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Abstract

In this paper, we propose a new technique that applies automated image
analysis in the area of structural corrosion monitoring and demonstrate im-
proved efficacy compared to existing approaches. Structural corrosion monitor-
ing is the initial step of the risk-based maintenance philosophy and depends on
an engineer’s assessment regarding the risk of building failure balanced against
the fiscal cost of maintenance. This introduces the opportunity for human error
which is further complicated when restricted to assessment using drone cap-
tured images for those areas not reachable by humans due to many background
noises. The importance of this problem has promoted an active research commu-
nity aiming to support the engineer through the use of artificial intelligence (AI)
image analysis for corrosion detection. In this paper, we advance this area of
research with the development of a framework, CorrDetector. CorrDetector

uses a novel ensemble deep learning approach underpinned by convolutional
neural networks (CNNs) for structural identification and corrosion feature ex-
traction. We provide an empirical evaluation using real-world images of a com-
plicated structure (e.g. telecommunication tower) captured by drones, a typical
scenario for engineers. Our study demonstrates that the ensemble approach of
CorrDetector significantly outperforms the state-of-the-art in terms of classi-
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fication accuracy.
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1. Introduction

Inspecting faults (e.g. corrosion) is a major problem in industrial structures
such as building roofs, pipes, poles, bridges, and telecommunication towers [1].
This is a vital service for several industrial sectors, especially manufacturing,
where structures (assets) that are subject to corrosion due to their exposure to
the weather are used to deliver critical products or services. The problem of
corrosion may cost Australia up to $32 billion annually, which is greater than
$1500 for every Australian each year [2]. Corrosion is not simply a financial cost
if left unattended; the endangerment of lives may also be a real risk. Without
adopting to the latest in AI-driven solutions, businesses are losing millions in
time and money to identify corrosion using methods that have changed little
with heavy reliance on human judgement [3]. The timely and accurate detection
of corrosion is a key way to improve the efficiency of economy by instigating
appropriately managed maintenance processes that will also safe lives.

A fast and reliable inspection process for corrosion can ensure industrial
assets are maintained in time to prevent regulatory breaches, outages or catas-
trophic disasters. In most cases, inspections of such assets are conducted man-
ually which can be slow, hazardous, expensive and inaccurate. Recently, drones
have proven to be a viable and safer solution to perform such inspections in
many adverse conditions by flying up-close to the structures and take a very
large number of high-resolution images from multiple angles [4]. The images
acquired through such process are stored and then subsequently reviewed man-
ually by expert engineers who decide about further actions. However, this causes
a problem of plenty for highly qualified engineers to manually identify corrosion
from the images which further leads to a high level of human error, inconsisten-
cies, high lead time and high costs in terms of man-hours.

Existing approaches for identifying structural corrosion from images are ei-
ther based on Computer Vision (CV) [5] or Deep Learning (DL) techniques
[6, 7]. In recent CV-based techniques [8], non-trivial prior knowledge and ex-
tensive human efforts are required in designing high quality corrosion features
from images. In addition, one cannot hope much on the performance (or the
accuracy of corrosion detection) in the case that the corrosion features are some-
what incorrectly identified. Compared with computer vision/image processing
[9] and vanilla machine learning approaches [10], DL-based methods, in partic-
ular Convolutional Neural Networks (CNNs) [11, 12] have shown the ability to
automatically learn important features, outperforming state-of-the-art vision-
based approaches [6, 7, 13] and achieving human-level accuracy.

In this paper, we present a Deep Learning (DL)-based framework named
CorrDetector, for detecting corrosion from high resolution images captured by

2



drones. As the key innovation, we propose and develop an ensemble of CNN
models [14] which is capable of detecting corrosion in target structure (i.e. ob-
ject) from such high resolution images at significantly higher accuracy than the
current state-of-the-art CNN models. More specifically, the proposed framework
is capable of providing i) industrial structure recognition - detect the industrial
structure (i.e. object of interest) in the image captured by the drone (since the
drone image is captured in a real-world environment that is filled with back-
ground noise) and; iii) localised detection of corrosion - detect which areas in
the industrial structure contains corrosion. Most DL-based solutions for corro-
sion detection use image samples captured by DSLR (digital single-lens reflex),
digital or mobile cameras with human involvement in taking pictures [7, 15] in
more controlled environment. Such image samples are much lower in resolution
than drone images. Moreover, these samples can be biased as they are captured
specifically to be utilised for experimental purposes at certain distances and an-
gles. Therefore, such images comprised of human judgements to focus in specific
type of corrosion area within the image which can be easily isolated and distin-
guishable even in visual inspection [7]. Moreover, previous studies have mostly
focused on corrosion identification only in metallic surfaces [4, 6, 7, 10]. To
the best of our knowledge, this work is the first attempt that utilises real-world
high-resolution unaltered images captured by drones in industrial and real-world
settings to identify corrosion in industrial structure such as telecommunication
tower. More specifically, this paper makes the following contributions:

• Present a novel framework, CorrDetector with a 4-layer architecture to
detect industrial object and identify regions of corrosion in high-resolution
images of industrial assets captured by drones in a real-world setting from
various positions, angles and distances.

• Present an innovative ensemble approach that combines two deep learning
models; a deep learning model for recognising and separating targeted
industrial structure from the background and a deep learning model to
identify corrosion in specific regions of the industrial structure (localised).

• Present a systematic methodology for training our ensemble model us-
ing high-resolution drone images that includes two types of annotation
techniques namely grid-based and object-based.

• A comprehensive evaluation using a real-world dataset (high resolution
drone images of telecommunication towers) and comparison with current
state-of-the-art deep learning models for corrosion detection to demon-
strate the efficacy of the proposed CorrDetector.

The rest of the paper is organised as follows. Section 2 provides a discussion
of current state-of-the-art in corrosion detection from images. Section 3 presents
the systematic methodology for developing an ensemble of CNN models for
corrosion detection. Section 4 presents the experimental domain, the empirical
evaluation and a comprehensive analysis of our proposed approach against the
current-state-of-the-art and finally Section 5 concludes the paper.
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2. Related Works

The most recent research identify the possibility of the utilisation of com-
puter vision (CV) [16] coupled with deep learning (DL) [17] for defect iden-
tification. This has been proven in the literature to be capable of identifying
corrosion in building structures. As this may lower the opportunity of human
error while greatly speeding up the analysis process there has been a significant
increase in active research pursuing approaches based on these two cornerstones.

