
Source Printer Identification using Printer Specific
Pooling of Letter Descriptors

Sharad Joshi1, Yogesh Kumar Gupta2, Nitin Khanna3

Abstract

The digital revolution has replaced the use of printed documents with their dig-

ital counterparts. However, many applications require the use of both due to

several factors, including challenges of digital security, installation costs, ease

of use, and lack of digital expertise. Technological developments in the digi-

tal domain have also resulted in the easy availability of high-quality scanners,

printers, and image editing software at lower prices. Miscreants leverage such

technology to develop forged documents that may go undetected in vast volumes

of printed documents. These developments mandate the research on creating

fast and accurate digital systems for source printer identification of printed doc-

uments. We extensively analyze and propose a printer-specific pooling that

improves the performance of printer-specific local texture descriptor on two

datasets. The proposed pooling performs well using a simple correlation-based

prediction instead of a complex machine learning-based classifier achieving im-

proved performance under cross-font scenarios. The proposed system achieves

an average classification accuracy of 93.5%, 94.3%, and 60.3% on documents

printed in Arial, Times New Roman, and Comic Sans font types respectively,

when documents printed in only Cambria font are available for training.
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1. Introduction

Printed documents have been used traditionally for record-keeping, certifi-

cation, and communication purposes. The digital revolution has propelled the

use of digital documents in place of printed documents. However, many critical

applications use printed documents like financial dealings, judicial process, ad-

ministrative record keeping and communication, and certifications. The frame-

works for many such applications require a combination of printed documents,

scanned versions, and digital documents. This co-existence of printed and dig-

ital documents results from multiple reasons, including ease of use, operating

cost, lack of digital expertise, and open digital security challenges. Technolog-

ical developments have allowed the easy availability of good quality printers,

scanners, and image-editing software. These are routinely misused by potential

miscreants to create forged documents. The vast volume of printed documents

and the evolving forging technology makes it challenging to analyze and detect

forged documents and warrants the use of fast and accurate digital systems to

analyze the authenticity of printed documents. The source printer’s information

can provide important clues for forensic analysis of printed documents [1, 2, 3, 4].

Traditional methods use chemical techniques to investigate the chemical

composition of toner spread on a paper. Chemical processes use spectroscopy [5]

and x-ray [6] to discover a connection in seized documents. These methods re-

quire laboratory equipment and an expert to examine the samples. Also, these

techniques require a significant amount of time and can damage the printed doc-

ument in question. In sharp contrast, digital methods convert the printed doc-

uments into their digital counterpart using a reference scanner. Source printer

identification with digital techniques has been gaining much attention. All the

analysis is carried out in the digital domain; thus, it is faster and automatic.

Two major digital approaches for source printer identification are discussed in
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the literature, namely, extrinsic (active) and intrinsic (passive) [1]. An extrinsic

signature approach is an active approach in which a user embeds an extrinsic

signal in the printed document before or during the printing process. However,

they require active access to the printer, and a sophisticated signal embedding

mechanism needs to be integrated with the printer [7]. Such methods are com-

plicated and costly for the large volume of text documents printed by general-

purpose consumer-grade printers. On the contrary, passive approaches rely on

visually imperceptible printer artifacts induced intrinsically during the printing

process [8].

In this paper, we work on source printer identification for text documents

using an intrinsically induced printer signature. The existing methods process

all the printed letters uniformly during the computation of the printer signature

model for source printer identification in a close-set scenario (i.e., the user needs

to know the set of all possible printers in advance). Our proposed method is

based on the hypothesis that the printed letters exhibit location-specific varia-

tions due to the electrophotographic printing process’s characteristics [9]. We

introduced the printer-specific local texture descriptor (PSLTD) in [4], a state-

of-the-art handcrafted method for identifying the source printer using scanned

images of printed documents. Most existing methods (including deep learning-

based [2, 10]) do not perform well when the font type of letters in printed

documents under test is not available in training. We term this as the cross-

font scenario [4]. PSLTD outperforms all existing methods under a cross-font

scenario.

We analyze the variation of PSLTD-based printer signature concerning the

location of printed letters across the document. We show that the distribution

of printer artifacts correlates strongly with printed letters’ location on the docu-

ment (Figures 4). We introduce a printer-specific pooling technique that allows

the prediction of source printer. We further improve the performance of PSLTD

under a cross-font scenario using the proposed pooling technique. We show the

efficacy of the proposed method using a correlation technique (Figure 2). The

significant highlights of this work are as follows:
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• We provide an extensive analysis of printer signature variations across a

printed document.

• We introduce a location-based pooling technique that improves the per-

formance of PSLTD for source printer identification.

• We show the efficacy of the proposed pooling technique using a correlation-

based prediction method instead of a complex classifier, thus paving classifier-

independent prediction.

• The proposed method performs better than state-of-the-art methods un-

der the cross-font scenario achieving an average classification accuracy of

93.5%, 94.3%, and 60.3% on documents printed in Arial, Times New Ro-

man, and Comic Sans font types when documents printed in only Cambria

font are available for training.

The paper consists of the following sections. Section 2 briefly describes the re-

lated literature of intrinsic signature-based techniques for classifying the source

printer of printed text documents. The details of our proposed pooling have

been specified in Section 4. An extensive set of experiments are used to exam-

ine the effectiveness of the proposed method. The description and results of

the proposed approach have been discussed in Section 5. Finally, we draw out

conclusions from this work and the directions for future work in Section 6.

2. Related Works

The problem of Source printer classification has gained much attention in the

past decade [1]. This work is based on an intrinsic signature, so we focus only on

them. Our method also extracts printer signature from images of printed letters,

so we only discuss methods related to text documents. One of the early reliable

printer signatures was based on the banding phenomenon, i.e., the appearance

of light and dark lines perpendicular to the direction of the paper movement

inside the printer [1]. It is a promising approach but requires documents images

scanned at a very high resolution (2400 dpi).
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From banding, the researchers moved towards texture-based methods. These

methods are suitable for documents scanned at lower resolutions (300-600 dpi).

