” or “undefined”, thus limiting the reasoning capabilities that
can be provided on top of them. For instance, in the example of Section [§] we
would not be able to discriminate between the worker and the student loan for
the trace in , as we would only be aware that request is defined after T4.
The second stream contains proposals that take a different approach: instead
of making the control-flow model increasingly data-aware, they consider stan-
dard data models (such as relational databases and XML repositories) and make
them increasingly “dynamics-aware”. Notable examples are relational transduc-
ers [2], active XML [3], the artifact-centric paradigm [27, [12), [6], and DCDSs [6].
Such works differ on the limitations imposed to achieve decidability, but they all
lack an intuitive control-flow perspective. A further recent work presents RAW-
SYS [21], a framework that joins the two streams above by directly combining a
control-flow model based on PNs and standard data models (& la DCDS) as first
class citizens, in which activities/tasks are expressed in a STRIP-like fashion.
Verification in RAW-SYS is shown to be decidable when the number of objects
accumulated in the same state is bounded (but still infinitely many values may
occur in a run) and first-order quantification is restricted on the active domain
of the current state. The definition of DAW-net follows the approach of RAW-
SYS in combining control-flow model based on PNs and standard data models
(& la DCDS) as first class citizens. However, the current work differentiates
from that of RAW-SYS in that we consider a data model with variables only,
which, on the one hand, does not require complex restrictions to achieve de-
cidability of reasoning tasks and, on the other hand, is still expressive enough
to address the trace completion problem with events carrying data. We indeed
remark that the payload of XES standard for traces is a set of attribute-value
pairs, thus making data-aware process models with relational data structures
needlessly cumbersome for solving reasoning tasks on concrete logs.

The VERIFAS system [37] leverages model checking techniques for the ver-

49

ification of temporal properties of infinite-state transition systems arising from
processes that carry and manipulate unbounded data. Although in principle
the system can be used to verify reachability properties of DAW-net models,
it’s difficult to compare because the representation language for the models is
more expressive, and the language for specifying the properties that can be ver-
ified can be used for more than reachability. Moreover the software used for
their experiments [36] cannot be used directly for our purposes and it would
require nontrivial modifications in order to be included in our experiments.

Moving to the exploitation of verification techniques in the BPM field, we
can notice that planning techniques have already been used in this context,
e.g., for verifying process constraints [45], for accomplishing business process
reengineering [46], for conformance checking [I5] as well as for the construction
and adaptation of autonomous process models [I1], [42]. In [I4] 20] automated
planning techniques have been applied for aligning execution traces and process
models. In [23] and [22], planning techniques have been used for addressing
the problem of incomplete execution traces with respect to procedural models.
Compared to these two works, where the focus was on an ad hoc encoding of
the problem of trace repair using a specific Action Language, this paper tackles
the more general problem of formal verification of reachability properties on
imperative data-aware business processes, it introduces a more general encoding
technique based on finite transition systems and provides an extensive evaluation
of different solvers. The new technique highlights the core dynamic properties of
Workflow Nets, and enables a seamless encoding of the decision problems under
investigation in a variety of formal frameworks. In [32] an action language
similar to BC (see Section , and its encoding in ASP, is exploited for the
verification of Business Processes enriched with a lightweight ontology language
for describing semantic relations among data objects.

The problem of trace completion, which we used for the empirical investiga-
tion, has been explored in a number of works of trace alignment in the field of
process mining. Several works have addressed the problem of aligning event logs
and procedural models, without [4] and with [I8] [T6] [40] data. All these works,
however, explore the search space of possible moves in order to find the best one
aligning the log and the model. Differently from them, in this work (i) we assume
that the model is correct and we focus on the repair of incomplete execution
traces; (i) we want to exploit state-of-the-art formal verification techniques to
solve the problem as a reachability problem on control and data flow rather
than solving an optimisation problem.

11. Conclusions

This work provides a concrete solution for formal verification of reachability
properties on imperative data-aware business processes and contributes to ad-
vancing the state-of-the-art on the concrete exploitation of formal verification
techniques on business processes in two different ways: first it presents a rigorous
encoding of a data-aware workflow nets based language into Action Languages,
Classical Planning, and Model Checking based on a common interpretation in

50

terms of transition systems; second it provides a first comprehensive assessment
of the performance of different solvers, one for each language, in terms of rea-
soning with data-aware workflow net languages on both synthetic and real-life
data. The evaluation shows that NUXMV is the most robust approach as it is
able to deal reasonably well with diverse types of event logs with data. On
the other hand, FAST-DOWNWARD, outperforms its competitors on medium-size
search spaces.

In the future, we plan to investigate the impact of optimized encodings
and tuning strategies to further improve the performance of the solvers. Also,
we believe that it is crucial to push forward the general research direction of
this paper, namely providing real verification support for data-aware workflows
models. We plan at fulfilling this objective by moving to more expressive models,
such as the one in [21], and by supporting not only reachability properties, but
ideally a full-fledged temporal language.

Appendix A. Technical details of Section

Lemma 3. Let W be a DAW-net model, and p = (Mg, o) L (My,m) R2Y

te—1

.o = (My,me) be a sequence of valid firings of W (with £ > 0). For every state
(Mi,mi) (0<i<t)and query ® € L(Dw)

Dy, mi = @ iff i(p) =i O
where 1 : ®5C is the formula where i : - is placed in front of each term t®°, and
D;(p) =i :t5C¢ iff i t5° € Dy(p).

Proof. Without loss of generality we can assume that ® is in the DNF form
described in Section 5} i.e. \/f:1 tEALLLA t};i where each term tj» is either of the
form v = o or —def(v). In this case to prove the lemma is sufficient to show that
for the base cases D;,n; =t iff i : 8¢ € ®;(p):

(v=0) Dj,n; = v =o0iff n;(v) = o iff (by Definition[I6) {i : v =0} C ®¥(p) C
®i(p);

(—def(v)) D;,n; = —~def(v) iff n;(v) is undefined iff (by Definition {i v
null} € @7 (p) € Pi(p).

O

Lemma 4 (Completeness of BC encoding). Let W be a DAW-net and BC(W)
its encoding, then for any £ > 0 if p is a sequence of valid firings of W of length
£, then Uf:o ®,(p) is a stable model of Py(BC(W)).