Several CV-based approaches have been proposed for identifying defects in
industrial structures to aid in civil engineering maintenance life-cycle service.
In particular, structures prone to corrosion through repeated erosion may result
in loss of life (e.g., flight, at-sea) and are particular drivers for such work.

Authors in [5, 18] used wavelet transforms on images to detect structural
corrosion. Assuming images are obtained through nondestructive imaging (NDI)
of ageing aircraft materials and structures, the work in [18] attempts to identify
damage on ageing aircraft structures. Wavelet analysis was used for feature
extraction, a clustering technique is used for damage segmentation, and a K-
means distance-based method is used for damage classification. [5] used wavelet
features and the Shannon entropy method for detecting damages in ship hulls.

The work in [19] focuses on corrosion surface damage identification in the
form of pitting and micro-cracks in metal using an image analysis based on
wavelet transforms. The work [20] uses camera based image analysis techniques
to identify, quantify and classify damage in aluminium structures. The proposed
techniques used the optical contrast of the corroded region with respect to its
surroundings, performed edge detection techniques through image processing
approaches and computed each region to predict the total area of the affected
part. Authors in [10] adopted color space features and J48 decision tree classifi-
cation for detecting rust in steel bridges. They obtained high accuracy (97.51%)
but only used a total of 165 images. Overall, in all CV-based approaches the
focus is on feature extraction techniques rather than classification whereas in
a DL-based solution using convolutional neural networks (CNNs) there is an
opportunity for automatic feature extraction that may lead to more optimum
and adaptable learning strategies. This provides an opportunity for a broader
area of subject matter to be considered by a single approach (coupled with
transferred learning [11]) as corrosion types are different as can be seen in the
related works just described.

Within the domain of inspecting industrial structures, Authors in [6] adopt
‘Faster R-CNN’ for detecting cracks in metal objects. Their database contains
2366 images (with 500 × 375 pixels) labelled with five types of damages - con-
crete crack, steel corrosion classed as medium or high, bolt corrosion, and steel
delamination. To develop a training set, 297 images (with a resolution of 6,000
× 4,000 pixels) were collected using a Nikon D5200 and D7200 DSLR cameras.
Images were taken under different lighting conditions. Their evaluation results
showed 90.6%, 83.4%, 82.1%, 98.1%, and 84.7% average precision (AP) ratings
for the five damage types respectively with a mean AP of 87.8%. The traditional
CNN based method showed high accuracy in this and their previous work [15].
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For the task of corrosion detection, the work in [7] applied two CNN net-
works (ZF Net and VGG). However, the authors focused on the computational
aspects by proposing two shallow CNN architectures ‘Corrosion7’ and ‘Corro-
sion5’. These two networks were shown to be similar to ZF and VGG in terms
of detection performance. Taking a closer look at the work of [7], during its
training phase, authors used color spaces (RGB, YCbCr, CbCr, and grayscale).
After determining the optimal color space, they identified that CbCr to be the
most robust for corrosion detection using wavelet decomposition. Using the
chosen color space, CbCr, authors proposed CNN architectures with a sliding
window using different sizes (i.e. 32x32, 64x64, and 128x128). This sliding win-
dow approach was used to detect corroded areas within an image. The authors
achieved 96.68% mean precision using 926 images. However, they only focus
on clearly visible surface images whereas, our image samples are from a compli-
cated industrial structure. Other corrosion detection model using deep learning
did not obtain accuracy over 88% using the test dataset of targeted industrial
assets [4, 13].

The approaches described in the literature rely on CNN approaches that
could be advanced by bringing together techniques. Indeed, the transfer learn-
ing of the CNN is already established as a technique with learning images con-
structed efficiently through the transfer of knowledge [11]. We considered the
possibility of an ensemble technique, using the latest CNN approaches that pro-
vide pixel level masking for object identification (Mask R-CNN [21]) together
with localised corrosion detection. Such ensemble approach for corrosion de-
tection differs from existing work in the literature since the image samples are
captured in a controlled setting (i.e. images are captured for the purpose of
empirical evaluations). On contrary, our proposed approach works on unaltered
drone images collected in a real-world setting (via a drone used by engineers
to manually assess structural corrosion) which presents high level of complexity
(such as filled with background noise, includes complex industrial structure and
captured at different angles, distance and different times of the day i.e overcast,
sunny etc.).

3. The CorrDetector Framework

The architecture of CorrDetector framework is illustrated in Figure 1. In
Data acquisition layer, a large number of images of the targeted industrial struc-
ture (e.g. building roofs, telecommunication towers, bridges, poles, wires and
pipelines) are acquired through human-operated drones with advanced cameras.
Using these images, engineers identify areas of defects (e.g. corrosion) by vi-
sual inspection. The human expert annotated images using various annotation
software tools are utilised in data preparation layer.

CorrDetector incorporates two types of annotations. Given an image, the
first type is the grid-based annotation where the multiple small rectangular
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Figure 1: The architecture of the CorrDetector framework

grids (or segments) 1 in the image are drawn. Then, a human expert annotates
each of these grids with corrosion or non-corrosion, depending on the fact that
the grid contains corroded structural component(s). The grids are separated
using image processing techniques. These annotations are used to build ground
truth information for corrosion detection deep learning model in CorrDetector.
Another type of the annotation is the object annotation, where a human expert
uses an image annotation tool to create a polygonal mask annotation around
the target object (e.g. a telecommunication tower on which corrosion needs to
be detected). The annotated data are used to train an object recognition model
in CorrDetector.

In data analysis layer, two deep learning models using different CNNs are
learned to develop an ensemble model in CorrDetector. These models are
denoted as λc and λo that will be used for grid-based corrosion detection and
industrial object identification, respectively The image grids aggregator is used
to combine all segments (or grids) within the target image to predict whether
there is corrosion or not in the image. As another key model, CorrDetector
also incorporates, an ensemble model, denoted as λ, that takes the outputs

1In this paper, to simplify the presentation, we interchangeably use the terms, grid and
segment.
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predicted by the λc and λo as the input, and predict which structural objects
has corrosion or not. This ensemble approach aims to improve our prediction
capability by predicting corrosion on only the structural components.