The texture patterns created by the distribution of intensity values observed in

the scanned document image form the basis for these methods. These variations

are visually imperceptible to human eyes at commonly used font sizes. Never-

theless, their zoomed versions depict texture variations. These methods follow

the traditional pattern recognition pipeline in which features are extracted from

letter images followed by learning a suitable classifier model. The learned model

is capable of predicting the source printer labels for each letter image. The ma-

jority voting over all the predicted letter labels provides the prediction for the

whole document under test. The early methods in this category were devel-

oped for a specific letter type like ‘e’, which is the most frequently occurring

letter in the English language. The features include gray-level co-occurrence

matrices (GLCM) [11], GLCM extended in multiple directions, and scales [12],

convolutional texture gradient filter (CTGF) based on filtering textures with a

specific gradient [12], a combination of the discrete wavelet transform (DWT)

and GLCM based features [13], a combination of features obtained after ap-

plying a spatial filter, Wiener filter, and Gabor filter [14], and GLTrP-based

features [3]. A recent method proposes a decision-fusion model-based approach

for source printer classification [15]. All these methods extract features that

learn a model for a specific letter type except [3], which introduces a single-

classifier approach that learns a single model for all letter types printed on a

document. The use of all letters increases training samples, thus lowering the

requirement on the number of training documents and also increasing predicted

labels for a document under test to achieve good performance.

Elkasrawi and Shafait [16] and the authors in [10] proposed noise residual-

based features. Kee and Farid [17] followed a different strategy and proposed a

method based on the estimation of a printer profile. They create the profile using

a mean character image (of letter type ‘e’), and top p eigenvectors (obtained

by PCA) is generated for each printer. The mean character image is obtained

from all occurrences of letter ‘e’ extracted by convolving each character image
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with a user-selected reference character image. Zhou et al. [18] proposed an

interesting text-independent approach to identify source printer based on a piece

of patented equipment to scan fine textures on printed pages. More recent

work proposed a method for source printer identification using document images

acquired using a reference smartphone camera [19].

Two methods have also been proposed using convolutional neural networks

(CNN) [2, 10]. They replace the task of handcrafted feature extraction with a

model learned by letter images. Both methods work using specific letter types

(‘e’ and ‘a’). None of the techniques discussed so far have been evaluated for

cross-font scenario (i.e., font type of documents in testing is not available during

training.) This is crucial as there are so many font types available, and it is

increasingly difficult to expect that all font types are available during training.

A recent method based on printer-specific local texture descriptor (PSLTD) [4]

tries to address this challenge. A completely different category is characterized

by geometric distortion-based approaches [20, 21], which rely on features from

translational and rotational distortions of printed text relative to its reference

soft copy [22, 23, 24]. A detailed literature review has been covered in [12, 2, 3].

3. Printer Specific Local Texture Descriptor

Printer specific local texture descriptor [4] is one of the most state-of-the-art

digital systems for source identification of printed documents. The significant

advantage of the PSLTD-based method is its performance under a cross-font

scenario in which it outperforms existing methods by huge margins. PSLTD is

a novel handcrafted feature extracted from each letter image capable of learning

a single discriminative classifier model for all letter types. It belongs to the

family of local binary patterns [25]. The design of our PSLTD emphasizes

on preprocessing, thresholding and quantization, and encoding and regrouping

stages of local binary feature extraction. It introduces a novel encoding and

regrouping strategy built upon small linear structures of 3× 1 shaped structures.

The main hypothesis of PSLTD is that the distribution of such linear structures
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in small overlapping 3 × 3 patches can effectively encode and group local binary

patterns. The method observes linear-shaped groups of pixels that exist around

the center pixel at all possible orientations, i.e., horizontal (0◦), vertical (90◦),

forward slant (45◦), and backward slant (135◦). Each 3 × 3 patch is assigned one

or more line orientations based on intensity and gradient direction similarity.

A pent-pattern vector is calculated from contiguous 3 × 3 sized patches, which

is converted into five binary pattern vectors (BPVs). These BPVs from a local

patch are mapped to multiple normalized pattern occurrence histograms based

on uniformity [25] by encoding and regrouping them by their line orientations.

The detailed mathematical description of PSLTD is beyond the scope of this

paper. For more details, please refer [4]. The final PSLTD is a feature vector

of 10502 dimensions comprising of four major components. The first group

comprises normalized histograms obtained using intensity and gradient direction

similarities as encoding and regrouping strategies. It is denoted by −→F1 and

is of 4425 dimensions. Similarly, the second and third groups are formed by

considering only intensity similarity and only gradient direction similarity to

encode and regroup the BPVs. They are denoted by −→F2 and −→F3 and are of 1475

and 4425 dimensions, respectively. The last component is formed by binary

magnitude pattern vector (BMPV) denoted by −→F BMP V and of 177 dimensions.

4. Proposed Method

In this work, we analyze the change in PSLTD-based printer signature [4]

concerning the location of printed letters across the document. Based on the

analysis, we introduce a printer-specific pooling technique that enhances source

printer classification accuracy. We try two types of pooling-topology, i.e., columns

and grids. Our proposed system’s input is document images of hard copy printed

documents acquired using a reference scanner. The choice of reference scanner

does not impact the system performance as long as it is kept constant for all

the documents. The proposed system comprises of four significant steps: 1)
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Figure 1: Overall pipeline of the proposed approach using classifier-based prediction (for

documents scanned using 8-bit depth intensity values).
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Figure 2: Overall pipeline of the proposed approach using classifier-based prediction (for

documents scanned using 16-bit depth intensity values).

connected component extraction, 2) PSLTD-based feature extraction, 3) and

printer-specific pooling, and 4) classification. The general pipeline remains the

same as in [4]. The novel step is our proposed pooling strategy, which enhances

classification performance. Figure 1 depicts an overall pipeline of the proposed

system using classifier-based prediction. For images scanned and saved using

16-bit intensity values (our dataset [3]), the proposed method also allows pre-
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diction of source printer using a correlation technique instead of a complex

classifier-based prediction. as shown in Figure 2.