Proof. We prove the lemma by induction on the length of the case p that
Uf:(] ®,(p) is a stable model of P;(Bc(W)). For £ = 0 there is only the initial

o1

state and Py(Bc(W)) includes only rules derived from the static laws (none),
the initially statements:

0 : start = TRUE
0:p = FALSE for p € P and p # start
0:v=null for ve)V
0 : trans = TRUE

and the encoding of BC into ASP:

e for all the places and the additional fluent for enforcing actions p € P U

{trans}
0:p=dVv-(0:p=d) for d € {TRUE, FALSE}
-0:p=d + 0:p=d ford,d € {TRUE,FALSE} and d # d’
+—0:p=d,-0:p=d for d € {TRUE, FALSE}

< ~(0:p=TRUE),~(0: p = FALSE)

e for all the variables v € V’

0O:v=dVv-(0:v=d) for d € adm(v) U {null}
=0:v=d «0:v=d ford,d €adm(v)U{null} and d # d’

—0:v=d,-0:v=d for d € adm(v) U {null}
—~0:v=dy),....,~(0:v=di),~0:v=null) st. {dy,...,dr} =adm(v)

By the definition of (My, o)

D4 ((Mo,no)) = {0:start=TRUE, —0:start=FALSE } U
{0:p=FALSE, =0:p=TRUE | p € P\ {start}} U
{0:w=null | v € V'} U{=0:wv=0|v € V',0 € adm(v)} U
{0:trans=TRUE, —0:trans=FALSE}
(I>70—((M07770)) = @
It’s not difficult to see that all the above rules are satisfied by ®o((Mo,n0)). We
need to show also that it’s the minimal model of the reduct Py (Bc(W))®o((Mo.m0)
of Py(Bc(W)) w.r.t. ®o((Mo,no)). To this end we note that in the reduct all

the rules including NAF literals are removed because each fluent is assigned to
a value, and the remaining constraints

+— 0:f=0,-0:f=o0

92

are satisfied by construction because {0:f=o0, =0: f=0} € ®y((Moy, 770))@

In ®4((Mo,n0)) there are just literals 0: f=c and —0: f=c. Removing any pos-
itive (i.e. 0:f=c) literal would falsify the the initially statements, and removing
the negative ones would contradict the corresponding rules:

—0:f=0" + 0:f=o0

where 0:f=0 € ®o((Mo,n0)) and o’ # o. This concludes that ®o((Mo,n0)) is a
minimal model for Py(Bc(WW))®o((Mom0)),

For the inductive step we assume that for an arbitrary case p of length /¢,
Uf:o ®,(p) is a stable model of P;(Bc(W)) and we show that Ufié D, (p RS
(Myy1,7m0+1)) is a stable model of Ppyq(BC(W)).

Note that, by construction,

£+1 4

U @i(p %5 (Mesr,me41)) = | ®i(0)UT (0 5 (Mesr, 1041)) U4 1 (p 5 (Mit1,me41))
1=0 1=0

and Ppi1(BC(W)) is equal to Pp(BC(W)) plus the rules:

LtV Lt forallt €T

0+ 1:v=0 + lww=0,~—L + l:v=0 for v € V' and o € adm(v) U {null}
L+ 1:p=0 + L:p=0,~—f+ l:p=0 for p € P and 0 € {TRUE, FALSE}
L+ 1w=d < l:t,~—L + 1:v=d forallt € T, (v,d) € wr(t)

£ + 1:p=FALSE < (:t forallte T, pe*t\t*
{ + 1:p=TRUE < (:t forallte T, pet®\ "t
0+ Lv=null + ¢t forallve V', teT,s.t. wr(t)(v) =0
{4+ 1:itrans=TRUE <« (it forallteT
—f + 1ip=d « £+ 1:p=d for p € PU {trans}, d,d € {TRUE, FALSE} and d # d’
=0 + Lw=d + {+ l:v=d for v e V' d,d € adm(v) U {null} and d # d’

the constraints

«— Uit s for t,s €T, st.t# s
— bit, ~=l + 1iv=d fort €T, veV st wr(t)(v) # 0,
d € {null} Uadm(v) \ wr(t)(v)
< {:t, {:p=FALSE forteT,pe’t
— 4+ 1:p=d,l + 1:p=d for p € PU{trans}, d € {TRUE, FALSE}
<+ ~f + 1:p=TRUE, ~{ + 1:p=FALSE for p € PU {trans}
— 0+ liw=d,{ + 1:v=d for v € V', d € adm(v) U {null}

— ~l+ Tw=dy,...,~l + Lwv=dy,~f + Lw=null forv eV’ {di,...,d;} =adm(v)

22Remember that a constraint < {1, ..., £, corresponds to the rule f < ~f,¢1,...,0n.

93

and the constraints corresponding to the guards; that is, for each transition ¢
s.t. gd(t) # true we consider gd(t) = \/f:1 AN

+— 0, E:t%BC, e ,E:t,llch
+— 0, E:tlfBC, e ,Z:tﬁch

To show that Ufié D,(p X (My41,m041)) 1s a stable model of Ppyq(BC(W))
we use the Splitting Sets technique as introduced in [39]; a generalisation of
stratification which enables the splitting of a program in two parts on the basis
of atoms in the head of the rules, and provides a way of characterising the
stable models in terms of the stable modes of the two parts. More specifically,
A splitting set for a program P is any set of atoms U such that, for every rule
r € P, if head(r)NU # (), then atoms(r) C U. The set of rules r € P such that
atoms(r) C U is the bottom of P relative to U, denoted by boty (P). The set
topy (P) = P\ boty (P) is the top of P relative to U.
Let’s consider the set

U= {i:f=d|i<¢ f fluent constant and d constant} U
{iza | i < ¢, a action constant}
then U is a splitting set for Ppyq (BC(W)) and boty (Pry1(BC(W))) = Py(Bc(W));
therefore we just need to show that ®7(p Y (Mey1,me41)) U @7 (p L

(Myy1,7m0+1)) is a stable model of ey (Pry1(BCc(W)) \ Pg(BC(W)),Uf:O D,(p))
where ey (P, X) is defined in [39] as:

ey (P, X) = {r| exists r' € P s.t. body™* (r') NU C X,body™ (r')NUNX =0
head(r) = head(r"), body™ (r) = body™ (r) \ U, body™ (r) = body™* (r) \ U}

that is, only rules whose bodies are not falsified by X, and the remaining literal
in U are removed.

Following Definition

@7, 1 (p) ={¢+1:p=TRUE,~({+1:p=FALSE) | p € P,My;1(p) >0} U
{+1:p=FALSE,~({+1:p=TRUE) |p€ P,Myy1(p) =0} U
{+1:v=0,-(l+1:v=null)|veEV nyi(v)=0}U
{+1:v=null|veV ni(v)is undefined} U
{=(l+1:v=0)|veV, oeadm(v),n1(v) # o or nei1(v) is undefined} U
{€+1:trans = TRUE, ~({ + 1 : trans = FALSE) } U

Dy(p)={l:t,}U{=(L:t) |t €T, t+#te}

We can discard the actual constraints, since they are satisfied by construction
of ®7(p 128 (Mey1,me41)) U @7, (p S8 (Myy1,7m0+1)) because we assume that

o4

(Mg, n0) Ly (Myy1,m041) is a valid firing. The constraints referring to guards
are satisfied because either —¢:t € @7 (p L (Myy1,m041)) or at least one of the
—\E:tggc €B<I>Z (p RS (Myy1,m¢11)) for each of the constraint, because ¢/ holds in
ne iff £:4F7 € ®/(p) (Lemma .