The decision layer makes the final two decisions for a given unknown image.
The first decision is the outcome that contains corrosion or not in the image.
The decision is made by aggregating outcomes of individual segments estimated
using λc for that image. The other decision is about which regions of industrial
object are likely to have corrosion in the image. This is done using the ensemble
model, λ. The corrosion regions can be visualised as highlighted rectangular
grids.

3.1. Image annotation methodology

In this section we present the image annotation methodology employed by
CorrDetector in the data preparation layer.

Let I = {I1, I2, ...Im} be list of m images captured by drones in the data
acquisition layer. Each image Ii∈[1,m], has a W ×H resolution.

In our work, given an image, image annotation means annotating the image
with a caption that best explains the image based on the prominent objects
present in that image and to make the objects recognisable for machines. The
annotation is done by humans manually using image annotation tools to create
the ground truth data for CorrDetector. An image having places of corrosion
is annotated with a cropped bounding box so that other parts of the image can
be considered as with no corrosion. As described previously, we apply two types
of annotation, grid-based annotation and object annotation on each image, Ii.

3.1.1. Grid-based image annotation

The objective of the grid-based corrosion detector, λc is to predict whether
a region in a given image with has corrosion or not. Thus, we formulate the
prediction problem for λc as a binary (1/0) classification, where 1 means cor-
rosion and 0 otherwise. For this kind of classification, the image segmentation
approach has been proven useful [22]. In this approach, a given original image
(in our case, each Ii ∈ I), it is segmented equally to a number of rectangular
grids. Then, each of the grids is annotated with 1 meaning corrosion, and 0
meaning non-corrosion. This is also a kind of data upsampling or augmentation
approach to create enough data to train CNN models.

In our approach, human experts use an image annotation tool to split each
image Ii into n × n rectangular grids. Then, each grid, sxy (where 1 ≤ x, y ≤
n) having corrosion in industrial structures is annotated, producing the grid-
based annotated image, Ii

c. All the grids in Ii
c, which are not annotated with

corrosion, are considered as non-corrosion grids. The image set produced from
original image set I in this layer is denoted as Ic = {Ic1, Ic2, ...Icm}.

3.1.2. Object annotation

Our goal here is to indicate which are parts of industrial component objects
given an image, separating them from unimportant noises (e.g. background im-
ages - trees) in a given image. This process is known as background separation.
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By doing so, we desire to focus on identifying corrosion only on the objects re-
lated to the target industrial objects. The annotated data of this step are used
to learn λo to detect objects associated with industrial structures.

There are two popular annotation approaches used for object separation.
The bounding box [23] is the most commonly used approach for such purpose.
This basically highlights an object in an image with a rectangular box to make
it recognisable for machines. The example of this annotation is shown in Figure
2(a). Another approach is polygonal segmentation [23] which is used to anno-
tate objects with irregular shapes, that is, polygons. Unlike bounding boxes,
this approach can exclude unnecessary objects around the target structural ob-
jects. Polygons are more precise when it comes to localisation. The example is
presented in Figure 2(b).

Our targeted industrial structures have complex and irregular structure and
therefore we use the polygonal annotation approach. Given an image, a human
expert creates polygonal annotations around each of the target structure objects.
Let the annotated image corresponding to a given image Ii be Ii

o. LetMi be the
polygonal mask (see Figure 2(b)) and BBOX i be the bounding box information
(see Figure 2(a)) for Ii

o. The image set produced after this step from original
image set I is Io = {Io1, Io2, ...Iom}.

Figure 2: Object annotation methods

3.2. Processing of annotated images

Given the image set I, we have now obtained the corresponding grid-based
annotated and object annotated image sets in the data preparation layer. We
denoted these sets as Ic and Io, respectively. These image sets are used to build
our CNN models: λc, λo and final ensemble model λ in CorrDetector.

3.2.1. Corrosion Image Segmentation and Separation (CISS) algorithm

Out of m images in I, k images are randomly sampled to be in a training set,
while the rest m− k forms the rest (k is a whole number). The same k images
are picked from Io and Ic where, image Ii

o is the object annotated version and
image Ii

c is grid annotated version for image Ii. To develop λo we use k images
in Io denoted by, Tλo . Similarly, for λc k images used from Ic for training is
denoted by Tλc

.
Given an image Ii, its corresponding grid-based annotation image Ii

c con-
tains n × n rectangular grids. Each grid (or segment), sxy is a cropped image
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with the dimension w × h (where w = W/n and h = H/n) of Ii which have
W ×H dimension. The annotated information in Ii

c produces a binary matrix
Bi = [bxy] of dimension n × n where 1 ≤ x, y ≤ n. The binary decision for bxy
is obtained as,

bxy =

{
1 sxy = Lc
0 sxy 6= Lc

(1)

That is, bxy = 1 if the grid of the x-th row and y-th column is annotated as
corrosion, and bxy = 0, otherwise. Here Lc represents annotation for corrosion.
By applying Equation 1 to all grids in the image Ii

c, we create the binary matrix
Bi = [bxy]. Therefore, for m images in I (where m = |I|, we obtain the list of
m binary matrices, B = {B1, B2, ..., Bm}.

We developed Corrosion Image Segmentation and Separation (CISS) algo-
rithm for generating training data, Tλc for corrosion detection model, λc. The
steps of image segmentation and training data separation process is described
in Algorithm 1.

Algorithm 1 CISS Algorithm

Input: Ic = {I1c, I2c, ...Iic, ..., Ikc}; B = {b1, b2, ...bi, ..., bk}
Output: Training set for λc, Tλc

Sc ← φ ; Snc ← φ
for i = 1 to k do

Si = {sxy : 1 ≤ x, y ≤ n} ← segment(Ii
c)

for each sxy ε Si do
retrieve bxy from Bi
if bxy = 1 then
Sc ← Sc ∪ {sxy}

end
else
Snc ← Snc ∪ {sxy}

end

end

end
Nc ← |Sc|
shuffle all segments snc ε Snc
Ŝnc ← random 2 ×Nc segments from Snc
S ← Sc ∪ Ŝnc
Tλc
← shuffle(S)

return Tλc

In Algorithm 1, our defined function, segment(Ii) generates n×n segmented
images from Ii. That is,

Ii → Si = {sxy : 1 ≤ x, y ≤ n} (2)
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In total, the number of segmented images produced fromm images ism×n×n.
The segments of all k images are combined and then randomly shuffled.