4.1. Connected Component Extraction

The first step is the extraction of individual letter images using connected

component analysis from a printed document [3]. We binarize the document

image followed by bounding box detection around each connected component

following the procedure in [3]. Our interest lies in letter images. However,

the system also finds some spurious components due to punctuation and noise.

We selectively filter and remove bounding boxes that are too small or large

in area and dimension. Such filtering parameters are empirically selected, de-

pending on the text’s characteristics printed in the document. Specifically, for

our dataset [3], we remove all components larger than four times the median

of areas of all components or smaller than 0.5 times the median of areas of all

components on a document. For the publicly available dataset [12], we also

need to remove components with a width smaller than 15 and larger than 90

pixels and components of height smaller than 30 and larger than 100 pixels.

This technique also removes the dots occurring in letter types ‘i’ and ‘j’. Our

method performs this step on all train and test documents.

4.2. Feature Extraction

The feature extractor stage input is the letter images extracted using the

bounding boxes obtained by connected components analysis. A PSLTD is ex-

tracted from each connected component (C), i.e., letter images of train and

test document. However, instead of using the full length PSLTD, we show that

its approximated smaller length version is sufficient. In particular, we use the
−→
F1 and −→F BMP V components. This approximation reduces the feature vector

dimension to 4602 dimensions, reducing complexity and time to run so many

experiments.
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4.3. Printer Specific Pooling

The feature pooling step is usually inserted in modern visual classification

techniques. Pooling aggregates local features into a static value via some pooling

operation [26]. Our work’s primary hypothesis is that the artifacts induced by a

printer are not identical for the entire printed document. It is a well-established

observation that the occurrences of the same letter on a document printed in

one go by a single printer may have different intensity distribution [10]. One

possible reason for this observation is the complex electro-mechanical parts and

circuitry involved in the printing process. The electrophotographic printing pro-

cess follows a line by line approach from top to bottom [9]. The various steps

in the printing process occur in the same fashion. So, we expect that the com-

bined artifacts induced by all these steps will contain particular variation while

moving perpendicular to the printer process direction (i.e., horizontal row-wise

fashion for the document image of a printed document). In contrast, we expect

that the variation along the process direction must be smaller. However, some

other sources may also introduce variations that may not occur identically in a

horizontal row-wise fashion. We analyze our hypothesis using two techniques,

namely, column pooling and grid pooling.

4.3.1. Column Pooling

In this pooling strategy, we divide each printed document into a specific

number of vertical columns (i.e., along the printer process direction) using some

fixed rules. At first, we estimate the empty horizontal margin space on both the

right and left sides of the printed text as it does not contain any printed letters.

We estimate the start and endpoints of printed text using the minimum and

maximum value of horizontal coordinates, i.e., row-coordinates. Specifically, for

each document, we sort the bounding boxes of connected components based on

their row-coordinates. Then, we calculate the median values of 1% of the small-

est (i.e., left-most) and largest (i.e., right-most) coordinates of the bounding

boxes of connected components. These two median values establish the start

and endpoints of printed text denoted by P1 and P2, respectively. We chose
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the median operator to avoid the effect of any spurious components that may

still pass the filtering process of the connected component extraction stage (Sec-

tion 4.1). The first column’s start is a 1-pixel wide boundary passing through

P1 and parallel to the document image’s vertical boundary. Similarly, the last

column’s end is a 1-pixel wide boundary passing through P2 and parallel to the

document image’s vertical boundary. The printed text area’s start and end-

points allow the horizontal margin space to be removed as it does not contain

any data of interest. The boundaries of all columns are equispaced and parallel

to the vertical boundary of the document image. The spacing between them is

termed as column-width (CW ), which is defined as the ratio of horizontal space

covered by printed text to the number of columns (Nc) as follows.

CW = max{crow} −min{crow}
Nc

(1)

Here, crow denote the set of row coordinates of all connected components.

max{.} and min{.} denote the functions to compute maximum and minimum

values. Each column’s width depends upon the size of the document and side

margins (i.e., left and right margin). For example, in our dataset [3], the aver-

age size of a scanned document image is 70192 × 5100 pixels with right and left

margin of 887 and 638 pixels, respectively. So, for Np = 15, the width of each

column would be 238 pixels. We assign a column to each connected component

in a document image using the following rules.

• If a connected component (characterized by its bounding box) is printed

entirely inside a column, it is assigned to that column.

• If a connected component occurs at the intersection of two columns, we

compute the area covered by each column’s component. The column con-

taining the larger area of that component is assigned to that component,

as described in Figure 3.

• If a connected component occurs at the intersection of two columns with

an equal area in both columns, we assign the left-most column number.
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Final Column
 Label 2

(Row,Col.) = (0, 0)

(44, 33)

Figure 3: Illustration of column pooling and column number assignment for boundary letters

on the basis of area.

We pool the PSLTD of a group of Np letters assigned to a column by average

pooling resulting in Np feature vectors. Here, Np is termed as the pooling

parameter. The hypothesis behind post-extraction pooling (PoEP) is that it

reduces the variance among PSLTDs extracted from the same page [4]. We

expect PoEP to eliminate undesired noise as the pooled feature vectors represent

all samples of a column. We visualize the comparison of correlation values

obtained by the same column and cross column pairs in Figure 4. The median

correlation values of the same column (SC) pairs are consistently higher than

those for cross column (CC) pairs across all printers.

4.3.2. Grid Pooling

We further analyze the variation of our PSLTD printer signature across the

document by dividing the document into Nw × Nh grids. We hypothesize that

the printer signature may also vary within each column. The general procedure

of estimating the empty margin space and removing it remains the same as

in column pooling. In addition to removing horizontal space, we also need

to remove the space at the top and bottom of the printed text area (vertical

margin) to determine the top-most grids’ horizontal boundary. Each grid has a
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Figure 4: Correlation values of feature vectors obtained from letters in same and different

columns for all printers in dataset DB2[3]. SC and CC denote the median values obtained by

correlating same and cross-column PSLTD pairs, respectively.