We then focus on the rules in ey (Pryi(BC(W)) \ Pg(BC(I/V)),Uf:0 D,(p))
with terms in the head. The positive ones:

I AVESY forallt €T
£ + 1:p=FALSE < /(:t forallte T, pe*t\t*
{ + 1:p=TRUE < /(:t forallte T, pet®\°t
0+ Lv=null + ¢t forallv e V' teT, st wr(t)(v) =10
{4+ 1:itrans=TRUE « (it forallt €T
= + litrans=d' < { + l:itrans=d for d,d’ € {TRUE, FALSE} and d # d’
—f + 1ip=d’ + £+ 1:p=d for p e P, d,d" € {TRUE,FALSE} and d # d’
=l + Lw=d + (+ lw=d for ve V' d,d € adm(v) U {null} and d # d’

and the ones with weak negation in the body:

L+ 1iw=0 + ~—f + liw=0 for v € V' and 0 = n,(v)
{4 1w=null - ~—f 4 1:v=null forve V' and v & ny
£ + 1:p=TRUE < ~—{ + 1:p=TRUE for p € P and My(p) >0
{ 4 1:p=FALSE < ~—{ + 1:p=FALSE for p € P and My(p) =0
L+ 1w=d < l:t,~—L + 1:v=d forallt € T, (v,d) € wr(t)

whose reduct w.r.t. ®7(p Y (Myy1,me41)) U o7 (p X (Myy1,nesr)) are:

¢+ 1:w=o0 for v € V" and 0 = np41(v)
£+ T:w=null for v e V' and v & 1oy
{ + 1:p=TRUE for p € P and Myi1(p) >0
£+ 1:p=FALSE for p € P and My11(p) =0
L+ Liv=d < {:t forallt € T, (v,d) € wr(t), d = ney1(v)

We show that @7 (p X (Mgy1,m041))UPY (p Y (Myy1,m0+1)) is also a minimal

model for the reduct. It’s easy to see that it satisfy all the rules by construction,
so we show minimality.
Removing any term from @7 (p) would contradict one of the rules

LtV —Lit

therefore £:t, must be in ®7(p) and it’s the only positive action constant term.
Therefore £ 4+ 1:trans=TRUE cannot be removed as well, otherwise the rule

{ + 1:trans=TRUE < {:t,

99

would be violated as well. .

Positive literals £ + 1:v=0, £ + 1:p=0 in ®7,,(p = (Mo41,m¢41)) for v € V',
p € P cannot be removed because it’d contradict the corresponding rule among
the ones:

{4+ liv=o0 for v € V' and 0 = ny41(v)

£+ L:v=null for v € V' and v & ne41
£+ 1:p=TRUE for p € P and Myi1(p) >0
{4+ 1:p=FALSE for p e P and Myy1(p) =0

On the other hand, the negated literals must be included otherwise some of the
rules

-0+ 1l:p=d + {+ 1:p=d for p€ P, d,d € {TRUE,FALSE} and d # d’
=0+ lw=d + {+1w=d forveV d,d €adm(v)U{null} and d # d’'

would be unsatisfied. O
Lemma 5. Let TSyow) = (A, S, S0,9), then

1. So ={so};

2. if (s,A,s') €0 then |A| = 1.

Proof. To prove the first statement we should note that Py(BC(W)) includes the
following facts derived from the initially statements:

0 : start = TRUE
0:p = FALSE for p € P and p # start
0:v=null forve)V’
0 : trans = TRUE

which fixes a value for each fluent, therefore for any pair of stable models M, M’
of Py(BC(W)) 10 (M) = 18, (M") = so.

Regarding the second property, we first note that for all s € S, s(trans) =
TRUE because Pp(BC(W)) only the literals i:trans=TRUE appear in the head of

any rule for all ¢ < ¢, and the constraint
— ~i:trans=TRUE, ~i:trans=FALSE

forces either i:trans=TRUE or i:trans=FALSE to be in any stable model. There-
fore i:trans=TRUE must be in any stable model of P;(Bc(W)) for any i < /.

Then we recall that (s,A,s’) € § iff there is a stable model My of
Py (Be(W)) for some ¢ > 0, st. vi(Mey1) = s, vi,(My1) = s, and
{a € T | t:a € Mgy} = A. First A cannot be empty because the only rules
with ¢ + 1:trans=TRUE in the head are

{ 4+ 1:trans=TRUE < /:t forallteT

96

therefore there must be at least a a € T s.t. £:t € My41. Moreover, the dynamic
laws

false after t, s for (t,s) e T xT and t#s
correspond to the constraints
—iitics for (t,s) e T xT and t #s
which prevent two parallel actions. O

Lemma 6 (Correctness of BC encoding). Let W be a DAW-net and BC(W) its
encoding, then for any € > 0 if My is a stable model of Py(BC(W)), then

71 (M, To—1(Mp)
1(_)().“ o—1(Me

_ 70 (M _ _
p =y (M) S or (M) o7 (My)

18 a sequence of valid firings of W of length £.

Proof. We prove the lemma by induction on ¢. First we consider Py(BC(W)),
which contains the facts

0:5tart=TRUE
0:p=FALSE for p € P and p # start
0:v=null forve)V
0:trans=TRUE

that, together with Lemma [5, ensures that &g (My) = (Mo, no) satisfies the
conditions

Moy ={(start, 1)} U{(p,0) | p € P\ {start}}
o =0

corresponding to the initial state (Ms,ns).
For the inductive step, let M1 be a stable model for Py 1(BC(WW)), then we

show that ®, (M41) (M) ®,. 1 (Mpy1) is a valid firing according to Def.
Since Lemma [5] ensures that the mappings are well defined, we need to show
that

1. a = 1(Myy1) is enabled in @, (My41):

{:p=TRUE € My, for p € *a

and that’s the case because if there’s p’ € ®a s.t. £:zp=TRUE & M, then
{:p=FALSE € My,; and the constraint

 l:q, 0:p' =FALSE

deriving from [I2] would be contradicted.

o7

2. the guard of a is satisfied in ®, (My41); i.e. the formula \/f:1 A LA

ti,. =p —gd(t) is not satisfied in <I>[(M5+1)

BC BC
{et}™, o 0t Y L My
BC BC
{ety™, etk Y My
if for any = {£:t7,...,£:t], } € My, then the corresponding constraint
«— l.a, é:tfl,Bc, . ,E:thTBC

would be contradicted.
3. the marking of ®, , (M1) is updated according to Def.

£+ 1:p=FALSE € My, forpe€®a\a®
£+ 1:p=TRUE € My, forp€a®*a
0+ 1ip=d € Myy1 Lp=d € My, for p e (P\a®U\%a)U (a®N°a)

the first two conditions are ensured by the rules generated by laws [6] and

[

£+ 1:p=FALSE < (:a forallp € *a\ a®
{ 4+ 1:p=TRUE < l:a forallp € a®*\ *a

while the “inertial” laws
{+ 1:p=0 + l:p=0,~—L + 1:p=0 for p € P and o € {TRUE, FALSE}

ensure the third condition; because those are the only kind of rules where
a term like ¢ + 1:p=>b appears in the head.
4. the assignment 1’ of ®, | (Myy1) is updated according to wr(a):

L+ Tw=null € My, forv eV st wr(a)(v) =0
{4+ 1liwv=d € Myy; forveV st. wr(a)(v) # (), and some d € wr(a)(v)
{+ lw=d € My, Clw=d € Myyq, for v € V' \ dom(wr(a))

The first condition is ensured by the rule
¢+ Lw=null < l:a for all v € V', s.t. wr(a)(v) =0
derived from law[Q The second from the constraints

— La,~—L+ Lliwv=d for v € V' s.t. wr(a)(v) # 0, d € {null} U
adm(v) \ wr(a)(v)

23Fach term t;- is either of the form v = o or —~def(v), and v = 0°¢ + v = o, —def(v"°) >
v = null.