Since the corrosion mainly resides in the industrial structure within an image,
the number of identified segments having Lc, Nc is much smaller than the num-
ber of non-corrosion segments, Nnc (e.g. only 16% in overall distribution for a
real-world use case). To avoid this imbalance issue, all corrosion segments (Sc)
are selected for model development. Then a random samples of non-corrosion
segments (Snc) are chosen such that the selected number of non-corrosion seg-
ments Nnc = 2 × Nc. This produces the final non-corrosion image segment set
Ŝnc. In the end, Sc and Ŝnc are combined and shuffled which produces the final
image set Tλc

which is used as the input image set for λc

3.3. CorrDetector CNN models development

The CorrDetector framework incorporates the following models that have
been developed for detecting corrosion in images of industrial structures. In the
rest of this section, we provide detailed descriptions of the model development
process.

• λc: Given the training set, Tλc
containing random 3 × Nc(Nc + 2 × Nc)

image segments from Ic. Each segment sxy belongs to Tλc
as described

in Algorithm 1. The objective of λc is to automatically identify segments
sxy having Lc in each of m− k images in I and compare with the ground
truth Lc in same m− k images in Ic.

• λo: Given the training set, Tλo
containing k images from Io. Each Ii

oεIo

is annotated with target object T . The objective of λo is to automatically
estimate M̂o in m − k images in I and compare with the ground truth
Mo in same m− k images in Io.

• λ: Given the outcome of λc and λo. The objective of ensemble model, λ
is to estimate corrosion for each individual segments sxy in a test image
Ii such that sxy is detected as a corrosion segment by λc and the presence
of targeted object is detected in sxy by λo.

3.3.1. CNN model for corrosion detection in image segment-level, λc
Our proposed CISS algorithm generates multiple rectangular segments (sxy)

of the complete image. Each segment represents a smaller size image. Therefore,
for detecting corrosion in such small image, the CNN mainly needs to learn the
features for the corrosion color. A simple CNN can serve such purpose.

In general, a CNN consists of multiple convolution (CO) and pooling layers
followed by the fully connected (FC) and classification layers. CO are used to
extract features from the training images. CO consists of kernels (a set of small
receptive fields). The weight values for the kernels are typically initialised with
random values and updated during training. Pooling layers are used to decrease
the data to decrease the computational costs during the training phase. There
are two well-known methods in pooling: (1) max pooling (MP) and (2) mean
pooling (MeP).
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The goal of designing a simple CNN is to determine whether such CNN model
can be used to predict corrosion in a good performance. Thus, to construct λc,
we propose a shallow version of VGG16 [24] with 5 layers - 3 convolution (CO)
layers and 2 fully-connected (FC) layers (see Table 1. Our model is inspired
by the approach proposed in [7] where they proposed a 7-layer CNN called
Corrosion7 (see Table 2).

Table 1: λc architecture - CO:convolution, MP: Max Pooling, KS: Kernel Shape, NK: Number
of Kernels, NV: Number of Variables. Each number indicate a layer number.

Layer Input MP KS NK NV
CO1 224 X 224 X3 2 X 2 3 X 3 32 288
CO2 224 X 224 X 32 2 X 2 3 X 3 64 576
CO3 64 X 64 X 64 2 X 2 3 X 3 128 1152
FC1 2 X 2 X 128 - 512 128 65536
FC2 128 - 128 2 128

Table 2: Corrosion7 architecture

Layer Input MP KS NK NV
CO1 128 X 128 X 3 64 X 64 3 X 3 58 8526
CO2 33 X 33 X 58 17 X 17 3 X 3 128 185600
CO3 9 X 9 X 128 9 X 9 3 X 3 192 221184
CO4 9 X 9 X 192 - 3 X 3 192 331776
CO5 9 X 9 X 192 - 3 X 3 128 221184
FC1 4 X 4 X 128 - 512 1024 2097152
FC2 1024 - 128 2 2048

After constructing λc the following steps are performed,

1. λc is trained with the training set, Tλc
generated in CISS Algorithm (Al-

gorithm 1).

2. The trained λc is tested with m− k images in Ic.
3. For a given test image, Ii ε I, λc generates decision for Lc using confidence

value conf(sxy) for each n × n rectangular segments, sxy in Ii where
0 ≤ conf(sxy) ≤ 1.

4. Let CSi = [conf(sxy)] be the confidence matrix for Ii, for m − k images
λc generates, CS = {CS1, CS2, ...CSi, ...CSm−k}.

5. The decisions for Lc for all segments sxy in Ii produce binary matrix

B̂i = [b̂xy] where each b̂xy is computed according to Equation 1. We call

this segment-level prediction (SLP). B̂ = {B̂i, B̂2, ...B̂i, ...B̂m−k} .

6. The overall confidence for image Ii is computed as,

confc(Ii) =

∑n
x=1

∑n
y=1 b̂xy

n× n
(3)
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These confidence values,
CC = {confc(I1), confc(I2), ...confc(Ii), ...confc(Im−k)} are used to make deci-
sion for image-level (IL) prediction for corrosion.

3.3.2. CNN model for Industrial object identification, λo
We have used Mask R-CNN [21] for developing the model for object iden-

tification, λo. This is one of the best performing model in object detection
and instance segmentation [21]. For a given image, Ii, this network can sepa-
rate different objects. In our industrial object identification problem we have
only one target object. Mask R-CNN provides output for the object bound-
ing boxes, classes and masks. There are two stages of Mask R-CNN (region
proposal network and neural network) and both of them are connected to a
backbone network.