1-pixel wide boundary determined using the estimated printed text area. The

dimensions of each grid (GW × GH) are calculated from the horizontal and

vertical space covered by the printed text area.

GW = max{crow} −min{crow}
Nw

(2)

GH = max{ccol} −min{ccol}
Nh

(3)

ccol denote the set of column coordinates of all connected components. For an

8 × 8 grid, each grid consists of approximately 665 × 446 pixels, and there

are approximately 39 letters in one grid. We assign a grid to each connected

component (i.e., printed letter) similar to column pooling. The PSLTDs of all

letters in a grid are average pooled into a single feature vector.

4.4. Prediction

The prediction stage uses the pooled feature vectors to predict the source

printer label corresponding to each feature vector. We hypothesize a similarity
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in the printer signature for each block, i.e., either a column or a grid. This

hypothesis allows us to train and test letter samples separately for each block.

4.4.1. Using SVM

The PSLTDs of all letters in a block for all training documents are used to

learn a single classifier model. For column pooling, we train Np SVM classifier

models, one for each column. SVM is a standard classifier used by most existing

methods for source printer identification [12, 3, 4]. During testing, the pth

classifier model is used to predict the source printer labels of Np pooled feature

vectors corresponding to a group of letters in the pth column (p ∈ {1,2,...,Np})

as shown in Figure 1. Finally, a majority vote on predicted labels of all groups

of letters in the document provides the printer label for the printed document

under test. Grid pooling uses a similar strategy. The major difference is that

there is only a single pooled PSLTD for each block in a document with grid

pooling.

4.4.2. Using Correlation

Pearson correlation coefficient, also referred to as Pearson’s r, is a statistic

that estimate the linear correlation between two variables as follows [27].

r = Σ[(x− x̄)(y − ȳ)]√
Σ[(x− x̄)2(y − ȳ)2]

(4)

Here, x and y represent the values of two variables. x̄ and ȳ denote the mean of

all observed values in x and y, respectively. The value of Pearson’s r is between

+1 and −1, where a value of +1 denotes a total positive linear correlation, 0 is no

linear correlation, and −1 is a total negative linear correlation. We also analyze

the effectiveness of features independent of a complex classifier. For this, we

calculate the Pearson correlation coefficient (termed as correlation value from

here on) between pooled PSLTDs from train and test documents for each block.

A PSLTD pooled from a bock (i.e., a column or grid) in the test document

is correlated with all PSLTDs pooled from that block in training documents

printed by all the printers. Note that there is only a single pooled PSLTD for
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each block in a document for grid pooling. The printer corresponding to the

largest correlation value between pooled PSLTDs in train and test is predicted

as the pooled feature vector’s source printer label. We repeat this process for

all pooled samples in the test. Similar to the SVM method, a majority vote

is taken over all predicted printer labels corresponding to groups of letters to

obtain the printer label for the document under test.

5. Experimental Evaluation

We evaluate The performance of the proposed method on two datasets:

a publicly available dataset [12], termed as DB1 from here on and another

dataset [3] containing documents printed by 18 printers in four font types

(termed as DB2). We do an extensive parameter search for both column and

grid pooling to analyze printer signature variations. We chose DB2 as our base-

line dataset for this purpose as it allows analysis under cross font scenario.

The dataset DB2 is a higher precision dataset consisting of 16-bit depth in-

tensity values compared to 8-bit depth in DB1. So, we analyze the impact

of the correlation-based prediction technique on the DB2 dataset. The full-

length PSLTD is a feature vector of 10502 dimensions [4]. We also compare

the full-length feature vector’s performance and the approximated feature vec-

tor of a smaller length. In the remainder of this paper, we use PSLTD4k and

PSLTD10k to denote the methods based on approximated smaller length fea-

ture vector and the original full-length feature vector, respectively. Also, we

use the general term PSLTD has been used to denote PSLTD4k to explain the

experiments as we use PSLTD4k for all experiments except in Section 5.3. The

performance of our technique is compared with hand-crafted methods includ-

ing GLCM [11], multi-directional GLCM (GLCM_MD) [12], multi-directional

multi-scale GLCM (GLCM_MD_MS) [12], CTGF-GLCM-MD-MSe [12] and

CC-RS-LTrP-PoEP [3]. We also compare with data-driven methods of [2] de-

noted by CNN-{Sraw, Smed, Savg}a,e and [10] denoted as CNN-{Sraw, Snr}a,e.
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Table 1: Details of dataset DB2 [3]).

S. No.
Printer

ID

Printer

Brand

Printer

Model

Printer Resolution

(in dpi)

Printer

Type

1 LB1 Brothers DCP 7065DN 2400× 600 Laser

2 LC1 Canon D520 1200× 600 Laser

3 LC2 Canon 16570 2400× 600 Laser

4 LC3 Canon IR 5000 2400× 600 Laser

5 LC4 Canon IR 7095 1200× 600 Laser

6 LC5 Canon IR 8500 2400× 600 Laser

7 LC6 Canon LBP 2900B 2400× 600 Laser

8 LC7 Canon LBP 5050 9600× 600 Laser

9 LC8 Canon MF 4320 600× 600 Laser

10 LC9 Canon MF 4820d 600× 600 Laser

11 LC10 Canon MF 4820d 600× 600 Laser

12 LC11 Canon MF 4820d 600× 600 Laser

13 IE1 Epson L800 5760× 1440 Inkjet

14 IE2 Epson EL 360 1200× 600 Inkjet

15 LH1 HP 1020 600× 600 Laser

16 LH2 HP M1005 600× 600 Laser

17 LK1 Konica Minolta Bizhub 215 600× 600 Laser

18 LR1 Ricoh MP 5002 600× 600 Laser

5.1. Dataset and Experimental Setup:

We used the publicly available dataset DB1 [12] and our dataset, DB2 [3], to

evaluate our method’s performance. DB1 contains 1184 Wikipedia pages (doc-

uments) in English and Portuguese language. These pages are printed from 10

printers, including two of the same brand and same model. This dataset consists

of document images scanned at 600 dpi via the Plustek SO PL2546 scanner. The

image is available in an 8-bit format. The documents comprise letters printed

in mixed font types and sizes distributed randomly. Some documents contain

bold and italic font styles also.