98

derived from the law since if ¢ 4+ liv=0 & My41 then ¢+ liv=0 €
My41, because a value must be associated to any variable and this will
cause the inclusion of all the “negated” assignments for the other values
different from o:

— ~l+ Tw=dy,...,~l+ Lw=dy, ~l + Lwv=null forv eV’ {di,...,d;} =adm(v)
=0 + Lw=d + ¢+ 1l:v=d for v € V' d,d’ € adm(v) U {null}
and d # d’

The last property derives from the “inertial” constraint
-+ lw=d + {+ 1w=d forv eV d,d € adm(v)U{null} and d # d’

derived from law [and the fact that any other rule with terms like
{ + 1:v=0 in the head have £:t in the body for some t € T therefore would
be covered by the previous two conditions (if ¢ = a) or trivially satisfied

by a false body.
O

Appendix B. Further technical details of Section [6]

Lemma 8. Let W a DAW-net model and PDDL(W) its encoding into a planning
domain:

1. if (M,n) BN (M',n) is a valid firing of W, then there is a ground action
at of ay s.t. (W(M,n),ar, ¥(M', 1)) €~;

2. if there is a ground action a; of i s.t. (8, az,s") € 7y, then U~ (s) N U (s")
s a valid firing of W.

Proof. 1. Let (M,n) -5 (M’,n/) be a valid firing of W, then by Deﬁnition

(a) {p€ P [M(p) >0} 2*t
(b) for every p € P@

0 ifpet\t*
M'(p)=<1 if pet®
M(p) otherwise

(c) D,n [=gd(t),
(d) assignment n’ is such that, if Wr = {v | wr(¢t)(v) # 0}, DEL = {v |
wr(t)(v) = 0}:
e its domain dom(n’) = dom(n) U WR \ DEL;
e for each v € dom(n'):

iy Jdewr(t)(v) ifvewnr
) = {n(v) otherwise.

24The simplification derives from the 1-safe assumption.

99

Let’s consider a grounding a; of oy = (¢(2y,, - - -, 2v,,), Pre(ay), eff (ay)) as in
Equation where z,, = n(v;) if v; € WR and z,, = null otherwise. We
show that (U(M,n),as, ¥(M’',n’)) € v by proving that pre(a) is satisfied
in ¥(M,n) and that v(U(M,n),a;) = V(M',n').

By definition

pre(a;) = gd(t)"™™" A /\ Wy (2y) A /\ (p = TRUE)
ve{vy,...,u} peE®t

gd(t)"™"" is satisfied because D,n |= gd(t) and Lemma |7} for all v; €
{v1, ... 06} 20, = 7' (v;) € wr(t)(v;) or z,, = null, therefore n'(v;) € wry .,
as defined in Eq. finally for all p € *t p = TRUE because {p € P |
M(p) > 0} D *t.

By Definition [I8| and given that the effects of the action are

eff (o) = /\ (v=12) A /\ (p = FALSE) A /\ (p = TRUE)

ve{v1,..., vk} pESt\t® pEt®

the planning state v(¥(M,n), a;) is defined as

(M
(¥ (M,n),at) = {(v—n'(v)) | v € WR\ DEL} U

{(v+~ null) | v € DEL} U

{(v0) v eV \WR,(v—0) € U(M,n)}U
{(p+— FALSE) | p € *t\ t*} U

{(p+> TRUE) |p € t*} U

{(

p—=b)[pe P\ (*tUt®), (p,b) € ¥(M,n)}

therefore v(W(M,n),a;) = ¥(M', 7).

. Let a; be a ground action of ay = (t(zy,, ..., 2v,), Pre(ay),eff (ay)) and
(s,a, ') € 7, then by Equation and Definition
e s satisfies gd(¢)™"";

e for all z, where v € WR, z, € wr(t)(v) if v € DEL and z, = null
otherwise;

e (p— TRUE) € s for all p € *¢

because s satisfies pre(a;), therefore the DAW-net state (M,n) = ¥(s)
satisfies

{peP|M(p)>0}2°t
D,n = gd(t)

60

Moreover the state s’ is such that

!

s"=7(s,at) = {(v— 2,) | v € WR\ DEL} U
{(v+ null) | v € DEL} U
{(v—=0)|veV\WR,(v—o0)€stU
{(p— FALSE) | p € *t\t*} U
{(p+— TRUE) |pe€t*} U
{(

p—b)|pe P\ (*tUt®),(p—b) € s}

so the DAW-net state (M',n’) = ¥(s') satisfies

zy € wr(t)(v) if v € WR\ DEL

n'(v) = { undefined if v € DEL
n(v) otherwise
0 ifpet\t
M'(p) =11 if p e te

M(p) otherwise

Therefore ¥~ (s) 4 U~ (s') is a valid firing.

Appendix C. Technical details of Section [8.1

To relate cases from W7 to the original workflow W we introduce a “pro-
jection” function Il that maps elements from cases of the enriched workflow to
cases using only elements from the original workflow. To simplify the notation
we will use the same name to indicate mappings from states, firings and cases.

Definition 28. Let W = (DN = (P, T,F),wr,gd) be a DAW-net, 7 =

(€1,...,en) — where e; = (tj,w;,wd) a trace of W, and W™ =

(D,NT = (PT,T",F™),wr", gd") the corresponding trace workflow. The map-
ping 1L, is defined as following:
1. let M’ be a marking of W™, then
(M) =M NP xN
is a marking of W ;

2. let (M', 1) be a state of W7, then

is a state of W ;

61

3. let t be a transition in T", then

1L (1) = ti fort=t.,
e forteT

is a transition of W ;

4. let (M,n) 4 (M';n) be a firing in W7, then

I, (t)

IL((M,n) 5 (M',n)) = IL(M,n)) = IL.(M',7))

s a firing in W;
5. let C = fo,..., fr be a sequence of valid firings in W7, then
IL.(C) =1 (fo), - - -, I (f)

s a sequence of valid firings in W.

In the following we consider a DAW-net W = (D,N = (P, T, F),wr, gd)
and a trace 7 = (e1,...,e,) of W — where e¢; = (t;,w;,wd). Let W™ =
(D,NT = (P™,T™, F™),wr™,gd") be the corresponding trace workflow. To sim-
plify the notation, in the following we will use t., as a synonymous for start;

and t., , as endy; as if they were part of the trace.

Lemma 9. If C is a sequence of valid firings in W7 then I1.(C) is a sequence
of valid firings in W.