The backbone network for Mask R-CNN is a deep neural network which is
responsible for extracting features from raw image. The deeper network may
result higher accuracy, however, can highly impact on the duration of model
training and classification. By passing through backbone network, images are
converted into feature maps. A top-down pyramid structure, Feature Pyramid
Network (FPN) [25] is used to extract features. The extracted features from
top layers are transferred to lower layers. Due to this structure each layer in
pyramid has access to the higher and lower layers. In this context, we have
used RestNet-101 FPN backbone as feature extractor for our Mask R-CNN to
increase its speed and performance.

The first stage of Mask R-CNN is a light weight neural network called (RPN)
that generates regions of interest (RoIs) from feature maps provided by back-
bone network [21]. The second stage is another neural network takes proposed
RoIs by the first stage and assign them to several specific areas of a feature
map level, scans these areas, and generates objects, bounding boxes and masks.
There is a branch for generating masks for each objects in pixel level. It also
provides the confidence value of detected bounding box similar to Faster R-CNN.

After constructing the Mask R-CNN model with backbone network ResNet-
101, λo, the following steps are performed.

1. λo is trained with training set, Tλo
containing k images from Io.

2. The trained λo is then tested with remaining m− k images in Io.
3. For a given test image, Ii ε I, λo generates output of the estimated mask

of target object, M̂oi with a confidence value confo(Ii). confo(Ii) is used
to make decision for object detection for Ii and 0 ≤ confo(Ii) ≤ 1.

4. The test result for all m−k images in I finally generates the list of images
containing M̂oi estimated by λo, Îom−k and the list of their confidence

values , CO = [confo(Ii)]
m−k
i=1

3.3.3. Ensemble model for region-based corrosion detection, λ

The Ensemble model, λ is a machine learning model that utilises the outcome
from λc and λo to make the final decision for corrosion in an image segment (i.e.
region of an image). Figure 3 shows the process of development of the ensemble
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model λ from the outcomes of λc and λo. An example of a CNN structure for
corrosion detection in an image segment is also presented in the bottom part of
the figure.

Figure 3: An ensemble DL model with an overview CNN structure for corrosion detection

Algorithm 2 outlines the steps involved in our proposed Ensemble Region-
based Corrosion (ERC) detection.

The steps of Algorithm 2 are discussed as follows

• The algorithm generates 2 different feature set, FC and FB, using confi-
dence values and binary decision values of each predicted image segment
sxy by λc respectively.

• The flatten(X) function converts n × n matrix X to n2 elements single
dimensional array.

• To convert the mask outcome of λo, Mo to a binary matrix similar to
the outcome of λc. We first convert the masked outcome of image, Ii into
same n×n segments. Then we compute whether a segment belongs to the
detected object using the area of intersection of the segment and object
mask.

• We consider a segment is part of the object, if object mask overlap with
more than 10% area of the segment. If the condition is true we assign
value 1 and 0, otherwise. Here, we ignore a small amount of of overlap
(10%) based on the observation that if that part of this object contains
corrosion that should be detected in remaining 90% overlapped with other
segments.

• Finally, we combine this binary outcome of λo with λc and true label
which produce the feature set, FB.
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Algorithm 2 ERC Algorithm

Input: Îom−k; CO; B;B̂; CS
Output: Training set for λ: FC and FB
FB ← φ; FC ← φ
for each Îi

o
ε Îom−k; Bi ε Bm−k; B̂i ε B̂; confo(Ii) ε CO; CSi ε CS do

B̄i ← flatten(Bi);
¯̂
Bi ← flatten(B̂i); C̄Si ← flatten(CSi)

M̂oi ← mask(Îi
o
); Ai = area(M̂oi)

Si = {sxy : 1 ≤ x, y ≤ n} ← segment(Îi
o
)

for each sxy ε Si do
intersectV al← area(sxy) ∩Ai
if intersectV al ≥ 10% then

tBxy ← 1
tIxy ← intersectV al × confo(Ii)

end
else

tBxy ← 0; tIxy ← 0
end

end
¯tBi ← flatten(tBxy); t̄Ii ← flatten(tIxy)

fci ← {CSi, tIi, Bi}; fbi ← {
¯̂
Bi, tBi, Bi}

FC ← FC ∪ fci; FB ← FB ∪ fbi
end
return FC, FB

• Another feature set FC is generated based on confidence value of object
mask. If the segment completely overlap with object mask then the confi-
dence value of the segment is same like object mask. Otherwise, it is the
fraction of overlapped area. In case of less than 10% overlap the confi-
dence value is 0. This outcome is combined with confidence values of each
segment for all test images along ground truth label for corrosion in FC.

The generated feature set FB is then fed into a machine learning classifier
such as: support vector machine (SVM), Multilayer Perceptron (MLP) and
XGboost using binary outcome of λc and λo as features and true values as class.
Similarly, FC is also fed similar machine learning classifiers using confidence
values of 2 models as features and ground truth corrosion value as class.

3.4. Decision for corrosion

As stated before, using trained models several prediction decision for corro-
sion are made in decision layer. They are stated as follow.

• Segment-level prediction (SLP): Using λc we predict corrosion or non-
corrosion of the segmented images in the test set. This prediction is done
using the confidence value conf(sxy) for segment sxy estimated by λc.
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If conf(sxy) ≥ τs then, segment has corrosion, otherwise, non-corrosion.
Here, τs is the minimum confidence value to satisfy the condition for a
segment has corrosion and 0 ≤ τs, conf(sxy) ≤ 1.

• Image-level prediction (ILP): This means a corrosion prediction for
each test image by aggregating its segment-level predictions from λc. An
image. Ii should have confc(Ii) ≥ τI to satisfy the condition or corrosion.
Where τI is the fraction of minimum number of segments should have
corrosion among all segments in Ii. τi has been determined as the the
mean value of proportion of corroded segments in all segments in the
train set and 0 ≤ τI , conf(sxy) ≤ 1.

• Industrial object prediction (IOP): Using λo we predict the occur-
rence and position of target industrial object in test images. This predic-
tion is done using the confidence value confo(Ii) for image Ii estimated
by λo. If confo(Ii) ≥ τo then, image contains the target object, otherwise,
false. Here, τo is the minimum confidence value to satisfy the condition
for occurrence of target object in the image and 0 ≤ τo, confo(Ii) ≤ 1.