We created a dataset (Table 1) consisting of 720 pages printed from 18

laser and inkjet printers to examine the effect of font types. These include three
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printers of the same brand and model. The documents contain random text

in the English language printed using four different font types. However, in

contrast with the DB1 dataset, a single document contains only a specific font

type. For each printer, there are twenty-five pages (documents) in Cambria

(EC) font, while five pages each are in Arial (EA), Comic Sans (ES), and Times

New Roman (ET) fonts. Pages in Arial font have font size 11, while pages

in the other three fonts have font size 12 as per the general settings used in

most legal documents. The dataset includes Cambria, Arial, and Times New

Roman, as most legal documents widely use them. In contrast, comic Sans

is included because it looks considerably different from the rest of the fonts.

A single reference scanner (Epson Perfection V600 Photo Scanner) scanned all

printed pages at 600 dpi and 300 dpi resolutions. The image is available in a

16-bit format. Three printers are of the same brand and model (LC9, LC10,

and LC11).

For all the experiments, we fix the train and test sets in a disjoint manner.

The intensity and gradient threshold is kept fixed at T0 = 20, T1 = 80, G0 =

90 for DB1 as it is scanned using 256 grayscale levels while T0 and T1 are set

to 13000 and 50000, respectively for DB2 as it is scanned using 65536 grayscale

levels. All experiments have been performed using Matlab 2018b software. The

C - SVM with the radial basis function kernel of LIBSVM [28] is used for

classification. Parameters (c and gamma) of SVM are chosen individually for

each experiment using the search option available in LIBSVM with c ∈ [-5, 15],

and g ∈ [-15, 3]. The step size of the grid search is fixed at 2. The validation

set is a subset of training data. The experimental settings are consistent with

the earlier works [3, 4, 2, 10].

5.2. Parameter Search

We conduct a complete parameter search for both column and grid pooling

approaches of the proposed method. DB2 allows the comparison under both

the same and cross-font scenarios. All experiments have been conducted using

five pages containing text printed in Cambria font for training. There are 20
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Table 2: Parameter searching for column pooling. Average classification accuracies (in %) on

20 documents of Cambria (C) font and 5 documents each of Arial (A), Times New Roman

(T), and Comic Sans (S) fonts using 5 documents of C font in training.

No. of

Columns

(Nc)

Pooling

Parameter

(Np)

C A T S

11 all 98.94 78 91.5 47.5

12 all 98.94 79.5 90.25 51.75

13 all 98.94 81.5 90.75 48.5

14 all 98.94 80.25 89.75 48.5

15 all 98.94 80.25 91.5 49.25

16 all 98.94 81.25 89.75 48.5

17 all 98.94 79.5 89.5 49

18 all 98.94 83.5 89.75 48.75

19 all 98.94 83.5 89.5 47.5

20 all 98.94 80.25 89.25 47.75

pages in testing: Cambria font and 5 pages each of Arial, Times New Roman,

and Comic Sans fonts. All experimental results have been reported over five

iterations, i.e., five unique and disjoint combinations of train and test set fixed

for all parameter variations.

5.2.1. Column Pooling

For column pooling, we analyze the effect of a different number of columns

(Nc) as well as the pooling parameter (Np) on the classification accuracies.

Expressly, the value of Nc is varied from 11 to 20 whereas, the value of Np is

fixed at maximum possible value, i.e., all letters in a column are pooled into a

single pooled feature vector (Table 2). Preliminary experimental results with

varying values of Np showed that the values do not make much of an impact as

long as the number of samples is sufficient to train an SVM model. We ensure

this by choosing sufficiently smaller values of Nc but large enough to capture
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Table 3: Average letters per column (Nc=15) for all printers in dataset DB2.

Printer ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

LB1 190 177 175 170 167 175 172 172 168 169 167 167 169 162 185

LC1 188 179 174 170 168 172 172 173 167 165 166 166 166 159 179

LC2 191 175 174 170 168 174 173 170 167 167 166 165 166 158 184

LC3 189 177 175 170 168 175 172 172 167 168 168 167 169 161 187

LC4 189 178 173 170 169 172 171 171 167 166 167 165 168 159 184

LC5 166 152 152 149 147 151 151 150 149 144 146 147 147 139 162

LC6 190 179 175 169 168 173 171 172 169 168 166 166 168 163 187

LC7 190 178 175 171 168 174 172 173 169 168 167 167 168 161 187

LC8 189 179 175 170 167 174 172 173 169 168 165 166 167 163 186

LC9 173 170 169 163 162 166 162 159 155 150 148 147 141 140 161

LC10 165 162 157 153 159 159 156 156 152 152 152 149 152 146 165

LC11 186 177 171 169 164 168 166 167 161 158 161 156 157 149 171

IE1 173 164 164 160 156 163 158 159 154 157 154 157 157 151 172

IE2 187 175 173 170 166 172 171 170 167 166 166 165 168 161 185

LH1 190 180 174 170 167 174 173 174 168 168 166 166 167 163 187

LH2 190 180 175 169 167 173 174 173 168 167 166 166 167 164 187

LK1 190 177 174 172 167 174 173 172 169 168 167 166 169 162 186

LR1 190 177 176 171 168 175 172 173 167 169 167 166 169 161 186

the variation in printer signature. The classification accuracy remains constant

for the same font experiments. For cross font experiments, the classification

accuracy does not vary monotonically, and there is no single parameter pair that

provides the highest classification accuracy for all three fonts. For rest of the

experiments, we chose Nc = 15 and Np = ‘all’ as this setting provides a significant

number of samples (Table 3) to learn a separate classifier model for each column.

The average number of letters per column (using Nc = 15) for all printers has

been reported in Table 3. The Table shows that the proposed column pooling

strategy evenly distributes letters across all printers in our dataset.