Proof. Let C' = (M, 10) = (My,m) ... (My_1,m%-1) = (M, i), to show that
IT,(C) is a case of W we need to prove that (i) II,((Mo,no)) is an initial state
of W; and (ii) the firing IT, ((M;—1,mi—1) Ly (M;,m;)) is valid w.r.t. W for all
1<i<n.
i) By definition I, ((Mo,n0)) = (I1;(My),n") and IL,(My) € My. Since the
start place is in P, then start is the only place with a token in II.(Mj).
ii) Let consider an arbitrary firing f; = (M;—1,7;-1) Ly (M;,n;) in C (valid by

definition), then TT, (f;) = (I, (Mi—1), i) 5% (I (My), i),

Note that — by construction — gd(¢;) is a restriction of gd(IL, (¢;)), I1,(¢;)® =
t? NP, I (t;) = *t; N P, dom(wr(t;)) = dom(wr(IL-(¢;))) and wr(t;)(v) C
wr(IL(¢;))(v) ; therefore
e{pe P | My >0tNP ={peP |1 (M) >0} 2 Il (t)
because {p € P™ | M;_1 > 0} D *t;;
e D, k= gd(IL,(t)) because D, = gd(t)
o for all p € P II.(M,)(p) = M,(p), therefore:

M;—1(p) =1 =1-(M;—1)(p) =1 if p € °IL;(t;) \ IL-(¢;)*
M;(p) =T (Mi)(p) = Mi—1(p) + 1 =L (Mi—1)(p) + 1 if p € I (£:)* \ *TL- (%)
M;_1(p) =11, (M;—1)(p) otherwise

because f; is valid w.r.t. W7;

62

e the assignment 7); satisfies the properties that its domain is

dom(n;) = dom (1i—1)U{v [wr(Il-(t:)) (v) # O}\{v | wr(Il-(t;))(v) = O}

and for each v € dom(n;):

oy JdE wr(t;)(v) Cwr(IL (¢;))(v) if v € dom(wr(t;)) = dom(wr(IL,(¢;)))
1i(v) .
ni-1(v) otherwise.

because f; is valid.
O

Before going into details, we will consider some properties of the “trace”
workflow.

Lemma 10. Let W = (D,N = (P,T,F),wr,gd) be a DAW-net and T =
(€1,...,en) — where e; = (tj,w;,wd) — a trace of W. If C = (Mgy,no) b
(My,m) ... (Mg—1,mk—1) L (Mg, i) is a sequence of valid firings in W7 then
for all0 <i<k:

Epepr\pMi(p) < Mo(start)

Proof. By induction on the length of C.

e For £ = 1 then the only executable transition is start;, therefore
ty = start; which — by assumption — has two output places and —
by construction — start; \ P = {pe,}. Since the firing is valid, then
Mi(pe,) = Mo(pe,) +1 =1 < My(start).

e Let’s assume that the property is true for a sequence C of length n and

consider C' = C(M,,,n,) Ay (M, 11,Mn+1). By construction, each p €
P7\ P has a single incoming edge and {t € T7 | ¢; € t*} = {t¢,} and
{t € T" | ¢; € *t} = {te,,,}. Therefore the only occurrence in which
a pe, € P™\ P can increase its value is when t,.1 = t.,. Since the
transition is valid, then My, 11(pe;) = Mp(pe,) + 1 and Myi1(pe,_,) =
M, (pe;_,) — 1; therefore ¥,c pr-\ pM;(p) = Xpepr\pMi—1(p) < Mo(start)
— by the inductive hypothesis.

O

Lemma 11. Let W = (D,N = (P,T,F),wr,gd) be a DAW-net and 7 =
(e1,...,en) — where e¢; = (ti7wi7wf> - a trace of W, C = (Moy,no)
(My,m1) . (Mg—1,mk—1) ALY (My,ni) a sequence of valid firings in W7, and
te, is a transition of a firing fm in C with 1 < i < n, then (i) t.,_, is in a
transition of a firing in C' that precedes fn,, (ii) and if My(start) =1 then there
is a single occurrence of te, in C.

o~

63

Proof. The proof for the first part follows from the structure of the workflow net;
because — by construction — each p € P7\ P has a single incoming edge and {t €
T7 | e; €t®y = {te,} and {t € T7 | e; € *t} = {tc,,, }. Since each firing must

be valid — if f = (M1, ln—1) 5 (Mo,) s in C, then My_1(pe,_,) > 1

and this can only be true if there is a firing f. = (M, —1,1.—1) ti?l (M,.,n,) in
Cst.r<m.

To prove the second part is enough to show that for each 1 < i < n, if ¢,
appears more than once in C' then there must be multiple occurrences of t., ,
as well. In fact, if this is the fact, then we can use the previous part to show
that there must be multiple occurrences of t., = start, and this is only possible
if My(start) > 1.

By contradiction let’s assume that there are two firings f,, and f/ , with
m < m/, with the same transition t.,, but there is only a single occurrence of
te,_, in a firing f,. Using the previous part of this lemma we conclude that
r < m < m/, therefore M,,_1(pe,_,) = 1 because a token could be transferred
into pe,_, only by t.,_,, s0 My (pe,_,) = 0. In the firings between m and m’
there are no occurrences of te; ,, 850 My —1(Pe;_,) = Mum(pe,_,) = 0 which is in
contradiction with the assumption that f/ is a valid firing. O

Now we’re ready to show that the “trace” workflow characterises all and only
the cases compliant wrt the given trace. We divide the proof into correctness
and completeness.

Lemma 12 (Correctness). Let W = (D,N = (P, T, F), wr, gd) be a DAW-net,
7= (e1,...,e,) — where e; = (t;, w;,wd) — a trace of W, and C = (Mg,) 4
(My,m) ... (Mg—1,mk-1) Y (My,m) be a sequence of valid firings in W7 s.t.
My (start) = 1; given £ = max({i | te, is in a firing of C}U{0}), then the trace
= (e1,...,e0) if £ >0 or 7 =0 if £ =0 is compatible with the sequence
I, (C) in W.

Proof. By induction on the length of C.

o If C' = (Mo, no) 2N (My,m1) then t1 = start, because the firing is valid
and the only place with a token in My is start; therefore £ = 0 and 7’ is
the empty trace, and C trivially satisfy the empty trace.

o Let C = (Mo, mo) 2 (My,m) ... (My—1,m—1) 25 (Mg, mp) st TL(C) is

compliant with 7/. Let’s consider C' = C - (Mg, n) b (Mg1, Mk41):
either tp41 € T"\ T or txy1 € T. In the first case ty11 = t., for some
1 < ¢ < n, and — by using Lemma — in C there are occurrences
of all the t., for 1 < ¢ < ¢ and it’s the only occurrence of t.,. This
means that £ = maxz({i | ., is in a firing of C} U {0}) and we can ex-
tend v to +' by adding the mapping from £ to k + 1. The mapping is
well defined because of the single occurrence of ¢.,. By definition of ¢.,,

(M, n) S (Mk41,Mk+1) is compliant with e, because the additional

64

conditions in ng/ (tk+1) guarantee the proper assignments for variables
that are not assigned by the transition (Def. . Moreover the mapping

I, preserve the assignments, therefore IL, (M, n) A< (Myy1,mg41) s
compliant with e, as well. By using the inductive hypnotises we can show
that C’ is compliant as well. In the second case the mapping is not mod-
ified, therefore the inductive hypothesis can be used to provide evidence
of the first two conditions for trace compliance of Definition [26]

O

Lemma 13 (Completeness). Let W = (D, N = (P, T, F), wr, gd) be a DAW-net,
7= (€1,...,en) — where e; = (t;,w;, wd) — a trace of W, and C = (Mo, o) b
(My,m) . (Mg—1,mk—1) ALY (My,ni) be a sequence of valid firings in W such

that 7 is compliant with it, then there is a sequence of valid firings C' in W™
s.t. I (C") = C.