4. Evaluation

We evaluate CorrDetector on real-world images captured by drones. These
images are unaltered and used directly in our experimentation. None of existing
work in literature used drone images for corrosion detection. Most of these
images are collected from web resources [13, 26] or altered/cropped version of
images captured by digital camera [4, 5, 7].

The objective of our evaluation is to measure the performance of the ensem-
ble model λ in the CorrDetector framework, in comparison with some state-
of-the-art CNN models used for corrosion identification.

4.1. Evaluation Domain

We focus on detecting corrosion from telecommunication towers. Thus, we
have collected the images of telecommunication towers captured using camera
installed in drones. The drones are controlled by operators and they randomly
capture different views of telecommunication tower. This differs from many
prior works that have conducted evaluations on images collected in controlled
settings (i.e. only for the purpose of experimental evaluation) [6, 7].

We have used a total of 573 high-resolution images that contain different
views under various lighting conditions of telecommunication towers (see an ex-
ample in Fig. 4). Each image contains a single tower object and has a 5280×3952
resolution. A telecommunication tower has a complex structure. When random
images are captured about it by drones, a high variations is observed in the im-
ages (e.g. middle part in Figure 4(b) and bottom part in Figure 4(c)). Also, as
seen in 4(a), some part of tower images are overlapped with other objects (e.g.
gate) Therefore, it is hard to distinguish which part of the telecommunication
tower needs to be inspected for corrosion detection. However, CorrDetector
can detect such a part correctly and identify the state of corrosion on it.
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Figure 4: Variations in tower structure in images captured by drones

4.2. Dataset preparation

All the captured images are annotated by experts. Grid-based annotations
are performed using the RatSnake [27] software. RatSnake is an annotation
tool that is capable of fast annotation of images with polygons, grids or both.
Image annotations produced by RatSnake can be exported to various formats.
In the grid-based annotation approach, we used n=16, that is, each image is
segmented and cropped equally to 16 × 16 segments. Each segment ends up
with having a 330× 247 resolution (see examples in Fig. 5a). Thus, we have a
total of 146,688 segmented image samples (573×16×16).

We have also used object annotation for background separation. Object
annotation is done using Labelme [23]. LabelMe is a popular annotation tool,
where a user can draw both bounding boxes and set of polygon points for seg-
mentation maps. Both online and desktop version of this tool is available. The
points of annotated polygon can be saved in JSON or xml format which are
used as input for CNN model.

For background separation, authors in [7] first manually cropped the portion
of the image having industrial structure. Then, it used that cropped image for
segmentation into three different regions, 128×128, 64×64, 32×32. However,
in our approach, we have used a 16 × 16 segmentation on an original image
since telecommunication tower views have a complex structure (as in Figure 4).
Moreover, the structure of tower is not simple in contrast to a metallic surface
as the presence of background can be present within image area covered by the
tower. Therefore, it is difficult and time consuming to separately crop only part
having corrosion that is proposed in [7].

Our choice of the 16×16 segment size is intuitive as popular CNN models
have often used a 224×224 resolution as input image shape [28]. By being scaled
at a 224× 224 resolution from the 330× 247 resolution image segment, we are
able to use the image samples to train λc nearly in their original resolutions
and avoid high distortion due to down-scaling (i.e. from 330 × 247 scaled to
224× 224). Also, the number 16 is chosen to be the maximum granularity level
value where we can get an integer number in h (height of segmented image in
terms of pixel) which is above 224 and so we can segment according to pixel
position in image. RGB (3-channels) colour space is used for forming the input
shape of CNN.
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(a) Corrosion segments (b) Non-corrosion segments

Figure 5: Example of Corrosion and non-corrosion segments

4.3. Separation of training and test set

To build any supervised machine learning model, an essential step is to split
sample data into train and test sets. Train set is used to build CNN models
whereas the test set is utilised for validating the models.

Given the m=573 images, we used k=379 images (approx. 2
3 of 573) for

training the CNN models for λc. A total of the 15,863 segmented images are
marked as corrosion by the experts out of the 97,024 (379×16×16) segments.
Three such sample images are shown in Figure 5a. To avoid a class (i.e. corro-
sion and non-corrosion) imbalance problem, a total of the 31,726 samples out of
81,161 (97,024−15,863) were randomly chosen as non-corrosion samples. Thus,
we used a total of 47,589 (15,863+2×15,863) image segments for training as de-
scribed in Algorithm 1. We used 80%/20% as train/validation set split. Overall,
we have a total of 38,701 images for training and 8,888 images for validation in
each iteration of CNN model.

During the human annotation phase, as only corrosion segments within the
tower structure are annotated by the experts, everything else outside those
segments (including background such as trees, grounds, sky and other objects of
images, etc) are considered non-corrosion. Some non-corrosion sample segments
are presented in Figure 5b.

To evaluate the performance of λc, we used 194 (m− k = 573− 379 = 194)
images not used for training. That is, we measured the performance of models
developed for detecting corrosion in image segment-level using 49,664 image
segments (194×16×16).

To train λo, annotated polygonal mask ofm=379 images are used for training
Mask R-CNN model. The model is evaluated using the remaining 194 images.
During the training, we used 70%/30% split that is, 265 image for training
and 114 images for validation. Here we used ResNet101 as backbone network
(ResNet101 is 101 layers deep). We prefer this split over 80%/20% which we
used for λc so we can get higher number of images in validation.

4.4. Evaluation Metrics

We evaluate the performance of individual CNNs and the ensemble model,
λ, using different performance measures over test set. We use accuracy (Acc.),
precision (P ), recall (R) and F1-score (F1), obtained from true positive (TP ),
false positive (FP ), true negative (TN) and false negative (FN) values from
the classification result (i.e. confusion matrix) over test set:
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To evaluate λo we also measure Intersection over Union (IoU) [29] for Ii as
in equation 4.

IOU(Ii) =
Area(M̂oi ∩Moi)

Area(M̂oi ∪Moi)
(4)

This computes the amount of overlap between the detected and the ground
truth polygonal masks. Similar measure is defined for bounding box annotation
also (Equation 5).

IOU(Ii) =
Area( ˆBBOX oi ∩ BBOX oi)
Area( ˆBBOX oi ∪ BBOX oi)

(5)

Figure 6 shows the demonstration for computing IoU for mask and Bbox.