5.2.2. Grid Pooling

For grid pooling, we analyze the effect of a different number of grids (Nw

× Nh) on the classification accuracies. The number of grids is varied from

2 to 8 while also varying the number of grid blocks Nw and Nh with respect

to each other (Table 4). The classification accuracy remains constant for all
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Table 4: Parameter searching for grid pooling. Average classification accuracies (in %) on 20

documents of Cambria (C) font and 5 documents each of Arial (A), Times New Roman (T),

and Comic Sans (S) fonts using 5 documents of C font in training.

Nw Nh C A T S

2 2 98.94 72.50 90.50 52.75

2 4 98.94 77.25 90.75 53.00

2 6 98.94 78.50 91.75 50.75

2 8 98.94 80.25 91.00 49.75

4 2 98.94 78.25 89.75 50.75

4 4 98.94 82.75 92.00 51.25

4 6 98.94 85.75 92.75 52.25

4 8 98.94 86.00 91.00 50.75

6 2 98.94 82.75 90.00 48.75

6 4 98.94 87.75 92.50 50.25

6 6 98.94 87.00 92.75 51.00

6 8 98.94 88.75 92.00 49.50

8 2 98.94 83.00 90.00 50.00

8 4 98.94 89.50 92.25 49.50

8 6 98.94 89.50 91.25 52.75

8 8 98.94 90.00 92.25 49.50

varying values of parameters. The cross font accuracies with Arial font in general

increases with the number of grid blocks. The results with Nw > 8 (not reported

in the paper) showed that the average cross font accuracy does not increase

significantly. There is no specific trend observed in the other two fonts. Like

column pooling, there is no single parameter setting that provides the highest

classification accuracy for all three fonts. However, 8 × 8 grid configuration

provides reasonably high accuracies for all three font types. So we chose this

setting for the remaining experiments.
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5.3. Full Length PSLTD vs. Approximated PSLTD

Table 5: Comparison of 10k and 4k feature vectors. Average classification accuracies (in %)

on 20 documents of Cambria (C) font and 5 documents each of Arial (A), Times New Roman

(T), and Comic Sans (S) fonts using 5 documents of C font in training.

C A T S

Nc Np 10k 4k 10k 4k 10k 4k 10k 4k

15 all 98.94 98.94 78.00 80.25 90.25 91.50 50.00 49.25

Grid 8 × 8 98.94 98.94 84.75 90.00 91.00 92.25 50.25 49.50

The performance of proposed method using approximated PSLTD (i.e.,

PSLTD4k) is compared with that using the full length PSLTD (i.e., PSLTD10k)

in Table 5. The approximated PSLTD of reduced dimensions performs simi-

lar to their full-length counterpart for both same and cross font experiments.

Thus to reduce complexity and save time, we use the approximated PSLTD4k

as feature vectors with our proposed method for the remaining experiments.

5.4. Block Pooling vs. Consecutive Pooling

For comparison between proposed block pooling and consecutive pooling [3],

we first visualize the feature vector in a reduced dimension using linear discrim-

inant analysis (LDA). Secondly, Pearson’s r correlation is used for comparison.

We choose the same training data (i.e., five printed documents per printer con-

taining the same font type) of dataset DB2 [3] for both pooling methods.

5.4.1. Comparison using LDA

To visualize the distribution of features in a lower-dimensional space, we

extracted PSLTDs from training samples of DB2. We pool PSLTDs using Np

equals 20 via consecutive pooling, column pooling for fifteen columns (i.e„ Nc

= 15) and grid pooling using 8 × 8 grid. Then we apply linear discriminant

analysis (LDA) to reduce the feature’s dimension. The first two dimensions

corresponding to the largest eigenvalues of projected data are plotted in figure 5.
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These plots indicate that both column and grid pooling method reduces intra-

class separation and increases inter-class separation. The figure depicts that

different clusters corresponding to various printers have more discrimination

in column pooling than consecutive pooling. As expected, the improvement

in class-wise cluster separation is drastically better with column pooling than

grid pooling. It provides visual clues that column pooling offers us a better

representation with less overlapping of different class samples.
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(c) Grid pooling.

Figure 5: Comparison of pooling techniques using first two components of LDA corresponding

to maximum eigenvalues.

5.4.2. Comparison using Correlation

Following our method’s primary hypothesis, we consider that sample from

the same column of a printer’s pages has more similarity than cross columns. We

compute the correlation values between pooled PSLTDs using consecutive pool-
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Table 6: Comparison of pooling techniques using median correlation values.

Printer ID Consecutive Pooling Column Pooling Grid Pooling

LB1 0.9999403786 0.9999894087 0.9999932251

LC1 0.9999417235 0.9999939426 0.9999928397

LC2 0.9999496627 0.9999955784 0.9999918113

LC3 0.9999536711 0.9999932549 0.9999933009

LC4 0.9999521655 0.9999940128 0.9999921736

LC5 0.9999686467 0.9999946214 0.9999937096

LC6 0.9999703351 0.9999935464 0.9999952785

LC7 0.9999716916 0.9999943718 0.9999941307

LC8 0.9999756106 0.9999937039 0.9999948721

LC9 0.9999789123 0.9999922834 0.99999445

LC10 0.9999812282 0.9999958219 0.9999927177

LC11 0.9999814061 0.9999925254 0.9999929945

IE1 0.9999829966 0.9999954384 0.9999886172

IE2 0.9999834864 0.9999887612 0.9999882253

LH1 0.9999884284 0.9999902606 0.9999933383

LH2 0.9999898499 0.9999950545 0.9999945381

LK1 0.999989456 0.9999945135 0.999990502

LR1 0.9999909281 0.999991202 0.9999940467

ing, column pooling, and grid pooling to observe this phenomenon. For consec-

utive pooling, the correlation values are calculated between all pooled PSLTDs

of a printer for all 18 printers in DB2. On the other hand, for column and grid

pooling, correlation values are calculated between pooled PSLTDs belonging

to a printer’s training documents but belonging to the same block (column or

grid). The median of correlation values obtained by the same block correlation

is consistently higher than that of consecutive pooling for all printers (Table 6).