Proof. Since C is compliant with 7, then there is a mapping - satisfying the

conditions of Deﬁnitionﬂ Let C' = (M}, m0) = (M,m1) ... (M}_,,me_1)

(M], i) a sequence of firing of W7 defined as following:
o M= MoU{(pe;;0)|0<i<n}
o ty =ty and M{ = M1 U{(pc,,0) [1<j <n}U{(pe, 1)}

o for each (M/_,,mi_1) < (Ml, 1), 2 < i < n:
— if there is £ s.t. y(¢) = ¢ then t, = t., and
M/ = M; U{(pe;,0) | 0<j <n,j#U{(pe,,1)}
— otherwise t; = t; and
M! = M;U(M_,n(P"\ P)x N)

It’s not difficult to realise that by construction IL.(C’) = C.

To conclude the proof we need to show that C’ is a sequence of valid firing
in W7. Clearly (M}, no) is a starting state, so we need to show that all the
firings are valid. The conditions involving variables — guards and update of the
assignment — follows from the fact that the original firings are valid and the
newly introduced transitions are restricted according to the trace data.

Conditions on input and output places that are both in W and W7 are sat-
isfied because of the validity of the original firing and the additional conditions
for the guards of newly introduced transitions are satisfied because of 7 is com-
pliant with C'. The newly introduced places satisfy the conditions because of the
compliance wrt the trace, which guarantees that for each firing with transition
te, there is the preceding firing with transition ¢., , that put a token in the
De, , Place. O

65

Theorem 4. Let W be a DAW-net and 7 = (e1,...,e,) a trace; then W7
characterises all and only the cases of W compatible with 7. That is
= if C is a case of W7 then 7 is compliant with the case of W 11.(C); and
< if T is compliant with the case of W C' then there is a case C' of W7 s.t.
I, (C") = C.

Proof.

= If C is a case of W7 then it must contain ¢, (the only transition adding
a token in the sink), therefore the ¢ of Lemma [12is n so 7/ = 7 and 7 is
compliant with II,(C).

< If 7 is compliant with C then by Lemma [13| there is a case C’ of W7 s.t.
II.(C") = C. Morevover, since the last state of C is a final state, so must
be the final state of C’ because by construction there cannot be any token
in the newly introduced places after the last transition ¢.,,.

O

Theorem 5. Let W be a DAW-net and 7 a trace of W. If W is k-safe then
WT is k-safe as well.

Proof. We prove the theorem by induction on the length of an arbitrary sequence
of valid firings C' = (Mo, n0) 2 (My,m1) .. (My—1,me—1) = (My,mp,) in W7 .
Note that by construction, for any marking M’ of W7 and p € P, M'(p) =
I (M")(p)-

e For a case of length 1 the property trivially holds because by definition
My (start) < k and for each p € P™ (different from start) My(start) = 0,

and since (Mg, n9) 2N (My,m) is valid the only case in which the number
of tokens in a place is increased is for p € ¢} \ *¢;. For any p different from
start this becomes 1 < k; while since the start place — by assumption —
doesn’t have any incoming arc therefore M (start) = My(start) — 1 < k.

e For the inductive step we assume that each marking My, ... M,,_1 is k-
safe. By contradiction we assume that M, is not k-safe; therefore there
is a place p € P7 s.t. M,,, > k. There are two cases, either p € P™\ P or
p € P. In the first case there is a contradiction because, by Lemma [10]
Ypep\pM;i(p) < My(start) = k. In the second case, since I1.(C) is a
case of W and II.(M,,)(p) = M,,(p), there is a contradiction with the
hypothesis that W is k-safe.

O

References

[1] 3TU Data Center. BPI Challenge 2011 Event Log, 2011.
doi:10.4121 /uuid:d9769£3d-0ab0-4fb8-803b-0d 1120ffcf54.

66

2]

Serge Abiteboul, Victor Vianu, Bradley S. Fordham, and Yelena Yesha.
Relational transducers for electronic commerce. J. Comput. Syst. Sci., 61
(2):236-269, 2000.

Serge Abiteboul, Luc Segoufin, and Victor Vianu. Modeling and verifying
Active XML artifacts. 32(3):10-15, 2009.

A. Adriansyah, B. F. van Dongen, and W. van der Aalst. Conformance
checking using cost-based fitness analysis. In Proc. of EDOC, pages 55-64,
2011.

Eric Badouel, Loic Hélouét, and Christophe Morvan. Petri nets with semi-
structured data. In Proc. of 36th International Conference on Application
and Theory of Petri Nets and Concurrency, 2015.

Babak Bagheri Hariri, Diego Calvanese, Giuseppe De Giacomo, Alin
Deutsch, and Marco Montali. Verification of relational data-centric dy-
namic systems with external services. In Proc. of PODS, pages 163-174.
ACM Press, 2013.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008. ISBN 978-0-262-02649-9.

Diego Calvanese, Giuseppe De Giacomo, and Marco Montali. Foundations
of data-aware process analysis: A database theory perspective. In Proc. of
PODS, pages 1-12. ACM Press, 2013.

Federico Chesani, Paola Mello, Riccardo De Masellis, Chiara Di Francesco-
marino, Chiara Ghidini, Marco Montali, and Sergio Tessaris. Compli-
ance in business processes with incomplete information and time con-
straints: a general framework based on abductive reasoning. Fundam.
Inform., 161(1-2):75-111, 2018. doi: 10.3233/F1-2018-1696. URL https:
//doi.org/10.3233/FI-2018-1696.

Alessandro Cimatti, Marco Pistore, Marco Roveri, and Paolo Traverso.
Weak, strong, and strong cyclic planning via symbolic model checking.
Artif. Intell., 147(1-2):35-84, 2003.

Carlos Eduardo da Silva and Rogério de Lemos. A framework for auto-
matic generation of processes for self-adaptive software systems. Informat-
ica (Slov.), 35(1):3-13, 2011.

Elio Damaggio, Alin Deutsch, and Victor Vianu. Artifact systems with
data dependencies and arithmetic. pages 6677, 2011.

Giuseppe De Giacomo, Riccardo De Masellis, and Marco Montali. Rea-
soning on LTL on finite traces: Insensitivity to infiniteness. In Proceedings
of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27
-81, 2014, Québec City, Québec, Canada., pages 1027-1033, 2014.