Figure 6: The process of computing IoU using ground truth and predicted value

To measure the performance of object position detection in Ii, if IOU(Ii) ≥
IOUth then it is considered that the target object mask M̂oi estimated the
position in the object T in Ii accurately (true positive (TP ) case). Otherwise,
this is considered as false positive (FP ). Here 0 ≤ IOUth ≤ 1 and generally, TP
is considered when IOUth > 0.5. Thus, using TP , FP it is possible to compute
precision using the outcome from all test images.

Object detectors normally use Average precision(AP) as metric to measure
the performance of the detection. AP is the average over multiple IOUth. For
example, AP for IOUth values from 0.5 to 0.75 with a step size of 0.05. We also
used AP for for evaluating λo using IOU values for object mask and bounding
boxes.

We use human annotations as gold standards for computing accuracy across
all models.

4.5. Compared State-of-the-art CNN Models

Our ensemble model λ is also compared with some state-of-the-art deep
learning models described in Section 2. In particular, we compare λc with two
models (i.e. Corrosion5 and Corrosion7) specifically designed for corrosion de-
tection in [7] using cropped image. Further, we compare λc with four pre-trained
models through transfer learning, InceptionV3 [30], MobileNet [31], Rsetnet50
[32], and Vgg16 [24]. Corrosion5 is a simpler version of Corrosion7 described in
Table 2 with 3 convolution layers and 2 fully connected layers. Corrosion5 and
Corrosion7 in [7], used different kernel shapes and authors have not clearly ex-
plained the reason for choosing such kernel shapes. Our model, λc as described
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in Table 1 is a 5 layered CNN with the first FC has 128 neurons followed by the
binary classification layer (i.e. corrosion or not) with 2 neurons. To evaluate
how corrosion detection performs with a simpler structure, we also develop a
simple CNN with only one convolution layer and two fully-connected layers.

4.6. Evaluation of developed models: λc, λo and λ

The two CNN models λc and λo are trained and evaluated in multiple itera-
tions and various configurations on two NVIDIA Tesla P100-PCIE-12GB GPUs
on CUDA with four Intel Gold 6140 18-core processors. Finally, λ is developed
using the outcome of λc and λo. In this section, the model development process
and evaluation outcomes are described.

4.6.1. Training and Evaluation for Corrosion Detection Model λc
As stated in section 3.3.1, λc is developed to predict corrosion or not as a

binary classification problem. Thus, the binary cross-entropy is used as a loss
function.

To train λc, different configurations of hyper-parameters are used such as
input dimensions for sample images (e.g. 128 × 128, 200 × 200, 220 × 220,
224 × 224), batch size (e.g. 16, 32, 64, 128) and number of epochs (10, 20, 30,
50, 100). Moreover, rotation, shear range, zoom range, width and height shift
and horizontal flips are used during input data generation [28].

The model with the best outcome in terms of performance measure (e.g. low
training loss) are retained. Finally, all the compared CNN models are trained
using same configurations (i.e. batch size=64, number of epoch =30 and input
image shape 224×224). For the transfer learner models, the pre-trained weights
are fine-tuned to re-train with generated training set.

Figure 7: Training loss for the seven CNN models compared

The learning curves based on the the same loss function across eight models
during training are presented in Figure 7. As observed, all the models were
converged after around 30 epochs. The training loss was lower in four pre-
trained models - InceptionV3, MobileNet, Restnet50 and VGG16. Our model,
λc, showed stability than Corrosion5 and Corrosion7. The training loss was
higher in Corrosion5 and Corrosion7 [7] than λc and four pre-trained models.
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Moreover, Corrosion5 had a high loss value at the beginning and Corrosion7
was unstable (as shown between epoch 20 and 30). The loss value for λc after
30 iterations was 0.3702. The pre-trained model converged very quickly and the
training losses are lower than λc. The lowest loss after 30 iterations was 0.0567
obtained in Vgg16. However, though the pre-trained models performed well in
training data, lower accuracy were observed on test data (discussed below).

In the evaluation, we first measure the performance of λc without integrating
λo. Due to variations in tower images and corrosion from unknown sources the
evaluation outcome from λc can generate many false positives (FPs). The reason
of building λo is to suppress those FPs so that detected corrosion segments
remain in tower object. Therefore, each of image is annotated separately for
building λc and λo. We have used τs = 0.5 (for λc) as it is a general standard
value for CNN in binary classification [6]. τs is minimum confidence value to
satisfy the condition for a segment, sxy has corrosion and 0 ≤ τs, conf(sxy) ≤ 1.

Table 3: Performance comparison for segment-level and image-level prediction

CNN model Acc.(%) P(%) R(%) F1(%)
SLP ILP SLP ILP SLP ILP SLP ILP

Simple CNN 58.17 37.52 22.31 38.36 34.58 88.41 27 54
Our model, λc 86.28 92.50 53.42 96.01 85.41 95.91 66 98
Corrosion5 [7] 78.24 62.48 65.67 65.92 44.7 91.7 53 77
Corrosion7 [7] 81.67 68.41 60.02 70.76 52.60 94.05 56 80
InceptionV3 81.58 66.31 42.34 69.10 63.93 92.94 51 79
Mobilenet 73.86 61.76 43.22 64.30 25.18 92.47 32 76
Resenet50 75.04 63.33 44.71 65.61 31.23 93.13 37 77
Vgg16 77.97 68.88 51.81 70.20 58.96 94.01 55 80

The evaluation results in terms of the evaluation metrics (i.e accuracy, pre-
cision, recall and F1-score) on segment-level prediction (SLP) and image-level
prediction (ILP) are presented in Table 3. As seen, our model, λc, already out-
performs the other seven CNN models in terms of all the performance metrics
(highlighted in yellow) except precision in SLP. The simple CNN performs the
worst which confirms that a single CNN layer may not be sufficient for corrosion
detection. In the pre-trained models, the accuracy of InceptionV3 is turned to
be better than the others but Vgg16 is better in terms F1 due to the higher
precision value.