This observation establishes the validity of our primary hypothesis about the
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variation of printer signature across a document image and its effectiveness com-

pared to consecutive pooling. However, the difference between correlation values

obtained using consecutive and block pooling is seen only after 4th or 5th digit

after the decimal point. So, the document images need to be scanned using a

high precision of 16-bit depth images.

5.5. Comparison with State-of-the-art

Table 7: Comparison of average page-level classification accuracies of the proposed method

against state-of-the-art methods on dataset DB1 [12] using letter type ‘e’ and 5 × 2 cross-

validation on the train and test folds provided by [2].

Method
Accuracy

(in %)

GLCM e [11] 77.87

GLCM_MDe [12] 91.08

GLCM_MD_MSe [12] 94.30

CTGF-GLCM-MD-MSe [2] 96.26

CNN-{Sraw}e [2] 96.13

CNN-{Sraw, Smed, Savg}a,e [2] 97.33

CC-RS-LTrP-PoEPe [3] 97.12

PSLTDe [4] 98.92

Proposedcol5,e 98.61

Proposedcol15,e 97.76

Proposedgrid,e 92.93

We compare the performance of the proposed method with existing state-of-

the-art methods using a combination of datasets DB1 and DB2. For DB1, the

proposed method’s efficacy is analyzed using an ensemble of SVMs, while the

higher precision of DB2 allows us to use correlation-based prediction.
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Table 8: Comparison of average page-level classification accuracies of the proposed method

against PSLTD on dataset DB1 [12] using all letter types and 5 × 2 cross-validation on the

train and test folds provided by [2].

Method
Accuracy

(in %)

PSLTD [4] 99.27

Proposedcol5 99.37

Proposedcol15 99.16

Proposedgrid 96.77

5.5.1. Experiment on Dataset DB1

First, we evaluated the performance of our method on dataset DB1. As

only 8-bit document images available in DB1, we use our SVM-based ap-

proach. We analyzed the performance using only letter type ‘e’ (the most

frequently occurring letter in the English language) and all connected com-

ponents printed on a document. We use the same train and test folds used in

previous works [12, 2, 3, 4] for their result based on a 5 × 2 cross-validation

method for a fair comparison. Each fold has around 592 pages each for train-

ing and testing. The performance of the proposed method has been compared

with various state-of-the-art methods using all occurrences of letter type ‘e’.

This approach allows a fair comparison consistently with many other baseline

methods developed for a specific letter type. The proposed method achieves an

accuracy of 97.76% and 92.93% using column (Nc=15) and grid (8 × 8) pooling,

respectively (Table 7). Our proposed method using column pooling is denoted

by Proposedcol5 and Proposedcol15 for Nc=5 and 15, respectively. Whereas, our

proposed grid pooling-based method is denoted by Proposedgrid. Results show

that grid pooling does not perform well. A possible reason could be that the

number of samples per SVM is insufficient to learn a discriminative model. Note

that the proposed method using 8 × 8 grid pooling has an ensemble of 64 SVMS.

We also try other pooling parameters and find that the proposed method per-
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forms slightly better with Nc=5 as compared to consecutive pooling. PSLTDe

and proposed method (PSLTD4k,e) outperforms all other existing methods. We

further compare PSLTDe and proposed method using all printed letters as re-

ported in Table 8. We observe that the proposed method performs similarly to

the PSLTD method. Nonetheless, the font type and size characteristics of train

and test data in DB1 are not well defined. So, we also carry out experiments

on the DB2 dataset, which allows analysis in an ideal cross-font scenario.

5.6. Experiments on dataset DB2

We evaluated the performance of the proposed method on DB2 (having

approximately 2300 connected components per document) for (a) inter-model

scenario (i.e., no two printers are of the same brand and model) and (b) intra-

model scenario (i.e., multiple printers of same brand and model). We extract

all connected components for experiments on DB2. Dataset DB2 consists of

documents scanned at 16 - bit (65536 - scale). So, unlike DB1, on DB2 we use

correlation-based prediction in our proposed method.

Table 9: Average classification accuracies (in %) for same and cross font experiments using

sixteen printers of unique brand and model in DB2 [3] (i.e., except LC10 and LC11).

Train Font Cambria (C)

Test Font C A T S

PSLTD [4] 100 80.00 98.75 54.25

Proposedcol15 100 85.25 96.25 54.75

Proposedgrid 99.50 93.50 94.25 60.25

5.6.1. Intermodel scenario

For the inter-model scenario, we analyzed the proposed method’s perfor-

mance on 16 printers (except LC10, LC11 in table 1). There are 20 Cambria

font documents per printer in training and five Cambria font documents in test-

ing. We also test on all five documents containing text printed in Arial (A),

Times New Roman (T), and Comic Sans font (S) types. The results are reported
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over five iterations, i.e., five unique combinations of train and test data. In this

setting, PSLTD [4] and column pooling variants of proposed method achieve

100% classification accuracy in the same font scenario as reported in Table 9.

The grid pooling variant of the proposed method achieves 99.50% accuracy.

Note that, in original PSLTD [4], we need to learn an SVM model, but the

proposed method predicts using a simple correlation-based prediction technique

without the requirement of learning a complex classifier model. Moreover, the

proposed method surpasses the performance of state-of-the-art PSLTD-based

method [4] under the cross-font scenario. Specifically, the grid pooling variant

(i.e., 8×8 grid) of the proposed method achieves average classification accura-

cies of 93.50%, 94.25%, and 60.25% when trained using documents containing

Cambria font and tested using documents containing A, T, and S font types,

respectively. The column pooling variant (i.e., Nc=15) of the proposed method

achieves average classification accuracies of 85.25%, 96.25%, and 54.75%, respec-

tively with A, T, and S. The results show that neither variant of the proposed

method is consistently better than the other on all font types. However, it

can be seen that the overall performance of grid column pooling is better than

column pooling under the cross-font scenario on DB2.

Table 10: Comparison of mean confusion matrices (accuracy in %) for classifying 3 printers

of same brand and model. Bold values correspond to our proposed method while values in

bracket correspond to PSLTD using consecutive pooling [4].