67

https://doi.org/10.3233/FI-2018-1696
https://doi.org/10.3233/FI-2018-1696

[14]

[15]

[16]

[17]

[20]

Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and Se-
bastian Sardina. Computing trace alignment against declarative process
models through planning. In ICAPS, pages 367-375, 2016.

Massimiliano de Leoni and Andrea Marrella. Aligning real process execu-
tions and prescriptive process models through automated planning. Ezpert
Syst. Appl., 82:162-183, 2017. doi: 10.1016/j.eswa.2017.03.047.

Massimiliano de Leoni and W. van der Aalst. Data-aware Process Mining;:
Discovering Decisions in Processes Using Alignments. In Proc of ACM
SAC, pages 1454-1461, 2013.

Massimiliano de Leoni and Wil M. P. van der Aalst. Data-aware process
mining: discovering decisions in processes using alignments. In Proceedings
of the 28th Annual ACM Symposium on Applied Computing, SAC 183,
Coimbra, Portugal, March 18-22, 2013, pages 1454-1461, 2013. doi: 10.
1145/2480362.2480633.

Massimiliano de Leoni, W. van der Aalst, and Boudewijn F. van Dongen.

Data- and resource-aware conformance checking of business processes. In
BIS, volume 117 of LNBIP, pages 48-59. 2012.

Massimiliano de Leoni, Giacomo Lanciano, and Andrea Marrella. Align-
ing partially-ordered process-execution traces and models using automated
planning. In Mathijs de Weerdt, Sven Koenig, Gabriele Roger, and
Matthijs T. J. Spaan, editors, Proceedings of the Twenty-Eighth Interna-
tional Conference on Automated Planning and Scheduling, ICAPS 2018,
Delft, The Netherlands, June 24-29, 2018, pages 321-329. AAAI Press,
2018. ISBN 978-1-57735-797-1. URL https://aaai.org/ocs/index.php/
ICAPS/ICAPS18/paper/view/17739.

Massimiliano de Leoni, Giacomo Lanciano, and Andrea Marrella. Align-
ing partially-ordered process-execution traces and models using automated
planning. In Proceedings of the Twenty-FEighth International Conference on
Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands,
June 24-29, 2018., pages 321-329, 2018.

Riccardo De Masellis, Chiara Di Francescomarino, Chiara Ghidini, Marco
Montali, and Sergio Tessaris. Add data into business process verification:
Bridging the gap between theory and practice. In Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February 4-9, 2017, San
Francisco, California, USA., pages 1091-1099, 2017.

Riccardo De Masellis, Chiara Di Francescomarino, Chiara Ghidini, and
Sergio Tessaris. FEnhancing workflow-nets with data for trace comple-
tion. In Ernest Teniente and Matthias Weidlich, editors, Business Process
Management Workshops - BPM 2017 International Workshops, Barcelona,
Spain, September 10-11, 2017, Revised Papers, volume 308 of Lecture
Notes in Business Information Processing, pages 89-106. Springer, 2017.

68

https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17739
https://aaai.org/ocs/index.php/ICAPS/ICAPS18/paper/view/17739

[26]

[27]

[28]

[30]

ISBN 978-3-319-74029-4. doi: 10.1007/978-3-319-74030-0_6. URL https:
//doi.org/10.1007/978-3-319-74030-0_6.

Chiara Di Francescomarino, Chiara Ghidini, Sergio Tessaris, and
Itzel Vazquez Sandoval. Completing workflow traces using action lan-
guages. In CAiSE, volume 9097 of LNCS, pages 314-330. Springer, 2015.

Thomas FEiter, Wolfgang Faber, Nicola Leone, Gerald Pfeifer, and Axel
Polleres. A logic programming approach to knowledge-state planning, II:
The DLVK system. Art. Intell., 144(1-2):157-211, 2003.

Martin Gebser, Torsten Grote, and Torsten Schaub. Coala: A Compiler
from Action Languages to ASP. In David Hutchison, Takeo Kanade, Josef
Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell, Moni
Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Su-
dan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum,
Tomi Janhunen, and Ilkka Niemel4, editors, Logics in Artificial Intelligence,
volume 6341, pages 360-364. Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2010. ISBN 978-3-642-15674-8 978-3-642-15675-5.

H. Geffner and B Bonet. A Concise Introduction to Models and Methods
for Automated Planning. Morgan & Claypool Publishers, 2013. doi: 10.
2200/S00513ED1V01Y 201306 AIM022.

Cagdas E. Gerede, Kamal Bhattacharya, and Jianwen Su. Static analysis
of business artifact-centric operational models. In SOCA, pages 133-140.
IEEE Computer Society, 2007. ISBN 978-0-7695-2861-8.

Malik Ghallab, Craig Knoblock, David Wilkins, Anthony Barrett, Dave
Christianson, Marc Friedman, Chung Kwok, Keith Golden, Scott Pen-
berthy, David Smith, Ying Sun, and Daniel Weld. PDDL - The Planning
Domain Definition Language, 1998.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning and
Acting. Cambridge University Press, New York, NY, USA, 1st edition,
2016. ISBN 978-1-107-03727-4. doi: 10.1017/CB09781139583923. URL
https://doi.org/10.1017/CB09781139583923.

Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and Se-
bastian Sardina. Computing trace alignment against declarative process
models through planning. In Amanda Jane Coles, Andrew Coles, Ste-
fan Edelkamp, Daniele Magazzeni, and Scott Sanner, editors, Proceedings
of the Twenty-Sizth International Conference on Automated Planning and
Scheduling, ICAPS 2016, London, UK, June 12-17, 2016, pages 367-375.
AAAIT Press, 2016. ISBN 978-1-57735-757-5. URL http://www.aaai.org/
ocs/index.php/ICAPS/ICAPS16/paper/view/13094.

69

https://doi.org/10.1007/978-3-319-74030-0_6
https://doi.org/10.1007/978-3-319-74030-0_6
https://doi.org/10.1017/CBO9781139583923
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13094
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS16/paper/view/13094

[31]

[33]

[34]

[35]

Giuseppe De Giacomo, Fabrizio Maria Maggi, Andrea Marrella, and Fabio
Patrizi. On the disruptive effectiveness of automated planning for ltlf-
based trace alignment. In Satinder P. Singh and Shaul Markovitch, edi-
tors, Proceedings of the Thirty-First AAAI Conference on Artificial Intel-
ligence, February 4-9, 2017, San Francisco, California, USA, pages 3555—
3561. AAAT Press, 2017. URL http://aaai.org/ocs/index.php/AAAT/
AAAT17/paper/view/14652,

Laura Giordano and Daniele Theseider Dupré. Enriched Modeling and
Reasoning on Business Processes with Ontologies and Answer Set Pro-
gramming. In Mathias Weske, Marco Montali, Ingo Weber, and Jan vom
Brocke, editors, Business Process Management Forum, Lecture Notes in
Business Information Processing, pages 71-88. Springer International Pub-
lishing, 2018. ISBN 978-3-319-98651-7.

Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede, and Christoph J.
Bussler. On structured workflow modelling. In Seminal Contributions to
Information Systems Engineering. Springer, 2013.

Ranko Lazié¢, Tom Newcomb, Joél Ouaknine, A. W. Roscoe, and James
Worrell. Nets with Tokens Which Carry Data. In Proceedings of the 28th In-
ternational Conference on Applications and Theory of Petri Nets and Other
Models of Concurrency, (ICATPN 2007), LNCS, pages 301-320. Springer,
2007.

Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang. Action Language BC:
Preliminary Report. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence, IJCATI 13, pages 983-989, Beijing,
China, 2013. AAAI Press. ISBN 978-1-57735-633-2. URL http://dl.acm.
org/citation.cfm?id=2540128.2540270

Yuliang Li. Has-verifier: Implementation of Verifiers for Hierarchical
Artifact Systems, January 2017. URL https://github.com/0i021yl/
has-verifier.

Yuliang Li, Alin Deutsch, and Victor Vianu. VERIFAS: A Practical Verifier
for Artifact Systems. Proc. VLDB Endow., 11(3):283-296, November 2017.
ISSN 2150-8097. doi: 10.14778/3157794.3157798.

Vladimir Lifschitz. Action languages, answer sets and planning. In
The Logic Programming Paradigm: a 25-Year Perspective, pages 357-373.
Springer, 1999.

Vladimir Lifschitz and Hudson Turner. Splitting a logic program. In Pro-
ceedings of the Eleventh International Conference on Logic Programming,
pages 23-37, Cambridge, MA, USA, 1994. MIT Press. ISBN 0-262-72022-1.
URL http://dl.acm.org/citation.cfm?id=189883.189894l

70

http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14652
http://dl.acm.org/citation.cfm?id=2540128.2540270
http://dl.acm.org/citation.cfm?id=2540128.2540270
https://github.com/oi02lyl/has-verifier
https://github.com/oi02lyl/has-verifier
http://dl.acm.org/citation.cfm?id=189883.189894

[40]

[41]

[42]

[49]

[50]

[51]

Felix Mannhardt, Massimiliano de Leoni, Hajo A. Reijers, and Wil
M. P. van der Aalst. Balanced multi-perspective checking of pro-
cess conformance. Computing, 98(4):407-437, Apr 2016. ISSN 1436-
5057. doi: 10.1007/s00607-015-0441-1. URL https://doi.org/10.1007/
s00607-015-0441-1.

Andrea Marrella. Automated planning for business process management. J.
Data Semantics, 8(2):79-98, 2019. doi: 10.1007/s13740-018-0096-0. URL
https://doi.org/10.1007/s13740-018-0096-0.

Andrea Marrella, Alessandro Russo, and Massimo Mecella. Planlets: Au-
tomatically recovering dynamic processes in YAWL. In OTM Conferences
(1), pages 268-286, 2012.

Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993. ISBN
978-0-7923-9380-1. doi: 10.1007/978-1-4615-3190-6.

Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Institut
fiir instrumentelle Mathematik, Bonn, 1962.

German Regis, Nicolas Ricci, Nazareno Aguirre, and T. S. E. Maibaum.
Specifying and verifying declarative fluent temporal logic properties of
workflows. In Proc. of SBMF, pages 147-162, 2012.

Maria Dolores Rodriguez-Moreno, Daniel Borrajo, Amedeo Cesta, and An-
gelo Oddi. Integrating planning and scheduling in workflow domains. Fz-
pert Systems with Applications, 33(2):389-406, October 2007. URL http:
//www.plg.inf.uc3m.es/~dborrajo/papers/expertsystems07.pdf|

A. Rogge-Solti, S. Ronny, W. van der Aalst, and M. Weske. Improving doc-
umentation by repairing event logs. In The Practice of Enterprise Modeling,
volume 165 of LNBIP, pages 129-144. Springer, 2013.

Fernando Rosa-Velardo and David de Frutos-Escrig. Decidability and com-
plexity of petri nets with unordered data. Theoretical Computer Science,
412(34):4439 — 4451, 2011. ISSN 0304-3975. doi: http://dx.doi.org/10.
1016/j.t¢s.2011.05.007.

Natalia Sidorova, Christian Stahl, and Nikola Tréka. Soundness verification
for conceptual workflow nets with data: Early detection of errors with the
most precision possible. Inf. Syst., 36(7):1026-1043, November 2011. doi:
10.1016/.is.2011.04.004.

W. van der Aalst. The application of petri nets to workflow management.
J. of Circuits, Sys. and Comp., 08:21-66, February 1998. ISSN 0218-1266.
doi: 10.1142/S0218126698000043.

W. van der Aalst and C. Stahl. Modeling Business Processes: A Petri Net-
Oriented Approach. Cooperative information systems. MIT Press, 2011.
ISBN 9780262015387.

71

https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s00607-015-0441-1
https://doi.org/10.1007/s13740-018-0096-0
http://www.plg.inf.uc3m.es/~dborrajo/papers/expertsystems07.pdf
http://www.plg.inf.uc3m.es/~dborrajo/papers/expertsystems07.pdf

[62] W. van der Aalst and A. ter Hofstede. Yawl: Yet another workflow
language. Inf. Syst., 30(4):245-275, June 2005. ISSN 0306-4379. doi:
10.1016/;.i.2004.02.002.

[63] W. van der Aalst, K. van Hee, A. ter Hofstede, N. Sidorova, H. Verbeek,
M. Voorhoeve, and M. Wynn. Soundness of workflow nets:classification,
decidability, and analysis. Formal Aspects of Comp., 23(3):333-363, 2010.

[54] Wil M. P. van der Aalst. Verification of workflow nets. In Proc. of ICATPN,
pages 407-426, 1997. doi: 10.1007/3-540-63139-9_48.

72

	1 Introduction
	2 Verification of Data-Aware Business Processes
	3 The Framework: DAW-net
	3.1 The Workflow Nets modeling language
	3.2 The DAW-net modeling language
	3.2.1 Data Model
	3.2.2 Data-aware net

	4 Reachability: from theory to practice
	5 The encoding in Action Languages
	5.1 The bc action language
	5.2 Encoding DAW-nets in bc
	5.3 Correctness and completeness of the bc encoding

	6 The encoding in Classical Planning
	6.1 State-Variable Representation of Planning Problems
	6.2 Encoding DAW-nets in pddl
	6.3 Correctness and completeness of the pddl encoding

	7 The encoding in nuXmv
	7.1 The nuXmv input language
	7.2 Encoding of DAW-net in nuXmv
	7.3 Correctness and completeness of the nuXmv encoding

	8 Trace completion
	8.1 Trace completion as reachability

	9 Evaluation
	9.1 Synthetic Log Evaluation
	9.1.1 Dataset, procedure and metrics
	9.1.2 Results

	9.2 Real-life Log Evaluation
	9.2.1 Dataset, procedure and metrics
	9.2.2 Results

	9.3 Threats to Validity

	10 Related Work
	11 Conclusions
	Appendix A Technical details of Section 5
	Appendix B Further technical details of Section 6
	Appendix C Technical details of Section 8.1