In terms of accuracy, recall and F1-score λc is also the best. The two models,
Corrosion5 and Corrosion7, in [7] did not perform well on our test data. Four
pre-trained models did not perform so well in test data even though they were
outstanding in train data.

The prediction results of image Ii, matrix Bi (i.e SLP) in segment-level
are aggregated to detect corrosion for ILP. Out of 573 annotated images used
in training and testing in total 10% segments are marked as corrosion by the
human experts. Therefore, we used the threshold, τI = 0.1. That is, given an
image, if more than 10% segments are marked as corrosion by a CNN model,
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then this image is considered to be corrosion. Using this notion, the performance
of ILP for 194 images are calculated which is presented in Table 3. As seen, λc
showed 92.5% in Accuracy and 98% in F1-score. This shows the effectiveness
of our proposed model over the other state-of-the-art and pre-trained models
we compared with. However, due to high number of false positives (FPs) the
precision in SL was low. To improve this and eliminate FPs happened outside
tower structure, we developed λo and then combined it in ensemble model λ.

4.6.2. Training and Evaluation for Object Identification Model λo
We have used pre-trained weights of COCO model [33] to train λo. The

pre-trained network can classify images into 1000 known object categories. To
increase the sample size we have used image augmentation such as rotation, flip
and skew. Here we also trained multiple networks with various configurations
of hyper parameters. Finally, we used 512× 512 as input image dimension and
batch size 64. The network is configured as single object classification problem
with 2 classes - tower and background. Different loss metrics reported by the
network during training phase is shown in Figure 8. As observed, the trained
model converged after around 120 epochs. Thus, we use this model as λo for
tower classification.

Figure 8: Loss metrics observed for λo

Figure 9: Confidence value of tower object recognition over 194 test images
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We have used τo = 0.9, that is, the confidence value over 90% is considered
as correct recognition. Based on this condition in 190 out of 194 images tower is
classified with confidence ≥ 0.9 and while the other 4 were below the threshold
(see Figure 9), therefore object recognition accuracy is 98%.

(a) polygonal mask (b) bounding box

Figure 10: IoU values

The IoU values for mask and bbox according to Equation 4 and 5 are also
computed for 194 test images which is presented in Figure 10a and 10b. As
observed from IoU values for both processes, the mask for only one image was
not predicted correctly. Other images, satisfies the condition for true positive
for IOU ≥ 0.5 for both mask and bounding box overlap. Table 4 shows the
performance of λo using precision (IOUth values) from 0.5 to 0.75 with a step
size of 0.05 [29] and final AP value. The th value is considered till 0.75 as the
precision value significantly deteriorated after that. In both cases λo showed
very high AP value ( 98.11% for polygonal mask and 94.42% for bounding box).

Table 4: Precision and Average Precision (AP) using IoU over mask and bounding box

IoU IoU0.5 IoU0.55 IoU0.6 IoU0.65 IoU0.7 IoU0.75 AP
Pmask 99.49% 99.49% 99.49% 98.97% 98.45% 92.78% 98.11%
Pbbox 99.49% 99.49% 99.49% 99.49% 94.85% 73.71% 94.42%

4.6.3. Training and Evaluation for the ensemble model, λ

As presented in Table 3 we did not obtain good precision for λc due to
higher false positives (FPs). To improve the precision in λc (i.e. minimise
FPs) we developed the ensemble model, λ, by combining outcomes of λc and
λo. As described in Algorithm 2, two feature sets (FC and FB) are generated
using binary outcomes and confidence values of λc and λo. Both FC and FB
(presented in Algorithm 2) are randomised and fed into the selected machine
learning models. The results obtained from both feature sets over the best
performing machine learning classifiers are presented in Table 5.

We observed higher precision values as well as accuracy, recall and F1 in λ
than λc (which was 53.2% before) over all 3 classifiers (MLP, SVM and XG-
Boost). For, FB all classifiers showed same performance in terms of accuracy,
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Table 5: Performance of λ using FB and FC as feature set and different ML classifier

Ensemble
model

Acc.(%) P(%) R(%) F1(%)

FB FC FB FC FB FC FB FC
MLP 93.80 83.25 88.00 92.30 93.80 83.20 90.80 86.80
SVM 93.80 83.70 88.00 92.30 93.80 83.70 90.80 87.10
XGBoost 93.80 86.29 88.00 92.10 93.80 86.30 90.80 88.70

precision, recall and F1-score. However, the performance of XGBoost was the
best among all in FC in terms of accuracy and F1-score. In λ we observed
8.72% improvement accross all 3 classifiers in accuracy over the SLP in λc. The
final evaluation outcome from λ, provides evidence that CorrDetector is an ef-
fective model for corrosion detection. The ensemble model over multiple CNNs
can detect corrosion on real-world images with 93.8% accuracy and with 88%
precision and 90.8% F1-score. Our evaluation results show the validity of our
primary motivation that utilising an ensemble of CNN models can be effectively
used for corrosion detection in drone images of complex industrial structure.

5. Conclusion

We have presented CorrDetector, an ensemble AI framework underpinned
by CNN models for structural identification and corrosion detection in civil en-
gineering settings. Our approach relies on standard approaches to drone man-
aged image capture technologies used in the risk-based maintenance philosophy.
This industry conforming approach makes CorrDetector applicable in standard
working practises where images are used to carry out in-person inspections due
to either safety concerns or inaccessibility. Our approach provides engineers
with advanced indication of which images may contain sufficient corrosion to
warrant maintenance intervention. This in turn provides an opportunity for
fine tuning analysis and assessment further along the value chain of the main-
tenance life cycle by allowing resources to be directed only to those structures
highlighted by CorrDetector. This opportunity can greatly reduce financial
costs and extend the resources of engineers to consider far more images than
would otherwise be possible in a human based analysis.

We evaluated CorrDetector via empirical evaluations with state-of-the-art
that also utilise AI techniques for structural corrosion analysis. We demon-
strated that our approach is a significant improvement and achieved an overall
success rate in excess of 92%. This level of success indicates a level of efficacy
that will allow our approach to provide the foundations for building engineer-
ing analysis tools, especially in the area of supporting telecommunication tower
safety and maintenance life cycle services. Future work will explore applying
CorrDetector in a broader range of structures and settings.
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