Predicted Class

True Class
LC9 LC10 LC11

LC9 100 [100] 0 0

LC10 0 100 [97.1] 0 [2.9]

LC11 0 0 [1.2] 100 [98.8]

5.6.2. Intra-model scenario

The intra-model scenario analyzes the performance of the proposed method

on printers of the same brand and model. For the Intra model scenario, DB2
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consists of three printers of the same brand and model. We choose the same

folds of 20 and 5 documents in training and testing, respectively, over five itera-

tions. Under these settings, The proposed method achieves 100% classification

accuracy, as shown in Table 10 whereas, there is some confusion between print-

ers using PSLTD-based method [4]. The proposed method correctly classifies

documents printed from printers of the same brand and model without learning

a complex classifier. We further analyze the proposed method’s performance

using all 18 printers of DB2, achieving an average classification accuracy of

100% under the same font scenario for both column and grid polling variants.

The experimental setting remains the same as in the inter-model scenario, i.e.,

20 documents of Cambria in train and rest five documents in the test. The

column pooling methods achieve 84.89%, 91.33%, and 52.67% accuracies under

the cross-font scenario, and grid pooling achieves 92.67%, 89.11%, and 56.89%,

respectively on A, T, and S font types. Similar to the intra-model scenario, grid

pooling performs better than the inter-model scenario. The confusion matrices

corresponding to grid pooling have been depicted in Tables 11 and 12. For font

type A, the proposed method correctly classifies 15 out of 18 printers for all

test documents, whereas, for font type T, all documents printed by 16 out of 18

printers are correctly classified. As expected, there is some confusion between

the printer of the same brand and model for font types A and T. There is a lot

of confusion among many printers for font type S. The results show that block

pooling achieves significant performance under cross font scenarios when font

types in train and test are not drastically different. The discriminative power

of block pooling is highlighted by a simple correlation-based prediction instead

of a complex classifier.

6. Conclusion

We have proposed a new printer-specific pooling based system for source

printer identification. We use an extensive set of visual analysis and experimen-

tal results to show that a printer’s signature varies across a printed document,
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Table 11: Mean confusion matrices (in %) for Arial and Times New Roman font types under

cross font scenario using all printers in DB2[3] obtained with grid pooling and correlation-

based prediction.

Arial (A)

LB1 LC1 LC2 LC3 LC4 LC5 LC6 LC7 LC8 LC9 LC10 LC11 IE1 IE2 LH1 LH2 LK1 LR1

LB1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC1 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC2 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC3 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC4 0 0 0 4 96 0 0 0 0 0 0 0 0 0 0 0 0 0

LC5 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

LC6 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

LC7 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

LC8 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

LC9 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

LC10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

LC11 0 0 0 0 0 0 0 0 0 0 28 72 0 0 0 0 0 0

IE1 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

IE2 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

LH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

LH2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0

LK1 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

LR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Times New Roman (T)

LB1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC1 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC2 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC3 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC4 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

LC5 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

LC6 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0

LC7 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

LC8 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

LC9 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

LC10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

LC11 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

IE1 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

IE2 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0

LH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

LH2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 96 4 0 0

LK1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0

LR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

and this variation can be captured by dividing the document image into non-

overlapping blocks. We analyzed two variants for block pooling, i.e., column and

grid pooling. For document images scanned at lower precision (i.e., 8-bit depth),

we use SVM-based prediction (as used in most state-of-the-art methods). The

proposed method performs better than most methods on the publicly avail-
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Table 12: Mean confusion matrices (in %) for Comic Sans font under cross font scenario using

all printers in DB2[3] obtained with grid pooling and correlation-based prediction.

Comic Sans (S)

LB1 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC1 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

LC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

LC3 0 0 0 0 0 0 8 0 0 0 0 0 0 0 20 72 0 0

LC4 0 0 0 0 0 0 20 0 0 0 0 0 0 0 80 0 0 0

LC5 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

LC6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

LC7 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0

LC8 0 0 0 0 0 0 0 0 4 0 0 0 0 0 96 0 0 0

LC9 0 0 0 0 0 0 24 20 0 56 0 0 0 0 0 0 0 0

LC10 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

LC11 0 0 0 0 0 0 0 0 0 0 52 48 0 0 0 0 0 0

IE1 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

IE2 0 0 0 0 0 0 0 0 0 0 0 0 4 96 0 0 0 0

LH1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

LH2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 20 0 0

LK1 0 0 0 0 0 0 0 88 0 0 0 0 0 0 12 0 0 0

LR1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

able dataset and performs similar to the PSLTD-based method. Results show

that column pooling performs better than grid pooling using an ensemble of

SVMs as the number of samples available for each SVM (corresponding to each

block) is insufficient to learn a discriminative model. However, for document

images scanned at higher precision (i.e., 16-bit depth), the proposed method’s

discriminative power is highlighted by a correlation-based prediction instead of

a complex classifier. Both grid and column variants of the proposed method

performs better than state-of-the-art methods when evaluated under cross font

scenario. An extensive set of experiments reveal that the grid pooling variant

performs better than column pooling using a correlation-based technique. The

proposed method’s grid pooling variant achieves more than 93.5% and 94.3%ac-

curacies when tested on documents containing Arial and Times New Roman font

types and trained using documents containing only Cambria font type. Classi-

fication with Pearson correlation provides promising results that could pave the
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way for classifier independent detection approach with a high precision image

acquisition process.

The proposed method and the existing state-of-the-art combination of

PSLTD and consecutive pooling does not perform well on Comic Sans font as it

is drastically different from the other three font types in our dataset DB2. The

proposed method requires that the test document contains a sufficient number

of letters printed in a block to estimate a good quality printer signature. The

proposed method is less useful for intra-page forgery locations, as its localiza-

tion ability is reduced if the prediction of source printer is carried out on fewer

pooled feature vectors. There are other open challenges that need to be ana-

lyzed in detail, including toner variation, paper quality and type, and printer

age. Future work will include improving the printer signature model to address

cross-font type, cross-font size, and cross-language scenarios. It would allow the

scaling of source printer identification systems to a larger number of printers.
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